1 //===- X86CompressEVEX.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space 10 // when possible in order to reduce code size or facilitate HW decoding. 11 // 12 // Possible compression: 13 // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) 14 // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) 15 // c. NDD (EVEX) -> non-NDD (legacy) 16 // d. NF_ND (EVEX) -> NF (EVEX) 17 // e. NonNF (EVEX) -> NF (EVEX) 18 // 19 // Compression a, b and c can always reduce code size, with some exceptions 20 // such as promoted 16-bit CRC32 which is as long as the legacy version. 21 // 22 // legacy: 23 // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] 24 // promoted: 25 // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] 26 // 27 // From performance perspective, these should be same (same uops and same EXE 28 // ports). From a FMV perspective, an older legacy encoding is preferred b/c it 29 // can execute in more places (broader HW install base). So we will still do 30 // the compression. 31 // 32 // Compression d can help hardware decode (HW may skip reading the NDD 33 // register) although the instruction length remains unchanged. 34 // 35 // Compression e can help hardware skip updating EFLAGS although the instruction 36 // length remains unchanged. 37 //===----------------------------------------------------------------------===// 38 39 #include "MCTargetDesc/X86BaseInfo.h" 40 #include "X86.h" 41 #include "X86InstrInfo.h" 42 #include "X86Subtarget.h" 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/Pass.h" 50 #include <atomic> 51 #include <cassert> 52 #include <cstdint> 53 54 using namespace llvm; 55 56 #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" 57 #define COMP_EVEX_NAME "x86-compress-evex" 58 59 #define DEBUG_TYPE COMP_EVEX_NAME 60 61 namespace { 62 // Including the generated EVEX compression tables. 63 #define GET_X86_COMPRESS_EVEX_TABLE 64 #include "X86GenInstrMapping.inc" 65 66 class CompressEVEXPass : public MachineFunctionPass { 67 public: 68 static char ID; 69 CompressEVEXPass() : MachineFunctionPass(ID) {} 70 StringRef getPassName() const override { return COMP_EVEX_DESC; } 71 72 bool runOnMachineFunction(MachineFunction &MF) override; 73 74 // This pass runs after regalloc and doesn't support VReg operands. 75 MachineFunctionProperties getRequiredProperties() const override { 76 return MachineFunctionProperties().set( 77 MachineFunctionProperties::Property::NoVRegs); 78 } 79 }; 80 81 } // end anonymous namespace 82 83 char CompressEVEXPass::ID = 0; 84 85 static bool usesExtendedRegister(const MachineInstr &MI) { 86 auto isHiRegIdx = [](unsigned Reg) { 87 // Check for XMM register with indexes between 16 - 31. 88 if (Reg >= X86::XMM16 && Reg <= X86::XMM31) 89 return true; 90 // Check for YMM register with indexes between 16 - 31. 91 if (Reg >= X86::YMM16 && Reg <= X86::YMM31) 92 return true; 93 // Check for GPR with indexes between 16 - 31. 94 if (X86II::isApxExtendedReg(Reg)) 95 return true; 96 return false; 97 }; 98 99 // Check that operands are not ZMM regs or 100 // XMM/YMM regs with hi indexes between 16 - 31. 101 for (const MachineOperand &MO : MI.explicit_operands()) { 102 if (!MO.isReg()) 103 continue; 104 105 Register Reg = MO.getReg(); 106 assert(!X86II::isZMMReg(Reg) && 107 "ZMM instructions should not be in the EVEX->VEX tables"); 108 if (isHiRegIdx(Reg)) 109 return true; 110 } 111 112 return false; 113 } 114 115 // Do any custom cleanup needed to finalize the conversion. 116 static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { 117 (void)NewOpc; 118 unsigned Opc = MI.getOpcode(); 119 switch (Opc) { 120 case X86::VALIGNDZ128rri: 121 case X86::VALIGNDZ128rmi: 122 case X86::VALIGNQZ128rri: 123 case X86::VALIGNQZ128rmi: { 124 assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && 125 "Unexpected new opcode!"); 126 unsigned Scale = 127 (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; 128 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); 129 Imm.setImm(Imm.getImm() * Scale); 130 break; 131 } 132 case X86::VSHUFF32X4Z256rmi: 133 case X86::VSHUFF32X4Z256rri: 134 case X86::VSHUFF64X2Z256rmi: 135 case X86::VSHUFF64X2Z256rri: 136 case X86::VSHUFI32X4Z256rmi: 137 case X86::VSHUFI32X4Z256rri: 138 case X86::VSHUFI64X2Z256rmi: 139 case X86::VSHUFI64X2Z256rri: { 140 assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri || 141 NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) && 142 "Unexpected new opcode!"); 143 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); 144 int64_t ImmVal = Imm.getImm(); 145 // Set bit 5, move bit 1 to bit 4, copy bit 0. 