1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "CodeGenRegisters.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/TypeSize.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cstdio> 32 #include <iterator> 33 #include <set> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "dag-patterns" 37 38 static inline bool isIntegerOrPtr(MVT VT) { 39 return VT.isInteger() || VT == MVT::iPTR; 40 } 41 static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); } 42 static inline bool isVector(MVT VT) { return VT.isVector(); } 43 static inline bool isScalar(MVT VT) { return !VT.isVector(); } 44 45 template <typename Predicate> 46 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 47 bool Erased = false; 48 // It is ok to iterate over MachineValueTypeSet and remove elements from it 49 // at the same time. 50 for (MVT T : S) { 51 if (!P(T)) 52 continue; 53 Erased = true; 54 S.erase(T); 55 } 56 return Erased; 57 } 58 59 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 60 SmallVector<MVT, 4> Types(begin(), end()); 61 array_pod_sort(Types.begin(), Types.end()); 62 63 OS << '['; 64 ListSeparator LS(" "); 65 for (const MVT &T : Types) 66 OS << LS << ValueTypeByHwMode::getMVTName(T); 67 OS << ']'; 68 } 69 70 // --- TypeSetByHwMode 71 72 // This is a parameterized type-set class. For each mode there is a list 73 // of types that are currently possible for a given tree node. Type 74 // inference will apply to each mode separately. 75 76 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 77 // Take the address space from the first type in the list. 78 if (!VTList.empty()) 79 AddrSpace = VTList[0].PtrAddrSpace; 80 81 for (const ValueTypeByHwMode &VVT : VTList) 82 insert(VVT); 83 } 84 85 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 86 for (const auto &I : *this) { 87 if (I.second.size() > 1) 88 return false; 89 if (!AllowEmpty && I.second.empty()) 90 return false; 91 } 92 return true; 93 } 94 95 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 96 assert(isValueTypeByHwMode(true) && 97 "The type set has multiple types for at least one HW mode"); 98 ValueTypeByHwMode VVT; 99 VVT.PtrAddrSpace = AddrSpace; 100 101 for (const auto &I : *this) { 102 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 103 VVT.getOrCreateTypeForMode(I.first, T); 104 } 105 return VVT; 106 } 107 108 bool TypeSetByHwMode::isPossible() const { 109 for (const auto &I : *this) 110 if (!I.second.empty()) 111 return true; 112 return false; 113 } 114 115 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 116 bool Changed = false; 117 bool ContainsDefault = false; 118 MVT DT = MVT::Other; 119 120 for (const auto &P : VVT) { 121 unsigned M = P.first; 122 // Make sure there exists a set for each specific mode from VVT. 123 Changed |= getOrCreate(M).insert(P.second).second; 124 // Cache VVT's default mode. 125 if (DefaultMode == M) { 126 ContainsDefault = true; 127 DT = P.second; 128 } 129 } 130 131 // If VVT has a default mode, add the corresponding type to all 132 // modes in "this" that do not exist in VVT. 133 if (ContainsDefault) 134 for (auto &I : *this) 135 if (!VVT.hasMode(I.first)) 136 Changed |= I.second.insert(DT).second; 137 138 return Changed; 139 } 140 141 // Constrain the type set to be the intersection with VTS. 142 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 143 bool Changed = false; 144 if (hasDefault()) { 145 for (const auto &I : VTS) { 146 unsigned M = I.first; 147 if (M == DefaultMode || hasMode(M)) 148 continue; 149 Map.insert({M, Map.at(DefaultMode)}); 150 Changed = true; 151 } 152 } 153 154 for (auto &I : *this) { 155 unsigned M = I.first; 156 SetType &S = I.second; 157 if (VTS.hasMode(M) || VTS.hasDefault()) { 158 Changed |= intersect(I.second, VTS.get(M)); 159 } else if (!S.empty()) { 160 S.clear(); 161 Changed = true; 162 } 163 } 164 return Changed; 165 } 166 167 template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) { 168 bool Changed = false; 169 for (auto &I : *this) 170 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 171 return Changed; 172 } 173 174 template <typename Predicate> 175 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 176 assert(empty()); 177 for (const auto &I : VTS) { 178 SetType &S = getOrCreate(I.first); 179 for (auto J : I.second) 180 if (P(J)) 181 S.insert(J); 182 } 183 return !empty(); 184 } 185 186 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 187 SmallVector<unsigned, 4> Modes; 188 Modes.reserve(Map.size()); 189 190 for (const auto &I : *this) 191 Modes.push_back(I.first); 192 if (Modes.empty()) { 193 OS << "{}"; 194 return; 195 } 196 array_pod_sort(Modes.begin(), Modes.end()); 197 198 OS << '{'; 199 for (unsigned M : Modes) { 200 OS << ' ' << getModeName(M) << ':'; 201 get(M).writeToStream(OS); 202 } 203 OS << " }"; 204 } 205 206 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 207 // The isSimple call is much quicker than hasDefault - check this first. 208 bool IsSimple = isSimple(); 209 bool VTSIsSimple = VTS.isSimple(); 210 if (IsSimple && VTSIsSimple) 211 return getSimple() == VTS.getSimple(); 212 213 // Speedup: We have a default if the set is simple. 214 bool HaveDefault = IsSimple || hasDefault(); 215 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 216 if (HaveDefault != VTSHaveDefault) 217 return false; 218 219 SmallSet<unsigned, 4> Modes; 220 for (auto &I : *this) 221 Modes.insert(I.first); 222 for (const auto &I : VTS) 223 Modes.insert(I.first); 224 225 if (HaveDefault) { 226 // Both sets have default mode. 227 for (unsigned M : Modes) { 228 if (get(M) != VTS.get(M)) 229 return false; 230 } 231 } else { 232 // Neither set has default mode. 233 for (unsigned M : Modes) { 234 // If there is no default mode, an empty set is equivalent to not having 235 // the corresponding mode. 236 bool NoModeThis = !hasMode(M) || get(M).empty(); 237 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 238 if (NoModeThis != NoModeVTS) 239 return false; 240 if (!NoModeThis) 241 if (get(M) != VTS.get(M)) 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 namespace llvm { 250 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 251 T.writeToStream(OS); 252 return OS; 253 } 254 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 255 T.writeToStream(OS); 256 return OS; 257 } 258 } // namespace llvm 259 260 LLVM_DUMP_METHOD 261 void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; } 262 263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 264 auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) { 265 // Complement of In within this partition. 266 auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); }; 267 268 if (!WildVT) 269 return berase_if(Out, CompIn); 270 271 bool OutW = Out.count(*WildVT), InW = In.count(*WildVT); 272 if (OutW == InW) 273 return berase_if(Out, CompIn); 274 275 // Compute the intersection of scalars separately to account for only one 276 // set containing WildVT. 277 // The intersection of WildVT with a set of corresponding types that does 278 // not include WildVT will result in the most specific type: 279 // - WildVT is more specific than any set with two elements or more 280 // - WildVT is less specific than any single type. 281 // For example, for iPTR and scalar integer types 282 // { iPTR } * { i32 } -> { i32 } 283 // { iPTR } * { i32 i64 } -> { iPTR } 284 // and 285 // { iPTR i32 } * { i32 } -> { i32 } 286 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 287 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 288 289 // Looking at just this partition, let In' = elements only in In, 290 // Out' = elements only in Out, and IO = elements common to both. Normally 291 // IO would be returned as the result of the intersection, but we need to 292 // account for WildVT being a "wildcard" of sorts. Since elements in IO are 293 // those that match both sets exactly, they will all belong to the output. 294 // If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means 295 // that the other set doesn't have it, but it could have (1) a more 296 // specific type, or (2) a set of types that is less specific. The 297 // "leftovers" from the other set is what we want to examine more closely. 298 299 auto Leftovers = [&](const SetType &A, const SetType &B) { 300 SetType Diff = A; 301 berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); }); 302 return Diff; 303 }; 304 305 if (InW) { 306 SetType OutLeftovers = Leftovers(Out, In); 307 if (OutLeftovers.size() < 2) { 308 // WildVT not added to Out. Keep the possible single leftover. 309 return false; 310 } 311 // WildVT replaces the leftovers. 312 berase_if(Out, CompIn); 313 Out.insert(*WildVT); 314 return true; 315 } 316 317 // OutW == true 318 SetType InLeftovers = Leftovers(In, Out); 319 unsigned SizeOut = Out.size(); 320 berase_if(Out, CompIn); // This will remove at least the WildVT. 321 if (InLeftovers.size() < 2) { 322 // WildVT deleted from Out. Add back the possible single leftover. 323 Out.insert(InLeftovers); 324 return true; 325 } 326 327 // Keep the WildVT in Out. 328 Out.insert(*WildVT); 329 // If WildVT was the only element initially removed from Out, then Out 330 // has not changed. 331 return SizeOut != Out.size(); 332 }; 333 334 // Note: must be non-overlapping 335 using WildPartT = std::pair<MVT, std::function<bool(MVT)>>; 336 static const WildPartT WildParts[] = { 337 {MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }}, 338 }; 339 340 bool Changed = false; 341 for (const auto &I : WildParts) 342 Changed |= IntersectP(I.first, I.second); 343 344 Changed |= IntersectP(std::nullopt, [&](MVT T) { 345 return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); }); 346 }); 347 348 return Changed; 349 } 350 351 bool TypeSetByHwMode::validate() const { 352 if (empty()) 353 return true; 354 bool AllEmpty = true; 355 for (const auto &I : *this) 356 AllEmpty &= I.second.empty(); 357 return !AllEmpty; 358 } 359 360 // --- TypeInfer 361 362 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 363 const TypeSetByHwMode &In) const { 364 ValidateOnExit _1(Out, *this); 365 In.validate(); 366 if (In.empty() || Out == In || TP.hasError()) 367 return false; 368 if (Out.empty()) { 369 Out = In; 370 return true; 371 } 372 373 bool Changed = Out.constrain(In); 374 if (Changed && Out.empty()) 375 TP.error("Type contradiction"); 376 377 return Changed; 378 } 379 380 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 assert(!Out.empty() && "cannot pick from an empty set"); 385 386 bool Changed = false; 387 for (auto &I : Out) { 388 TypeSetByHwMode::SetType &S = I.second; 389 if (S.size() <= 1) 390 continue; 391 MVT T = *S.begin(); // Pick the first element. 392 S.clear(); 393 S.insert(T); 394 Changed = true; 395 } 396 return Changed; 397 } 398 399 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isIntegerOrPtr); 405 406 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 407 } 408 409 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isFloatingPoint); 415 416 return Out.assign_if(getLegalTypes(), isFloatingPoint); 417 } 418 419 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError()) 422 return false; 423 if (!Out.empty()) 424 return Out.constrain(isScalar); 425 426 return Out.assign_if(getLegalTypes(), isScalar); 427 } 428 429 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 430 ValidateOnExit _1(Out, *this); 431 if (TP.hasError()) 432 return false; 433 if (!Out.empty()) 434 return Out.constrain(isVector); 435 436 return Out.assign_if(getLegalTypes(), isVector); 437 } 438 439 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 440 ValidateOnExit _1(Out, *this); 441 if (TP.hasError() || !Out.empty()) 442 return false; 443 444 Out = getLegalTypes(); 445 return true; 446 } 447 448 template <typename Iter, typename Pred, typename Less> 449 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 450 if (B == E) 451 return E; 452 Iter Min = E; 453 for (Iter I = B; I != E; ++I) { 454 if (!P(*I)) 455 continue; 456 if (Min == E || L(*I, *Min)) 457 Min = I; 458 } 459 return Min; 460 } 461 462 template <typename Iter, typename Pred, typename Less> 463 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 464 if (B == E) 465 return E; 466 Iter Max = E; 467 for (Iter I = B; I != E; ++I) { 468 if (!P(*I)) 469 continue; 470 if (Max == E || L(*Max, *I)) 471 Max = I; 472 } 473 return Max; 474 } 475 476 /// Make sure that for each type in Small, there exists a larger type in Big. 477 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 478 bool SmallIsVT) { 479 ValidateOnExit _1(Small, *this), _2(Big, *this); 480 if (TP.hasError()) 481 return false; 482 bool Changed = false; 483 484 assert((!SmallIsVT || !Small.empty()) && 485 "Small should not be empty for SDTCisVTSmallerThanOp"); 486 487 if (Small.empty()) 488 Changed |= EnforceAny(Small); 489 if (Big.empty()) 490 Changed |= EnforceAny(Big); 491 492 assert(Small.hasDefault() && Big.hasDefault()); 493 494 SmallVector<unsigned, 4> Modes; 495 union_modes(Small, Big, Modes); 496 497 // 1. Only allow integer or floating point types and make sure that 498 // both sides are both integer or both floating point. 499 // 2. Make sure that either both sides have vector types, or neither 500 // of them does. 501 for (unsigned M : Modes) { 502 TypeSetByHwMode::SetType &S = Small.get(M); 503 TypeSetByHwMode::SetType &B = Big.get(M); 504 505 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 506 507 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 508 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 509 Changed |= berase_if(S, NotInt); 510 Changed |= berase_if(B, NotInt); 511 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 512 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 513 Changed |= berase_if(S, NotFP); 514 Changed |= berase_if(B, NotFP); 515 } else if (SmallIsVT && B.empty()) { 516 // B is empty and since S is a specific VT, it will never be empty. Don't 517 // report this as a change, just clear S and continue. This prevents an 518 // infinite loop. 519 S.clear(); 520 } else if (S.empty() || B.empty()) { 521 Changed = !S.empty() || !B.empty(); 522 S.clear(); 523 B.clear(); 524 } else { 525 TP.error("Incompatible types"); 526 return Changed; 527 } 528 529 if (none_of(S, isVector) || none_of(B, isVector)) { 530 Changed |= berase_if(S, isVector); 531 Changed |= berase_if(B, isVector); 532 } 533 } 534 535 auto LT = [](MVT A, MVT B) -> bool { 536 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 537 // purposes of ordering. 538 auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(), 539 A.getSizeInBits().getKnownMinValue()); 540 auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(), 541 B.getSizeInBits().getKnownMinValue()); 542 return ASize < BSize; 543 }; 544 auto SameKindLE = [](MVT A, MVT B) -> bool { 545 // This function is used when removing elements: when a vector is compared 546 // to a non-vector or a scalable vector to any non-scalable MVT, it should 547 // return false (to avoid removal). 548 if (std::tuple(A.isVector(), A.isScalableVector()) != 549 std::tuple(B.isVector(), B.isScalableVector())) 550 return false; 551 552 return std::tuple(A.getScalarSizeInBits(), 553 A.getSizeInBits().getKnownMinValue()) <= 554 std::tuple(B.getScalarSizeInBits(), 555 B.getSizeInBits().getKnownMinValue()); 556 }; 557 558 for (unsigned M : Modes) { 559 TypeSetByHwMode::SetType &S = Small.get(M); 560 TypeSetByHwMode::SetType &B = Big.get(M); 561 // MinS = min scalar in Small, remove all scalars from Big that are 562 // smaller-or-equal than MinS. 563 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 564 if (MinS != S.end()) 565 Changed |= 566 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS)); 567 568 // MaxS = max scalar in Big, remove all scalars from Small that are 569 // larger than MaxS. 570 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 571 if (MaxS != B.end()) 572 Changed |= 573 berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1)); 574 575 // MinV = min vector in Small, remove all vectors from Big that are 576 // smaller-or-equal than MinV. 577 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 578 if (MinV != S.end()) 579 Changed |= 580 berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV)); 581 582 // MaxV = max vector in Big, remove all vectors from Small that are 583 // larger than MaxV. 584 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 585 if (MaxV != B.end()) 586 Changed |= 587 berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1)); 588 } 589 590 return Changed; 591 } 592 593 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 594 /// for each type U in Elem, U is a scalar type. 595 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 596 /// type T in Vec, such that U is the element type of T. 597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 598 TypeSetByHwMode &Elem) { 599 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 600 if (TP.hasError()) 601 return false; 602 bool Changed = false; 603 604 if (Vec.empty()) 605 Changed |= EnforceVector(Vec); 606 if (Elem.empty()) 607 Changed |= EnforceScalar(Elem); 608 609 SmallVector<unsigned, 4> Modes; 610 union_modes(Vec, Elem, Modes); 611 for (unsigned M : Modes) { 612 TypeSetByHwMode::SetType &V = Vec.get(M); 613 TypeSetByHwMode::SetType &E = Elem.get(M); 614 615 Changed |= berase_if(V, isScalar); // Scalar = !vector 616 Changed |= berase_if(E, isVector); // Vector = !scalar 617 assert(!V.empty() && !E.empty()); 618 619 MachineValueTypeSet VT, ST; 620 // Collect element types from the "vector" set. 621 for (MVT T : V) 622 VT.insert(T.getVectorElementType()); 623 // Collect scalar types from the "element" set. 624 for (MVT T : E) 625 ST.insert(T); 626 627 // Remove from V all (vector) types whose element type is not in S. 628 Changed |= berase_if(V, [&ST](MVT T) -> bool { 629 return !ST.count(T.getVectorElementType()); 630 }); 631 // Remove from E all (scalar) types, for which there is no corresponding 632 // type in V. 633 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 634 } 635 636 return Changed; 637 } 638 639 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 640 const ValueTypeByHwMode &VVT) { 641 TypeSetByHwMode Tmp(VVT); 642 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 643 return EnforceVectorEltTypeIs(Vec, Tmp); 644 } 645 646 /// Ensure that for each type T in Sub, T is a vector type, and there 647 /// exists a type U in Vec such that U is a vector type with the same 648 /// element type as T and at least as many elements as T. 649 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 650 TypeSetByHwMode &Sub) { 651 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 652 if (TP.hasError()) 653 return false; 654 655 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 656 auto IsSubVec = [](MVT B, MVT P) -> bool { 657 if (!B.isVector() || !P.isVector()) 658 return false; 659 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 660 // but until there are obvious use-cases for this, keep the 661 // types separate. 662 if (B.isScalableVector() != P.isScalableVector()) 663 return false; 664 if (B.getVectorElementType() != P.getVectorElementType()) 665 return false; 666 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 667 }; 668 669 /// Return true if S has no element (vector type) that T is a sub-vector of, 670 /// i.e. has the same element type as T and more elements. 671 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 672 for (auto I : S) 673 if (IsSubVec(T, I)) 674 return false; 675 return true; 676 }; 677 678 /// Return true if S has no element (vector type) that T is a super-vector 679 /// of, i.e. has the same element type as T and fewer elements. 680 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 681 for (auto I : S) 682 if (IsSubVec(I, T)) 683 return false; 684 return true; 685 }; 686 687 bool Changed = false; 688 689 if (Vec.empty()) 690 Changed |= EnforceVector(Vec); 691 if (Sub.empty()) 692 Changed |= EnforceVector(Sub); 693 694 SmallVector<unsigned, 4> Modes; 695 union_modes(Vec, Sub, Modes); 696 for (unsigned M : Modes) { 697 TypeSetByHwMode::SetType &S = Sub.get(M); 698 TypeSetByHwMode::SetType &V = Vec.get(M); 699 700 Changed |= berase_if(S, isScalar); 701 702 // Erase all types from S that are not sub-vectors of a type in V. 703 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 704 705 // Erase all types from V that are not super-vectors of a type in S. 706 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 707 } 708 709 return Changed; 710 } 711 712 /// 1. Ensure that V has a scalar type iff W has a scalar type. 713 /// 2. Ensure that for each vector type T in V, there exists a vector 714 /// type U in W, such that T and U have the same number of elements. 715 /// 3. Ensure that for each vector type U in W, there exists a vector 716 /// type T in V, such that T and U have the same number of elements 717 /// (reverse of 2). 718 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 719 ValidateOnExit _1(V, *this), _2(W, *this); 720 if (TP.hasError()) 721 return false; 722 723 bool Changed = false; 724 if (V.empty()) 725 Changed |= EnforceAny(V); 726 if (W.empty()) 727 Changed |= EnforceAny(W); 728 729 // An actual vector type cannot have 0 elements, so we can treat scalars 730 // as zero-length vectors. This way both vectors and scalars can be 731 // processed identically. 