xref: /llvm-project/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir (revision 94e27c265a9aeb3659175ecee81a68d1763e0180)
1// RUN: mlir-opt %s -split-input-file --sparse-reinterpret-map | FileCheck %s
2
3#trait_mul = {
4  indexing_maps = [
5    affine_map<(i,j) -> (i,j)>,  // A (in)
6    affine_map<(i,j) -> (j,i)>,  // B (in, transposed)
7    affine_map<(i,j) -> (i,j)>   // X (out)
8  ],
9  iterator_types = ["parallel", "parallel"],
10  doc = "X(i,j) *= A(i,j) * B(j,i)"
11}
12
13#BSR = #sparse_tensor.encoding<{   // 2x4 blocks
14  map = (i, j) ->
15    ( i floordiv 2 : dense
16    , j floordiv 4 : compressed
17    , i mod 2 : dense
18    , j mod 4 : dense
19    )
20}>
21
22// CHECK-DAG: #[[$map0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0 * 2 + d2, d1 * 4 + d3)>
23// CHECK-DAG: #[[$map1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1 * 4 + d3, d0 * 2 + d2)>
24// CHECK-DAG: #[[$map2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
25// CHECK-LABEL: func @mul(
26// CHECK-SAME:  %[[A0:.*0]]: tensor<32x32xf32>,
27// CHECK-SAME:  %[[A1:.*1]]: tensor<32x32xf32>,
28// CHECK-SAME:  %[[A2:.*2]]: tensor<32x32xf32, #sparse{{[0-9]*}}>)
29// CHECK:       %[[T0:.*]] = sparse_tensor.reinterpret_map %[[A2]]
30// CHECK:       %[[T1:.*]] = linalg.generic {doc = {{.*}} indexing_maps = [#[[$map0]], #[[$map1]], #[[$map2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
31// CHECK:       %[[T2:.*]] = sparse_tensor.reinterpret_map %[[T1]]
32// CHECK:       return %[[T2]] : tensor<32x32xf32, #sparse{{[0-9]*}}>
33func.func @mul(%arg0: tensor<32x32xf32>,
34               %arg1: tensor<32x32xf32>,
35               %arg2: tensor<32x32xf32, #BSR>) -> tensor<32x32xf32, #BSR> {
36  %0 = linalg.generic #trait_mul
37    ins(%arg0, %arg1: tensor<32x32xf32>, tensor<32x32xf32>)
38    outs(%arg2: tensor<32x32xf32, #BSR>) {
39      ^bb(%x: f32, %y : f32, %z : f32):
40        %1 = arith.mulf %x, %y : f32
41        %2 = arith.mulf %1, %z : f32
42        linalg.yield %2 : f32
43  } -> tensor<32x32xf32, #BSR>
44  return %0 : tensor<32x32xf32, #BSR>
45}
46
47// -----
48
49#BSR = #sparse_tensor.encoding<{
50   map = ( i, j ) ->
51      ( i floordiv 2 : dense,
52        j floordiv 2 : compressed,
53        i mod 2      : dense,
54        j mod 2      : dense
55      )
56}>
57
58// CHECK-DAG: #[[$remap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense) }>
59// CHECK-DAG: #[[$demap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : dense, d3 : dense) }>
60// CHECK-LABEL:   func.func @sparse_foreach_reinterpret_map(
61// CHECK-SAME:      %[[VAL_0:.*]]: tensor<2x4xf64, #[[$remap]]>
62// CHECK:           %[[VAL_1:.*]] = bufferization.alloc_tensor() : tensor<1x2x2x2xf64, #[[$demap]]>
63// CHECK:           %[[VAL_2:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<2x4xf64, #[[$remap]]> to tensor<1x2x2x2xf64, #[[$demap]]>
64// CHECK:           %[[VAL_4:.*]] = sparse_tensor.foreach in %[[VAL_2]] init(%[[VAL_1]])
65// CHECK:           ^bb0(%[[VAL_5:.*]]: index, %[[VAL_6:.*]]: index, %[[VAL_7:.*]]: index, %[[VAL_8:.*]]: index, %[[VAL_9:.*]]: f64, %[[VAL_10:.*]]: tensor<1x2x2x2xf64, #[[$demap]]>
66// CHECK:             %[[VAL_11:.*]] = tensor.insert %[[VAL_9]] into %[[VAL_10]]{{\[}}%[[VAL_5]], %[[VAL_6]], %[[VAL_7]], %[[VAL_8]]] : tensor<1x2x2x2xf64, #[[$demap]]>
67// CHECK:             sparse_tensor.yield %[[VAL_11]] : tensor<1x2x2x2xf64, #sparse{{[0-9]*}}>
68// CHECK:           }
69// CHECK:           %[[VAL_12:.*]] = sparse_tensor.reinterpret_map %[[VAL_4]] : tensor<1x2x2x2xf64, #[[$demap]]> to tensor<2x4xf64, #[[$remap]]>
70// CHECK:           %[[VAL_13:.*]] = sparse_tensor.load %[[VAL_12]] hasInserts : tensor<2x4xf64, #[[$remap]]>
