1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/RegAllocFast.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RegAllocCommon.h" 33 #include "llvm/CodeGen/RegAllocRegistry.h" 34 #include "llvm/CodeGen/RegisterClassInfo.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <tuple> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "regalloc" 52 53 STATISTIC(NumStores, "Number of stores added"); 54 STATISTIC(NumLoads, "Number of loads added"); 55 STATISTIC(NumCoalesced, "Number of copies coalesced"); 56 57 // FIXME: Remove this switch when all testcases are fixed! 58 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 59 cl::Hidden); 60 61 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", 62 createFastRegisterAllocator); 63 64 namespace { 65 66 /// Assign ascending index for instructions in machine basic block. The index 67 /// can be used to determine dominance between instructions in same MBB. 68 class InstrPosIndexes { 69 public: 70 void unsetInitialized() { IsInitialized = false; } 71 72 void init(const MachineBasicBlock &MBB) { 73 CurMBB = &MBB; 74 Instr2PosIndex.clear(); 75 uint64_t LastIndex = 0; 76 for (const MachineInstr &MI : MBB) { 77 LastIndex += InstrDist; 78 Instr2PosIndex[&MI] = LastIndex; 79 } 80 } 81 82 /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign 83 /// index without affecting existing instruction's index. Return true if all 84 /// instructions index has been reassigned. 85 bool getIndex(const MachineInstr &MI, uint64_t &Index) { 86 if (!IsInitialized) { 87 init(*MI.getParent()); 88 IsInitialized = true; 89 Index = Instr2PosIndex.at(&MI); 90 return true; 91 } 92 93 assert(MI.getParent() == CurMBB && "MI is not in CurMBB"); 94 auto It = Instr2PosIndex.find(&MI); 95 if (It != Instr2PosIndex.end()) { 96 Index = It->second; 97 return false; 98 } 99 100 // Distance is the number of consecutive unassigned instructions including 101 // MI. Start is the first instruction of them. End is the next of last 102 // instruction of them. 103 // e.g. 104 // |Instruction| A | B | C | MI | D | E | 105 // | Index | 1024 | | | | | 2048 | 106 // 107 // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End 108 // is E. 109 unsigned Distance = 1; 110 MachineBasicBlock::const_iterator Start = MI.getIterator(), 111 End = std::next(Start); 112 while (Start != CurMBB->begin() && 113 !Instr2PosIndex.count(&*std::prev(Start))) { 114 --Start; 115 ++Distance; 116 } 117 while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) { 118 ++End; 119 ++Distance; 120 } 121 122 // LastIndex is initialized to last used index prior to MI or zero. 123 // In previous example, LastIndex is 1024, EndIndex is 2048; 124 uint64_t LastIndex = 125 Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start)); 126 uint64_t Step; 127 if (End == CurMBB->end()) 128 Step = static_cast<uint64_t>(InstrDist); 129 else { 130 // No instruction uses index zero. 131 uint64_t EndIndex = Instr2PosIndex.at(&*End); 132 assert(EndIndex > LastIndex && "Index must be ascending order"); 133 unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; 134 // We want index gap between two adjacent MI is as same as possible. Given 135 // total A available indexes, D is number of consecutive unassigned 136 // instructions, S is the step. 137 // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| 138 // There're S-1 available indexes between unassigned instruction and its 139 // predecessor. There're A-S*D available indexes between the last 140 // unassigned instruction and its successor. 141 // Ideally, we want 142 // S-1 = A-S*D 143 // then 144 // S = (A+1)/(D+1) 145 // An valid S must be integer greater than zero, so 146 // S <= (A+1)/(D+1) 147 // => 148 // A-S*D >= 0 149 // That means we can safely use (A+1)/(D+1) as step. 150 // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, 151 // 1636, 1840. 152 Step = (NumAvailableIndexes + 1) / (Distance + 1); 153 } 154 155 // Reassign index for all instructions if number of new inserted 156 // instructions exceed slot or all instructions are new. 157 if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { 158 init(*CurMBB); 159 Index = Instr2PosIndex.at(&MI); 160 return true; 161 } 162 163 for (auto I = Start; I != End; ++I) { 164 LastIndex += Step; 165 Instr2PosIndex[&*I] = LastIndex; 166 } 167 Index = Instr2PosIndex.at(&MI); 168 return false; 169 } 170 171 private: 172 bool IsInitialized = false; 173 enum { InstrDist = 1024 }; 174 const MachineBasicBlock *CurMBB = nullptr; 175 DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; 176 }; 177 178 class RegAllocFastImpl { 179 public: 180 RegAllocFastImpl(const RegAllocFilterFunc F = nullptr, 181 bool ClearVirtRegs_ = true) 182 : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1), 183 ClearVirtRegs(ClearVirtRegs_) {} 184 185 private: 186 MachineFrameInfo *MFI = nullptr; 187 MachineRegisterInfo *MRI = nullptr; 188 const TargetRegisterInfo *TRI = nullptr; 189 const TargetInstrInfo *TII = nullptr; 190 RegisterClassInfo RegClassInfo; 191 const RegAllocFilterFunc ShouldAllocateRegisterImpl; 192 193 /// Basic block currently being allocated. 