146 Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); 147 break; 148 } 149 case X86::VRNDSCALEPDZ128rri: 150 case X86::VRNDSCALEPDZ128rmi: 151 case X86::VRNDSCALEPSZ128rri: 152 case X86::VRNDSCALEPSZ128rmi: 153 case X86::VRNDSCALEPDZ256rri: 154 case X86::VRNDSCALEPDZ256rmi: 155 case X86::VRNDSCALEPSZ256rri: 156 case X86::VRNDSCALEPSZ256rmi: 157 case X86::VRNDSCALESDZrri: 158 case X86::VRNDSCALESDZrmi: 159 case X86::VRNDSCALESSZrri: 160 case X86::VRNDSCALESSZrmi: 161 case X86::VRNDSCALESDZrri_Int: 162 case X86::VRNDSCALESDZrmi_Int: 163 case X86::VRNDSCALESSZrri_Int: 164 case X86::VRNDSCALESSZrmi_Int: 165 const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); 166 int64_t ImmVal = Imm.getImm(); 167 // Ensure that only bits 3:0 of the immediate are used. 168 if ((ImmVal & 0xf) != ImmVal) 169 return false; 170 break; 171 } 172 173 return true; 174 } 175 176 static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) { 177 uint64_t TSFlags = MI.getDesc().TSFlags; 178 179 // Check for EVEX instructions only. 180 if ((TSFlags & X86II::EncodingMask) != X86II::EVEX) 181 return false; 182 183 // Instructions with mask or 512-bit vector can't be converted to VEX. 184 if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2)) 185 return false; 186 187 auto IsRedundantNewDataDest = [&](unsigned &Opc) { 188 // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx 189 // -> 190 // $rbx = ADD64rr $rbx, $rax 191 const MCInstrDesc &Desc = MI.getDesc(); 192 Register Reg0 = MI.getOperand(0).getReg(); 193 const MachineOperand &Op1 = MI.getOperand(1); 194 if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 || 195 X86::isCFCMOVCC(MI.getOpcode())) 196 return false; 197 Register Reg1 = Op1.getReg(); 198 if (Reg1 == Reg0) 199 return true; 200 201 // Op1 and Op2 may be commutable for ND instructions. 202 if (!Desc.isCommutable() || Desc.getNumOperands() < 3 || 203 !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0) 204 return false; 205 // Opcode may change after commute, e.g. SHRD -> SHLD 206 ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2); 207 Opc = MI.getOpcode(); 208 return true; 209 }; 210 211 // EVEX_B has several meanings. 212 // AVX512: 213 // register form: rounding control or SAE 214 // memory form: broadcast 215 // 216 // APX: 217 // MAP4: NDD 218 // 219 // For AVX512 cases, EVEX prefix is needed in order to carry this information 220 // thus preventing the transformation to VEX encoding. 221 bool IsND = X86II::hasNewDataDest(TSFlags); 222 if (TSFlags & X86II::EVEX_B && !IsND) 223 return false; 224 unsigned Opc = MI.getOpcode(); 225 // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B. 226 bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr; 227 bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false; 228 229 auto GetCompressedOpc = [&](unsigned Opc) -> unsigned { 230 ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable); 231 const auto I = llvm::lower_bound(Table, Opc); 232 if (I == Table.end() || I->OldOpc != Opc) 233 return 0; 234 235 if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) || 236 !performCustomAdjustments(MI, I->NewOpc)) 237 return 0; 238 return I->NewOpc; 239 }; 240 // NonNF -> NF only if it's not a compressible NDD instruction and eflags is 241 // dead. 242 unsigned NewOpc = IsRedundantNDD 243 ? X86::getNonNDVariant(Opc) 244 : ((IsNDLike && ST.hasNF() && 245 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) 246 ? X86::getNFVariant(Opc) 247 : GetCompressedOpc(Opc)); 248 249 if (!NewOpc) 250 return false; 251 252 const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc); 253 MI.setDesc(NewDesc); 254 unsigned AsmComment; 255 switch (NewDesc.TSFlags & X86II::EncodingMask) { 256 case X86II::LEGACY: 257 AsmComment = X86::AC_EVEX_2_LEGACY; 258 break; 259 case X86II::VEX: 260 AsmComment = X86::AC_EVEX_2_VEX; 261 break; 262 case X86II::EVEX: 263 AsmComment = X86::AC_EVEX_2_EVEX; 264 assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) && 265 "Unknown EVEX2EVEX compression"); 266 break; 267 default: 268 llvm_unreachable("Unknown EVEX compression"); 269 } 270 MI.setAsmPrinterFlag(AsmComment); 271 if (IsRedundantNDD) 272 MI.tieOperands(0, 1); 273 274 return true; 275 } 276 277 bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) { 278 #ifndef NDEBUG 279 // Make sure the tables are sorted. 280 static std::atomic<bool> TableChecked(false); 281 if (!TableChecked.load(std::memory_order_relaxed)) { 282 assert(llvm::is_sorted(X86CompressEVEXTable) && 283 "X86CompressEVEXTable is not sorted!"); 284 TableChecked.store(true, std::memory_order_relaxed); 285 } 286 #endif 287 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 288 if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD()) 289 return false; 290 291 bool Changed = false; 292 293 for (MachineBasicBlock &MBB : MF) { 294 // Traverse the basic block. 295 for (MachineInstr &MI : MBB) 296 Changed |= CompressEVEXImpl(MI, ST); 297 } 298 299 return Changed; 300 } 301 302 INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false) 303 304 FunctionPass *llvm::createX86CompressEVEXPass() { 305 return new CompressEVEXPass(); 306 } 307