1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the VirtRegMap class. 10 // 11 // It also contains implementations of the Spiller interface, which, given a 12 // virtual register map and a machine function, eliminates all virtual 13 // references by replacing them with physical register references - adding spill 14 // code as necessary. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/VirtRegMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LiveDebugVariables.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveRegMatrix.h" 25 #include "llvm/CodeGen/LiveStacks.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "regalloc" 52 53 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 54 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 55 56 //===----------------------------------------------------------------------===// 57 // VirtRegMap implementation 58 //===----------------------------------------------------------------------===// 59 60 char VirtRegMapWrapperLegacy::ID = 0; 61 62 INITIALIZE_PASS(VirtRegMapWrapperLegacy, "virtregmap", "Virtual Register Map", 63 false, true) 64 65 void VirtRegMap::init(MachineFunction &mf) { 66 MRI = &mf.getRegInfo(); 67 TII = mf.getSubtarget().getInstrInfo(); 68 TRI = mf.getSubtarget().getRegisterInfo(); 69 MF = &mf; 70 71 Virt2PhysMap.clear(); 72 Virt2StackSlotMap.clear(); 73 Virt2SplitMap.clear(); 74 Virt2ShapeMap.clear(); 75 76 grow(); 77 } 78 79 void VirtRegMap::grow() { 80 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 81 Virt2PhysMap.resize(NumRegs); 82 Virt2StackSlotMap.resize(NumRegs); 83 Virt2SplitMap.resize(NumRegs); 84 } 85 86 void VirtRegMap::assignVirt2Phys(Register virtReg, MCRegister physReg) { 87 assert(virtReg.isVirtual() && physReg.isPhysical()); 88 assert(!Virt2PhysMap[virtReg] && 89 "attempt to assign physical register to already mapped " 90 "virtual register"); 91 assert((!getRegInfo().isReserved(physReg) || 92 MF->getProperties().hasProperty( 93 MachineFunctionProperties::Property::FailedRegAlloc)) && 94 "Attempt to map virtReg to a reserved physReg"); 95 Virt2PhysMap[virtReg] = physReg; 96 } 97 98 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 99 unsigned Size = TRI->getSpillSize(*RC); 100 Align Alignment = TRI->getSpillAlign(*RC); 101 // Set preferred alignment if we are still able to realign the stack 102 auto &ST = MF->getSubtarget(); 103 Align CurrentAlign = ST.getFrameLowering()->getStackAlign(); 104 if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) { 105 Alignment = CurrentAlign; 106 } 107 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment); 108 ++NumSpillSlots; 109 return SS; 110 } 111 112 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const { 113 Register Hint = MRI->getSimpleHint(VirtReg); 114 if (!Hint.isValid()) 115 return false; 116 if (Hint.isVirtual()) 117 Hint = getPhys(Hint); 118 return Register(getPhys(VirtReg)) == Hint; 119 } 120 121 bool VirtRegMap::hasKnownPreference(Register VirtReg) const { 122 std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VirtReg); 123 if (Hint.second.isPhysical()) 124 return true; 125 if (Hint.second.isVirtual()) 126 return hasPhys(Hint.second); 127 return false; 128 } 129 130 int VirtRegMap::assignVirt2StackSlot(Register virtReg) { 131 assert(virtReg.isVirtual()); 132 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 133 "attempt to assign stack slot to already spilled register"); 134 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 135 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 136 } 137 138 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { 139 assert(virtReg.isVirtual()); 140 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 141 "attempt to assign stack slot to already spilled register"); 142 assert((SS >= 0 || 143 (SS >= MF->getFrameInfo().getObjectIndexBegin())) && 144 "illegal fixed frame index"); 145 Virt2StackSlotMap[virtReg] = SS; 146 } 147 148 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 149 OS << "********** REGISTER MAP **********\n"; 150 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 151 Register Reg = Register::index2VirtReg(i); 152 if (Virt2PhysMap[Reg]) { 153 OS << '[' << printReg(Reg, TRI) << " -> " 154 << printReg(Virt2PhysMap[Reg], TRI) << "] " 155 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 156 } 157 } 158 159 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 160 Register Reg = Register::index2VirtReg(i); 161 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 162 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 163 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 164 } 165 } 166 OS << '\n'; 167 } 168 169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 170 LLVM_DUMP_METHOD void VirtRegMap::dump() const { 171 print(dbgs()); 172 } 173 #endif 174 175 AnalysisKey VirtRegMapAnalysis::Key; 176 177 PreservedAnalyses 178 VirtRegMapPrinterPass::run(MachineFunction &MF, 179 MachineFunctionAnalysisManager &MFAM) { 180 OS << MFAM.getResult<VirtRegMapAnalysis>(MF); 181 return PreservedAnalyses::all(); 182 } 183 184 VirtRegMap VirtRegMapAnalysis::run(MachineFunction &MF, 185 MachineFunctionAnalysisManager &MAM) { 186 VirtRegMap VRM; 187 VRM.init(MF); 188 return VRM; 189 } 190 191 //===----------------------------------------------------------------------===// 192 // VirtRegRewriter 193 //===----------------------------------------------------------------------===// 194 // 195 // The VirtRegRewriter is the last of the register allocator passes. 196 // It rewrites virtual registers to physical registers as specified in the 197 // VirtRegMap analysis. It also updates live-in information on basic blocks 198 // according to LiveIntervals. 199 // 200 namespace { 201 202 class VirtRegRewriter : public MachineFunctionPass { 203 MachineFunction *MF = nullptr; 204 const TargetRegisterInfo *TRI = nullptr; 205 const TargetInstrInfo *TII = nullptr; 206 MachineRegisterInfo *MRI = nullptr; 207 SlotIndexes *Indexes = nullptr; 208 LiveIntervals *LIS = nullptr; 209 LiveRegMatrix *LRM = nullptr; 210 VirtRegMap *VRM = nullptr; 211 LiveDebugVariables *DebugVars = nullptr; 212 DenseSet<Register> RewriteRegs; 213 bool ClearVirtRegs; 214 215 void rewrite(); 216 void addMBBLiveIns(); 217 bool readsUndefSubreg(const MachineOperand &MO) const; 218 void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const; 219 void handleIdentityCopy(MachineInstr &MI); 220 void expandCopyBundle(MachineInstr &MI) const; 221 bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const; 222 LaneBitmask liveOutUndefPhiLanesForUndefSubregDef( 223 const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, 224 MCRegister PhysReg, const MachineInstr &MI) const; 225 226 public: 227 static char ID; 228 VirtRegRewriter(bool ClearVirtRegs_ = true) : 229 MachineFunctionPass(ID), 230 ClearVirtRegs(ClearVirtRegs_) {} 231 232 void getAnalysisUsage(AnalysisUsage &AU) const override; 233 234 bool runOnMachineFunction(MachineFunction&) override; 235 236 MachineFunctionProperties getSetProperties() const override { 237 if (ClearVirtRegs) { 238 return MachineFunctionProperties().set( 239 MachineFunctionProperties::Property::NoVRegs); 240 } 241 242 return MachineFunctionProperties(); 243 } 244 }; 245 246 } // end anonymous namespace 247 248 char VirtRegRewriter::ID = 0; 249 250 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 251 252 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 253 "Virtual Register Rewriter", false, false) 254 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 255 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 256 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy) 257 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) 258 INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy) 259 INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) 260 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 261 "Virtual Register Rewriter", false, false) 262 263 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 264 AU.setPreservesCFG(); 265 AU.addRequired<LiveIntervalsWrapperPass>(); 266 AU.addPreserved<LiveIntervalsWrapperPass>(); 267 AU.addRequired<SlotIndexesWrapperPass>(); 268 AU.addPreserved<SlotIndexesWrapperPass>(); 269 AU.addRequired<LiveDebugVariablesWrapperLegacy>(); 270 AU.addRequired<LiveStacksWrapperLegacy>(); 271 AU.addPreserved<LiveStacksWrapperLegacy>(); 272 AU.addRequired<VirtRegMapWrapperLegacy>(); 273 AU.addRequired<LiveRegMatrixWrapperLegacy>(); 