194 MachineBasicBlock *MBB = nullptr; 195 196 /// Maps virtual regs to the frame index where these values are spilled. 197 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 198 199 /// Everything we know about a live virtual register. 200 struct LiveReg { 201 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 202 Register VirtReg; ///< Virtual register number. 203 MCPhysReg PhysReg = 0; ///< Currently held here. 204 bool LiveOut = false; ///< Register is possibly live out. 205 bool Reloaded = false; ///< Register was reloaded. 206 bool Error = false; ///< Could not allocate. 207 208 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 209 210 unsigned getSparseSetIndex() const { 211 return Register::virtReg2Index(VirtReg); 212 } 213 }; 214 215 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; 216 /// This map contains entries for each virtual register that is currently 217 /// available in a physical register. 218 LiveRegMap LiveVirtRegs; 219 220 /// Stores assigned virtual registers present in the bundle MI. 221 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 222 223 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 224 /// List of DBG_VALUE that we encountered without the vreg being assigned 225 /// because they were placed after the last use of the vreg. 226 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 227 228 /// Has a bit set for every virtual register for which it was determined 229 /// that it is alive across blocks. 230 BitVector MayLiveAcrossBlocks; 231 232 /// State of a register unit. 233 enum RegUnitState { 234 /// A free register is not currently in use and can be allocated 235 /// immediately without checking aliases. 236 regFree, 237 238 /// A pre-assigned register has been assigned before register allocation 239 /// (e.g., setting up a call parameter). 240 regPreAssigned, 241 242 /// Used temporarily in reloadAtBegin() to mark register units that are 243 /// live-in to the basic block. 244 regLiveIn, 245 246 /// A register state may also be a virtual register number, indication 247 /// that the physical register is currently allocated to a virtual 248 /// register. In that case, LiveVirtRegs contains the inverse mapping. 249 }; 250 251 /// Maps each physical register to a RegUnitState enum or virtual register. 252 std::vector<unsigned> RegUnitStates; 253 254 SmallVector<MachineInstr *, 32> Coalesced; 255 256 /// Track register units that are used in the current instruction, and so 257 /// cannot be allocated. 258 /// 259 /// In the first phase (tied defs/early clobber), we consider also physical 260 /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely 261 /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To 262 /// avoid resetting the entire vector after every instruction, we track the 263 /// instruction "generation" in the remaining 31 bits -- this means, that if 264 /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is 265 /// never zero and always incremented by two. 266 /// 267 /// Don't allocate inline storage: the number of register units is typically 268 /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000). 269 uint32_t InstrGen; 270 SmallVector<unsigned, 0> UsedInInstr; 271 272 SmallVector<unsigned, 8> DefOperandIndexes; 273 // Register masks attached to the current instruction. 274 SmallVector<const uint32_t *> RegMasks; 275 276 // Assign index for each instruction to quickly determine dominance. 277 InstrPosIndexes PosIndexes; 278 279 void setPhysRegState(MCRegister PhysReg, unsigned NewState); 280 bool isPhysRegFree(MCPhysReg PhysReg) const; 281 282 /// Mark a physreg as used in this instruction. 283 void markRegUsedInInstr(MCPhysReg PhysReg) { 284 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 285 UsedInInstr[Unit] = InstrGen | 1; 286 } 287 288 // Check if physreg is clobbered by instruction's regmask(s). 289 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 290 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 291 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 292 }); 293 } 294 295 /// Check if a physreg or any of its aliases are used in this instruction. 296 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 297 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 298 return true; 299 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 300 if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses)) 301 return true; 302 return false; 303 } 304 305 /// Mark physical register as being used in a register use operand. 306 /// This is only used by the special livethrough handling code. 307 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 308 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 309 assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?"); 310 UsedInInstr[Unit] = InstrGen; 311 } 312 } 313 314 /// Remove mark of physical register being used in the instruction. 