732 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 733 MVT T) -> bool { 734 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 735 : ElementCount()); 736 }; 737 738 SmallVector<unsigned, 4> Modes; 739 union_modes(V, W, Modes); 740 for (unsigned M : Modes) { 741 TypeSetByHwMode::SetType &VS = V.get(M); 742 TypeSetByHwMode::SetType &WS = W.get(M); 743 744 SmallDenseSet<ElementCount> VN, WN; 745 for (MVT T : VS) 746 VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 747 for (MVT T : WS) 748 WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount()); 749 750 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 751 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 752 } 753 return Changed; 754 } 755 756 namespace { 757 struct TypeSizeComparator { 758 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 759 return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 760 std::tuple(RHS.isScalable(), RHS.getKnownMinValue()); 761 } 762 }; 763 } // end anonymous namespace 764 765 /// 1. Ensure that for each type T in A, there exists a type U in B, 766 /// such that T and U have equal size in bits. 767 /// 2. Ensure that for each type U in B, there exists a type T in A 768 /// such that T and U have equal size in bits (reverse of 1). 769 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 770 ValidateOnExit _1(A, *this), _2(B, *this); 771 if (TP.hasError()) 772 return false; 773 bool Changed = false; 774 if (A.empty()) 775 Changed |= EnforceAny(A); 776 if (B.empty()) 777 Changed |= EnforceAny(B); 778 779 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 780 781 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 782 return !Sizes.count(T.getSizeInBits()); 783 }; 784 785 SmallVector<unsigned, 4> Modes; 786 union_modes(A, B, Modes); 787 for (unsigned M : Modes) { 788 TypeSetByHwMode::SetType &AS = A.get(M); 789 TypeSetByHwMode::SetType &BS = B.get(M); 790 TypeSizeSet AN, BN; 791 792 for (MVT T : AS) 793 AN.insert(T.getSizeInBits()); 794 for (MVT T : BS) 795 BN.insert(T.getSizeInBits()); 796 797 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 798 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 799 } 800 801 return Changed; 802 } 803 804 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const { 805 ValidateOnExit _1(VTS, *this); 806 const TypeSetByHwMode &Legal = getLegalTypes(); 807 assert(Legal.isSimple() && "Default-mode only expected"); 808 const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple(); 809 810 for (auto &I : VTS) 811 expandOverloads(I.second, LegalTypes); 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 815 const TypeSetByHwMode::SetType &Legal) const { 816 if (Out.count(MVT::pAny)) { 817 Out.erase(MVT::pAny); 818 Out.insert(MVT::iPTR); 819 } else if (Out.count(MVT::iAny)) { 820 Out.erase(MVT::iAny); 821 for (MVT T : MVT::integer_valuetypes()) 822 if (Legal.count(T)) 823 Out.insert(T); 824 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 825 if (Legal.count(T)) 826 Out.insert(T); 827 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 828 if (Legal.count(T)) 829 Out.insert(T); 830 } else if (Out.count(MVT::fAny)) { 831 Out.erase(MVT::fAny); 832 for (MVT T : MVT::fp_valuetypes()) 833 if (Legal.count(T)) 834 Out.insert(T); 835 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 836 if (Legal.count(T)) 837 Out.insert(T); 838 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 } else if (Out.count(MVT::vAny)) { 842 Out.erase(MVT::vAny); 843 for (MVT T : MVT::vector_valuetypes()) 844 if (Legal.count(T)) 845 Out.insert(T); 846 } else if (Out.count(MVT::Any)) { 847 Out.erase(MVT::Any); 848 for (MVT T : MVT::all_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 } 852 } 853 854 const TypeSetByHwMode &TypeInfer::getLegalTypes() const { 855 if (!LegalTypesCached) { 856 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 857 // Stuff all types from all modes into the default mode. 858 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 859 for (const auto &I : LTS) 860 LegalTypes.insert(I.second); 861 LegalTypesCached = true; 862 } 863 assert(LegalCache.isSimple() && "Default-mode only expected"); 864 return LegalCache; 865 } 866 867 TypeInfer::ValidateOnExit::~ValidateOnExit() { 868 if (Infer.Validate && !VTS.validate()) { 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 errs() << "Type set is empty for each HW mode:\n" 871 "possible type contradiction in the pattern below " 872 "(use -print-records with llvm-tblgen to see all " 873 "expanded records).\n"; 874 Infer.TP.dump(); 875 errs() << "Generated from record:\n"; 876 Infer.TP.getRecord()->dump(); 877 #endif 878 PrintFatalError(Infer.TP.getRecord()->getLoc(), 879 "Type set is empty for each HW mode in '" + 880 Infer.TP.getRecord()->getName() + "'"); 881 } 882 } 883 884 //===----------------------------------------------------------------------===// 885 // ScopedName Implementation 886 //===----------------------------------------------------------------------===// 887 888 bool ScopedName::operator==(const ScopedName &o) const { 889 return Scope == o.Scope && Identifier == o.Identifier; 890 } 891 892 bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); } 893 894 //===----------------------------------------------------------------------===// 895 // TreePredicateFn Implementation 896 //===----------------------------------------------------------------------===// 897 898 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 899 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 900 assert( 901 (!hasPredCode() || !hasImmCode()) && 902 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 903 } 904 905 bool TreePredicateFn::hasPredCode() const { 906 return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() || 907 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 908 } 909 910 std::string TreePredicateFn::getPredCode() const { 911 std::string Code; 912 913 if (!isLoad() && !isStore() && !isAtomic() && getMemoryVT()) 914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 915 "MemoryVT requires IsLoad or IsStore"); 916 917 if (!isLoad() && !isStore()) { 918 if (isUnindexed()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsUnindexed requires IsLoad or IsStore"); 921 922 if (getScalarMemoryVT()) 923 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 924 "ScalarMemoryVT requires IsLoad or IsStore"); 925 } 926 927 if (isLoad() + isStore() + isAtomic() > 1) 928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 929 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 930 931 if (isLoad()) { 932 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 933 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 934 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 935 getMinAlignment() < 1) 936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 937 "IsLoad cannot be used by itself"); 938 } else { 939 if (isNonExtLoad()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsNonExtLoad requires IsLoad"); 942 if (isAnyExtLoad()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsAnyExtLoad requires IsLoad"); 945 946 if (!isAtomic()) { 947 if (isSignExtLoad()) 948 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 949 "IsSignExtLoad requires IsLoad or IsAtomic"); 950 if (isZeroExtLoad()) 951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 952 "IsZeroExtLoad requires IsLoad or IsAtomic"); 953 } 954 } 955 956 if (isStore()) { 957 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 958 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 959 getAddressSpaces() == nullptr && getMinAlignment() < 1) 960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 961 "IsStore cannot be used by itself"); 962 } else { 963 if (isNonTruncStore()) 964 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 965 "IsNonTruncStore requires IsStore"); 966 if (isTruncStore()) 967 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 968 "IsTruncStore requires IsStore"); 969 } 970 971 if (isAtomic()) { 972 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 973 getAddressSpaces() == nullptr && 974 // FIXME: Should atomic loads be IsLoad, IsAtomic, or both? 975 !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() && 976 !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() && 977 !isAtomicOrderingSequentiallyConsistent() && 978 !isAtomicOrderingAcquireOrStronger() && 979 !isAtomicOrderingReleaseOrStronger() && 980 !isAtomicOrderingWeakerThanAcquire() && 981 !isAtomicOrderingWeakerThanRelease()) 982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 983 "IsAtomic cannot be used by itself"); 984 } else { 985 if (isAtomicOrderingMonotonic()) 986 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 987 "IsAtomicOrderingMonotonic requires IsAtomic"); 988 if (isAtomicOrderingAcquire()) 989 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 990 "IsAtomicOrderingAcquire requires IsAtomic"); 991 if (isAtomicOrderingRelease()) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsAtomicOrderingRelease requires IsAtomic"); 994 if (isAtomicOrderingAcquireRelease()) 995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 996 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 997 if (isAtomicOrderingSequentiallyConsistent()) 998 PrintFatalError( 999 getOrigPatFragRecord()->getRecord()->getLoc(), 1000 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1001 if (isAtomicOrderingAcquireOrStronger()) 1002 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1003 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1004 if (isAtomicOrderingReleaseOrStronger()) 1005 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1006 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1007 if (isAtomicOrderingWeakerThanAcquire()) 1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1009 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1010 } 1011 1012 if (isLoad() || isStore() || isAtomic()) { 1013 if (const ListInit *AddressSpaces = getAddressSpaces()) { 1014 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1015 " if ("; 1016 1017 ListSeparator LS(" && "); 1018 for (const Init *Val : AddressSpaces->getValues()) { 1019 Code += LS; 1020 1021 const IntInit *IntVal = dyn_cast<IntInit>(Val); 1022 if (!IntVal) { 1023 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1024 "AddressSpaces element must be integer"); 1025 } 1026 1027 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1028 } 1029 1030 Code += ")\nreturn false;\n"; 1031 } 1032 1033 int64_t MinAlign = getMinAlignment(); 1034 if (MinAlign > 0) { 1035 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1036 Code += utostr(MinAlign); 1037 Code += "))\nreturn false;\n"; 1038 } 1039 1040 if (const Record *MemoryVT = getMemoryVT()) 1041 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1042 MemoryVT->getName() + ") return false;\n") 1043 .str(); 1044 } 1045 1046 if (isAtomic() && isAtomicOrderingMonotonic()) 1047 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1048 "AtomicOrdering::Monotonic) return false;\n"; 1049 if (isAtomic() && isAtomicOrderingAcquire()) 1050 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1051 "AtomicOrdering::Acquire) return false;\n"; 1052 if (isAtomic() && isAtomicOrderingRelease()) 1053 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1054 "AtomicOrdering::Release) return false;\n"; 1055 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1056 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1057 "AtomicOrdering::AcquireRelease) return false;\n"; 1058 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1059 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1060 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1061 1062 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1063 Code += 1064 "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1065 "return false;\n"; 1066 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1067 Code += 1068 "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1069 "return false;\n"; 1070 1071 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1072 Code += 1073 "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1074 "return false;\n"; 1075 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1076 Code += 1077 "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1078 "return false;\n"; 1079 1080 // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed. 1081 if (isAtomic() && (isZeroExtLoad() || isSignExtLoad())) 1082 Code += "return false;\n"; 1083 1084 if (isLoad() || isStore()) { 1085 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1086 1087 if (isUnindexed()) 1088 Code += ("if (cast<" + SDNodeName + 1089 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1090 "return false;\n") 1091 .str(); 1092 1093 if (isLoad()) { 1094 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1095 isZeroExtLoad()) > 1) 1096 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1097 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1098 "IsZeroExtLoad are mutually exclusive"); 1099 if (isNonExtLoad()) 1100 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1101 "ISD::NON_EXTLOAD) return false;\n"; 1102 if (isAnyExtLoad()) 1103 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1104 "return false;\n"; 1105 if (isSignExtLoad()) 1106 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1107 "return false;\n"; 1108 if (isZeroExtLoad()) 1109 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1110 "return false;\n"; 1111 } else { 1112 if ((isNonTruncStore() + isTruncStore()) > 1) 1113 PrintFatalError( 1114 getOrigPatFragRecord()->getRecord()->getLoc(), 1115 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1116 if (isNonTruncStore()) 1117 Code += 1118 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1119 if (isTruncStore()) 1120 Code += 1121 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1122 } 1123 1124 if (const Record *ScalarMemoryVT = getScalarMemoryVT()) 1125 Code += ("if (cast<" + SDNodeName + 1126 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1127 ScalarMemoryVT->getName() + ") return false;\n") 1128 .str(); 1129 } 1130 1131 if (hasNoUse()) 1132 Code += "if (!SDValue(N, 0).use_empty()) return false;\n"; 1133 if (hasOneUse()) 1134 Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n"; 1135 1136 std::string PredicateCode = 1137 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1138 1139 Code += PredicateCode; 1140 1141 if (PredicateCode.empty() && !Code.empty()) 1142 Code += "return true;\n"; 1143 1144 return Code; 1145 } 1146 1147 bool TreePredicateFn::hasImmCode() const { 1148 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1149 } 1150 1151 std::string TreePredicateFn::getImmCode() const { 1152 return std::string( 1153 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1154 } 1155 1156 bool TreePredicateFn::immCodeUsesAPInt() const { 1157 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1158 } 1159 1160 bool TreePredicateFn::immCodeUsesAPFloat() const { 1161 bool Unset; 1162 // The return value will be false when IsAPFloat is unset. 1163 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1164 Unset); 1165 } 1166 1167 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1168 bool Value) const { 1169 bool Unset; 1170 bool Result = 1171 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1172 if (Unset) 1173 return false; 1174 return Result == Value; 1175 } 1176 bool TreePredicateFn::usesOperands() const { 1177 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1178 } 1179 bool TreePredicateFn::hasNoUse() const { 1180 return isPredefinedPredicateEqualTo("HasNoUse", true); 1181 } 1182 bool TreePredicateFn::hasOneUse() const { 1183 return isPredefinedPredicateEqualTo("HasOneUse", true); 1184 } 1185 bool TreePredicateFn::isLoad() const { 1186 return isPredefinedPredicateEqualTo("IsLoad", true); 1187 } 1188 bool TreePredicateFn::isStore() const { 1189 return isPredefinedPredicateEqualTo("IsStore", true); 1190 } 1191 bool TreePredicateFn::isAtomic() const { 1192 return isPredefinedPredicateEqualTo("IsAtomic", true); 1193 } 1194 bool TreePredicateFn::isUnindexed() const { 1195 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1196 } 1197 bool TreePredicateFn::isNonExtLoad() const { 1198 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1199 } 1200 bool TreePredicateFn::isAnyExtLoad() const { 1201 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1202 } 1203 bool TreePredicateFn::isSignExtLoad() const { 1204 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1205 } 1206 bool TreePredicateFn::isZeroExtLoad() const { 1207 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1208 } 1209 bool TreePredicateFn::isNonTruncStore() const { 1210 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1211 } 1212 bool TreePredicateFn::isTruncStore() const { 1213 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1214 } 1215 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1216 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1217 } 1218 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1219 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1220 } 1221 bool TreePredicateFn::isAtomicOrderingRelease() const { 1222 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1223 } 1224 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1225 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1226 } 1227 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1228 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1229 true); 1230 } 1231 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1232 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1233 true); 1234 } 1235 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1236 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", 1237 false); 1238 } 1239 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1240 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1241 true); 1242 } 1243 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1244 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", 1245 false); 1246 } 1247 const Record *TreePredicateFn::getMemoryVT() const { 1248 const Record *R = getOrigPatFragRecord()->getRecord(); 1249 if (R->isValueUnset("MemoryVT")) 1250 return nullptr; 1251 return R->getValueAsDef("MemoryVT"); 1252 } 1253 1254 const ListInit *TreePredicateFn::getAddressSpaces() const { 1255 const Record *R = getOrigPatFragRecord()->getRecord(); 1256 if (R->isValueUnset("AddressSpaces")) 1257 return nullptr; 1258 return R->getValueAsListInit("AddressSpaces"); 1259 } 1260 1261 int64_t TreePredicateFn::getMinAlignment() const { 1262 const Record *R = getOrigPatFragRecord()->getRecord(); 1263 if (R->isValueUnset("MinAlignment")) 1264 return 0; 1265 return R->getValueAsInt("MinAlignment"); 1266 } 1267 1268 const Record *TreePredicateFn::getScalarMemoryVT() const { 1269 const Record *R = getOrigPatFragRecord()->getRecord(); 1270 if (R->isValueUnset("ScalarMemoryVT")) 1271 return nullptr; 1272 return R->getValueAsDef("ScalarMemoryVT"); 1273 } 1274 bool TreePredicateFn::hasGISelPredicateCode() const { 1275 return !PatFragRec->getRecord() 1276 ->getValueAsString("GISelPredicateCode") 1277 .empty(); 1278 } 1279 std::string TreePredicateFn::getGISelPredicateCode() const { 1280 return std::string( 1281 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1282 } 1283 1284 StringRef TreePredicateFn::getImmType() const { 1285 if (immCodeUsesAPInt()) 1286 return "const APInt &"; 1287 if (immCodeUsesAPFloat()) 1288 return "const APFloat &"; 1289 return "int64_t"; 1290 } 1291 1292 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1293 if (immCodeUsesAPInt()) 1294 return "APInt"; 1295 if (immCodeUsesAPFloat()) 1296 return "APFloat"; 1297 return "I64"; 1298 } 1299 1300 /// isAlwaysTrue - Return true if this is a noop predicate. 1301 bool TreePredicateFn::isAlwaysTrue() const { 1302 return !hasPredCode() && !hasImmCode(); 1303 } 1304 1305 /// Return the name to use in the generated code to reference this, this is 1306 /// "Predicate_foo" if from a pattern fragment "foo". 1307 std::string TreePredicateFn::getFnName() const { 1308 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1309 } 1310 1311 /// getCodeToRunOnSDNode - Return the code for the function body that 1312 /// evaluates this predicate. The argument is expected to be in "Node", 1313 /// not N. This handles casting and conversion to a concrete node type as 1314 /// appropriate. 1315 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1316 // Handle immediate predicates first. 1317 std::string ImmCode = getImmCode(); 1318 if (!ImmCode.empty()) { 1319 if (isLoad()) 1320 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1321 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1322 if (isStore()) 1323 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1324 "IsStore cannot be used with ImmLeaf or its subclasses"); 1325 if (isUnindexed()) 1326 PrintFatalError( 1327 getOrigPatFragRecord()->getRecord()->getLoc(), 1328 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1329 if (isNonExtLoad()) 1330 PrintFatalError( 1331 getOrigPatFragRecord()->getRecord()->getLoc(), 1332 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1333 if (isAnyExtLoad()) 1334 PrintFatalError( 1335 getOrigPatFragRecord()->getRecord()->getLoc(), 1336 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1337 if (isSignExtLoad()) 1338 PrintFatalError( 1339 getOrigPatFragRecord()->getRecord()->getLoc(), 1340 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1341 if (isZeroExtLoad()) 1342 PrintFatalError( 1343 getOrigPatFragRecord()->getRecord()->getLoc(), 1344 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1345 if (isNonTruncStore()) 1346 PrintFatalError( 1347 getOrigPatFragRecord()->getRecord()->getLoc(), 1348 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1349 if (isTruncStore()) 1350 PrintFatalError( 1351 getOrigPatFragRecord()->getRecord()->getLoc(), 1352 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1353 if (getMemoryVT()) 1354 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1355 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1356 if (getScalarMemoryVT()) 1357 PrintFatalError( 1358 getOrigPatFragRecord()->getRecord()->getLoc(), 1359 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1360 1361 std::string Result = (" " + getImmType() + " Imm = ").str(); 1362 if (immCodeUsesAPFloat()) 1363 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1364 else if (immCodeUsesAPInt()) 1365 Result += "Node->getAsAPIntVal();\n"; 1366 else 1367 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1368 return Result + ImmCode; 1369 } 1370 1371 // Handle arbitrary node predicates. 