274 275 if (!ClearVirtRegs) 276 AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); 277 278 MachineFunctionPass::getAnalysisUsage(AU); 279 } 280 281 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 282 MF = &fn; 283 TRI = MF->getSubtarget().getRegisterInfo(); 284 TII = MF->getSubtarget().getInstrInfo(); 285 MRI = &MF->getRegInfo(); 286 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); 287 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 288 LRM = &getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM(); 289 VRM = &getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); 290 DebugVars = &getAnalysis<LiveDebugVariablesWrapperLegacy>().getLDV(); 291 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 292 << "********** Function: " << MF->getName() << '\n'); 293 LLVM_DEBUG(VRM->dump()); 294 295 // Add kill flags while we still have virtual registers. 296 LIS->addKillFlags(VRM); 297 298 // Live-in lists on basic blocks are required for physregs. 299 addMBBLiveIns(); 300 301 // Rewrite virtual registers. 302 rewrite(); 303 304 if (ClearVirtRegs) { 305 // Write out new DBG_VALUE instructions. 306 307 // We only do this if ClearVirtRegs is specified since this should be the 308 // final run of the pass and we don't want to emit them multiple times. 309 DebugVars->emitDebugValues(VRM); 310 311 // All machine operands and other references to virtual registers have been 312 // replaced. Remove the virtual registers and release all the transient data. 313 VRM->clearAllVirt(); 314 MRI->clearVirtRegs(); 315 } 316 317 return true; 318 } 319 320 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, 321 MCRegister PhysReg) const { 322 assert(!LI.empty()); 323 assert(LI.hasSubRanges()); 324 325 using SubRangeIteratorPair = 326 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; 327 328 SmallVector<SubRangeIteratorPair, 4> SubRanges; 329 SlotIndex First; 330 SlotIndex Last; 331 for (const LiveInterval::SubRange &SR : LI.subranges()) { 332 SubRanges.push_back(std::make_pair(&SR, SR.begin())); 333 if (!First.isValid() || SR.segments.front().start < First) 334 First = SR.segments.front().start; 335 if (!Last.isValid() || SR.segments.back().end > Last) 336 Last = SR.segments.back().end; 337 } 338 339 // Check all mbb start positions between First and Last while 340 // simultaneously advancing an iterator for each subrange. 341 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->getMBBLowerBound(First); 342 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { 343 SlotIndex MBBBegin = MBBI->first; 344 // Advance all subrange iterators so that their end position is just 345 // behind MBBBegin (or the iterator is at the end). 346 LaneBitmask LaneMask; 347 for (auto &RangeIterPair : SubRanges) { 348 const LiveInterval::SubRange *SR = RangeIterPair.first; 349 LiveInterval::const_iterator &SRI = RangeIterPair.second; 350 while (SRI != SR->end() && SRI->end <= MBBBegin) 351 ++SRI; 352 if (SRI == SR->end()) 353 continue; 354 if (SRI->start <= MBBBegin) 355 LaneMask |= SR->LaneMask; 356 } 357 if (LaneMask.none()) 358 continue; 359 MachineBasicBlock *MBB = MBBI->second; 360 MBB->addLiveIn(PhysReg, LaneMask); 361 } 362 } 363 364 // Compute MBB live-in lists from virtual register live ranges and their 365 // assignments. 366 void VirtRegRewriter::addMBBLiveIns() { 367 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 368 Register VirtReg = Register::index2VirtReg(Idx); 369 if (MRI->reg_nodbg_empty(VirtReg)) 370 continue; 371 LiveInterval &LI = LIS->getInterval(VirtReg); 372 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 373 continue; 374 // This is a virtual register that is live across basic blocks. Its 375 // assigned PhysReg must be marked as live-in to those blocks. 376 MCRegister PhysReg = VRM->getPhys(VirtReg); 377 if (!PhysReg) { 378 // There may be no physical register assigned if only some register 379 // classes were already allocated. 380 assert(!ClearVirtRegs && "Unmapped virtual register"); 381 continue; 382 } 383 384 if (LI.hasSubRanges()) { 385 addLiveInsForSubRanges(LI, PhysReg); 386 } else { 387 // Go over MBB begin positions and see if we have segments covering them. 388 // The following works because segments and the MBBIndex list are both 389 // sorted by slot indexes. 