1066d786cSAart Bik// RUN: mlir-opt %s --canonicalize --cse | FileCheck %s 2066d786cSAart Bik 3dbe1be9aSYinying Li#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> 4066d786cSAart Bik 50128f801Sbixia1// CHECK-LABEL: func @sparse_nop_dense2dense_convert( 60128f801Sbixia1// CHECK-SAME: %[[A:.*]]: tensor<64xf32>) 70128f801Sbixia1// CHECK-NOT: sparse_tensor.convert 80128f801Sbixia1// CHECK: return %[[A]] : tensor<64xf32> 90128f801Sbixia1func.func @sparse_nop_dense2dense_convert(%arg0: tensor<64xf32>) -> tensor<64xf32> { 100128f801Sbixia1 %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32> 110128f801Sbixia1 return %0 : tensor<64xf32> 120128f801Sbixia1} 130128f801Sbixia1 14066d786cSAart Bik// CHECK-LABEL: func @sparse_dce_convert( 15066d786cSAart Bik// CHECK-SAME: %[[A:.*]]: tensor<64xf32>) 16066d786cSAart Bik// CHECK-NOT: sparse_tensor.convert 17066d786cSAart Bik// CHECK: return 18fb35cd3bSRiver Riddlefunc.func @sparse_dce_convert(%arg0: tensor<64xf32>) { 19066d786cSAart Bik %0 = sparse_tensor.convert %arg0 : tensor<64xf32> to tensor<64xf32, #SparseVector> 20066d786cSAart Bik return 21066d786cSAart Bik} 22d4e16171SAart Bik 23d4e16171SAart Bik// CHECK-LABEL: func @sparse_dce_getters( 24*c5a67e16SYinying Li// CHECK-SAME: %[[A:.*]]: tensor<64xf32, #sparse{{[0-9]*}}>) 2584cd51bbSwren romano// CHECK-NOT: sparse_tensor.positions 2684cd51bbSwren romano// CHECK-NOT: sparse_tensor.coordinates 27d4e16171SAart Bik// CHECK-NOT: sparse_tensor.values 28d4e16171SAart Bik// CHECK: return 29fb35cd3bSRiver Riddlefunc.func @sparse_dce_getters(%arg0: tensor<64xf32, #SparseVector>) { 3084cd51bbSwren romano %0 = sparse_tensor.positions %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memref<?xindex> 3184cd51bbSwren romano %1 = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<64xf32, #SparseVector> to memref<?xindex> 32d4e16171SAart Bik %2 = sparse_tensor.values %arg0 : tensor<64xf32, #SparseVector> to memref<?xf32> 33d4e16171SAart Bik return 34d4e16171SAart Bik} 35509974afSPeiming Liu 361ab2b007SPeiming Liu// CHECK-LABEL: func @sparse_concat_dce( 371ab2b007SPeiming Liu// CHECK-NOT: sparse_tensor.concatenate 381ab2b007SPeiming Liu// CHECK: return 391ab2b007SPeiming Liufunc.func @sparse_concat_dce(%arg0: tensor<2xf64, #SparseVector>, 401ab2b007SPeiming Liu %arg1: tensor<3xf64, #SparseVector>, 411ab2b007SPeiming Liu %arg2: tensor<4xf64, #SparseVector>) { 421ab2b007SPeiming Liu %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index} 431ab2b007SPeiming Liu : tensor<2xf64, #SparseVector>, 441ab2b007SPeiming Liu tensor<3xf64, #SparseVector>, 451ab2b007SPeiming Liu tensor<4xf64, #SparseVector> to tensor<9xf64, #SparseVector> 461ab2b007SPeiming Liu return 471ab2b007SPeiming Liu} 481ab2b007SPeiming Liu 49509974afSPeiming Liu// CHECK-LABEL: func @sparse_get_specifier_dce_fold( 50509974afSPeiming Liu// CHECK-SAME: %[[A0:.*]]: !sparse_tensor.storage_specifier 5144ff23d5SPeiming Liu// CHECK-SAME: %[[A1:.*]]: index, 5244ff23d5SPeiming Liu// CHECK-SAME: %[[A2:.*]]: index) 53509974afSPeiming Liu// CHECK-NOT: sparse_tensor.storage_specifier.set 54509974afSPeiming Liu// CHECK-NOT: sparse_tensor.storage_specifier.get 55509974afSPeiming Liu// CHECK: return %[[A1]] 5644ff23d5SPeiming Liufunc.func @sparse_get_specifier_dce_fold(%arg0: !sparse_tensor.storage_specifier<#SparseVector>, %arg1: index, %arg2: index) -> index { 5784cd51bbSwren romano %0 = sparse_tensor.storage_specifier.set %arg0 lvl_sz at 0 with %arg1 5844ff23d5SPeiming Liu : !sparse_tensor.storage_specifier<#SparseVector> 5984cd51bbSwren romano %1 = sparse_tensor.storage_specifier.set %0 pos_mem_sz at 0 with %arg2 6044ff23d5SPeiming Liu : !sparse_tensor.storage_specifier<#SparseVector> 6184cd51bbSwren romano %2 = sparse_tensor.storage_specifier.get %1 lvl_sz at 0 6244ff23d5SPeiming Liu : !sparse_tensor.storage_specifier<#SparseVector> 6344ff23d5SPeiming Liu return %2 : index 64509974afSPeiming Liu} 650aacc213SPeiming Liu 660aacc213SPeiming Liu 670aacc213SPeiming Liu 680aacc213SPeiming Liu#COO = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)}> 690aacc213SPeiming Liu 700aacc213SPeiming Liu// CHECK-LABEL: func @sparse_reorder_coo( 71*c5a67e16SYinying Li// CHECK-SAME: %[[A:.