/llvm-project/mlir/test/Dialect/SparseTensor/ |
H A D | roundtrip.mlir | 3 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> 7 // CHECK: %[[T:.*]] = sparse_tensor.new %[[A]] : !llvm.ptr to tensor<128xf64, #{{.*}}> 10 %0 = sparse_tensor.new %arg0 : !llvm.ptr to tensor<128xf64, #SparseVector> 16 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), posWidth=32, crdWidth=32}> 22 // CHECK: %[[R:.*]] = sparse_tensor.assemble (%[[P]], %[[I]]), %[[D]] 26 %0 = sparse_tensor.assemble (%pos, %index), %data: (tensor<2xi32>, tensor<6x1xi32>), tensor<6xf64> 33 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), crdWidth=32}> 39 // CHECK: %[[P:.*]]:2, %[[D:.*]], %[[PL:.*]]:2, %[[DL:.*]] = sparse_tensor.disassemble %[[T]] 46 %rp, %ri, %d, %rpl, %ril, %dl = sparse_tensor.disassemble %sp : tensor<100xf64, #SparseVector> 55 #SparseVector = #sparse_tensor [all...] |
H A D | invalid.mlir | 4 // expected-error@+1 {{'sparse_tensor.new' op result #0 must be sparse tensor of any type values, but got 'tensor<32xf32>'}} 5 %0 = sparse_tensor.new %arg0 : !llvm.ptr to tensor<32xf32> 11 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), posWidth=32, crdWidth=32}> 16 %0 = sparse_tensor.assemble (%pos, %coordinates), %values 23 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed), posWidth=32, crdWidth=32}> 28 %0 = sparse_tensor.assemble (%pos, %coordinates), %values 35 #SparseVector = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton), posWidth=32, crdWidth=32}> 40 %0 = sparse_tensor.assemble (%pos, %coordinates), %values 47 #CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth=32, crdWidth=32}> 52 %0 = sparse_tensor [all...] |
H A D | convert_dense2sparse.mlir | 3 #SparseVector = #sparse_tensor.encoding<{ 7 #CSR = #sparse_tensor.encoding<{ 11 #CSC = #sparse_tensor.encoding<{ 15 #SparseTensor = #sparse_tensor.encoding<{ 20 // CHECK: sparse_tensor.foreach 23 // CHECK-NOT: sparse_tensor.reorder_coo 24 // CHECK: sparse_tensor.load 26 %0 = sparse_tensor.convert %arg0 : tensor<?xi32> to tensor<?xi32, #SparseVector> 31 // CHECK: sparse_tensor.foreach 34 // CHECK-NOT: sparse_tensor.reorder_coo [all …]
|
H A D | fold.mlir | 3 #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> 7 // CHECK-NOT: sparse_tensor.convert 10 %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32> 16 // CHECK-NOT: sparse_tensor.convert 19 %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32, #SparseVector> 25 // CHECK-NOT: sparse_tensor.positions 26 // CHECK-NOT: sparse_tensor.coordinates 27 // CHECK-NOT: sparse_tensor.values 30 …%0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memref… 31 …%1 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memr… [all …]
|
H A D | convert_sparse2sparse.mlir | 3 #SparseVector64 = #sparse_tensor.encoding<{ 9 #SparseVector32 = #sparse_tensor.encoding<{ 15 #SparseVector = #sparse_tensor.encoding<{ 19 #SortedCOO2D = #sparse_tensor.encoding<{ 23 #SortedCOO3D = #sparse_tensor.encoding<{ 28 #TsssPermuted = #sparse_tensor.encoding<{ 32 #COOSlice = #sparse_tensor.encoding<{ 33 …map = (d0 : #sparse_tensor<slice(2, 2, 1)>, d1 : #sparse_tensor<slice(12, 13, 1)>) -> (d0 : compre… 39 %0 = sparse_tensor.convert %arg0 : tensor<64xf32, #SparseVector> to tensor<64xf32, #SparseVector> 44 // CHECK-NEXT: sparse_tensor.convert [all …]
|