1372 assert(hasPredCode() && "Don't have any predicate code!"); 1373 1374 // If this is using PatFrags, there are multiple trees to search. They should 1375 // all have the same class. FIXME: Is there a way to find a common 1376 // superclass? 1377 StringRef ClassName; 1378 for (const auto &Tree : PatFragRec->getTrees()) { 1379 StringRef TreeClassName; 1380 if (Tree->isLeaf()) 1381 TreeClassName = "SDNode"; 1382 else { 1383 const Record *Op = Tree->getOperator(); 1384 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1385 TreeClassName = Info.getSDClassName(); 1386 } 1387 1388 if (ClassName.empty()) 1389 ClassName = TreeClassName; 1390 else if (ClassName != TreeClassName) { 1391 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1392 "PatFrags trees do not have consistent class"); 1393 } 1394 } 1395 1396 std::string Result; 1397 if (ClassName == "SDNode") 1398 Result = " SDNode *N = Node;\n"; 1399 else 1400 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1401 1402 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1403 } 1404 1405 //===----------------------------------------------------------------------===// 1406 // PatternToMatch implementation 1407 // 1408 1409 static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) { 1410 if (!P.isLeaf()) 1411 return false; 1412 const DefInit *DI = dyn_cast<DefInit>(P.getLeafValue()); 1413 if (!DI) 1414 return false; 1415 1416 const Record *R = DI->getDef(); 1417 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1418 } 1419 1420 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1421 /// patterns before small ones. This is used to determine the size of a 1422 /// pattern. 1423 static unsigned getPatternSize(const TreePatternNode &P, 1424 const CodeGenDAGPatterns &CGP) { 1425 unsigned Size = 3; // The node itself. 1426 // If the root node is a ConstantSDNode, increases its size. 1427 // e.g. (set R32:$dst, 0). 1428 if (P.isLeaf() && isa<IntInit>(P.getLeafValue())) 1429 Size += 2; 1430 1431 if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) { 1432 Size += AM->getComplexity(); 1433 // We don't want to count any children twice, so return early. 1434 return Size; 1435 } 1436 1437 // If this node has some predicate function that must match, it adds to the 1438 // complexity of this node. 1439 if (!P.getPredicateCalls().empty()) 1440 ++Size; 1441 1442 // Count children in the count if they are also nodes. 1443 for (const TreePatternNode &Child : P.children()) { 1444 if (!Child.isLeaf() && Child.getNumTypes()) { 1445 const TypeSetByHwMode &T0 = Child.getExtType(0); 1446 // At this point, all variable type sets should be simple, i.e. only 1447 // have a default mode. 1448 if (T0.getMachineValueType() != MVT::Other) { 1449 Size += getPatternSize(Child, CGP); 1450 continue; 1451 } 1452 } 1453 if (Child.isLeaf()) { 1454 if (isa<IntInit>(Child.getLeafValue())) 1455 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1456 else if (Child.getComplexPatternInfo(CGP)) 1457 Size += getPatternSize(Child, CGP); 1458 else if (isImmAllOnesAllZerosMatch(Child)) 1459 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1460 else if (!Child.getPredicateCalls().empty()) 1461 ++Size; 1462 } 1463 } 1464 1465 return Size; 1466 } 1467 1468 /// Compute the complexity metric for the input pattern. This roughly 1469 /// corresponds to the number of nodes that are covered. 1470 int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1471 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1472 } 1473 1474 void PatternToMatch::getPredicateRecords( 1475 SmallVectorImpl<const Record *> &PredicateRecs) const { 1476 for (const Init *I : Predicates->getValues()) { 1477 if (const DefInit *Pred = dyn_cast<DefInit>(I)) { 1478 const Record *Def = Pred->getDef(); 1479 if (!Def->isSubClassOf("Predicate")) { 1480 #ifndef NDEBUG 1481 Def->dump(); 1482 #endif 1483 llvm_unreachable("Unknown predicate type!"); 1484 } 1485 PredicateRecs.push_back(Def); 1486 } 1487 } 1488 // Sort so that different orders get canonicalized to the same string. 1489 llvm::sort(PredicateRecs, LessRecord()); 1490 // Remove duplicate predicates. 1491 PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end()); 1492 } 1493 1494 /// getPredicateCheck - Return a single string containing all of this 1495 /// pattern's predicates concatenated with "&&" operators. 1496 /// 1497 std::string PatternToMatch::getPredicateCheck() const { 1498 SmallVector<const Record *, 4> PredicateRecs; 1499 getPredicateRecords(PredicateRecs); 1500 1501 SmallString<128> PredicateCheck; 1502 raw_svector_ostream OS(PredicateCheck); 1503 ListSeparator LS(" && "); 1504 for (const Record *Pred : PredicateRecs) { 1505 StringRef CondString = Pred->getValueAsString("CondString"); 1506 if (CondString.empty()) 1507 continue; 1508 OS << LS << '(' << CondString << ')'; 1509 } 1510 1511 if (!HwModeFeatures.empty()) 1512 OS << LS << HwModeFeatures; 1513 1514 return std::string(PredicateCheck); 1515 } 1516 1517 //===----------------------------------------------------------------------===// 1518 // SDTypeConstraint implementation 1519 // 1520 1521 SDTypeConstraint::SDTypeConstraint(const Record *R, const CodeGenHwModes &CGH) { 1522 OperandNo = R->getValueAsInt("OperandNum"); 1523 1524 if (R->isSubClassOf("SDTCisVT")) { 1525 ConstraintType = SDTCisVT; 1526 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1527 for (const auto &P : VVT) 1528 if (P.second == MVT::isVoid) 1529 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1530 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1531 ConstraintType = SDTCisPtrTy; 1532 } else if (R->isSubClassOf("SDTCisInt")) { 1533 ConstraintType = SDTCisInt; 1534 } else if (R->isSubClassOf("SDTCisFP")) { 1535 ConstraintType = SDTCisFP; 1536 } else if (R->isSubClassOf("SDTCisVec")) { 1537 ConstraintType = SDTCisVec; 1538 } else if (R->isSubClassOf("SDTCisSameAs")) { 1539 ConstraintType = SDTCisSameAs; 1540 OtherOperandNo = R->getValueAsInt("OtherOperandNum"); 1541 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1542 ConstraintType = SDTCisVTSmallerThanOp; 1543 OtherOperandNo = R->getValueAsInt("OtherOperandNum"); 1544 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1545 ConstraintType = SDTCisOpSmallerThanOp; 1546 OtherOperandNo = R->getValueAsInt("BigOperandNum"); 1547 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1548 ConstraintType = SDTCisEltOfVec; 1549 OtherOperandNo = R->getValueAsInt("OtherOpNum"); 1550 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1551 ConstraintType = SDTCisSubVecOfVec; 1552 OtherOperandNo = R->getValueAsInt("OtherOpNum"); 1553 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1554 ConstraintType = SDTCVecEltisVT; 1555 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1556 for (const auto &P : VVT) { 1557 MVT T = P.second; 1558 if (T.isVector()) 1559 PrintFatalError(R->getLoc(), 1560 "Cannot use vector type as SDTCVecEltisVT"); 1561 if (!T.isInteger() && !T.isFloatingPoint()) 1562 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1563 "as SDTCVecEltisVT"); 1564 } 1565 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1566 ConstraintType = SDTCisSameNumEltsAs; 1567 OtherOperandNo = R->getValueAsInt("OtherOperandNum"); 1568 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1569 ConstraintType = SDTCisSameSizeAs; 1570 OtherOperandNo = R->getValueAsInt("OtherOperandNum"); 1571 } else { 1572 PrintFatalError(R->getLoc(), 1573 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1574 } 1575 } 1576 1577 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1578 /// N, and the result number in ResNo. 1579 static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N, 1580 const SDNodeInfo &NodeInfo, 1581 unsigned &ResNo) { 1582 unsigned NumResults = NodeInfo.getNumResults(); 1583 if (OpNo < NumResults) { 1584 ResNo = OpNo; 1585 return N; 1586 } 1587 1588 OpNo -= NumResults; 1589 1590 if (OpNo >= N.getNumChildren()) { 1591 PrintFatalError([&N, OpNo, NumResults](raw_ostream &OS) { 1592 OS << "Invalid operand number in type constraint " << (OpNo + NumResults); 1593 N.print(OS); 1594 }); 1595 } 1596 return N.getChild(OpNo); 1597 } 1598 1599 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1600 /// constraint to the nodes operands. This returns true if it makes a 1601 /// change, false otherwise. If a type contradiction is found, flag an error. 1602 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N, 1603 const SDNodeInfo &NodeInfo, 1604 TreePattern &TP) const { 1605 if (TP.hasError()) 1606 return false; 1607 1608 unsigned ResNo = 0; // The result number being referenced. 1609 TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1610 TypeInfer &TI = TP.getInfer(); 1611 1612 switch (ConstraintType) { 1613 case SDTCisVT: 1614 // Operand must be a particular type. 1615 return NodeToApply.UpdateNodeType(ResNo, VVT, TP); 1616 case SDTCisPtrTy: 1617 // Operand must be same as target pointer type. 1618 return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP); 1619 case SDTCisInt: 1620 // Require it to be one of the legal integer VTs. 1621 return TI.EnforceInteger(NodeToApply.getExtType(ResNo)); 1622 case SDTCisFP: 1623 // Require it to be one of the legal fp VTs. 1624 return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo)); 1625 case SDTCisVec: 1626 // Require it to be one of the legal vector VTs. 1627 return TI.EnforceVector(NodeToApply.getExtType(ResNo)); 1628 case SDTCisSameAs: { 1629 unsigned OResNo = 0; 1630 TreePatternNode &OtherNode = 1631 getOperandNum(OtherOperandNo, N, NodeInfo, OResNo); 1632 return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo), 1633 TP) | 1634 (int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo), 1635 TP); 1636 } 1637 case SDTCisVTSmallerThanOp: { 1638 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1639 // have an integer type that is smaller than the VT. 1640 if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) || 1641 !cast<DefInit>(NodeToApply.getLeafValue()) 1642 ->getDef() 1643 ->isSubClassOf("ValueType")) { 1644 TP.error(N.getOperator()->getName() + " expects a VT operand!"); 1645 return false; 1646 } 1647 const DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue()); 1648 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1649 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1650 TypeSetByHwMode TypeListTmp(VVT); 1651 1652 unsigned OResNo = 0; 1653 TreePatternNode &OtherNode = 1654 getOperandNum(OtherOperandNo, N, NodeInfo, OResNo); 1655 1656 return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo), 1657 /*SmallIsVT*/ true); 1658 } 1659 case SDTCisOpSmallerThanOp: { 1660 unsigned BResNo = 0; 1661 TreePatternNode &BigOperand = 1662 getOperandNum(OtherOperandNo, N, NodeInfo, BResNo); 1663 return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo), 1664 BigOperand.getExtType(BResNo)); 1665 } 1666 case SDTCisEltOfVec: { 1667 unsigned VResNo = 0; 1668 TreePatternNode &VecOperand = 1669 getOperandNum(OtherOperandNo, N, NodeInfo, VResNo); 1670 // Filter vector types out of VecOperand that don't have the right element 1671 // type. 1672 return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo), 1673 NodeToApply.getExtType(ResNo)); 1674 } 1675 case SDTCisSubVecOfVec: { 1676 unsigned VResNo = 0; 1677 TreePatternNode &BigVecOperand = 1678 getOperandNum(OtherOperandNo, N, NodeInfo, VResNo); 1679 1680 // Filter vector types out of BigVecOperand that don't have the 1681 // right subvector type. 1682 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo), 1683 NodeToApply.getExtType(ResNo)); 1684 } 1685 case SDTCVecEltisVT: { 1686 return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT); 1687 } 1688 case SDTCisSameNumEltsAs: { 1689 unsigned OResNo = 0; 1690 TreePatternNode &OtherNode = 1691 getOperandNum(OtherOperandNo, N, NodeInfo, OResNo); 1692 return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo), 1693 NodeToApply.getExtType(ResNo)); 1694 } 1695 case SDTCisSameSizeAs: { 1696 unsigned OResNo = 0; 1697 TreePatternNode &OtherNode = 1698 getOperandNum(OtherOperandNo, N, NodeInfo, OResNo); 1699 return TI.EnforceSameSize(OtherNode.getExtType(OResNo), 1700 NodeToApply.getExtType(ResNo)); 1701 } 1702 } 1703 llvm_unreachable("Invalid ConstraintType!"); 1704 } 1705 1706 bool llvm::operator==(const SDTypeConstraint &LHS, 1707 const SDTypeConstraint &RHS) { 1708 if (std::tie(LHS.OperandNo, LHS.ConstraintType) != 1709 std::tie(RHS.OperandNo, RHS.ConstraintType)) 1710 return false; 1711 switch (LHS.ConstraintType) { 1712 case SDTypeConstraint::SDTCisVT: 1713 case SDTypeConstraint::SDTCVecEltisVT: 1714 return LHS.VVT == RHS.VVT; 1715 case SDTypeConstraint::SDTCisPtrTy: 1716 case SDTypeConstraint::SDTCisInt: 1717 case SDTypeConstraint::SDTCisFP: 1718 case SDTypeConstraint::SDTCisVec: 1719 break; 1720 case SDTypeConstraint::SDTCisSameAs: 1721 case SDTypeConstraint::SDTCisVTSmallerThanOp: 1722 case SDTypeConstraint::SDTCisOpSmallerThanOp: 1723 case SDTypeConstraint::SDTCisEltOfVec: 1724 case SDTypeConstraint::SDTCisSubVecOfVec: 1725 case SDTypeConstraint::SDTCisSameNumEltsAs: 1726 case SDTypeConstraint::SDTCisSameSizeAs: 1727 return LHS.OtherOperandNo == RHS.OtherOperandNo; 1728 } 1729 return true; 1730 } 1731 1732 bool llvm::operator<(const SDTypeConstraint &LHS, const SDTypeConstraint &RHS) { 1733 if (std::tie(LHS.OperandNo, LHS.ConstraintType) != 1734 std::tie(RHS.OperandNo, RHS.ConstraintType)) 1735 return std::tie(LHS.OperandNo, LHS.ConstraintType) < 1736 std::tie(RHS.OperandNo, RHS.ConstraintType); 1737 switch (LHS.ConstraintType) { 1738 case SDTypeConstraint::SDTCisVT: 1739 case SDTypeConstraint::SDTCVecEltisVT: 1740 return LHS.VVT < RHS.VVT; 1741 case SDTypeConstraint::SDTCisPtrTy: 1742 case SDTypeConstraint::SDTCisInt: 1743 case SDTypeConstraint::SDTCisFP: 1744 case SDTypeConstraint::SDTCisVec: 1745 break; 1746 case SDTypeConstraint::SDTCisSameAs: 1747 case SDTypeConstraint::SDTCisVTSmallerThanOp: 1748 case SDTypeConstraint::SDTCisOpSmallerThanOp: 1749 case SDTypeConstraint::SDTCisEltOfVec: 1750 case SDTypeConstraint::SDTCisSubVecOfVec: 1751 case SDTypeConstraint::SDTCisSameNumEltsAs: 1752 case SDTypeConstraint::SDTCisSameSizeAs: 1753 return LHS.OtherOperandNo < RHS.OtherOperandNo; 1754 } 1755 return false; 1756 } 1757 1758 // Update the node type to match an instruction operand or result as specified 1759 // in the ins or outs lists on the instruction definition. Return true if the 1760 // type was actually changed. 1761 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1762 const Record *Operand, 1763 TreePattern &TP) { 1764 // The 'unknown' operand indicates that types should be inferred from the 1765 // context. 1766 if (Operand->isSubClassOf("unknown_class")) 1767 return false; 1768 1769 // The Operand class specifies a type directly. 1770 if (Operand->isSubClassOf("Operand")) { 1771 const Record *R = Operand->getValueAsDef("Type"); 1772 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1773 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1774 } 1775 1776 // PointerLikeRegClass has a type that is determined at runtime. 1777 if (Operand->isSubClassOf("PointerLikeRegClass")) 1778 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1779 1780 // Both RegisterClass and RegisterOperand operands derive their types from a 1781 // register class def. 1782 const Record *RC = nullptr; 1783 if (Operand->isSubClassOf("RegisterClass")) 1784 RC = Operand; 1785 else if (Operand->isSubClassOf("RegisterOperand")) 1786 RC = Operand->getValueAsDef("RegClass"); 1787 1788 assert(RC && "Unknown operand type"); 1789 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1790 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1791 } 1792 1793 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1794 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1795 if (!TP.getInfer().isConcrete(Types[i], true)) 1796 return true; 1797 for (const TreePatternNode &Child : children()) 1798 if (Child.ContainsUnresolvedType(TP)) 1799 return true; 1800 return false; 1801 } 1802 1803 bool TreePatternNode::hasProperTypeByHwMode() const { 1804 for (const TypeSetByHwMode &S : Types) 1805 if (!S.isSimple()) 1806 return true; 1807 for (const TreePatternNodePtr &C : Children) 1808 if (C->hasProperTypeByHwMode()) 1809 return true; 1810 return false; 1811 } 1812 1813 bool TreePatternNode::hasPossibleType() const { 1814 for (const TypeSetByHwMode &S : Types) 1815 if (!S.isPossible()) 1816 return false; 1817 for (const TreePatternNodePtr &C : Children) 1818 if (!C->hasPossibleType()) 1819 return false; 1820 return true; 1821 } 1822 1823 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1824 for (TypeSetByHwMode &S : Types) { 1825 S.makeSimple(Mode); 1826 // Check if the selected mode had a type conflict. 1827 if (S.get(DefaultMode).empty()) 1828 return false; 1829 } 1830 for (const TreePatternNodePtr &C : Children) 1831 if (!C->setDefaultMode(Mode)) 1832 return false; 1833 return true; 1834 } 1835 1836 //===----------------------------------------------------------------------===// 1837 // SDNodeInfo implementation 1838 // 1839 SDNodeInfo::SDNodeInfo(const Record *R, const CodeGenHwModes &CGH) : Def(R) { 1840 EnumName = R->getValueAsString("Opcode"); 1841 SDClassName = R->getValueAsString("SDClass"); 1842 const Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1843 NumResults = TypeProfile->getValueAsInt("NumResults"); 1844 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1845 1846 // Parse the properties. 1847 Properties = parseSDPatternOperatorProperties(R); 1848 IsStrictFP = R->getValueAsBit("IsStrictFP"); 1849 1850 std::optional<int64_t> MaybeTSFlags = 1851 R->getValueAsBitsInit("TSFlags")->convertInitializerToInt(); 1852 if (!MaybeTSFlags) 1853 PrintFatalError(R->getLoc(), "Invalid TSFlags"); 1854 assert(isUInt<32>(*MaybeTSFlags) && "TSFlags bit width out of sync"); 1855 TSFlags = *MaybeTSFlags; 1856 1857 // Parse the type constraints. 1858 for (const Record *R : TypeProfile->getValueAsListOfDefs("Constraints")) 1859 TypeConstraints.emplace_back(R, CGH); 1860 } 1861 1862 /// getKnownType - If the type constraints on this node imply a fixed type 1863 /// (e.g. all stores return void, etc), then return it as an 1864 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1865 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1866 unsigned NumResults = getNumResults(); 1867 assert(NumResults <= 1 && 1868 "We only work with nodes with zero or one result so far!"); 1869 assert(ResNo == 0 && "Only handles single result nodes so far"); 1870 1871 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1872 // Make sure that this applies to the correct node result. 1873 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1874 continue; 1875 1876 switch (Constraint.ConstraintType) { 1877 default: 1878 break; 1879 case SDTypeConstraint::SDTCisVT: 1880 if (Constraint.VVT.isSimple()) 1881 return Constraint.VVT.getSimple().SimpleTy; 1882 break; 1883 case SDTypeConstraint::SDTCisPtrTy: 1884 return MVT::iPTR; 1885 } 1886 } 1887 return MVT::Other; 1888 } 1889 1890 //===----------------------------------------------------------------------===// 1891 // TreePatternNode implementation 1892 // 1893 1894 static unsigned GetNumNodeResults(const Record *Operator, 1895 CodeGenDAGPatterns &CDP) { 1896 if (Operator->getName() == "set") 1897 return 0; // All return nothing. 1898 1899 if (Operator->isSubClassOf("Intrinsic")) 1900 return CDP.getIntrinsic(Operator).IS.RetTys.size(); 1901 1902 if (Operator->isSubClassOf("SDNode")) 1903 return CDP.getSDNodeInfo(Operator).getNumResults(); 1904 1905 if (Operator->isSubClassOf("PatFrags")) { 1906 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1907 // the forward reference case where one pattern fragment references another 1908 // before it is processed. 1909 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1910 // The number of results of a fragment with alternative records is the 1911 // maximum number of results across all alternatives. 1912 unsigned NumResults = 0; 1913 for (const auto &T : PFRec->getTrees()) 1914 NumResults = std::max(NumResults, T->getNumTypes()); 1915 return NumResults; 1916 } 1917 1918 const ListInit *LI = Operator->getValueAsListInit("Fragments"); 1919 assert(LI && "Invalid Fragment"); 1920 unsigned NumResults = 0; 1921 for (const Init *I : LI->getValues()) { 1922 const Record *Op = nullptr; 1923 if (const DagInit *Dag = dyn_cast<DagInit>(I)) 1924 if (const DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1925 Op = DI->getDef(); 1926 assert(Op && "Invalid Fragment"); 1927 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1928 } 1929 return NumResults; 1930 } 1931 1932 if (Operator->isSubClassOf("Instruction")) { 1933 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1934 1935 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1936 1937 // Subtract any defaulted outputs. 