390 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); 391 for (const auto &Seg : LI) { 392 I = Indexes->getMBBLowerBound(I, Seg.start); 393 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { 394 MachineBasicBlock *MBB = I->second; 395 MBB->addLiveIn(PhysReg); 396 } 397 } 398 } 399 } 400 401 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 402 // each MBB's LiveIns set before calling addLiveIn on them. 403 for (MachineBasicBlock &MBB : *MF) 404 MBB.sortUniqueLiveIns(); 405 } 406 407 /// Returns true if the given machine operand \p MO only reads undefined lanes. 408 /// The function only works for use operands with a subregister set. 409 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 410 // Shortcut if the operand is already marked undef. 411 if (MO.isUndef()) 412 return true; 413 414 Register Reg = MO.getReg(); 415 const LiveInterval &LI = LIS->getInterval(Reg); 416 const MachineInstr &MI = *MO.getParent(); 417 SlotIndex BaseIndex = LIS->getInstructionIndex(MI); 418 // This code is only meant to handle reading undefined subregisters which 419 // we couldn't properly detect before. 420 assert(LI.liveAt(BaseIndex) && 421 "Reads of completely dead register should be marked undef already"); 422 unsigned SubRegIdx = MO.getSubReg(); 423 assert(SubRegIdx != 0 && LI.hasSubRanges()); 424 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 425 // See if any of the relevant subregister liveranges is defined at this point. 426 for (const LiveInterval::SubRange &SR : LI.subranges()) { 427 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) 428 return false; 429 } 430 return true; 431 } 432 433 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) { 434 if (!MI.isIdentityCopy()) 435 return; 436 LLVM_DEBUG(dbgs() << "Identity copy: " << MI); 437 ++NumIdCopies; 438 439 Register DstReg = MI.getOperand(0).getReg(); 440 441 // We may have deferred allocation of the virtual register, and the rewrite 442 // regs code doesn't handle the liveness update. 443 if (DstReg.isVirtual()) 444 return; 445 446 RewriteRegs.insert(DstReg); 447 448 // Copies like: 449 // %r0 = COPY undef %r0 450 // %al = COPY %al, implicit-def %eax 451 // give us additional liveness information: The target (super-)register 452 // must not be valid before this point. Replace the COPY with a KILL 453 // instruction to maintain this information. 454 if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { 455 MI.setDesc(TII->get(TargetOpcode::KILL)); 456 LLVM_DEBUG(dbgs() << " replace by: " << MI); 457 return; 458 } 459 460 if (Indexes) 461 Indexes->removeSingleMachineInstrFromMaps(MI); 462 MI.eraseFromBundle(); 463 LLVM_DEBUG(dbgs() << " deleted.\n"); 464 } 465 466 /// The liverange splitting logic sometimes produces bundles of copies when 467 /// subregisters are involved. Expand these into a sequence of copy instructions 468 /// after processing the last in the bundle. Does not update LiveIntervals 469 /// which we shouldn't need for this instruction anymore. 470 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { 471 if (!MI.isCopy() && !MI.isKill()) 472 return; 473 474 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { 475 SmallVector<MachineInstr *, 2> MIs({&MI}); 476 477 // Only do this when the complete bundle is made out of COPYs and KILLs. 478 MachineBasicBlock &MBB = *MI.getParent(); 479 for (MachineBasicBlock::reverse_instr_iterator I = 480 std::next(MI.getReverseIterator()), E = MBB.instr_rend(); 481 I != E && I->isBundledWithSucc(); ++I) { 482 if (!I->isCopy() && !I->isKill()) 483 return; 484 MIs.push_back(&*I); 485 } 486 MachineInstr *FirstMI = MIs.back(); 487 488 auto anyRegsAlias = [](const MachineInstr *Dst, 489 ArrayRef<MachineInstr *> Srcs, 490 const TargetRegisterInfo *TRI) { 491 for (const MachineInstr *Src : Srcs) 492 if (Src != Dst) 493 if (TRI->regsOverlap(Dst->getOperand(0).getReg(), 494 Src->getOperand(1).getReg())) 495 return true; 496 return false; 497 }; 498 499 // If any of the destination registers in the bundle of copies alias any of 500 // the source registers, try to schedule the instructions to avoid any 501 // clobbering. 