H A D | roundtrip_encoding.mlir | 3 #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> 5 // CHECK: #[[$SV:.*]] = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> 12 #CSR = #sparse_tensor.encoding<{ 18 // CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed),… 25 #CSR_OnlyOnes = #sparse_tensor.encoding<{ 33 // CHECK: #[[$CSR_OnlyOnes:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : com… 40 #CSR_OnlyOnes = #sparse_tensor.encoding<{ 46 // CHECK: #[[$CSR_OnlyOnes:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : com… 53 #CSR_OnlyOnes = #sparse_tensor.encoding<{ 61 // CHECK: #[[$CSR_OnlyOnes:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : com… [all …]
|
H A D | convert_sparse2dense.mlir | 3 #SparseVector = #sparse_tensor.encoding<{ 7 #SparseMatrix = #sparse_tensor.encoding<{ 11 #SparseTensor = #sparse_tensor.encoding<{ 16 // CHECK-NOT: sparse_tensor.reorder_coo 19 // CHECK: sparse_tensor.foreach 22 %0 = sparse_tensor.convert %arg0 : tensor<13xi32, #SparseVector> to tensor<13xi32> 27 // CHECK-NOT: sparse_tensor.reorder_coo 30 // CHECK: sparse_tensor.foreach 33 %0 = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32> 38 // CHECK-NOT: sparse_tensor.reorder_coo [all …]
|
H A D | codegen.mlir | 3 #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> 5 #SparseVector = #sparse_tensor.encoding<{ 11 #Dense2D = #sparse_tensor.encoding<{ 17 #Row = #sparse_tensor.encoding<{ 23 #CSR = #sparse_tensor.encoding<{ 29 #UCSR = #sparse_tensor.encoding<{ 33 #CSC = #sparse_tensor.encoding<{ 37 #BCSR = #sparse_tensor.encoding<{ 41 #DCSR = #sparse_tensor.encoding<{ 47 #Dense3D = #sparse_tensor.encoding<{ [all …]
|
H A D | sparse_space_collapse.mlir | 3 #COO = #sparse_tensor.encoding<{ 14 // CHECK: %[[VAL_3:.*]] = sparse_tensor.extract_iteration_space %[[VAL_0]] lvls = 0 to 2 15 // CHECK: %[[VAL_4:.*]] = sparse_tensor.iterate %[[VAL_5:.*]] in %[[VAL_3]] iter_args(%[[… 17 // CHECK: sparse_tensor.yield %[[VAL_7]] : index 24 %l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 25 : tensor<4x8xf32, #COO> -> !sparse_tensor.iter_space<#COO, lvls = 0> 26 …%r1 = sparse_tensor.iterate %it1 in %l1 iter_args(%outer = %i): !sparse_tensor.iter_space<#COO, lv… 27 %l2 = sparse_tensor.extract_iteration_space %sp at %it1 lvls = 1 28 …: tensor<4x8xf32, #COO>, !sparse_tensor.iterator<#COO, lvls = 0 to 1> -> !sparse_tensor.iter_space… 29 …%r2 = sparse_tensor.iterate %it2 in %l2 iter_args(%inner = %outer): !sparse_tensor.iter_space<#COO… [all …]
|
H A D | invalid_encoding.mlir | 4 #a = #sparse_tensor.encoding<{map = []}> 10 #a = #sparse_tensor.encoding<{map = ()}> 16 #a = #sparse_tensor.encoding<{map = (d0 -> d0)}> 22 #a = #sparse_tensor.encoding<{map = d0 -> d0}> 28 #a = #sparse_tensor.encoding<{map = (d0) -> d0}> 34 #a = #sparse_tensor.encoding<{map = (d0) -> (d0)}> 40 #a = #sparse_tensor.encoding<{map = (d0) -> (d0:)}> 46 #a = #sparse_tensor.encoding<{map = (d0) -> (d0 : (compressed))}> 52 #a = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}> 58 #a = #sparse_tensor.encoding<{map = (d0, d1, d2) -> (d0 : batch, d1 : compressed, d2: batch)}> [all …]
|