1938 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1939 const Record *OperandNode = InstInfo.Operands[i].Rec; 1940 1941 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1942 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1943 --NumDefsToAdd; 1944 } 1945 1946 // Add on one implicit def if it has a resolvable type. 1947 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) != 1948 MVT::Other) 1949 ++NumDefsToAdd; 1950 return NumDefsToAdd; 1951 } 1952 1953 if (Operator->isSubClassOf("SDNodeXForm")) 1954 return 1; // FIXME: Generalize SDNodeXForm 1955 1956 if (Operator->isSubClassOf("ValueType")) 1957 return 1; // A type-cast of one result. 1958 1959 if (Operator->isSubClassOf("ComplexPattern")) 1960 return 1; 1961 1962 errs() << *Operator; 1963 PrintFatalError("Unhandled node in GetNumNodeResults"); 1964 } 1965 1966 void TreePatternNode::print(raw_ostream &OS) const { 1967 if (isLeaf()) 1968 OS << *getLeafValue(); 1969 else 1970 OS << '(' << getOperator()->getName(); 1971 1972 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1973 OS << ':'; 1974 getExtType(i).writeToStream(OS); 1975 } 1976 1977 if (!isLeaf()) { 1978 if (getNumChildren() != 0) { 1979 OS << " "; 1980 ListSeparator LS; 1981 for (const TreePatternNode &Child : children()) { 1982 OS << LS; 1983 Child.print(OS); 1984 } 1985 } 1986 OS << ")"; 1987 } 1988 1989 for (const TreePredicateCall &Pred : PredicateCalls) { 1990 OS << "<<P:"; 1991 if (Pred.Scope) 1992 OS << Pred.Scope << ":"; 1993 OS << Pred.Fn.getFnName() << ">>"; 1994 } 1995 if (TransformFn) 1996 OS << "<<X:" << TransformFn->getName() << ">>"; 1997 if (!getName().empty()) 1998 OS << ":$" << getName(); 1999 2000 for (const ScopedName &Name : NamesAsPredicateArg) 2001 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 2002 } 2003 void TreePatternNode::dump() const { print(errs()); } 2004 2005 /// isIsomorphicTo - Return true if this node is recursively 2006 /// isomorphic to the specified node. For this comparison, the node's 2007 /// entire state is considered. The assigned name is ignored, since 2008 /// nodes with differing names are considered isomorphic. However, if 2009 /// the assigned name is present in the dependent variable set, then 2010 /// the assigned name is considered significant and the node is 2011 /// isomorphic if the names match. 2012 bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N, 2013 const MultipleUseVarSet &DepVars) const { 2014 if (&N == this) 2015 return true; 2016 if (N.isLeaf() != isLeaf()) 2017 return false; 2018 2019 // Check operator of non-leaves early since it can be cheaper than checking 2020 // types. 2021 if (!isLeaf()) 2022 if (N.getOperator() != getOperator() || 2023 N.getNumChildren() != getNumChildren()) 2024 return false; 2025 2026 if (getExtTypes() != N.getExtTypes() || 2027 getPredicateCalls() != N.getPredicateCalls() || 2028 getTransformFn() != N.getTransformFn()) 2029 return false; 2030 2031 if (isLeaf()) { 2032 if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2033 if (const DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) { 2034 return ((DI->getDef() == NDI->getDef()) && 2035 (!DepVars.contains(getName()) || getName() == N.getName())); 2036 } 2037 } 2038 return getLeafValue() == N.getLeafValue(); 2039 } 2040 2041 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2042 if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars)) 2043 return false; 2044 return true; 2045 } 2046 2047 /// clone - Make a copy of this tree and all of its children. 2048 /// 2049 TreePatternNodePtr TreePatternNode::clone() const { 2050 TreePatternNodePtr New; 2051 if (isLeaf()) { 2052 New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes()); 2053 } else { 2054 std::vector<TreePatternNodePtr> CChildren; 2055 CChildren.reserve(Children.size()); 2056 for (const TreePatternNode &Child : children()) 2057 CChildren.push_back(Child.clone()); 2058 New = makeIntrusiveRefCnt<TreePatternNode>( 2059 getOperator(), std::move(CChildren), getNumTypes()); 2060 } 2061 New->setName(getName()); 2062 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2063 New->Types = Types; 2064 New->setPredicateCalls(getPredicateCalls()); 2065 New->setGISelFlagsRecord(getGISelFlagsRecord()); 2066 New->setTransformFn(getTransformFn()); 2067 return New; 2068 } 2069 2070 /// RemoveAllTypes - Recursively strip all the types of this tree. 2071 void TreePatternNode::RemoveAllTypes() { 2072 // Reset to unknown type. 2073 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2074 if (isLeaf()) 2075 return; 2076 for (TreePatternNode &Child : children()) 2077 Child.RemoveAllTypes(); 2078 } 2079 2080 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2081 /// with actual values specified by ArgMap. 2082 void TreePatternNode::SubstituteFormalArguments( 2083 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2084 if (isLeaf()) 2085 return; 2086 2087 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2088 TreePatternNode &Child = getChild(i); 2089 if (Child.isLeaf()) { 2090 const Init *Val = Child.getLeafValue(); 2091 // Note that, when substituting into an output pattern, Val might be an 2092 // UnsetInit. 2093 if (isa<UnsetInit>(Val) || 2094 (isa<DefInit>(Val) && 2095 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2096 // We found a use of a formal argument, replace it with its value. 2097 TreePatternNodePtr NewChild = ArgMap[Child.getName()]; 2098 assert(NewChild && "Couldn't find formal argument!"); 2099 assert((Child.getPredicateCalls().empty() || 2100 NewChild->getPredicateCalls() == Child.getPredicateCalls()) && 2101 "Non-empty child predicate clobbered!"); 2102 setChild(i, std::move(NewChild)); 2103 } 2104 } else { 2105 getChild(i).SubstituteFormalArguments(ArgMap); 2106 } 2107 } 2108 } 2109 2110 /// InlinePatternFragments - If this pattern refers to any pattern 2111 /// fragments, return the set of inlined versions (this can be more than 2112 /// one if a PatFrags record has multiple alternatives). 2113 void TreePatternNode::InlinePatternFragments( 2114 TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) { 2115 2116 if (TP.hasError()) 2117 return; 2118 2119 if (isLeaf()) { 2120 OutAlternatives.push_back(this); // nothing to do. 2121 return; 2122 } 2123 2124 const Record *Op = getOperator(); 2125 2126 if (!Op->isSubClassOf("PatFrags")) { 2127 if (getNumChildren() == 0) { 2128 OutAlternatives.push_back(this); 2129 return; 2130 } 2131 2132 // Recursively inline children nodes. 2133 std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives( 2134 getNumChildren()); 2135 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2136 TreePatternNodePtr Child = getChildShared(i); 2137 Child->InlinePatternFragments(TP, ChildAlternatives[i]); 2138 // If there are no alternatives for any child, there are no 2139 // alternatives for this expression as whole. 2140 if (ChildAlternatives[i].empty()) 2141 return; 2142 2143 assert((Child->getPredicateCalls().empty() || 2144 llvm::all_of(ChildAlternatives[i], 2145 [&](const TreePatternNodePtr &NewChild) { 2146 return NewChild->getPredicateCalls() == 2147 Child->getPredicateCalls(); 2148 })) && 2149 "Non-empty child predicate clobbered!"); 2150 } 2151 2152 // The end result is an all-pairs construction of the resultant pattern. 2153 std::vector<unsigned> Idxs(ChildAlternatives.size()); 2154 bool NotDone; 2155 do { 2156 // Create the variant and add it to the output list. 2157 std::vector<TreePatternNodePtr> NewChildren; 2158 NewChildren.reserve(ChildAlternatives.size()); 2159 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2160 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2161 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 2162 getOperator(), std::move(NewChildren), getNumTypes()); 2163 2164 // Copy over properties. 2165 R->setName(getName()); 2166 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2167 R->setPredicateCalls(getPredicateCalls()); 2168 R->setGISelFlagsRecord(getGISelFlagsRecord()); 2169 R->setTransformFn(getTransformFn()); 2170 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2171 R->setType(i, getExtType(i)); 2172 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2173 R->setResultIndex(i, getResultIndex(i)); 2174 2175 // Register alternative. 2176 OutAlternatives.push_back(R); 2177 2178 // Increment indices to the next permutation by incrementing the 2179 // indices from last index backward, e.g., generate the sequence 2180 // [0, 0], [0, 1], [1, 0], [1, 1]. 2181 int IdxsIdx; 2182 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2183 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2184 Idxs[IdxsIdx] = 0; 2185 else 2186 break; 2187 } 2188 NotDone = (IdxsIdx >= 0); 2189 } while (NotDone); 2190 2191 return; 2192 } 2193 2194 // Otherwise, we found a reference to a fragment. First, look up its 2195 // TreePattern record. 2196 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2197 2198 // Verify that we are passing the right number of operands. 2199 if (Frag->getNumArgs() != getNumChildren()) { 2200 TP.error("'" + Op->getName() + "' fragment requires " + 2201 Twine(Frag->getNumArgs()) + " operands!"); 2202 return; 2203 } 2204 2205 TreePredicateFn PredFn(Frag); 2206 unsigned Scope = 0; 2207 if (TreePredicateFn(Frag).usesOperands()) 2208 Scope = TP.getDAGPatterns().allocateScope(); 2209 2210 // Compute the map of formal to actual arguments. 2211 std::map<std::string, TreePatternNodePtr> ArgMap; 2212 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2213 TreePatternNodePtr Child = getChildShared(i); 2214 if (Scope != 0) { 2215 Child = Child->clone(); 2216 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2217 } 2218 ArgMap[Frag->getArgName(i)] = Child; 2219 } 2220 2221 // Loop over all fragment alternatives. 2222 for (const auto &Alternative : Frag->getTrees()) { 2223 TreePatternNodePtr FragTree = Alternative->clone(); 2224 2225 if (!PredFn.isAlwaysTrue()) 2226 FragTree->addPredicateCall(PredFn, Scope); 2227 2228 // Resolve formal arguments to their actual value. 2229 if (Frag->getNumArgs()) 2230 FragTree->SubstituteFormalArguments(ArgMap); 2231 2232 // Transfer types. Note that the resolved alternative may have fewer 2233 // (but not more) results than the PatFrags node. 2234 FragTree->setName(getName()); 2235 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2236 FragTree->UpdateNodeType(i, getExtType(i), TP); 2237 2238 if (Op->isSubClassOf("GISelFlags")) 2239 FragTree->setGISelFlagsRecord(Op); 2240 2241 // Transfer in the old predicates. 2242 for (const TreePredicateCall &Pred : getPredicateCalls()) 2243 FragTree->addPredicateCall(Pred); 2244 2245 // The fragment we inlined could have recursive inlining that is needed. See 2246 // if there are any pattern fragments in it and inline them as needed. 2247 FragTree->InlinePatternFragments(TP, OutAlternatives); 2248 } 2249 } 2250 2251 /// getImplicitType - Check to see if the specified record has an implicit 2252 /// type which should be applied to it. This will infer the type of register 2253 /// references from the register file information, for example. 2254 /// 2255 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2256 /// the F8RC register class argument in: 2257 /// 2258 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2259 /// 2260 /// When Unnamed is false, return the type of a named DAG operand such as the 2261 /// GPR:$src operand above. 2262 /// 2263 static TypeSetByHwMode getImplicitType(const Record *R, unsigned ResNo, 2264 bool NotRegisters, bool Unnamed, 2265 TreePattern &TP) { 2266 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2267 2268 // Check to see if this is a register operand. 2269 if (R->isSubClassOf("RegisterOperand")) { 2270 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2271 if (NotRegisters) 2272 return TypeSetByHwMode(); // Unknown. 2273 const Record *RegClass = R->getValueAsDef("RegClass"); 2274 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2275 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2276 } 2277 2278 // Check to see if this is a register or a register class. 2279 if (R->isSubClassOf("RegisterClass")) { 2280 assert(ResNo == 0 && "Regclass ref only has one result!"); 2281 // An unnamed register class represents itself as an i32 immediate, for 2282 // example on a COPY_TO_REGCLASS instruction. 2283 if (Unnamed) 2284 return TypeSetByHwMode(MVT::i32); 2285 2286 // In a named operand, the register class provides the possible set of 2287 // types. 2288 if (NotRegisters) 2289 return TypeSetByHwMode(); // Unknown. 2290 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2291 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2292 } 2293 2294 if (R->isSubClassOf("PatFrags")) { 2295 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2296 // Pattern fragment types will be resolved when they are inlined. 2297 return TypeSetByHwMode(); // Unknown. 2298 } 2299 2300 if (R->isSubClassOf("Register")) { 2301 assert(ResNo == 0 && "Registers only produce one result!"); 2302 if (NotRegisters) 2303 return TypeSetByHwMode(); // Unknown. 2304 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2305 return TypeSetByHwMode(T.getRegisterVTs(R)); 2306 } 2307 2308 if (R->isSubClassOf("SubRegIndex")) { 2309 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2310 return TypeSetByHwMode(MVT::i32); 2311 } 2312 2313 if (R->isSubClassOf("ValueType")) { 2314 assert(ResNo == 0 && "This node only has one result!"); 2315 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2316 // 2317 // (sext_inreg GPR:$src, i16) 2318 // ~~~ 2319 if (Unnamed) 2320 return TypeSetByHwMode(MVT::Other); 2321 // With a name, the ValueType simply provides the type of the named 2322 // variable. 2323 // 2324 // (sext_inreg i32:$src, i16) 2325 // ~~~~~~~~ 2326 if (NotRegisters) 2327 return TypeSetByHwMode(); // Unknown. 2328 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2329 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2330 } 2331 2332 if (R->isSubClassOf("CondCode")) { 2333 assert(ResNo == 0 && "This node only has one result!"); 2334 // Using a CondCodeSDNode. 2335 return TypeSetByHwMode(MVT::Other); 2336 } 2337 2338 if (R->isSubClassOf("ComplexPattern")) { 2339 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2340 if (NotRegisters) 2341 return TypeSetByHwMode(); // Unknown. 2342 const Record *T = CDP.getComplexPattern(R).getValueType(); 2343 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2344 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2345 } 2346 if (R->isSubClassOf("PointerLikeRegClass")) { 2347 assert(ResNo == 0 && "Regclass can only have one result!"); 2348 TypeSetByHwMode VTS(MVT::iPTR); 2349 TP.getInfer().expandOverloads(VTS); 2350 return VTS; 2351 } 2352 2353 if (R->getName() == "node" || R->getName() == "srcvalue" || 2354 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2355 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2356 // Placeholder. 2357 return TypeSetByHwMode(); // Unknown. 2358 } 2359 2360 if (R->isSubClassOf("Operand")) { 2361 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2362 const Record *T = R->getValueAsDef("Type"); 2363 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2364 } 2365 2366 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2367 return TypeSetByHwMode(MVT::Other); 2368 } 2369 2370 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2371 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2372 const CodeGenIntrinsic * 2373 TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2374 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2375 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2376 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2377 return nullptr; 2378 2379 unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue(); 2380 return &CDP.getIntrinsicInfo(IID); 2381 } 2382 2383 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2384 /// return the ComplexPattern information, otherwise return null. 2385 const ComplexPattern * 2386 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2387 const Record *Rec; 2388 if (isLeaf()) { 2389 const DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2390 if (!DI) 2391 return nullptr; 2392 Rec = DI->getDef(); 2393 } else 2394 Rec = getOperator(); 2395 2396 if (!Rec->isSubClassOf("ComplexPattern")) 2397 return nullptr; 2398 return &CGP.getComplexPattern(Rec); 2399 } 2400 2401 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2402 // A ComplexPattern specifically declares how many results it fills in. 2403 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2404 return CP->getNumOperands(); 2405 2406 // If MIOperandInfo is specified, that gives the count. 2407 if (isLeaf()) { 2408 const DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2409 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2410 const DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2411 if (MIOps->getNumArgs()) 2412 return MIOps->getNumArgs(); 2413 } 2414 } 2415 2416 // Otherwise there is just one result. 2417 return 1; 2418 } 2419 2420 /// NodeHasProperty - Return true if this node has the specified property. 2421 bool TreePatternNode::NodeHasProperty(SDNP Property, 2422 const CodeGenDAGPatterns &CGP) const { 2423 if (isLeaf()) { 2424 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2425 return CP->hasProperty(Property); 2426 2427 return false; 2428 } 2429 2430 if (Property != SDNPHasChain) { 2431 // The chain proprety is already present on the different intrinsic node 2432 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2433 // on the intrinsic. Anything else is specific to the individual intrinsic. 2434 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2435 return Int->hasProperty(Property); 2436 } 2437 2438 if (!getOperator()->isSubClassOf("SDPatternOperator")) 2439 return false; 2440 2441 return CGP.getSDNodeInfo(getOperator()).hasProperty(Property); 2442 } 2443 2444 /// TreeHasProperty - Return true if any node in this tree has the specified 2445 /// property. 2446 bool TreePatternNode::TreeHasProperty(SDNP Property, 2447 const CodeGenDAGPatterns &CGP) const { 2448 if (NodeHasProperty(Property, CGP)) 2449 return true; 2450 for (const TreePatternNode &Child : children()) 2451 if (Child.TreeHasProperty(Property, CGP)) 2452 return true; 2453 return false; 2454 } 2455 2456 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2457 /// commutative intrinsic. 2458 bool TreePatternNode::isCommutativeIntrinsic( 2459 const CodeGenDAGPatterns &CDP) const { 2460 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2461 return Int->isCommutative; 2462 return false; 2463 } 2464 2465 static bool isOperandClass(const TreePatternNode &N, StringRef Class) { 2466 if (!N.isLeaf()) 2467 return N.getOperator()->isSubClassOf(Class); 2468 2469 const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); 2470 if (DI && DI->getDef()->isSubClassOf(Class)) 2471 return true; 2472 2473 return false; 2474 } 2475 2476 static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, 2477 unsigned Expected, unsigned Actual) { 2478 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2479 " operands but expected only " + Twine(Expected) + "!"); 2480 } 2481 2482 static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, 2483 unsigned Actual) { 2484 TP.error("Instruction '" + InstName + "' expects more than the provided " + 2485 Twine(Actual) + " operands!"); 2486 } 2487 2488 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2489 /// this node and its children in the tree. This returns true if it makes a 2490 /// change, false otherwise. If a type contradiction is found, flag an error. 2491 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2492 if (TP.hasError()) 2493 return false; 2494 2495 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2496 if (isLeaf()) { 2497 if (const DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2498 // If it's a regclass or something else known, include the type. 2499 bool MadeChange = false; 2500 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2501 MadeChange |= UpdateNodeType( 2502 i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP), 2503 TP); 2504 return MadeChange; 2505 } 2506 2507 if (const IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2508 assert(Types.size() == 1 && "Invalid IntInit"); 2509 2510 // Int inits are always integers. :) 2511 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2512 2513 if (!TP.getInfer().isConcrete(Types[0], false)) 2514 return MadeChange; 2515 2516 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2517 for (auto &P : VVT) { 2518 MVT::SimpleValueType VT = P.second.SimpleTy; 2519 // Can only check for types of a known size 2520 if (VT == MVT::iPTR) 2521 continue; 2522 2523 // Check that the value doesn't use more bits than we have. It must 2524 // either be a sign- or zero-extended equivalent of the original. 