315 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 316 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 317 UsedInInstr[Unit] = 0; 318 } 319 320 enum : unsigned { 321 spillClean = 50, 322 spillDirty = 100, 323 spillPrefBonus = 20, 324 spillImpossible = ~0u 325 }; 326 327 public: 328 bool ClearVirtRegs; 329 330 bool runOnMachineFunction(MachineFunction &MF); 331 332 private: 333 void allocateBasicBlock(MachineBasicBlock &MBB); 334 335 void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts, 336 Register Reg) const; 337 338 void findAndSortDefOperandIndexes(const MachineInstr &MI); 339 340 void allocateInstruction(MachineInstr &MI); 341 void handleDebugValue(MachineInstr &MI); 342 void handleBundle(MachineInstr &MI); 343 344 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 345 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 346 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 347 void freePhysReg(MCPhysReg PhysReg); 348 349 unsigned calcSpillCost(MCPhysReg PhysReg) const; 350 351 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 352 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 353 } 354 355 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 356 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 357 } 358 359 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 360 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 361 bool LookAtPhysRegUses = false); 362 void allocVirtRegUndef(MachineOperand &MO); 363 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 364 MCPhysReg Reg); 365 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 366 Register VirtReg); 367 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 368 bool LookAtPhysRegUses = false); 369 bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); 370 371 MCPhysReg getErrorAssignment(const LiveReg &LR, MachineInstr &MI, 372 const TargetRegisterClass &RC); 373 374 MachineBasicBlock::iterator 375 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 376 SmallSet<Register, 2> &PrologLiveIns) const; 377 378 void reloadAtBegin(MachineBasicBlock &MBB); 379 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 380 381 Register traceCopies(Register VirtReg) const; 382 Register traceCopyChain(Register Reg) const; 383 384 bool shouldAllocateRegister(const Register Reg) const; 385 int getStackSpaceFor(Register VirtReg); 386 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 387 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 388 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 389 MCPhysReg PhysReg); 390 391 bool mayLiveOut(Register VirtReg); 392 bool mayLiveIn(Register VirtReg); 393 394 void dumpState() const; 395 }; 396 397 class RegAllocFast : public MachineFunctionPass { 398 RegAllocFastImpl Impl; 399 400 public: 401 static char ID; 402 403 RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true) 404 : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} 405 406 bool runOnMachineFunction(MachineFunction &MF) override { 407 return Impl.runOnMachineFunction(MF); 408 } 409 410 StringRef getPassName() const override { return "Fast Register Allocator"; } 411 412 void getAnalysisUsage(AnalysisUsage &AU) const override { 413 AU.setPreservesCFG(); 414 MachineFunctionPass::getAnalysisUsage(AU); 415 } 416 417 MachineFunctionProperties getRequiredProperties() const override { 418 return MachineFunctionProperties().set( 419 MachineFunctionProperties::Property::NoPHIs); 420 } 421 422 MachineFunctionProperties getSetProperties() const override { 423 if (Impl.ClearVirtRegs) { 424 return MachineFunctionProperties().set( 425 MachineFunctionProperties::Property::NoVRegs); 426 } 427 428 return MachineFunctionProperties(); 429 } 430 431 MachineFunctionProperties getClearedProperties() const override { 432 return MachineFunctionProperties().set( 433 MachineFunctionProperties::Property::IsSSA); 434 } 435 }; 436 437 } // end anonymous namespace 438 439 char RegAllocFast::ID = 0; 440 441 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 442 false) 443 444 bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { 445 assert(Reg.isVirtual()); 446 if (!ShouldAllocateRegisterImpl) 447 return true; 448 449 return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg); 450 } 451 452 void RegAllocFastImpl::setPhysRegState(MCRegister PhysReg, unsigned NewState) { 453 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 454 RegUnitStates[Unit] = NewState; 455 } 456 457 bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const { 458 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 459 if (RegUnitStates[Unit] != regFree) 460 return false; 461 } 462 return true; 463 } 464 465 /// This allocates space for the specified virtual register to be held on the 466 /// stack. 467 int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { 468 // Find the location Reg would belong... 