502 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { 503 for (int I = E; I--; ) 504 if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(E), TRI)) { 505 if (I + 1 != E) 506 std::swap(MIs[I], MIs[E - 1]); 507 --E; 508 } 509 if (PrevE == E) { 510 MF->getFunction().getContext().emitError( 511 "register rewriting failed: cycle in copy bundle"); 512 break; 513 } 514 } 515 516 MachineInstr *BundleStart = FirstMI; 517 for (MachineInstr *BundledMI : llvm::reverse(MIs)) { 518 // If instruction is in the middle of the bundle, move it before the 519 // bundle starts, otherwise, just unbundle it. When we get to the last 520 // instruction, the bundle will have been completely undone. 521 if (BundledMI != BundleStart) { 522 BundledMI->removeFromBundle(); 523 MBB.insert(BundleStart, BundledMI); 524 } else if (BundledMI->isBundledWithSucc()) { 525 BundledMI->unbundleFromSucc(); 526 BundleStart = &*std::next(BundledMI->getIterator()); 527 } 528 529 if (Indexes && BundledMI != FirstMI) 530 Indexes->insertMachineInstrInMaps(*BundledMI); 531 } 532 } 533 } 534 535 /// Check whether (part of) \p SuperPhysReg is live through \p MI. 536 /// \pre \p MI defines a subregister of a virtual register that 537 /// has been assigned to \p SuperPhysReg. 538 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, 539 MCRegister SuperPhysReg) const { 540 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 541 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 542 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); 543 for (MCRegUnit Unit : TRI->regunits(SuperPhysReg)) { 544 const LiveRange &UnitRange = LIS->getRegUnit(Unit); 545 // If the regunit is live both before and after MI, 546 // we assume it is live through. 547 // Generally speaking, this is not true, because something like 548 // "RU = op RU" would match that description. 549 // However, we know that we are trying to assess whether 550 // a def of a virtual reg, vreg, is live at the same time of RU. 551 // If we are in the "RU = op RU" situation, that means that vreg 552 // is defined at the same time as RU (i.e., "vreg, RU = op RU"). 553 // Thus, vreg and RU interferes and vreg cannot be assigned to 554 // SuperPhysReg. Therefore, this situation cannot happen. 555 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) 556 return true; 557 } 558 return false; 559 } 560 561 /// Compute a lanemask for undef lanes which need to be preserved out of the 562 /// defining block for a register assignment for a subregister def. \p PhysReg 563 /// is assigned to \p LI, which is the main range. 564 LaneBitmask VirtRegRewriter::liveOutUndefPhiLanesForUndefSubregDef( 565 const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, 566 MCRegister PhysReg, const MachineInstr &MI) const { 567 LaneBitmask UndefMask = ~TRI->getSubRegIndexLaneMask(SubReg); 568 LaneBitmask LiveOutUndefLanes; 569 570 for (const LiveInterval::SubRange &SR : LI.subranges()) { 571 // Figure out which lanes are undef live into a successor. 572 LaneBitmask NeedImpDefLanes = UndefMask & SR.LaneMask; 573 if (NeedImpDefLanes.any() && !LIS->isLiveOutOfMBB(SR, &MBB)) { 574 for (const MachineBasicBlock *Succ : MBB.successors()) { 575 if (LIS->isLiveInToMBB(SR, Succ)) 576 LiveOutUndefLanes |= NeedImpDefLanes; 577 } 578 } 579 } 580 581 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 582 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 583 LaneBitmask InterferingLanes = 584 LRM->checkInterferenceLanes(BeforeMIUses, MIIndex.getRegSlot(), PhysReg); 585 LiveOutUndefLanes &= ~InterferingLanes; 586 587 LLVM_DEBUG(if (LiveOutUndefLanes.any()) { 588 dbgs() << "Need live out undef defs for " << printReg(PhysReg) 589 << LiveOutUndefLanes << " from " << printMBBReference(MBB) << '\n'; 590 }); 591 592 return LiveOutUndefLanes; 593 } 594 595 void VirtRegRewriter::rewrite() { 596 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 597 SmallVector<Register, 8> SuperDeads; 598 SmallVector<Register, 8> SuperDefs; 599 SmallVector<Register, 8> SuperKills; 600 601 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 602 MBBI != MBBE; ++MBBI) { 603 LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); 604 for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) { 605 for (MachineOperand &MO : MI.operands()) { 606 // Make sure MRI knows about registers clobbered by regmasks. 