2525 unsigned Width = MVT(VT).getFixedSizeInBits(); 2526 int64_t Val = II->getValue(); 2527 if (!isIntN(Width, Val) && !isUIntN(Width, Val)) { 2528 TP.error("Integer value '" + Twine(Val) + 2529 "' is out of range for type '" + getEnumName(VT) + "'!"); 2530 break; 2531 } 2532 } 2533 return MadeChange; 2534 } 2535 2536 return false; 2537 } 2538 2539 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2540 bool MadeChange = false; 2541 2542 // Apply the result type to the node. 2543 unsigned NumRetVTs = Int->IS.RetTys.size(); 2544 unsigned NumParamVTs = Int->IS.ParamTys.size(); 2545 2546 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2547 MadeChange |= UpdateNodeType( 2548 i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP); 2549 2550 if (getNumChildren() != NumParamVTs + 1) { 2551 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2552 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2553 return false; 2554 } 2555 2556 // Apply type info to the intrinsic ID. 2557 MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP); 2558 2559 for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) { 2560 MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters); 2561 2562 MVT::SimpleValueType OpVT = 2563 getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT")); 2564 assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case"); 2565 MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP); 2566 } 2567 return MadeChange; 2568 } 2569 2570 if (getOperator()->isSubClassOf("SDNode")) { 2571 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2572 2573 // Check that the number of operands is sane. Negative operands -> varargs. 2574 if (NI.getNumOperands() >= 0 && 2575 getNumChildren() != (unsigned)NI.getNumOperands()) { 2576 TP.error(getOperator()->getName() + " node requires exactly " + 2577 Twine(NI.getNumOperands()) + " operands!"); 2578 return false; 2579 } 2580 2581 bool MadeChange = false; 2582 for (TreePatternNode &Child : children()) 2583 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2584 MadeChange |= NI.ApplyTypeConstraints(*this, TP); 2585 return MadeChange; 2586 } 2587 2588 if (getOperator()->isSubClassOf("Instruction")) { 2589 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2590 CodeGenInstruction &InstInfo = 2591 CDP.getTargetInfo().getInstruction(getOperator()); 2592 2593 bool MadeChange = false; 2594 2595 // Apply the result types to the node, these come from the things in the 2596 // (outs) list of the instruction. 2597 unsigned NumResultsToAdd = 2598 std::min(InstInfo.Operands.NumDefs, Inst.getNumResults()); 2599 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2600 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2601 2602 // If the instruction has implicit defs, we apply the first one as a result. 2603 // FIXME: This sucks, it should apply all implicit defs. 2604 if (!InstInfo.ImplicitDefs.empty()) { 2605 unsigned ResNo = NumResultsToAdd; 2606 2607 // FIXME: Generalize to multiple possible types and multiple possible 2608 // ImplicitDefs. 2609 MVT::SimpleValueType VT = 2610 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2611 2612 if (VT != MVT::Other) 2613 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2614 } 2615 2616 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2617 // be the same. 2618 if (getOperator()->getName() == "INSERT_SUBREG") { 2619 assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled"); 2620 MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP); 2621 MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP); 2622 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2623 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2624 // variadic. 2625 2626 unsigned NChild = getNumChildren(); 2627 if (NChild < 3) { 2628 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2629 return false; 2630 } 2631 2632 if (NChild % 2 == 0) { 2633 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2634 return false; 2635 } 2636 2637 if (!isOperandClass(getChild(0), "RegisterClass")) { 2638 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2639 return false; 2640 } 2641 2642 for (unsigned I = 1; I < NChild; I += 2) { 2643 TreePatternNode &SubIdxChild = getChild(I + 1); 2644 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2645 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2646 Twine(I + 1) + "!"); 2647 return false; 2648 } 2649 } 2650 } 2651 2652 unsigned NumResults = Inst.getNumResults(); 2653 unsigned NumFixedOperands = InstInfo.Operands.size(); 2654 2655 // If one or more operands with a default value appear at the end of the 2656 // formal operand list for an instruction, we allow them to be overridden 2657 // by optional operands provided in the pattern. 2658 // 2659 // But if an operand B without a default appears at any point after an 2660 // operand A with a default, then we don't allow A to be overridden, 2661 // because there would be no way to specify whether the next operand in 2662 // the pattern was intended to override A or skip it. 2663 unsigned NonOverridableOperands = NumFixedOperands; 2664 while (NonOverridableOperands > NumResults && 2665 CDP.operandHasDefault( 2666 InstInfo.Operands[NonOverridableOperands - 1].Rec)) 2667 --NonOverridableOperands; 2668 2669 unsigned ChildNo = 0; 2670 assert(NumResults <= NumFixedOperands); 2671 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2672 const Record *OperandNode = InstInfo.Operands[i].Rec; 2673 2674 // If the operand has a default value, do we use it? We must use the 2675 // default if we've run out of children of the pattern DAG to consume, 2676 // or if the operand is followed by a non-defaulted one. 2677 if (CDP.operandHasDefault(OperandNode) && 2678 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2679 continue; 2680 2681 // If we have run out of child nodes and there _isn't_ a default 2682 // value we can use for the next operand, give an error. 2683 if (ChildNo >= getNumChildren()) { 2684 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2685 return false; 2686 } 2687 2688 TreePatternNode *Child = &getChild(ChildNo++); 2689 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2690 2691 // If the operand has sub-operands, they may be provided by distinct 2692 // child patterns, so attempt to match each sub-operand separately. 2693 if (OperandNode->isSubClassOf("Operand")) { 2694 const DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2695 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2696 // But don't do that if the whole operand is being provided by 2697 // a single ComplexPattern-related Operand. 2698 2699 if (Child->getNumMIResults(CDP) < NumArgs) { 2700 // Match first sub-operand against the child we already have. 2701 const Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2702 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2703 2704 // And the remaining sub-operands against subsequent children. 2705 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2706 if (ChildNo >= getNumChildren()) { 2707 emitTooFewOperandsError(TP, getOperator()->getName(), 2708 getNumChildren()); 2709 return false; 2710 } 2711 Child = &getChild(ChildNo++); 2712 2713 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2714 MadeChange |= 2715 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2716 } 2717 continue; 2718 } 2719 } 2720 } 2721 2722 // If we didn't match by pieces above, attempt to match the whole 2723 // operand now. 2724 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2725 } 2726 2727 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2728 emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo, 2729 getNumChildren()); 2730 return false; 2731 } 2732 2733 for (TreePatternNode &Child : children()) 2734 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2735 return MadeChange; 2736 } 2737 2738 if (getOperator()->isSubClassOf("ComplexPattern")) { 2739 bool MadeChange = false; 2740 2741 if (!NotRegisters) { 2742 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2743 const Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2744 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2745 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2746 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2747 // exclusively use those as non-leaf nodes with explicit type casts, so 2748 // for backwards compatibility we do no inference in that case. This is 2749 // not supported when the ComplexPattern is used as a leaf value, 2750 // however; this inconsistency should be resolved, either by adding this 2751 // case there or by altering the backends to not do this (e.g. using Any 2752 // instead may work). 2753 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2754 MadeChange |= UpdateNodeType(0, VVT, TP); 2755 } 2756 2757 for (TreePatternNode &Child : children()) 2758 MadeChange |= Child.ApplyTypeConstraints(TP, NotRegisters); 2759 2760 return MadeChange; 2761 } 2762 2763 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2764 2765 // Node transforms always take one operand. 2766 if (getNumChildren() != 1) { 2767 TP.error("Node transform '" + getOperator()->getName() + 2768 "' requires one operand!"); 2769 return false; 2770 } 2771 2772 bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters); 2773 return MadeChange; 2774 } 2775 2776 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2777 /// RHS of a commutative operation, not the on LHS. 2778 static bool OnlyOnRHSOfCommutative(const TreePatternNode &N) { 2779 if (!N.isLeaf() && N.getOperator()->getName() == "imm") 2780 return true; 2781 if (N.isLeaf() && isa<IntInit>(N.getLeafValue())) 2782 return true; 2783 if (isImmAllOnesAllZerosMatch(N)) 2784 return true; 2785 return false; 2786 } 2787 2788 /// canPatternMatch - If it is impossible for this pattern to match on this 2789 /// target, fill in Reason and return false. Otherwise, return true. This is 2790 /// used as a sanity check for .td files (to prevent people from writing stuff 2791 /// that can never possibly work), and to prevent the pattern permuter from 2792 /// generating stuff that is useless. 2793 bool TreePatternNode::canPatternMatch(std::string &Reason, 2794 const CodeGenDAGPatterns &CDP) const { 2795 if (isLeaf()) 2796 return true; 2797 2798 for (const TreePatternNode &Child : children()) 2799 if (!Child.canPatternMatch(Reason, CDP)) 2800 return false; 2801 2802 // If this is an intrinsic, handle cases that would make it not match. For 2803 // example, if an operand is required to be an immediate. 2804 if (getOperator()->isSubClassOf("Intrinsic")) { 2805 // TODO: 2806 return true; 2807 } 2808 2809 if (getOperator()->isSubClassOf("ComplexPattern")) 2810 return true; 2811 2812 // If this node is a commutative operator, check that the LHS isn't an 2813 // immediate. 2814 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2815 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2816 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2817 // Scan all of the operands of the node and make sure that only the last one 2818 // is a constant node, unless the RHS also is. 2819 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) { 2820 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2821 for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i) 2822 if (OnlyOnRHSOfCommutative(getChild(i))) { 2823 Reason = 2824 "Immediate value must be on the RHS of commutative operators!"; 2825 return false; 2826 } 2827 } 2828 } 2829 2830 return true; 2831 } 2832 2833 //===----------------------------------------------------------------------===// 2834 // TreePattern implementation 2835 // 2836 2837 TreePattern::TreePattern(const Record *TheRec, const ListInit *RawPat, 2838 bool isInput, CodeGenDAGPatterns &cdp) 2839 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2840 Infer(*this) { 2841 for (const Init *I : RawPat->getValues()) 2842 Trees.push_back(ParseTreePattern(I, "")); 2843 } 2844 2845 TreePattern::TreePattern(const Record *TheRec, const DagInit *Pat, bool isInput, 2846 CodeGenDAGPatterns &cdp) 2847 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2848 Infer(*this) { 2849 Trees.push_back(ParseTreePattern(Pat, "")); 2850 } 2851 2852 TreePattern::TreePattern(const Record *TheRec, TreePatternNodePtr Pat, 2853 bool isInput, CodeGenDAGPatterns &cdp) 2854 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2855 Infer(*this) { 2856 Trees.push_back(Pat); 2857 } 2858 2859 void TreePattern::error(const Twine &Msg) { 2860 if (HasError) 2861 return; 2862 dump(); 2863 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2864 HasError = true; 2865 } 2866 2867 void TreePattern::ComputeNamedNodes() { 2868 for (TreePatternNodePtr &Tree : Trees) 2869 ComputeNamedNodes(*Tree); 2870 } 2871 2872 void TreePattern::ComputeNamedNodes(TreePatternNode &N) { 2873 if (!N.getName().empty()) 2874 NamedNodes[N.getName()].push_back(&N); 2875 2876 for (TreePatternNode &Child : N.children()) 2877 ComputeNamedNodes(Child); 2878 } 2879 2880 TreePatternNodePtr TreePattern::ParseTreePattern(const Init *TheInit, 2881 StringRef OpName) { 2882 RecordKeeper &RK = TheInit->getRecordKeeper(); 2883 // Here, we are creating new records (BitsInit->InitInit), so const_cast 2884 // TheInit back to non-const pointer. 2885 if (const DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2886 const Record *R = DI->getDef(); 2887 2888 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2889 // TreePatternNode of its own. For example: 2890 /// (foo GPR, imm) -> (foo GPR, (imm)) 2891 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2892 return ParseTreePattern( 2893 DagInit::get( 2894 DI, nullptr, 2895 std::vector<std::pair<const Init *, const StringInit *>>()), 2896 OpName); 2897 2898 // Input argument? 2899 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1); 2900 if (R->getName() == "node" && !OpName.empty()) { 2901 if (OpName.empty()) 2902 error("'node' argument requires a name to match with operand list"); 2903 Args.push_back(std::string(OpName)); 2904 } 2905 2906 Res->setName(OpName); 2907 return Res; 2908 } 2909 2910 // ?:$name or just $name. 2911 if (isa<UnsetInit>(TheInit)) { 2912 if (OpName.empty()) 2913 error("'?' argument requires a name to match with operand list"); 2914 TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2915 Args.push_back(std::string(OpName)); 2916 Res->setName(OpName); 2917 return Res; 2918 } 2919 2920 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2921 if (!OpName.empty()) 2922 error("Constant int or bit argument should not have a name!"); 2923 if (isa<BitInit>(TheInit)) 2924 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2925 return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1); 2926 } 2927 2928 if (const BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2929 // Turn this into an IntInit. 2930 const Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2931 if (!II || !isa<IntInit>(II)) 2932 error("Bits value must be constants!"); 2933 return II ? ParseTreePattern(II, OpName) : nullptr; 2934 } 2935 2936 const DagInit *Dag = dyn_cast<DagInit>(TheInit); 2937 if (!Dag) { 2938 TheInit->print(errs()); 2939 error("Pattern has unexpected init kind!"); 2940 return nullptr; 2941 } 2942 2943 auto ParseCastOperand = [this](const DagInit *Dag, StringRef OpName) { 2944 if (Dag->getNumArgs() != 1) 2945 error("Type cast only takes one operand!"); 2946 2947 if (!OpName.empty()) 2948 error("Type cast should not have a name!"); 2949 2950 return ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2951 }; 2952 2953 if (const ListInit *LI = dyn_cast<ListInit>(Dag->getOperator())) { 2954 // If the operator is a list (of value types), then this must be "type cast" 2955 // of a leaf node with multiple results. 2956 TreePatternNodePtr New = ParseCastOperand(Dag, OpName); 2957 2958 size_t NumTypes = New->getNumTypes(); 2959 if (LI->empty() || LI->size() != NumTypes) 2960 error("Invalid number of type casts!"); 2961 2962 // Apply the type casts. 2963 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2964 for (unsigned i = 0; i < std::min(NumTypes, LI->size()); ++i) 2965 New->UpdateNodeType( 2966 i, getValueTypeByHwMode(LI->getElementAsRecord(i), CGH), *this); 2967 2968 return New; 2969 } 2970 2971 const DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2972 if (!OpDef) { 2973 error("Pattern has unexpected operator type!"); 2974 return nullptr; 2975 } 2976 const Record *Operator = OpDef->getDef(); 2977 2978 if (Operator->isSubClassOf("ValueType")) { 2979 // If the operator is a ValueType, then this must be "type cast" of a leaf 2980 // node. 2981 TreePatternNodePtr New = ParseCastOperand(Dag, OpName); 2982 2983 if (New->getNumTypes() != 1) 2984 error("ValueType cast can only have one type!"); 2985 2986 // Apply the type cast. 2987 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2988 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2989 2990 return New; 2991 } 2992 2993 // Verify that this is something that makes sense for an operator. 2994 if (!Operator->isSubClassOf("PatFrags") && 2995 !Operator->isSubClassOf("SDNode") && 2996 !Operator->isSubClassOf("Instruction") && 2997 !Operator->isSubClassOf("SDNodeXForm") && 2998 !Operator->isSubClassOf("Intrinsic") && 2999 !Operator->isSubClassOf("ComplexPattern") && Operator->getName() != "set") 3000 error("Unrecognized node '" + Operator->getName() + "'!"); 3001 3002 // Check to see if this is something that is illegal in an input pattern. 3003 if (isInputPattern) { 3004 if (Operator->isSubClassOf("Instruction") || 3005 Operator->isSubClassOf("SDNodeXForm")) 3006 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 3007 } else { 3008 if (Operator->isSubClassOf("Intrinsic")) 3009 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 3010 3011 if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && 3012 Operator->getName() != "timm" && Operator->getName() != "fpimm" && 3013 Operator->getName() != "tglobaltlsaddr" && 3014 Operator->getName() != "tconstpool" && 3015 Operator->getName() != "tjumptable" && 3016 Operator->getName() != "tframeindex" && 3017 Operator->getName() != "texternalsym" && 3018 Operator->getName() != "tblockaddress" && 3019 Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && 3020 Operator->getName() != "vt" && Operator->getName() != "mcsym") 3021 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 3022 } 3023 3024 std::vector<TreePatternNodePtr> Children; 3025 3026 // Parse all the operands. 3027 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 3028 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 3029 3030 // Get the actual number of results before Operator is converted to an 3031 // intrinsic node (which is hard-coded to have either zero or one result). 3032 unsigned NumResults = GetNumNodeResults(Operator, CDP); 3033 3034 // If the operator is an intrinsic, then this is just syntactic sugar for 3035 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 3036 // convert the intrinsic name to a number. 3037 if (Operator->isSubClassOf("Intrinsic")) { 3038 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 3039 unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1; 3040 3041 // If this intrinsic returns void, it must have side-effects and thus a 3042 // chain. 3043 if (Int.IS.RetTys.empty()) 3044 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 3045 else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects) 3046 // Has side-effects, requires chain. 3047 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 3048 else // Otherwise, no chain. 3049 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 3050 3051 Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>( 3052 IntInit::get(RK, IID), 1)); 3053 } 3054 3055 if (Operator->isSubClassOf("ComplexPattern")) { 3056 for (unsigned i = 0; i < Children.size(); ++i) { 3057 TreePatternNodePtr Child = Children[i]; 3058 3059 if (Child->getName().empty()) 3060 error("All arguments to a ComplexPattern must be named"); 3061 3062 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 3063 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 3064 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 3065 auto OperandId = std::pair(Operator, i); 3066 auto [PrevOp, Inserted] = 3067 ComplexPatternOperands.try_emplace(Child->getName(), OperandId); 3068 if (!Inserted && PrevOp->getValue() != OperandId) { 3069 error("All ComplexPattern operands must appear consistently: " 3070 "in the same order in just one ComplexPattern instance."); 3071 } 3072 } 3073 } 3074 3075 TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>( 3076 Operator, std::move(Children), NumResults); 3077 Result->setName(OpName); 3078 3079 if (Dag->getName()) { 3080 assert(Result->getName().empty()); 3081 Result->setName(Dag->getNameStr()); 3082 } 3083 return Result; 3084 } 3085 3086 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3087 /// will never match in favor of something obvious that will. This is here 3088 /// strictly as a convenience to target authors because it allows them to write 3089 /// more type generic things and have useless type casts fold away. 3090 /// 3091 /// This returns true if any change is made. 3092 static bool SimplifyTree(TreePatternNodePtr &N) { 3093 if (N->isLeaf()) 3094 return false; 3095 3096 // If we have a bitconvert with a resolved type and if the source and 3097 // destination types are the same, then the bitconvert is useless, remove it. 3098 // 3099 // We make an exception if the types are completely empty. This can come up 3100 // when the pattern being simplified is in the Fragments list of a PatFrags, 3101 // so that the operand is just an untyped "node". In that situation we leave 3102 // bitconverts unsimplified, and simplify them later once the fragment is 3103 // expanded into its true context. 