71// CHECK:           return %[[VAL_13]] : tensor<2x4xf64, #sparse{{[0-9]*}}>
72// CHECK:         }
73func.func @sparse_foreach_reinterpret_map(%6 : tensor<2x4xf64, #BSR>) -> tensor<2x4xf64, #BSR> {
74  %7 = bufferization.alloc_tensor() : tensor<2x4xf64, #BSR>
75  %8 = sparse_tensor.foreach in %6 init(%7) : tensor<2x4xf64, #BSR>, tensor<2x4xf64, #BSR> -> tensor<2x4xf64, #BSR> do {
76    ^bb0(%arg0: index, %arg1: index, %arg2: f64, %arg3: tensor<2x4xf64, #BSR>):
77      %inserted = tensor.insert %arg2 into %arg3[%arg0, %arg1] : tensor<2x4xf64, #BSR>
78      sparse_tensor.yield %inserted : tensor<2x4xf64, #BSR>
79  }
80  %9 = sparse_tensor.load %8 hasInserts : tensor<2x4xf64, #BSR>
81  return %9 : tensor<2x4xf64, #BSR>
82}
83
84
85// -----
86
87#BSR = #sparse_tensor.encoding<{
88   map = ( i, j ) ->
89      ( i floordiv 2 : dense,
90        j floordiv 2 : compressed,
91        i mod 2      : dense,
92        j mod 2      : dense
93      )
94}>
95// CHECK-DAG: #[[$remap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense) }>
96// CHECK-DAG: #[[$demap:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : dense, d3 : dense) }>
97
98// CHECK-LABEL:   func.func @sparse_assemble_reinterpret_map(
99// CHECK-SAME:        %[[VAL_0:.*]]: tensor<?xf64>,
100// CHECK-SAME:        %[[VAL_1:.*]]: tensor<?xindex>,
101// CHECK-SAME:        %[[VAL_2:.*]]: tensor<?xindex>) -> tensor<2x4xf64, #[[$remap]]> {
102// CHECK:           %[[VAL_3:.*]] = sparse_tensor.assemble {{.*}} to tensor<1x2x2x2xf64, #[[$demap]]>
103// CHECK:           %[[VAL_4:.*]] = sparse_tensor.reinterpret_map %[[VAL_3]] : tensor<1x2x2x2xf64, #[[$demap]]> to tensor<2x4xf64, #[[$remap]]>
104// CHECK:           return %[[VAL_4]] : tensor<2x4xf64, #[[$remap]]>
105// CHECK:         }
106func.func @sparse_assemble_reinterpret_map(%val : tensor<?xf64>, %pos:tensor<?xindex>, %crd:tensor<?xindex>) -> tensor<2x4xf64, #BSR> {
107  %0 = sparse_tensor.assemble (%pos, %crd), %val
108     : (tensor<?xindex>, tensor<?xindex>), tensor<?xf64> to tensor<2x4xf64, #BSR>
109  return %0 : tensor<2x4xf64, #BSR>
110}
111
112// CHECK-LABEL:   func.func @sparse_disassemble_reinterpret_map(
113// CHECK-SAME:         %[[VAL_0:.*]]: tensor<2x4xf64, #[[$remap]]>,
114// CHECK-SAME:         %[[VAL_1:.*]]: tensor<?xf64>,
115// CHECK-SAME:         %[[VAL_2:.*]]: tensor<?xindex>,
116// CHECK-SAME:         %[[VAL_3:.*]]: tensor<?xindex>) -> (tensor<?xf64>, tensor<?xindex>, tensor<?xindex>) {
117// CHECK:           %[[VAL_4:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<2x4xf64, #[[$remap]]> to tensor<1x2x2x2xf64, #[[$demap]]>
118// CHECK:           %{{.*}} = sparse_tensor.disassemble %[[VAL_4]] : tensor<1x2x2x2xf64, #[[$demap]]>
119// CHECK:           return
120// CHECK:         }
121func.func @sparse_disassemble_reinterpret_map(%sp : tensor<2x4xf64, #BSR>,
122                                              %od : tensor<?xf64>,
123                                              %op : tensor<?xindex>,
124                                              %oi : tensor<?xindex>)
125                                            -> (tensor<?xf64>, tensor<?xindex>, tensor<?xindex>) {
126  %rp, %ri, %rd, %dl, %pl, %il = sparse_tensor.disassemble %sp : tensor<2x4xf64, #BSR>
127                                 out_lvls(%op, %oi : tensor<?xindex>, tensor<?xindex>)
128                                 out_vals(%od : tensor<?xf64>)
129                                 -> (tensor<?xindex>, tensor<?xindex>), tensor<?xf64>, (index, index), index
130  return %rd, %rp, %ri : tensor<?xf64>, tensor<?xindex>, tensor<?xindex>
131}
132