607 if (MO.isRegMask()) 608 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 609 610 if (!MO.isReg() || !MO.getReg().isVirtual()) 611 continue; 612 Register VirtReg = MO.getReg(); 613 MCRegister PhysReg = VRM->getPhys(VirtReg); 614 if (!PhysReg) 615 continue; 616 617 assert(Register(PhysReg).isPhysical()); 618 619 RewriteRegs.insert(PhysReg); 620 assert((!MRI->isReserved(PhysReg) || 621 MF->getProperties().hasProperty( 622 MachineFunctionProperties::Property::FailedRegAlloc)) && 623 "Reserved register assignment"); 624 625 // Preserve semantics of sub-register operands. 626 unsigned SubReg = MO.getSubReg(); 627 if (SubReg != 0) { 628 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { 629 // A virtual register kill refers to the whole register, so we may 630 // have to add implicit killed operands for the super-register. A 631 // partial redef always kills and redefines the super-register. 632 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || 633 (MO.isDef() && subRegLiveThrough(MI, PhysReg))) 634 SuperKills.push_back(PhysReg); 635 636 if (MO.isDef()) { 637 // Also add implicit defs for the super-register. 638 if (MO.isDead()) 639 SuperDeads.push_back(PhysReg); 640 else 641 SuperDefs.push_back(PhysReg); 642 } 643 } else { 644 if (MO.isUse()) { 645 if (readsUndefSubreg(MO)) 646 // We need to add an <undef> flag if the subregister is 647 // completely undefined (and we are not adding super-register 648 // defs). 649 MO.setIsUndef(true); 650 } else if (!MO.isDead()) { 651 assert(MO.isDef()); 652 if (MO.isUndef()) { 653 const LiveInterval &LI = LIS->getInterval(VirtReg); 654 655 LaneBitmask LiveOutUndefLanes = 656 liveOutUndefPhiLanesForUndefSubregDef(LI, *MBBI, SubReg, 657 PhysReg, MI); 658 if (LiveOutUndefLanes.any()) { 659 SmallVector<unsigned, 16> CoveringIndexes; 660 661 // TODO: Just use one super register def if none of the lanes 662 // are needed? 663 if (!TRI->getCoveringSubRegIndexes(MRI->getRegClass(VirtReg), 664 LiveOutUndefLanes, 665 CoveringIndexes)) 666 llvm_unreachable( 667 "cannot represent required subregister defs"); 668 669 // Try to represent the minimum needed live out def as a 670 // sequence of subregister defs. 671 // 672 // FIXME: It would be better if we could directly represent 673 // liveness with a lanemask instead of spamming operands. 674 for (unsigned SubIdx : CoveringIndexes) 675 SuperDefs.push_back(TRI->getSubReg(PhysReg, SubIdx)); 676 } 677 } 678 } 679 } 680 681 // The def undef and def internal flags only make sense for 682 // sub-register defs, and we are substituting a full physreg. An 683 // implicit killed operand from the SuperKills list will represent the 684 // partial read of the super-register. 685 if (MO.isDef()) { 686 MO.setIsUndef(false); 687 MO.setIsInternalRead(false); 688 } 689 690 // PhysReg operands cannot have subregister indexes. 691 PhysReg = TRI->getSubReg(PhysReg, SubReg); 692 assert(PhysReg.isValid() && "Invalid SubReg for physical register"); 693 MO.setSubReg(0); 694 } 695 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 696 // we need the inlining here. 697 MO.setReg(PhysReg); 698 MO.setIsRenamable(true); 699 } 700 701 // Add any missing super-register kills after rewriting the whole 702 // instruction. 703 while (!SuperKills.empty()) 704 MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 705 706 while (!SuperDeads.empty()) 707 MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 708 709 while (!SuperDefs.empty()) 710 MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI); 711 712 LLVM_DEBUG(dbgs() << "> " << MI); 713 714 expandCopyBundle(MI); 715 716 // We can remove identity copies right now. 717 handleIdentityCopy(MI); 718 } 719 } 720 721 if (LIS) { 722 // Don't bother maintaining accurate LiveIntervals for registers which were 723 // already allocated. 724 for (Register PhysReg : RewriteRegs) { 725 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 726 LIS->removeRegUnit(Unit); 727 } 728 } 729 } 730 731 RewriteRegs.clear(); 732 } 733 734 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) { 735 return new VirtRegRewriter(ClearVirtRegs); 736 } 737