3104 if (N->getOperator()->getName() == "bitconvert" && 3105 N->getExtType(0).isValueTypeByHwMode(false) && 3106 !N->getExtType(0).empty() && 3107 N->getExtType(0) == N->getChild(0).getExtType(0) && 3108 N->getName().empty()) { 3109 if (!N->getPredicateCalls().empty()) { 3110 std::string Str; 3111 raw_string_ostream OS(Str); 3112 OS << *N 3113 << "\n trivial bitconvert node should not have predicate calls\n"; 3114 PrintFatalError(Str); 3115 return false; 3116 } 3117 N = N->getChildShared(0); 3118 SimplifyTree(N); 3119 return true; 3120 } 3121 3122 // Walk all children. 3123 bool MadeChange = false; 3124 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3125 MadeChange |= SimplifyTree(N->getChildSharedPtr(i)); 3126 3127 return MadeChange; 3128 } 3129 3130 /// InferAllTypes - Infer/propagate as many types throughout the expression 3131 /// patterns as possible. Return true if all types are inferred, false 3132 /// otherwise. Flags an error if a type contradiction is found. 3133 bool TreePattern::InferAllTypes( 3134 const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) { 3135 if (NamedNodes.empty()) 3136 ComputeNamedNodes(); 3137 3138 bool MadeChange = true; 3139 while (MadeChange) { 3140 MadeChange = false; 3141 for (TreePatternNodePtr &Tree : Trees) { 3142 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3143 MadeChange |= SimplifyTree(Tree); 3144 } 3145 3146 // If there are constraints on our named nodes, apply them. 3147 for (auto &Entry : NamedNodes) { 3148 SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second; 3149 3150 // If we have input named node types, propagate their types to the named 3151 // values here. 3152 if (InNamedTypes) { 3153 auto InIter = InNamedTypes->find(Entry.getKey()); 3154 if (InIter == InNamedTypes->end()) { 3155 error("Node '" + std::string(Entry.getKey()) + 3156 "' in output pattern but not input pattern"); 3157 return true; 3158 } 3159 3160 const SmallVectorImpl<TreePatternNode *> &InNodes = InIter->second; 3161 3162 // The input types should be fully resolved by now. 3163 for (TreePatternNode *Node : Nodes) { 3164 // If this node is a register class, and it is the root of the pattern 3165 // then we're mapping something onto an input register. We allow 3166 // changing the type of the input register in this case. This allows 3167 // us to match things like: 3168 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3169 if (Node == Trees[0].get() && Node->isLeaf()) { 3170 const DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3171 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3172 DI->getDef()->isSubClassOf("RegisterOperand"))) 3173 continue; 3174 } 3175 3176 assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && 3177 "FIXME: cannot name multiple result nodes yet"); 3178 MadeChange |= 3179 Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); 3180 } 3181 } 3182 3183 // If there are multiple nodes with the same name, they must all have the 3184 // same type. 3185 if (Entry.second.size() > 1) { 3186 for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) { 3187 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1]; 3188 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3189 "FIXME: cannot name multiple result nodes yet"); 3190 3191 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3192 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3193 } 3194 } 3195 } 3196 } 3197 3198 bool HasUnresolvedTypes = false; 3199 for (const TreePatternNodePtr &Tree : Trees) 3200 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3201 return !HasUnresolvedTypes; 3202 } 3203 3204 void TreePattern::print(raw_ostream &OS) const { 3205 OS << getRecord()->getName(); 3206 if (!Args.empty()) { 3207 OS << "("; 3208 ListSeparator LS; 3209 for (const std::string &Arg : Args) 3210 OS << LS << Arg; 3211 OS << ")"; 3212 } 3213 OS << ": "; 3214 3215 if (Trees.size() > 1) 3216 OS << "[\n"; 3217 for (const TreePatternNodePtr &Tree : Trees) { 3218 OS << "\t"; 3219 Tree->print(OS); 3220 OS << "\n"; 3221 } 3222 3223 if (Trees.size() > 1) 3224 OS << "]\n"; 3225 } 3226 3227 void TreePattern::dump() const { print(errs()); } 3228 3229 //===----------------------------------------------------------------------===// 3230 // CodeGenDAGPatterns implementation 3231 // 3232 3233 CodeGenDAGPatterns::CodeGenDAGPatterns(const RecordKeeper &R, 3234 PatternRewriterFn PatternRewriter) 3235 : Records(R), Target(R), Intrinsics(R), 3236 LegalVTS(Target.getLegalValueTypes()), 3237 PatternRewriter(std::move(PatternRewriter)) { 3238 ParseNodeInfo(); 3239 ParseNodeTransforms(); 3240 ParseComplexPatterns(); 3241 ParsePatternFragments(); 3242 ParseDefaultOperands(); 3243 ParseInstructions(); 3244 ParsePatternFragments(/*OutFrags*/ true); 3245 ParsePatterns(); 3246 3247 // Generate variants. For example, commutative patterns can match 3248 // multiple ways. Add them to PatternsToMatch as well. 3249 GenerateVariants(); 3250 3251 // Break patterns with parameterized types into a series of patterns, 3252 // where each one has a fixed type and is predicated on the conditions 3253 // of the associated HW mode. 3254 ExpandHwModeBasedTypes(); 3255 3256 // Infer instruction flags. For example, we can detect loads, 3257 // stores, and side effects in many cases by examining an 3258 // instruction's pattern. 3259 InferInstructionFlags(); 3260 3261 // Verify that instruction flags match the patterns. 3262 VerifyInstructionFlags(); 3263 } 3264 3265 const Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3266 const Record *N = Records.getDef(Name); 3267 if (!N || !N->isSubClassOf("SDNode")) 3268 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3269 return N; 3270 } 3271 3272 // Parse all of the SDNode definitions for the target, populating SDNodes. 3273 void CodeGenDAGPatterns::ParseNodeInfo() { 3274 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3275 3276 for (const Record *R : reverse(Records.getAllDerivedDefinitions("SDNode"))) 3277 SDNodes.try_emplace(R, SDNodeInfo(R, CGH)); 3278 3279 // Get the builtin intrinsic nodes. 3280 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3281 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3282 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3283 } 3284 3285 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3286 /// map, and emit them to the file as functions. 3287 void CodeGenDAGPatterns::ParseNodeTransforms() { 3288 for (const Record *XFormNode : 3289 reverse(Records.getAllDerivedDefinitions("SDNodeXForm"))) { 3290 const Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3291 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3292 SDNodeXForms.insert({XFormNode, NodeXForm(SDNode, std::string(Code))}); 3293 } 3294 } 3295 3296 void CodeGenDAGPatterns::ParseComplexPatterns() { 3297 for (const Record *R : 3298 reverse(Records.getAllDerivedDefinitions("ComplexPattern"))) 3299 ComplexPatterns.insert({R, R}); 3300 } 3301 3302 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3303 /// file, building up the PatternFragments map. After we've collected them all, 3304 /// inline fragments together as necessary, so that there are no references left 3305 /// inside a pattern fragment to a pattern fragment. 3306 /// 3307 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3308 // First step, parse all of the fragments. 3309 ArrayRef<const Record *> Fragments = 3310 Records.getAllDerivedDefinitions("PatFrags"); 3311 for (const Record *Frag : Fragments) { 3312 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3313 continue; 3314 3315 const ListInit *LI = Frag->getValueAsListInit("Fragments"); 3316 TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>( 3317 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this)) 3318 .get(); 3319 3320 // Validate the argument list, converting it to set, to discard duplicates. 3321 std::vector<std::string> &Args = P->getArgList(); 3322 // Copy the args so we can take StringRefs to them. 3323 auto ArgsCopy = Args; 3324 SmallDenseSet<StringRef, 4> OperandsSet; 3325 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3326 3327 if (OperandsSet.count("")) 3328 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3329 3330 // Parse the operands list. 3331 const DagInit *OpsList = Frag->getValueAsDag("Operands"); 3332 const DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3333 // Special cases: ops == outs == ins. Different names are used to 3334 // improve readability. 3335 if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && 3336 OpsOp->getDef()->getName() != "outs" && 3337 OpsOp->getDef()->getName() != "ins")) 3338 P->error("Operands list should start with '(ops ... '!"); 3339 3340 // Copy over the arguments. 3341 Args.clear(); 3342 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3343 if (!isa<DefInit>(OpsList->getArg(j)) || 3344 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3345 P->error("Operands list should all be 'node' values."); 3346 if (!OpsList->getArgName(j)) 3347 P->error("Operands list should have names for each operand!"); 3348 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3349 if (!OperandsSet.erase(ArgNameStr)) 3350 P->error("'" + ArgNameStr + 3351 "' does not occur in pattern or was multiply specified!"); 3352 Args.push_back(std::string(ArgNameStr)); 3353 } 3354 3355 if (!OperandsSet.empty()) 3356 P->error("Operands list does not contain an entry for operand '" + 3357 *OperandsSet.begin() + "'!"); 3358 3359 // If there is a node transformation corresponding to this, keep track of 3360 // it. 3361 const Record *Transform = Frag->getValueAsDef("OperandTransform"); 3362 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3363 for (const auto &T : P->getTrees()) 3364 T->setTransformFn(Transform); 3365 } 3366 3367 // Now that we've parsed all of the tree fragments, do a closure on them so 3368 // that there are not references to PatFrags left inside of them. 3369 for (const Record *Frag : Fragments) { 3370 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3371 continue; 3372 3373 TreePattern &ThePat = *PatternFragments[Frag]; 3374 ThePat.InlinePatternFragments(); 3375 3376 // Infer as many types as possible. Don't worry about it if we don't infer 3377 // all of them, some may depend on the inputs of the pattern. Also, don't 3378 // validate type sets; validation may cause spurious failures e.g. if a 3379 // fragment needs floating-point types but the current target does not have 3380 // any (this is only an error if that fragment is ever used!). 3381 { 3382 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3383 ThePat.InferAllTypes(); 3384 ThePat.resetError(); 3385 } 3386 3387 // If debugging, print out the pattern fragment result. 3388 LLVM_DEBUG(ThePat.dump()); 3389 } 3390 } 3391 3392 void CodeGenDAGPatterns::ParseDefaultOperands() { 3393 ArrayRef<const Record *> DefaultOps = 3394 Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3395 3396 // Find some SDNode. 3397 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3398 const Init *SomeSDNode = SDNodes.begin()->first->getDefInit(); 3399 3400 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3401 const DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3402 3403 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3404 // SomeSDnode so that we can parse this. 3405 std::vector<std::pair<const Init *, const StringInit *>> Ops; 3406 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3407 Ops.emplace_back(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)); 3408 const DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3409 3410 // Create a TreePattern to parse this. 3411 TreePattern P(DefaultOps[i], DI, false, *this); 3412 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3413 3414 // Copy the operands over into a DAGDefaultOperand. 3415 DAGDefaultOperand DefaultOpInfo; 3416 3417 const TreePatternNodePtr &T = P.getTree(0); 3418 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3419 TreePatternNodePtr TPN = T->getChildShared(op); 3420 while (TPN->ApplyTypeConstraints(P, false)) 3421 /* Resolve all types */; 3422 3423 if (TPN->ContainsUnresolvedType(P)) { 3424 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3425 DefaultOps[i]->getName() + 3426 "' doesn't have a concrete type!"); 3427 } 3428 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3429 } 3430 3431 // Insert it into the DefaultOperands map so we can find it later. 3432 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3433 } 3434 } 3435 3436 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3437 /// instruction input. Return true if this is a real use. 3438 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3439 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3440 // No name -> not interesting. 3441 if (Pat->getName().empty()) { 3442 if (Pat->isLeaf()) { 3443 const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3444 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3445 DI->getDef()->isSubClassOf("RegisterOperand"))) 3446 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3447 } 3448 return false; 3449 } 3450 3451 const Record *Rec; 3452 if (Pat->isLeaf()) { 3453 const DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3454 if (!DI) 3455 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3456 Rec = DI->getDef(); 3457 } else { 3458 Rec = Pat->getOperator(); 3459 } 3460 3461 // SRCVALUE nodes are ignored. 3462 if (Rec->getName() == "srcvalue") 3463 return false; 3464 3465 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3466 if (!Slot) { 3467 Slot = Pat; 3468 return true; 3469 } 3470 const Record *SlotRec; 3471 if (Slot->isLeaf()) { 3472 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3473 } else { 3474 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3475 SlotRec = Slot->getOperator(); 3476 } 3477 3478 // Ensure that the inputs agree if we've already seen this input. 3479 if (Rec != SlotRec) 3480 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3481 // Ensure that the types can agree as well. 3482 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3483 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3484 if (Slot->getExtTypes() != Pat->getExtTypes()) 3485 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3486 return true; 3487 } 3488 3489 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3490 /// part of "I", the instruction), computing the set of inputs and outputs of 3491 /// the pattern. Report errors if we see anything naughty. 3492 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3493 TreePattern &I, TreePatternNodePtr Pat, 3494 std::map<std::string, TreePatternNodePtr> &InstInputs, 3495 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3496 &InstResults, 3497 std::vector<const Record *> &InstImpResults) { 3498 // The instruction pattern still has unresolved fragments. For *named* 3499 // nodes we must resolve those here. This may not result in multiple 3500 // alternatives. 3501 if (!Pat->getName().empty()) { 3502 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3503 SrcPattern.InlinePatternFragments(); 3504 SrcPattern.InferAllTypes(); 3505 Pat = SrcPattern.getOnlyTree(); 3506 } 3507 3508 if (Pat->isLeaf()) { 3509 bool isUse = HandleUse(I, Pat, InstInputs); 3510 if (!isUse && Pat->getTransformFn()) 3511 I.error("Cannot specify a transform function for a non-input value!"); 3512 return; 3513 } 3514 3515 if (Pat->getOperator()->getName() != "set") { 3516 // If this is not a set, verify that the children nodes are not void typed, 3517 // and recurse. 3518 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3519 if (Pat->getChild(i).getNumTypes() == 0) 3520 I.error("Cannot have void nodes inside of patterns!"); 3521 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3522 InstResults, InstImpResults); 3523 } 3524 3525 // If this is a non-leaf node with no children, treat it basically as if 3526 // it were a leaf. This handles nodes like (imm). 3527 bool isUse = HandleUse(I, Pat, InstInputs); 3528 3529 if (!isUse && Pat->getTransformFn()) 3530 I.error("Cannot specify a transform function for a non-input value!"); 3531 return; 3532 } 3533 3534 // Otherwise, this is a set, validate and collect instruction results. 3535 if (Pat->getNumChildren() == 0) 3536 I.error("set requires operands!"); 3537 3538 if (Pat->getTransformFn()) 3539 I.error("Cannot specify a transform function on a set node!"); 3540 3541 // Check the set destinations. 3542 unsigned NumDests = Pat->getNumChildren() - 1; 3543 for (unsigned i = 0; i != NumDests; ++i) { 3544 TreePatternNodePtr Dest = Pat->getChildShared(i); 3545 // For set destinations we also must resolve fragments here. 3546 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3547 DestPattern.InlinePatternFragments(); 3548 DestPattern.InferAllTypes(); 3549 Dest = DestPattern.getOnlyTree(); 3550 3551 if (!Dest->isLeaf()) 3552 I.error("set destination should be a register!"); 3553 3554 const DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3555 if (!Val) { 3556 I.error("set destination should be a register!"); 3557 continue; 3558 } 3559 3560 if (Val->getDef()->isSubClassOf("RegisterClass") || 3561 Val->getDef()->isSubClassOf("ValueType") || 3562 Val->getDef()->isSubClassOf("RegisterOperand") || 3563 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3564 if (Dest->getName().empty()) 3565 I.error("set destination must have a name!"); 3566 if (!InstResults.insert_or_assign(Dest->getName(), Dest).second) 3567 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3568 } else if (Val->getDef()->isSubClassOf("Register")) { 3569 InstImpResults.push_back(Val->getDef()); 3570 } else { 3571 I.error("set destination should be a register!"); 3572 } 3573 } 3574 3575 // Verify and collect info from the computation. 3576 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3577 InstResults, InstImpResults); 3578 } 3579 3580 //===----------------------------------------------------------------------===// 3581 // Instruction Analysis 3582 //===----------------------------------------------------------------------===// 3583 3584 class InstAnalyzer { 3585 const CodeGenDAGPatterns &CDP; 3586 3587 public: 3588 bool hasSideEffects; 3589 bool mayStore; 3590 bool mayLoad; 3591 bool isBitcast; 3592 bool isVariadic; 3593 bool hasChain; 3594 3595 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3596 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3597 isBitcast(false), isVariadic(false), hasChain(false) {} 3598 3599 void Analyze(const PatternToMatch &Pat) { 3600 const TreePatternNode &N = Pat.getSrcPattern(); 3601 AnalyzeNode(N); 3602 // These properties are detected only on the root node. 3603 isBitcast = IsNodeBitcast(N); 3604 } 3605 3606 private: 3607 bool IsNodeBitcast(const TreePatternNode &N) const { 3608 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3609 return false; 3610 3611 if (N.isLeaf()) 3612 return false; 3613 if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf()) 3614 return false; 3615 3616 if (N.getOperator()->isSubClassOf("ComplexPattern")) 3617 return false; 3618 3619 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator()); 3620 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3621 return false; 3622 return OpInfo.getEnumName() == "ISD::BITCAST"; 3623 } 3624 3625 public: 3626 void AnalyzeNode(const TreePatternNode &N) { 3627 if (N.isLeaf()) { 3628 if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { 3629 const Record *LeafRec = DI->getDef(); 3630 // Handle ComplexPattern leaves. 3631 if (LeafRec->isSubClassOf("ComplexPattern")) { 3632 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3633 if (CP.hasProperty(SDNPMayStore)) 3634 mayStore = true; 3635 if (CP.hasProperty(SDNPMayLoad)) 3636 mayLoad = true; 3637 if (CP.hasProperty(SDNPSideEffect)) 3638 hasSideEffects = true; 3639 } 3640 } 3641 return; 3642 } 3643 3644 // Analyze children. 3645 for (const TreePatternNode &Child : N.children()) 3646 AnalyzeNode(Child); 3647 3648 // Notice properties of the node. 3649 if (N.NodeHasProperty(SDNPMayStore, CDP)) 3650 mayStore = true; 3651 if (N.NodeHasProperty(SDNPMayLoad, CDP)) 3652 mayLoad = true; 3653 if (N.NodeHasProperty(SDNPSideEffect, CDP)) 3654 hasSideEffects = true; 3655 if (N.NodeHasProperty(SDNPVariadic, CDP)) 3656 isVariadic = true; 3657 if (N.NodeHasProperty(SDNPHasChain, CDP)) 3658 hasChain = true; 3659 3660 if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) { 3661 ModRefInfo MR = IntInfo->ME.getModRef(); 3662 // If this is an intrinsic, analyze it. 3663 if (isRefSet(MR)) 3664 mayLoad = true; // These may load memory. 3665 3666 if (isModSet(MR)) 3667 mayStore = true; // Intrinsics that can write to memory are 'mayStore'. 3668 3669 // Consider intrinsics that don't specify any restrictions on memory 3670 // effects as having a side-effect. 3671 if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects) 3672 hasSideEffects = true; 3673 } 3674 } 3675 }; 3676 3677 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3678 const InstAnalyzer &PatInfo, 3679 const Record *PatDef) { 3680 bool Error = false; 3681 3682 // Remember where InstInfo got its flags. 3683 if (InstInfo.hasUndefFlags()) 3684 InstInfo.InferredFrom = PatDef; 3685 3686 // Check explicitly set flags for consistency. 