H A D | sparse_matmul_codegen.mlir | 5 #CSR = #sparse_tensor.encoding<{ 16 // CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier 20 // CHECK-SAME: %[[VAL_7:.*7]]: !sparse_tensor.storage_specifier 33 // CHECK: %[[VAL_20:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_… 34 …: %[[VAL_21:.*]] = sparse_tensor.storage_specifier.set %[[VAL_20]] lvl_sz at 0 with %[[… 35 …: %[[VAL_22:.*]] = sparse_tensor.storage_specifier.set %[[VAL_21]] lvl_sz at 1 with %[[… 36 …/ CHECK: %[[VAL_23:.*]] = sparse_tensor.storage_specifier.get %[[VAL_22]] pos_mem_sz at… 37 // CHECK: %[[VAL_24:.*]], %[[VAL_25:.*]] = sparse_tensor.push_back %[[VAL_23]], %[[VAL_15… 38 … %[[VAL_26:.*]] = sparse_tensor.storage_specifier.set %[[VAL_22]] pos_mem_sz at 1 with %… 39 // CHECK: %[[VAL_27:.*]], %[[VAL_28:.*]] = sparse_tensor.push_back %[[VAL_25]], %[[VAL_24… [all …]
|
H A D | sparse_itertion_licm.mlir | 3 #CSR = #sparse_tensor.encoding<{ 12 // CHECK: sparse_tensor.values 13 // CHECK: sparse_tensor.positions 14 // CHECK: sparse_tensor.coordinate 15 // CHECK: sparse_tensor.iterate 17 %l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 : tensor<?x?xf64, #CSR> 18 … -> !sparse_tensor.iter_space<#CSR, lvls = 0> 19 sparse_tensor.iterate %it1 in %l1 at (%crd) : !sparse_tensor.iter_space<#CSR, lvls = 0> { 20 %0 = sparse_tensor.values %sp : tensor<?x?xf64, #CSR> to memref<?xf64> 21 … %1 = sparse_tensor.positions %sp { level = 1 : index } : tensor<?x?xf64, #CSR> to memref<?xindex> [all …]
|
H A D | codegen_buffer_initialization.mlir | 3 #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> 6 …_0:.*]]: index) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specif… 19 // CHECK: %[[VAL_10:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_… 20 … CHECK: %[[VAL_12:.*]] = sparse_tensor.storage_specifier.set %[[VAL_10]] lvl_sz at 0 with %[… 21 …/ CHECK: %[[VAL_14:.*]] = sparse_tensor.storage_specifier.get %[[VAL_12]] pos_mem_sz at… 22 // CHECK: %[[VAL_15:.*]], %[[VAL_17:.*]] = sparse_tensor.push_back %[[VAL_14]], %[[VAL_5]… 23 …HECK: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.set %[[VAL_12]] pos_mem_sz at 0 with %… 24 // CHECK: %[[VAL_19:.*]], %[[VAL_21:.*]] = sparse_tensor.push_back %[[VAL_17]], %[[VAL_15… 25 …HECK: %[[VAL_22:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] pos_mem_sz at 0 with %… 26 …_9]], %[[VAL_22]] : memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specif… [all …]
|
H A D | sparse_extract_slice.mlir | 3 #CSR = #sparse_tensor.encoding<{ 7 #CSR_SLICE = #sparse_tensor.encoding<{ 8 …map = (d0 : #sparse_tensor<slice(0, 4, 1)>, d1 : #sparse_tensor<slice(0, 8, 1)>) -> (d0 : dense, d… 15 // CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier<#sparse{… 16 // CHECK: %[[VAL_4:.*]] = sparse_tensor.storage_specifier.init with %[[VAL_3]] 20 // CHECK: %[[VAL_8:.*]] = sparse_tensor.storage_specifier.set %[[VAL_4]] dim_offset at 0… 21 // CHECK: %[[VAL_9:.*]] = sparse_tensor.storage_specifier.set %[[VAL_8]] lvl_sz at 0 wit… 22 // CHECK: %[[VAL_10:.*]] = sparse_tensor.storage_specifier.set %[[VAL_9]] dim_stride at … 24 // CHECK: %[[VAL_12:.*]] = sparse_tensor.storage_specifier.set %[[VAL_10]] dim_offset at… 25 // CHECK: %[[VAL_13:.*]] = sparse_tensor.storage_specifier.set %[[VAL_12]] lvl_sz at 1 w… [all …]
|
H A D | external_direct.mlir | 9 // CHECK: %[[I:.*]] = sparse_tensor.assemble (%[[B]], %[[C]]), %[[A]] 14 #sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> 16 %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32, #sparse> to tensor<64x64xf32> 25 // CHECK: %[[P:.*]] = sparse_tensor.positions %[[F]] 26 // CHECK: %[[C:.*]] = sparse_tensor.coordinates %[[F]] 27 // CHECK: %[[V:.*]] = sparse_tensor.values %[[F]] 31 #sparse = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> 33 %0 = sparse_tensor.convert %arg0 : tensor<64x64xf32> to tensor<64x64xf32, #sparse> 42 // CHECK: %[[P:.*]] = sparse_tensor.positions %[[F]]#1 43 // CHECK: %[[C:.*]] = sparse_tensor.coordinates %[[F]]#1 [all …]