*]]: tensor<?x?xf32, #sparse{{[0-9]*}}> 720aacc213SPeiming Liu// CHECK-NOT: %[[R:.*]] = sparse_tensor.reorder_coo 730aacc213SPeiming Liu// CHECK: return %[[A]] 740aacc213SPeiming Liufunc.func @sparse_reorder_coo(%arg0 : tensor<?x?xf32, #COO>) -> tensor<?x?xf32, #COO> { 750aacc213SPeiming Liu %ret = sparse_tensor.reorder_coo quick_sort %arg0 : tensor<?x?xf32, #COO> to tensor<?x?xf32, #COO> 760aacc213SPeiming Liu return %ret : tensor<?x?xf32, #COO> 770aacc213SPeiming Liu} 78ff21a90eSPeiming Liu 79ff21a90eSPeiming Liu 80ff21a90eSPeiming Liu#BSR = #sparse_tensor.encoding<{ 81ff21a90eSPeiming Liu map = ( i, j ) -> 82ff21a90eSPeiming Liu ( i floordiv 2 : dense, 83ff21a90eSPeiming Liu j floordiv 3 : compressed, 84ff21a90eSPeiming Liu i mod 2 : dense, 85ff21a90eSPeiming Liu j mod 3 : dense 86ff21a90eSPeiming Liu ) 87ff21a90eSPeiming Liu}> 88ff21a90eSPeiming Liu 89ff21a90eSPeiming Liu// CHECK-LABEL: func @sparse_crd_translate( 90ff21a90eSPeiming Liu// CHECK-NOT: sparse_tensor.crd_translate 91ff21a90eSPeiming Liufunc.func @sparse_crd_translate(%arg0: index, %arg1: index) -> (index, index) { 92ff21a90eSPeiming Liu %l0, %l1, %l2, %l3 = sparse_tensor.crd_translate dim_to_lvl [%arg0, %arg1] as #BSR : index, index, index, index 93ff21a90eSPeiming Liu %d0, %d1 = sparse_tensor.crd_translate lvl_to_dim [%l0, %l1, %l2, %l3] as #BSR : index, index 94ff21a90eSPeiming Liu return %d0, %d1 : index, index 95ff21a90eSPeiming Liu} 96f0f5fdf7SPeiming Liu 97f0f5fdf7SPeiming Liu// CHECK-LABEL: func.func @sparse_lvl_0( 98f0f5fdf7SPeiming Liu// CHECK: %[[C5:.*]] = arith.constant 5 : index 99f0f5fdf7SPeiming Liu// CHECK: return %[[C5]] : index 100f0f5fdf7SPeiming Liufunc.func @sparse_lvl_0(%t : tensor<10x?xi32, #BSR>) -> index { 101f0f5fdf7SPeiming Liu %lvl = arith.constant 0 : index 102f0f5fdf7SPeiming Liu %l0 = sparse_tensor.lvl %t, %lvl : tensor<10x?xi32, #BSR> 103f0f5fdf7SPeiming Liu return %l0 : index 104f0f5fdf7SPeiming Liu} 105f0f5fdf7SPeiming Liu 106f0f5fdf7SPeiming Liu// CHECK-LABEL: func.func @sparse_lvl_3( 107f0f5fdf7SPeiming Liu// CHECK: %[[C3:.*]] = arith.constant 3 : index 108f0f5fdf7SPeiming Liu// CHECK: return %[[C3]] : index 109f0f5fdf7SPeiming Liufunc.func @sparse_lvl_3(%t : tensor<?x?xi32, #BSR>) -> index { 110f0f5fdf7SPeiming Liu %lvl = arith.constant 3 : index 111f0f5fdf7SPeiming Liu %l0 = sparse_tensor.lvl %t, %lvl : tensor<?x?xi32, #BSR> 112f0f5fdf7SPeiming Liu return %l0 : index 113f0f5fdf7SPeiming Liu} 114d808d922SPeiming Liu 115d808d922SPeiming Liu#DSDD = #sparse_tensor.encoding<{ 116d808d922SPeiming Liu map = (i, j, k, l) -> (i: dense, j: compressed, k: dense, l: dense) 117d808d922SPeiming Liu}> 118d808d922SPeiming Liu 119d808d922SPeiming Liu 120d808d922SPeiming Liu// CHECK-LABEL: func.func @sparse_reinterpret_map( 121d808d922SPeiming Liu// CHECK-NOT: sparse_tensor.reinterpret_map 122d808d922SPeiming Liufunc.func @sparse_reinterpret_map(%t0 : tensor<6x12xi32, #BSR>) -> tensor<6x12xi32, #BSR> { 123d808d922SPeiming Liu %t1 = sparse_tensor.reinterpret_map %t0 : tensor<6x12xi32, #BSR> 124d808d922SPeiming Liu to tensor<3x4x2x3xi32, #DSDD> 125d808d922SPeiming Liu %t2 = sparse_tensor.reinterpret_map %t1 : tensor<3x4x2x3xi32, #DSDD> 126d808d922SPeiming Liu to tensor<6x12xi32, #BSR> 127d808d922SPeiming Liu return %t2 : tensor<6x12xi32, #BSR> 128d808d922SPeiming Liu} 129