3687 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3688 !InstInfo.hasSideEffects_Unset) { 3689 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3690 // the pattern has no side effects. That could be useful for div/rem 3691 // instructions that may trap. 3692 if (!InstInfo.hasSideEffects) { 3693 Error = true; 3694 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3695 Twine(InstInfo.hasSideEffects)); 3696 } 3697 } 3698 3699 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3700 Error = true; 3701 PrintError(PatDef->getLoc(), 3702 "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); 3703 } 3704 3705 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3706 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3707 // Some targets translate immediates to loads. 3708 if (!InstInfo.mayLoad) { 3709 Error = true; 3710 PrintError(PatDef->getLoc(), 3711 "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); 3712 } 3713 } 3714 3715 // Transfer inferred flags. 3716 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3717 InstInfo.mayStore |= PatInfo.mayStore; 3718 InstInfo.mayLoad |= PatInfo.mayLoad; 3719 3720 // These flags are silently added without any verification. 3721 // FIXME: To match historical behavior of TableGen, for now add those flags 3722 // only when we're inferring from the primary instruction pattern. 3723 if (PatDef->isSubClassOf("Instruction")) { 3724 InstInfo.isBitcast |= PatInfo.isBitcast; 3725 InstInfo.hasChain |= PatInfo.hasChain; 3726 InstInfo.hasChain_Inferred = true; 3727 } 3728 3729 // Don't infer isVariadic. This flag means something different on SDNodes and 3730 // instructions. For example, a CALL SDNode is variadic because it has the 3731 // call arguments as operands, but a CALL instruction is not variadic - it 3732 // has argument registers as implicit, not explicit uses. 3733 3734 return Error; 3735 } 3736 3737 /// hasNullFragReference - Return true if the DAG has any reference to the 3738 /// null_frag operator. 3739 static bool hasNullFragReference(const DagInit *DI) { 3740 const DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3741 if (!OpDef) 3742 return false; 3743 const Record *Operator = OpDef->getDef(); 3744 3745 // If this is the null fragment, return true. 3746 if (Operator->getName() == "null_frag") 3747 return true; 3748 // If any of the arguments reference the null fragment, return true. 3749 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3750 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3751 if (Arg->getDef()->getName() == "null_frag") 3752 return true; 3753 const DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3754 if (Arg && hasNullFragReference(Arg)) 3755 return true; 3756 } 3757 3758 return false; 3759 } 3760 3761 /// hasNullFragReference - Return true if any DAG in the list references 3762 /// the null_frag operator. 3763 static bool hasNullFragReference(const ListInit *LI) { 3764 for (const Init *I : LI->getValues()) { 3765 const DagInit *DI = dyn_cast<DagInit>(I); 3766 assert(DI && "non-dag in an instruction Pattern list?!"); 3767 if (hasNullFragReference(DI)) 3768 return true; 3769 } 3770 return false; 3771 } 3772 3773 /// Get all the instructions in a tree. 3774 static void getInstructionsInTree(TreePatternNode &Tree, 3775 SmallVectorImpl<const Record *> &Instrs) { 3776 if (Tree.isLeaf()) 3777 return; 3778 if (Tree.getOperator()->isSubClassOf("Instruction")) 3779 Instrs.push_back(Tree.getOperator()); 3780 for (TreePatternNode &Child : Tree.children()) 3781 getInstructionsInTree(Child, Instrs); 3782 } 3783 3784 /// Check the class of a pattern leaf node against the instruction operand it 3785 /// represents. 3786 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3787 const Record *Leaf) { 3788 if (OI.Rec == Leaf) 3789 return true; 3790 3791 // Allow direct value types to be used in instruction set patterns. 3792 // The type will be checked later. 3793 if (Leaf->isSubClassOf("ValueType")) 3794 return true; 3795 3796 // Patterns can also be ComplexPattern instances. 3797 if (Leaf->isSubClassOf("ComplexPattern")) 3798 return true; 3799 3800 return false; 3801 } 3802 3803 void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI, 3804 const ListInit *Pat, 3805 DAGInstMap &DAGInsts) { 3806 3807 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3808 3809 // Parse the instruction. 3810 TreePattern I(CGI.TheDef, Pat, true, *this); 3811 3812 // InstInputs - Keep track of all of the inputs of the instruction, along 3813 // with the record they are declared as. 3814 std::map<std::string, TreePatternNodePtr> InstInputs; 3815 3816 // InstResults - Keep track of all the virtual registers that are 'set' 3817 // in the instruction, including what reg class they are. 3818 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3819 InstResults; 3820 3821 std::vector<const Record *> InstImpResults; 3822 3823 // Verify that the top-level forms in the instruction are of void type, and 3824 // fill in the InstResults map. 3825 SmallString<32> TypesString; 3826 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3827 TypesString.clear(); 3828 TreePatternNodePtr Pat = I.getTree(j); 3829 if (Pat->getNumTypes() != 0) { 3830 raw_svector_ostream OS(TypesString); 3831 ListSeparator LS; 3832 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3833 OS << LS; 3834 Pat->getExtType(k).writeToStream(OS); 3835 } 3836 I.error("Top-level forms in instruction pattern should have" 3837 " void types, has types " + 3838 OS.str()); 3839 } 3840 3841 // Find inputs and outputs, and verify the structure of the uses/defs. 3842 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3843 InstImpResults); 3844 } 3845 3846 // Now that we have inputs and outputs of the pattern, inspect the operands 3847 // list for the instruction. This determines the order that operands are 3848 // added to the machine instruction the node corresponds to. 3849 unsigned NumResults = InstResults.size(); 3850 3851 // Parse the operands list from the (ops) list, validating it. 3852 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3853 3854 // Check that all of the results occur first in the list. 3855 std::vector<const Record *> Results; 3856 std::vector<unsigned> ResultIndices; 3857 SmallVector<TreePatternNodePtr, 2> ResNodes; 3858 for (unsigned i = 0; i != NumResults; ++i) { 3859 if (i == CGI.Operands.size()) { 3860 const std::string &OpName = 3861 llvm::find_if( 3862 InstResults, 3863 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3864 return P.second; 3865 }) 3866 ->first; 3867 3868 I.error("'" + OpName + "' set but does not appear in operand list!"); 3869 } 3870 3871 const std::string &OpName = CGI.Operands[i].Name; 3872 3873 // Check that it exists in InstResults. 3874 auto InstResultIter = InstResults.find(OpName); 3875 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3876 I.error("Operand $" + OpName + " does not exist in operand list!"); 3877 3878 TreePatternNodePtr RNode = InstResultIter->second; 3879 const Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3880 ResNodes.push_back(std::move(RNode)); 3881 if (!R) 3882 I.error("Operand $" + OpName + 3883 " should be a set destination: all " 3884 "outputs must occur before inputs in operand list!"); 3885 3886 if (!checkOperandClass(CGI.Operands[i], R)) 3887 I.error("Operand $" + OpName + " class mismatch!"); 3888 3889 // Remember the return type. 3890 Results.push_back(CGI.Operands[i].Rec); 3891 3892 // Remember the result index. 3893 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3894 3895 // Okay, this one checks out. 3896 InstResultIter->second = nullptr; 3897 } 3898 3899 // Loop over the inputs next. 3900 std::vector<TreePatternNodePtr> ResultNodeOperands; 3901 std::vector<const Record *> Operands; 3902 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3903 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3904 const std::string &OpName = Op.Name; 3905 if (OpName.empty()) { 3906 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3907 continue; 3908 } 3909 3910 auto InIter = InstInputs.find(OpName); 3911 if (InIter == InstInputs.end()) { 3912 // If this is an operand with a DefaultOps set filled in, we can ignore 3913 // this. When we codegen it, we will do so as always executed. 3914 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3915 // Does it have a non-empty DefaultOps field? If so, ignore this 3916 // operand. 3917 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3918 continue; 3919 } 3920 I.error("Operand $" + OpName + 3921 " does not appear in the instruction pattern"); 3922 continue; 3923 } 3924 TreePatternNodePtr InVal = InIter->second; 3925 InstInputs.erase(InIter); // It occurred, remove from map. 3926 3927 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3928 const Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3929 if (!checkOperandClass(Op, InRec)) { 3930 I.error("Operand $" + OpName + 3931 "'s register class disagrees" 3932 " between the operand and pattern"); 3933 continue; 3934 } 3935 } 3936 Operands.push_back(Op.Rec); 3937 3938 // Construct the result for the dest-pattern operand list. 3939 TreePatternNodePtr OpNode = InVal->clone(); 3940 3941 // No predicate is useful on the result. 3942 OpNode->clearPredicateCalls(); 3943 3944 // Promote the xform function to be an explicit node if set. 3945 if (const Record *Xform = OpNode->getTransformFn()) { 3946 OpNode->setTransformFn(nullptr); 3947 std::vector<TreePatternNodePtr> Children; 3948 Children.push_back(OpNode); 3949 OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 3950 OpNode->getNumTypes()); 3951 } 3952 3953 ResultNodeOperands.push_back(std::move(OpNode)); 3954 } 3955 3956 if (!InstInputs.empty()) 3957 I.error("Input operand $" + InstInputs.begin()->first + 3958 " occurs in pattern but not in operands list!"); 3959 3960 TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>( 3961 I.getRecord(), std::move(ResultNodeOperands), 3962 GetNumNodeResults(I.getRecord(), *this)); 3963 // Copy fully inferred output node types to instruction result pattern. 3964 for (unsigned i = 0; i != NumResults; ++i) { 3965 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3966 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3967 ResultPattern->setResultIndex(i, ResultIndices[i]); 3968 } 3969 3970 // FIXME: Assume only the first tree is the pattern. The others are clobber 3971 // nodes. 3972 TreePatternNodePtr Pattern = I.getTree(0); 3973 TreePatternNodePtr SrcPattern; 3974 if (Pattern->getOperator()->getName() == "set") { 3975 SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone(); 3976 } else { 3977 // Not a set (store or something?) 3978 SrcPattern = Pattern; 3979 } 3980 3981 // Create and insert the instruction. 3982 // FIXME: InstImpResults should not be part of DAGInstruction. 3983 DAGInsts.try_emplace(I.getRecord(), std::move(Results), std::move(Operands), 3984 std::move(InstImpResults), SrcPattern, ResultPattern); 3985 3986 LLVM_DEBUG(I.dump()); 3987 } 3988 3989 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3990 /// any fragments involved. This populates the Instructions list with fully 3991 /// resolved instructions. 3992 void CodeGenDAGPatterns::ParseInstructions() { 3993 for (const Record *Instr : Records.getAllDerivedDefinitions("Instruction")) { 3994 const ListInit *LI = nullptr; 3995 3996 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3997 LI = Instr->getValueAsListInit("Pattern"); 3998 3999 // If there is no pattern, only collect minimal information about the 4000 // instruction for its operand list. We have to assume that there is one 4001 // result, as we have no detailed info. A pattern which references the 4002 // null_frag operator is as-if no pattern were specified. Normally this 4003 // is from a multiclass expansion w/ a SDPatternOperator passed in as 4004 // null_frag. 4005 if (!LI || LI->empty() || hasNullFragReference(LI)) { 4006 std::vector<const Record *> Results; 4007 std::vector<const Record *> Operands; 4008 4009 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4010 4011 if (InstInfo.Operands.size() != 0) { 4012 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 4013 Results.push_back(InstInfo.Operands[j].Rec); 4014 4015 // The rest are inputs. 4016 for (unsigned j = InstInfo.Operands.NumDefs, 4017 e = InstInfo.Operands.size(); 4018 j < e; ++j) 4019 Operands.push_back(InstInfo.Operands[j].Rec); 4020 } 4021 4022 // Create and insert the instruction. 4023 Instructions.try_emplace(Instr, std::move(Results), std::move(Operands), 4024 std::vector<const Record *>()); 4025 continue; // no pattern. 4026 } 4027 4028 CodeGenInstruction &CGI = Target.getInstruction(Instr); 4029 parseInstructionPattern(CGI, LI, Instructions); 4030 } 4031 4032 // If we can, convert the instructions to be patterns that are matched! 4033 for (const auto &[Instr, TheInst] : Instructions) { 4034 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 4035 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 4036 4037 if (SrcPattern && ResultPattern) { 4038 TreePattern Pattern(Instr, SrcPattern, true, *this); 4039 TreePattern Result(Instr, ResultPattern, false, *this); 4040 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 4041 } 4042 } 4043 } 4044 4045 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 4046 4047 static void FindNames(TreePatternNode &P, 4048 std::map<std::string, NameRecord> &Names, 4049 TreePattern *PatternTop) { 4050 if (!P.getName().empty()) { 4051 NameRecord &Rec = Names[P.getName()]; 4052 // If this is the first instance of the name, remember the node. 4053 if (Rec.second++ == 0) 4054 Rec.first = &P; 4055 else if (Rec.first->getExtTypes() != P.getExtTypes()) 4056 PatternTop->error("repetition of value: $" + P.getName() + 4057 " where different uses have different types!"); 4058 } 4059 4060 if (!P.isLeaf()) { 4061 for (TreePatternNode &Child : P.children()) 4062 FindNames(Child, Names, PatternTop); 4063 } 4064 } 4065 4066 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4067 PatternToMatch &&PTM) { 4068 // Do some sanity checking on the pattern we're about to match. 4069 std::string Reason; 4070 if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) { 4071 PrintWarning(Pattern->getRecord()->getLoc(), 4072 Twine("Pattern can never match: ") + Reason); 4073 return; 4074 } 4075 4076 // If the source pattern's root is a complex pattern, that complex pattern 4077 // must specify the nodes it can potentially match. 4078 if (const ComplexPattern *CP = 4079 PTM.getSrcPattern().getComplexPatternInfo(*this)) 4080 if (CP->getRootNodes().empty()) 4081 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4082 " could match"); 4083 4084 // Find all of the named values in the input and output, ensure they have the 4085 // same type. 4086 std::map<std::string, NameRecord> SrcNames, DstNames; 4087 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4088 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4089 4090 // Scan all of the named values in the destination pattern, rejecting them if 4091 // they don't exist in the input pattern. 4092 for (const auto &Entry : DstNames) { 4093 if (SrcNames[Entry.first].first == nullptr) 4094 Pattern->error("Pattern has input without matching name in output: $" + 4095 Entry.first); 4096 } 4097 4098 // Scan all of the named values in the source pattern, rejecting them if the 4099 // name isn't used in the dest, and isn't used to tie two values together. 4100 for (const auto &Entry : SrcNames) 4101 if (DstNames[Entry.first].first == nullptr && 4102 SrcNames[Entry.first].second == 1) 4103 Pattern->error("Pattern has dead named input: $" + Entry.first); 4104 4105 PatternsToMatch.push_back(std::move(PTM)); 4106 } 4107 4108 void CodeGenDAGPatterns::InferInstructionFlags() { 4109 ArrayRef<const CodeGenInstruction *> Instructions = 4110 Target.getInstructionsByEnumValue(); 4111 4112 unsigned Errors = 0; 4113 4114 // Try to infer flags from all patterns in PatternToMatch. These include 4115 // both the primary instruction patterns (which always come first) and 4116 // patterns defined outside the instruction. 4117 for (const PatternToMatch &PTM : ptms()) { 4118 // We can only infer from single-instruction patterns, otherwise we won't 4119 // know which instruction should get the flags. 4120 SmallVector<const Record *, 8> PatInstrs; 4121 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4122 if (PatInstrs.size() != 1) 4123 continue; 4124 4125 // Get the single instruction. 4126 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4127 4128 // Only infer properties from the first pattern. We'll verify the others. 4129 if (InstInfo.InferredFrom) 4130 continue; 4131 4132 InstAnalyzer PatInfo(*this); 4133 PatInfo.Analyze(PTM); 4134 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4135 } 4136 4137 if (Errors) 4138 PrintFatalError("pattern conflicts"); 4139 4140 // If requested by the target, guess any undefined properties. 4141 if (Target.guessInstructionProperties()) { 4142 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4143 CodeGenInstruction *InstInfo = 4144 const_cast<CodeGenInstruction *>(Instructions[i]); 4145 if (InstInfo->InferredFrom) 4146 continue; 4147 // The mayLoad and mayStore flags default to false. 4148 // Conservatively assume hasSideEffects if it wasn't explicit. 4149 if (InstInfo->hasSideEffects_Unset) 4150 InstInfo->hasSideEffects = true; 4151 } 4152 return; 4153 } 4154 4155 // Complain about any flags that are still undefined. 4156 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4157 CodeGenInstruction *InstInfo = 4158 const_cast<CodeGenInstruction *>(Instructions[i]); 4159 if (InstInfo->InferredFrom) 4160 continue; 4161 if (InstInfo->hasSideEffects_Unset) 4162 PrintError(InstInfo->TheDef->getLoc(), 4163 "Can't infer hasSideEffects from patterns"); 4164 if (InstInfo->mayStore_Unset) 4165 PrintError(InstInfo->TheDef->getLoc(), 4166 "Can't infer mayStore from patterns"); 4167 if (InstInfo->mayLoad_Unset) 4168 PrintError(InstInfo->TheDef->getLoc(), 4169 "Can't infer mayLoad from patterns"); 4170 } 4171 } 4172 4173 /// Verify instruction flags against pattern node properties. 4174 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4175 unsigned Errors = 0; 4176 for (const PatternToMatch &PTM : ptms()) { 4177 SmallVector<const Record *, 8> Instrs; 4178 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4179 if (Instrs.empty()) 4180 continue; 4181 4182 // Count the number of instructions with each flag set. 4183 unsigned NumSideEffects = 0; 4184 unsigned NumStores = 0; 4185 unsigned NumLoads = 0; 4186 for (const Record *Instr : Instrs) { 4187 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4188 NumSideEffects += InstInfo.hasSideEffects; 4189 NumStores += InstInfo.mayStore; 4190 NumLoads += InstInfo.mayLoad; 4191 } 4192 4193 // Analyze the source pattern. 4194 InstAnalyzer PatInfo(*this); 4195 PatInfo.Analyze(PTM); 4196 4197 // Collect error messages. 4198 SmallVector<std::string, 4> Msgs; 4199 4200 // Check for missing flags in the output. 4201 // Permit extra flags for now at least. 4202 if (PatInfo.hasSideEffects && !NumSideEffects) 4203 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4204 4205 // Don't verify store flags on instructions with side effects. At least for 4206 // intrinsics, side effects implies mayStore. 4207 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4208 Msgs.push_back("pattern may store, but mayStore isn't set"); 4209 4210 // Similarly, mayStore implies mayLoad on intrinsics. 4211 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4212 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4213 4214 // Print error messages. 4215 if (Msgs.empty()) 4216 continue; 4217 ++Errors; 4218 4219 for (const std::string &Msg : Msgs) 4220 PrintError( 4221 PTM.getSrcRecord()->getLoc(), 4222 Twine(Msg) + " on the " + 4223 (Instrs.size() == 1 ? "instruction" : "output instructions")); 4224 // Provide the location of the relevant instruction definitions. 4225 for (const Record *Instr : Instrs) { 4226 if (Instr != PTM.getSrcRecord()) 4227 PrintError(Instr->getLoc(), "defined here"); 4228 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4229 if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && 4230 InstInfo.InferredFrom != PTM.getSrcRecord()) 4231 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4232 } 4233 } 4234 if (Errors) 4235 PrintFatalError("Errors in DAG patterns"); 4236 } 4237 4238 /// Given a pattern result with an unresolved type, see if we can find one 4239 /// instruction with an unresolved result type. Force this result type to an 4240 /// arbitrary element if it's possible types to converge results. 4241 static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) { 4242 if (N.isLeaf()) 4243 return false; 4244 4245 // Analyze children. 4246 for (TreePatternNode &Child : N.children()) 4247 if (ForceArbitraryInstResultType(Child, TP)) 4248 return true; 4249 4250 if (!N.getOperator()->isSubClassOf("Instruction")) 4251 return false; 4252 4253 // If this type is already concrete or completely unknown we can't do 4254 // anything. 4255 TypeInfer &TI = TP.getInfer(); 4256 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) { 4257 if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false)) 4258 continue; 4259 4260 // Otherwise, force its type to an arbitrary choice. 4261 if (TI.forceArbitrary(N.getExtType(i))) 4262 return true; 4263 } 4264 4265 return false; 4266 } 4267 4268 // Promote xform function to be an explicit node wherever set. 4269 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4270 if (const Record *Xform = N->getTransformFn()) { 4271 N->setTransformFn(nullptr); 4272 std::vector<TreePatternNodePtr> Children; 4273 Children.push_back(PromoteXForms(N)); 4274 return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children), 4275 N->getNumTypes()); 4276 } 4277 4278 if (!N->isLeaf()) 4279 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4280 TreePatternNodePtr Child = N->getChildShared(i); 4281 N->setChild(i, PromoteXForms(Child)); 4282 } 4283 return N; 4284 } 4285 4286 void CodeGenDAGPatterns::ParseOnePattern( 4287 const Record *TheDef, TreePattern &Pattern, TreePattern &Result, 4288 ArrayRef<const Record *> InstImpResults, bool ShouldIgnore) { 4289 // Inline pattern fragments and expand multiple alternatives. 