|
H A D | sparse_foreach.mlir | 20 sparse_tensor.foreach in %cst { order = affine_map<(d0, d1) -> (d1, d0)> } : tensor<8x7xf32> do { 24 sparse_tensor.foreach in %cst : tensor<8x7xf32> do { 31 #CSR_SLICE = #sparse_tensor.encoding<{ 32 …map = (d0 : #sparse_tensor<slice(0, 4, 1)>, d1 : #sparse_tensor<slice(2, 4, 1)>) -> (d0 : compress… 35 #CSR_SLICE_DYN = #sparse_tensor.encoding<{ 36 …map = (d0 : #sparse_tensor<slice(?, ?, ?)>, d1 : #sparse_tensor<slice(?, ?, ?)>) -> (d0 : compress… 45 // C_HECK-DAG: %[[VAL_3:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tenso… 46 // C_HECK-DAG: %[[VAL_4:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : ten… 47 // C_HECK-DAG: %[[VAL_5:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xf64, 48 // C_HECK-DAG: %[[VAL_6:.*]] = sparse_tensor.slice.offset %[[VAL_0]] at 0 : tensor<?x?xf64, [all …]
|
H A D | sparse_iteration_to_scf.mlir | 5 #COO = #sparse_tensor.encoding<{ 40 %l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 41 : tensor<4x8xf32, #COO> -> !sparse_tensor.iter_space<#COO, lvls = 0> 42 …%r1 = sparse_tensor.iterate %it1 in %l1 iter_args(%outer = %i): !sparse_tensor.iter_space<#COO, lv… 43 %l2 = sparse_tensor.extract_iteration_space %sp at %it1 lvls = 1 44 …: tensor<4x8xf32, #COO>, !sparse_tensor.iterator<#COO, lvls = 0 to 1> -> !sparse_tensor.iter_space… 45 …%r2 = sparse_tensor.iterate %it2 in %l2 iter_args(%inner = %outer): !sparse_tensor.iter_space<#COO… 47 sparse_tensor.yield %k : index 49 sparse_tensor.yield %r2 : index
|
H A D | sparse_reinterpret_map.mlir | 13 #BSR = #sparse_tensor.encoding<{ // 2x4 blocks 29 // CHECK: %[[T0:.*]] = sparse_tensor.reinterpret_map %[[A2]] 31 // CHECK: %[[T2:.*]] = sparse_tensor.reinterpret_map %[[T1]] 49 #BSR = #sparse_tensor.encoding<{ 58 // CHECK-DAG: #[[$remap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, … 59 // CHECK-DAG: #[[$demap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 … 63 // CHECK: %[[VAL_2:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<2x4xf64, #[[$… 64 // CHECK: %[[VAL_4:.*]] = sparse_tensor.foreach in %[[VAL_2]] init(%[[VAL_1]]) 67 // CHECK: sparse_tensor.yield %[[VAL_11]] : tensor<1x2x2x2xf64, #sparse{{[0-9]*}}> 69 // CHECK: %[[VAL_12:.*]] = sparse_tensor.reinterpret_map %[[VAL_4]] : tensor<1x2x2x2xf64,… [all …]
|
H A D | specifier_to_llvm.mlir | 3 #CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}> 13 func.func @sparse_metadata_init() -> !sparse_tensor.storage_specifier<#CSR> { 14 %0 = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier<#CSR> 15 return %0 : !sparse_tensor.storage_specifier<#CSR> 23 func.func @sparse_get_md(%arg0: !sparse_tensor.storage_specifier<#CSR>) -> index { 24 %0 = sparse_tensor.storage_specifier.get %arg0 lvl_sz at 0 25 : !sparse_tensor.storage_specifier<#CSR> 35 func.func @sparse_set_md(%arg0: !sparse_tensor.storage_specifier<#CSR>, %arg1: index) 36 -> !sparse_tensor.storage_specifier<#CSR> { 37 %0 = sparse_tensor.storage_specifier.set %arg0 lvl_sz at 0 with %arg1 [all …]
|