4290 Pattern.InlinePatternFragments(); 4291 Result.InlinePatternFragments(); 4292 4293 if (Result.getNumTrees() != 1) { 4294 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4295 return; 4296 } 4297 4298 // Infer types. 4299 bool IterateInference; 4300 bool InferredAllPatternTypes, InferredAllResultTypes; 4301 do { 4302 // Infer as many types as possible. If we cannot infer all of them, we 4303 // can never do anything with this pattern: report it to the user. 4304 InferredAllPatternTypes = 4305 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4306 4307 // Infer as many types as possible. If we cannot infer all of them, we 4308 // can never do anything with this pattern: report it to the user. 4309 InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4310 4311 IterateInference = false; 4312 4313 // Apply the type of the result to the source pattern. This helps us 4314 // resolve cases where the input type is known to be a pointer type (which 4315 // is considered resolved), but the result knows it needs to be 32- or 4316 // 64-bits. Infer the other way for good measure. 4317 for (const auto &T : Pattern.getTrees()) 4318 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4319 T->getNumTypes()); 4320 i != e; ++i) { 4321 IterateInference |= 4322 T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result); 4323 IterateInference |= 4324 Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result); 4325 } 4326 4327 // If our iteration has converged and the input pattern's types are fully 4328 // resolved but the result pattern is not fully resolved, we may have a 4329 // situation where we have two instructions in the result pattern and 4330 // the instructions require a common register class, but don't care about 4331 // what actual MVT is used. This is actually a bug in our modelling: 4332 // output patterns should have register classes, not MVTs. 4333 // 4334 // In any case, to handle this, we just go through and disambiguate some 4335 // arbitrary types to the result pattern's nodes. 4336 if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) 4337 IterateInference = 4338 ForceArbitraryInstResultType(*Result.getTree(0), Result); 4339 } while (IterateInference); 4340 4341 // Verify that we inferred enough types that we can do something with the 4342 // pattern and result. If these fire the user has to add type casts. 4343 if (!InferredAllPatternTypes) 4344 Pattern.error("Could not infer all types in pattern!"); 4345 if (!InferredAllResultTypes) { 4346 Pattern.dump(); 4347 Result.error("Could not infer all types in pattern result!"); 4348 } 4349 4350 // Promote xform function to be an explicit node wherever set. 4351 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4352 4353 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4354 Temp.InferAllTypes(); 4355 4356 const ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4357 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4358 4359 if (PatternRewriter) 4360 PatternRewriter(&Pattern); 4361 4362 // A pattern may end up with an "impossible" type, i.e. a situation 4363 // where all types have been eliminated for some node in this pattern. 4364 // This could occur for intrinsics that only make sense for a specific 4365 // value type, and use a specific register class. If, for some mode, 4366 // that register class does not accept that type, the type inference 4367 // will lead to a contradiction, which is not an error however, but 4368 // a sign that this pattern will simply never match. 4369 if (Temp.getOnlyTree()->hasPossibleType()) { 4370 for (const auto &T : Pattern.getTrees()) { 4371 if (T->hasPossibleType()) 4372 AddPatternToMatch(&Pattern, 4373 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4374 InstImpResults, Complexity, 4375 TheDef->getID(), ShouldIgnore)); 4376 } 4377 } else { 4378 // Show a message about a dropped pattern with some info to make it 4379 // easier to identify it in the .td files. 4380 LLVM_DEBUG({ 4381 dbgs() << "Dropping: "; 4382 Pattern.dump(); 4383 Temp.getOnlyTree()->dump(); 4384 dbgs() << "\n"; 4385 }); 4386 } 4387 } 4388 4389 void CodeGenDAGPatterns::ParsePatterns() { 4390 for (const Record *CurPattern : Records.getAllDerivedDefinitions("Pattern")) { 4391 const DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4392 4393 // If the pattern references the null_frag, there's nothing to do. 4394 if (hasNullFragReference(Tree)) 4395 continue; 4396 4397 TreePattern Pattern(CurPattern, Tree, true, *this); 4398 4399 const ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4400 if (LI->empty()) 4401 continue; // no pattern. 4402 4403 // Parse the instruction. 4404 TreePattern Result(CurPattern, LI, false, *this); 4405 4406 if (Result.getNumTrees() != 1) 4407 Result.error("Cannot handle instructions producing instructions " 4408 "with temporaries yet!"); 4409 4410 // Validate that the input pattern is correct. 4411 std::map<std::string, TreePatternNodePtr> InstInputs; 4412 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4413 InstResults; 4414 std::vector<const Record *> InstImpResults; 4415 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4416 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4417 InstResults, InstImpResults); 4418 4419 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults, 4420 CurPattern->getValueAsBit("GISelShouldIgnore")); 4421 } 4422 } 4423 4424 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) { 4425 for (const TypeSetByHwMode &VTS : N.getExtTypes()) 4426 for (const auto &I : VTS) 4427 Modes.insert(I.first); 4428 4429 for (const TreePatternNode &Child : N.children()) 4430 collectModes(Modes, Child); 4431 } 4432 4433 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4434 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4435 if (CGH.getNumModeIds() == 1) 4436 return; 4437 4438 std::vector<PatternToMatch> Copy; 4439 PatternsToMatch.swap(Copy); 4440 4441 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4442 StringRef Check) { 4443 TreePatternNodePtr NewSrc = P.getSrcPattern().clone(); 4444 TreePatternNodePtr NewDst = P.getDstPattern().clone(); 4445 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4446 return; 4447 } 4448 4449 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4450 std::move(NewSrc), std::move(NewDst), 4451 P.getDstRegs(), P.getAddedComplexity(), 4452 getNewUID(), P.getGISelShouldIgnore(), Check); 4453 }; 4454 4455 for (PatternToMatch &P : Copy) { 4456 const TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4457 if (P.getSrcPattern().hasProperTypeByHwMode()) 4458 SrcP = &P.getSrcPattern(); 4459 if (P.getDstPattern().hasProperTypeByHwMode()) 4460 DstP = &P.getDstPattern(); 4461 if (!SrcP && !DstP) { 4462 PatternsToMatch.push_back(P); 4463 continue; 4464 } 4465 4466 std::set<unsigned> Modes; 4467 if (SrcP) 4468 collectModes(Modes, *SrcP); 4469 if (DstP) 4470 collectModes(Modes, *DstP); 4471 4472 // The predicate for the default mode needs to be constructed for each 4473 // pattern separately. 4474 // Since not all modes must be present in each pattern, if a mode m is 4475 // absent, then there is no point in constructing a check for m. If such 4476 // a check was created, it would be equivalent to checking the default 4477 // mode, except not all modes' predicates would be a part of the checking 4478 // code. The subsequently generated check for the default mode would then 4479 // have the exact same patterns, but a different predicate code. To avoid 4480 // duplicated patterns with different predicate checks, construct the 4481 // default check as a negation of all predicates that are actually present 4482 // in the source/destination patterns. 4483 SmallString<128> DefaultCheck; 4484 4485 for (unsigned M : Modes) { 4486 if (M == DefaultMode) 4487 continue; 4488 4489 // Fill the map entry for this mode. 4490 const HwMode &HM = CGH.getMode(M); 4491 AppendPattern(P, M, HM.Predicates); 4492 4493 // Add negations of the HM's predicates to the default predicate. 4494 if (!DefaultCheck.empty()) 4495 DefaultCheck += " && "; 4496 DefaultCheck += "!("; 4497 DefaultCheck += HM.Predicates; 4498 DefaultCheck += ")"; 4499 } 4500 4501 bool HasDefault = Modes.count(DefaultMode); 4502 if (HasDefault) 4503 AppendPattern(P, DefaultMode, DefaultCheck); 4504 } 4505 } 4506 4507 /// Dependent variable map for CodeGenDAGPattern variant generation 4508 typedef StringMap<int> DepVarMap; 4509 4510 static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) { 4511 if (N.isLeaf()) { 4512 if (N.hasName() && isa<DefInit>(N.getLeafValue())) 4513 DepMap[N.getName()]++; 4514 } else { 4515 for (TreePatternNode &Child : N.children()) 4516 FindDepVarsOf(Child, DepMap); 4517 } 4518 } 4519 4520 /// Find dependent variables within child patterns 4521 static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) { 4522 DepVarMap depcounts; 4523 FindDepVarsOf(N, depcounts); 4524 for (const auto &Pair : depcounts) { 4525 if (Pair.getValue() > 1) 4526 DepVars.insert(Pair.getKey()); 4527 } 4528 } 4529 4530 #ifndef NDEBUG 4531 /// Dump the dependent variable set: 4532 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4533 if (DepVars.empty()) { 4534 LLVM_DEBUG(errs() << "<empty set>"); 4535 } else { 4536 LLVM_DEBUG(errs() << "[ "); 4537 for (const auto &DepVar : DepVars) { 4538 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4539 } 4540 LLVM_DEBUG(errs() << "]"); 4541 } 4542 } 4543 #endif 4544 4545 /// CombineChildVariants - Given a bunch of permutations of each child of the 4546 /// 'operator' node, put them together in all possible ways. 4547 static void CombineChildVariants( 4548 TreePatternNodePtr Orig, 4549 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4550 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4551 const MultipleUseVarSet &DepVars) { 4552 // Make sure that each operand has at least one variant to choose from. 4553 for (const auto &Variants : ChildVariants) 4554 if (Variants.empty()) 4555 return; 4556 4557 // The end result is an all-pairs construction of the resultant pattern. 4558 std::vector<unsigned> Idxs(ChildVariants.size()); 4559 bool NotDone; 4560 do { 4561 #ifndef NDEBUG 4562 LLVM_DEBUG(if (!Idxs.empty()) { 4563 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4564 for (unsigned Idx : Idxs) { 4565 errs() << Idx << " "; 4566 } 4567 errs() << "]\n"; 4568 }); 4569 #endif 4570 // Create the variant and add it to the output list. 4571 std::vector<TreePatternNodePtr> NewChildren; 4572 NewChildren.reserve(ChildVariants.size()); 4573 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4574 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4575 TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>( 4576 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4577 4578 // Copy over properties. 4579 R->setName(Orig->getName()); 4580 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4581 R->setPredicateCalls(Orig->getPredicateCalls()); 4582 R->setGISelFlagsRecord(Orig->getGISelFlagsRecord()); 4583 R->setTransformFn(Orig->getTransformFn()); 4584 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4585 R->setType(i, Orig->getExtType(i)); 4586 4587 // If this pattern cannot match, do not include it as a variant. 4588 std::string ErrString; 4589 // Scan to see if this pattern has already been emitted. We can get 4590 // duplication due to things like commuting: 4591 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4592 // which are the same pattern. Ignore the dups. 4593 if (R->canPatternMatch(ErrString, CDP) && 4594 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4595 return R->isIsomorphicTo(*Variant, DepVars); 4596 })) 4597 OutVariants.push_back(R); 4598 4599 // Increment indices to the next permutation by incrementing the 4600 // indices from last index backward, e.g., generate the sequence 4601 // [0, 0], [0, 1], [1, 0], [1, 1]. 4602 int IdxsIdx; 4603 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4604 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4605 Idxs[IdxsIdx] = 0; 4606 else 4607 break; 4608 } 4609 NotDone = (IdxsIdx >= 0); 4610 } while (NotDone); 4611 } 4612 4613 /// CombineChildVariants - A helper function for binary operators. 4614 /// 4615 static void CombineChildVariants(TreePatternNodePtr Orig, 4616 const std::vector<TreePatternNodePtr> &LHS, 4617 const std::vector<TreePatternNodePtr> &RHS, 4618 std::vector<TreePatternNodePtr> &OutVariants, 4619 CodeGenDAGPatterns &CDP, 4620 const MultipleUseVarSet &DepVars) { 4621 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4622 ChildVariants.push_back(LHS); 4623 ChildVariants.push_back(RHS); 4624 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4625 } 4626 4627 static void 4628 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4629 std::vector<TreePatternNodePtr> &Children) { 4630 assert(N->getNumChildren() == 2 && 4631 "Associative but doesn't have 2 children!"); 4632 const Record *Operator = N->getOperator(); 4633 4634 // Only permit raw nodes. 4635 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4636 N->getTransformFn()) { 4637 Children.push_back(N); 4638 return; 4639 } 4640 4641 if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator) 4642 Children.push_back(N->getChildShared(0)); 4643 else 4644 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4645 4646 if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator) 4647 Children.push_back(N->getChildShared(1)); 4648 else 4649 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4650 } 4651 4652 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4653 /// the (potentially recursive) pattern by using algebraic laws. 4654 /// 4655 static void GenerateVariantsOf(TreePatternNodePtr N, 4656 std::vector<TreePatternNodePtr> &OutVariants, 4657 CodeGenDAGPatterns &CDP, 4658 const MultipleUseVarSet &DepVars) { 4659 // We cannot permute leaves or ComplexPattern uses. 4660 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4661 OutVariants.push_back(N); 4662 return; 4663 } 4664 4665 // Look up interesting info about the node. 4666 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4667 4668 // If this node is associative, re-associate. 4669 if (NodeInfo.hasProperty(SDNPAssociative)) { 4670 // Re-associate by pulling together all of the linked operators 4671 std::vector<TreePatternNodePtr> MaximalChildren; 4672 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4673 4674 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4675 // permutations. 4676 if (MaximalChildren.size() == 3) { 4677 // Find the variants of all of our maximal children. 4678 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4679 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4680 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4681 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4682 4683 // There are only two ways we can permute the tree: 4684 // (A op B) op C and A op (B op C) 4685 // Within these forms, we can also permute A/B/C. 4686 4687 // Generate legal pair permutations of A/B/C. 4688 std::vector<TreePatternNodePtr> ABVariants; 4689 std::vector<TreePatternNodePtr> BAVariants; 4690 std::vector<TreePatternNodePtr> ACVariants; 4691 std::vector<TreePatternNodePtr> CAVariants; 4692 std::vector<TreePatternNodePtr> BCVariants; 4693 std::vector<TreePatternNodePtr> CBVariants; 4694 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4695 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4696 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4697 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4698 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4699 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4700 4701 // Combine those into the result: (x op x) op x 4702 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4703 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4704 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4705 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4706 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4707 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4708 4709 // Combine those into the result: x op (x op x) 4710 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4711 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4712 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4713 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4714 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4715 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4716 return; 4717 } 4718 } 4719 4720 // Compute permutations of all children. 4721 std::vector<std::vector<TreePatternNodePtr>> ChildVariants( 4722 N->getNumChildren()); 4723 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4724 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4725 4726 // Build all permutations based on how the children were formed. 4727 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4728 4729 // If this node is commutative, consider the commuted order. 4730 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4731 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4732 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4733 assert(N->getNumChildren() >= (2 + Skip) && 4734 "Commutative but doesn't have 2 children!"); 4735 // Don't allow commuting children which are actually register references. 4736 bool NoRegisters = true; 4737 unsigned i = 0 + Skip; 4738 unsigned e = 2 + Skip; 4739 for (; i != e; ++i) { 4740 TreePatternNode &Child = N->getChild(i); 4741 if (Child.isLeaf()) 4742 if (const DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) { 4743 const Record *RR = DI->getDef(); 4744 if (RR->isSubClassOf("Register")) 4745 NoRegisters = false; 4746 } 4747 } 4748 // Consider the commuted order. 4749 if (NoRegisters) { 4750 // Swap the first two operands after the intrinsic id, if present. 4751 unsigned i = isCommIntrinsic ? 1 : 0; 4752 std::swap(ChildVariants[i], ChildVariants[i + 1]); 4753 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4754 } 4755 } 4756 } 4757 4758 // GenerateVariants - Generate variants. For example, commutative patterns can 4759 // match multiple ways. Add them to PatternsToMatch as well. 4760 void CodeGenDAGPatterns::GenerateVariants() { 4761 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4762 4763 // Loop over all of the patterns we've collected, checking to see if we can 4764 // generate variants of the instruction, through the exploitation of 4765 // identities. This permits the target to provide aggressive matching without 4766 // the .td file having to contain tons of variants of instructions. 4767 // 4768 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4769 // intentionally do not reconsider these. Any variants of added patterns have 4770 // already been added. 4771 // 4772 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4773 MultipleUseVarSet DepVars; 4774 std::vector<TreePatternNodePtr> Variants; 4775 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4776 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4777 LLVM_DEBUG(DumpDepVars(DepVars)); 4778 LLVM_DEBUG(errs() << "\n"); 4779 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4780 *this, DepVars); 4781 4782 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4783 "HwModes should not have been expanded yet!"); 4784 4785 assert(!Variants.empty() && "Must create at least original variant!"); 4786 if (Variants.size() == 1) // No additional variants for this pattern. 4787 continue; 4788 4789 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4790 PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n"); 4791 4792 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4793 TreePatternNodePtr Variant = Variants[v]; 4794 4795 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4796 errs() << "\n"); 4797 4798 // Scan to see if an instruction or explicit pattern already matches this. 4799 bool AlreadyExists = false; 4800 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4801 // Skip if the top level predicates do not match. 4802 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4803 PatternsToMatch[p].getPredicates())) 4804 continue; 4805 // Check to see if this variant already exists. 4806 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4807 DepVars)) { 4808 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4809 AlreadyExists = true; 4810 break; 4811 } 4812 } 4813 // If we already have it, ignore the variant. 4814 if (AlreadyExists) 4815 continue; 4816 4817 // Otherwise, add it to the list of patterns we have. 4818 PatternsToMatch.emplace_back( 4819 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4820 Variant, PatternsToMatch[i].getDstPatternShared(), 4821 PatternsToMatch[i].getDstRegs(), 4822 PatternsToMatch[i].getAddedComplexity(), getNewUID(), 4823 PatternsToMatch[i].getGISelShouldIgnore(), 4824 PatternsToMatch[i].getHwModeFeatures()); 4825 } 4826 4827 LLVM_DEBUG(errs() << "\n"); 4828 } 4829 } 4830 4831 unsigned CodeGenDAGPatterns::getNewUID() { 4832 RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records); 4833 return Record::getNewUID(MutableRC); 4834 } 4835