H A D | sparse_concat.mlir | 7 #DCSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}> 18 // CHECK-DAG: %[[TMP_1:.*]] = sparse_tensor.positions %[[TMP_arg0]] {level = 0 : index} : tensor… 19 // CHECK-DAG: %[[TMP_2:.*]] = sparse_tensor.coordinates %[[TMP_arg0]] {level = 0 : index} : tens… 20 // CHECK-DAG: %[[TMP_3:.*]] = sparse_tensor.positions %[[TMP_arg0]] {level = 1 : index} : tensor… 21 // CHECK-DAG: %[[TMP_4:.*]] = sparse_tensor.coordinates %[[TMP_arg0]] {level = 1 : index} : tens… 22 // CHECK-DAG: %[[TMP_5:.*]] = sparse_tensor.values %[[TMP_arg0]] : tensor<2x4xf64, #sparse> 38 // CHECK-DAG: %[[TMP_8:.*]] = sparse_tensor.positions %[[TMP_arg1]] {level = 0 : index} : tensor… 39 // CHECK-DAG: %[[TMP_9:.*]] = sparse_tensor.coordinates %[[TMP_arg1]] {level = 0 : index} : tens… 40 // CHECK-DAG: %[[TMP_10:.*]] = sparse_tensor.positions %[[TMP_arg1]] {level = 1 : index} : tenso… 41 // CHECK-DAG: %[[TMP_11:.*]] = sparse_tensor.coordinates %[[TMP_arg1]] {level = 1 : index} : ten… [all …]
|
/llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/ |
H A D | BufferizableOpInterfaceImpl.cpp | 23 using namespace mlir::sparse_tensor; 26 namespace sparse_tensor { namespace 41 sparse_tensor::ConcatenateOp> { 66 ConvertOpInterface, sparse_tensor::ConvertOp> { 96 sparse_tensor::LoadOp> { 115 sparse_tensor::NewOp> { 127 AssembleOpInterface, sparse_tensor::AssembleOp> { 159 DisassembleOpInterface, sparse_tensor::DisassembleOp> { 191 ForeachOpInterface, sparse_tensor::ForeachOp> { 221 NumberOfEntriesOpInterface, sparse_tensor::NumberOfEntriesOp> { [all …]
|
/llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/ |
H A D | sparse_print.mlir | 28 #AllDense = #sparse_tensor.encoding<{ 35 #AllDenseT = #sparse_tensor.encoding<{ 42 #CSR = #sparse_tensor.encoding<{ 49 #DCSR = #sparse_tensor.encoding<{ 56 #CSC = #sparse_tensor.encoding<{ 63 #DCSC = #sparse_tensor.encoding<{ 70 #BSR = #sparse_tensor.encoding<{ 79 #BSRC = #sparse_tensor.encoding<{ 88 #BSC = #sparse_tensor.encoding<{ 97 #BSCC = #sparse_tensor [all...] |
H A D | sparse_conversion_sparse2dense.mlir | 34 #Tensor1 = #sparse_tensor.encoding<{ 38 #Tensor2 = #sparse_tensor.encoding<{ 42 #Tensor3 = #sparse_tensor.encoding<{ 46 #Tensor4 = #sparse_tensor.encoding<{ 50 #Tensor5 = #sparse_tensor.encoding<{ 54 #Tensor6 = #sparse_tensor.encoding<{ 127 %s2341 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor1> 128 %s2342 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor2> 129 %s2343 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor3> 130 %s2344 = sparse_tensor [all...] |
H A D | sparse_matmul_slice.mlir | 26 #DCSR = #sparse_tensor.encoding<{ 30 #DCSR_SLICE = #sparse_tensor.encoding<{ 31 map = (d0 : #sparse_tensor<slice(0, 4, 1)>, d1 : #sparse_tensor<slice(0, 8, 1)>) -> (d0 : compressed, d1 : compressed) 34 #CSR = #sparse_tensor.encoding<{ 38 #CSR_SLICE = #sparse_tensor.encoding<{ 39 map = (d0 : #sparse_tensor<slice(0, 4, 1)>, d1 : #sparse_tensor<slice(0, 8, 1)>) -> (d0 : dense, d1 : compressed) 42 #COO = #sparse_tensor.encoding<{ 46 #CSR_SLICE_1 = #sparse_tensor [all...] |
H A D | sparse_foreach_slices.mlir | 27 #CSR = #sparse_tensor.encoding<{ 31 #CSR_SLICE = #sparse_tensor.encoding<{ 32 map = (d0 : #sparse_tensor<slice(1, 4, 1)>, d1 : #sparse_tensor<slice(1, 4, 2)>) -> (d0 : dense, d1 : compressed) 35 #CSR_SLICE_DYN = #sparse_tensor.encoding<{ 36 map = (d0 : #sparse_tensor<slice(?, ?, ?)>, d1 : #sparse_tensor<slice(?, ?, ?)>) -> (d0 : dense, d1 : compressed) 39 #COO = #sparse_tensor.encoding<{ 43 #COO_SLICE = #sparse_tensor.encoding<{ 44 map = (d0 : #sparse_tensor<slic [all...] |