469 int SS = StackSlotForVirtReg[VirtReg]; 470 // Already has space allocated? 471 if (SS != -1) 472 return SS; 473 474 // Allocate a new stack object for this spill location... 475 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 476 unsigned Size = TRI->getSpillSize(RC); 477 Align Alignment = TRI->getSpillAlign(RC); 478 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 479 480 // Assign the slot. 481 StackSlotForVirtReg[VirtReg] = FrameIdx; 482 return FrameIdx; 483 } 484 485 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, 486 const MachineInstr &B) { 487 uint64_t IndexA, IndexB; 488 PosIndexes.getIndex(A, IndexA); 489 if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) 490 PosIndexes.getIndex(A, IndexA); 491 return IndexA < IndexB; 492 } 493 494 /// Returns false if \p VirtReg is known to not live out of the current block. 495 bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { 496 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 497 // Cannot be live-out if there are no successors. 498 return !MBB->succ_empty(); 499 } 500 501 const MachineInstr *SelfLoopDef = nullptr; 502 503 // If this block loops back to itself, it is necessary to check whether the 504 // use comes after the def. 505 if (MBB->isSuccessor(MBB)) { 506 // Find the first def in the self loop MBB. 507 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 508 if (DefInst.getParent() != MBB) { 509 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 510 return true; 511 } else { 512 if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef)) 513 SelfLoopDef = &DefInst; 514 } 515 } 516 if (!SelfLoopDef) { 517 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 518 return true; 519 } 520 } 521 522 // See if the first \p Limit uses of the register are all in the current 523 // block. 524 static const unsigned Limit = 8; 525 unsigned C = 0; 526 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 527 if (UseInst.getParent() != MBB || ++C >= Limit) { 528 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 529 // Cannot be live-out if there are no successors. 530 return !MBB->succ_empty(); 531 } 532 533 if (SelfLoopDef) { 534 // Try to handle some simple cases to avoid spilling and reloading every 535 // value inside a self looping block. 536 if (SelfLoopDef == &UseInst || 537 !dominates(PosIndexes, *SelfLoopDef, UseInst)) { 538 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 539 return true; 540 } 541 } 542 } 543 544 return false; 545 } 546 547 /// Returns false if \p VirtReg is known to not be live into the current block. 548 bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { 549 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 550 return !MBB->pred_empty(); 551 552 // See if the first \p Limit def of the register are all in the current block. 553 static const unsigned Limit = 8; 554 unsigned C = 0; 555 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 556 if (DefInst.getParent() != MBB || ++C >= Limit) { 557 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 558 return !MBB->pred_empty(); 559 } 560 } 561 562 return false; 563 } 564 565 /// Insert spill instruction for \p AssignedReg before \p Before. Update 566 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 567 void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, 568 Register VirtReg, MCPhysReg AssignedReg, bool Kill, 569 bool LiveOut) { 570 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " 571 << printReg(AssignedReg, TRI)); 572 int FI = getStackSpaceFor(VirtReg); 573 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 574 575 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 576 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 577 VirtReg); 578 ++NumStores; 579 580 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 581 582 // When we spill a virtual register, we will have spill instructions behind 583 // every definition of it, meaning we can switch all the DBG_VALUEs over 584 // to just reference the stack slot. 585 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 586 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 587 SpilledOperandsMap; 588 for (MachineOperand *MO : LRIDbgOperands) 589 SpilledOperandsMap[MO->getParent()].push_back(MO); 590 for (const auto &MISpilledOperands : SpilledOperandsMap) { 591 MachineInstr &DBG = *MISpilledOperands.first; 592 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 593 if (DBG.isDebugValueList()) 594 continue; 595 MachineInstr *NewDV = buildDbgValueForSpill( 596 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 597 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 598 (void)NewDV; 599 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 600 601 if (LiveOut) { 602 // We need to insert a DBG_VALUE at the end of the block if the spill slot 603 // is live out, but there is another use of the value after the 604 // spill. This will allow LiveDebugValues to see the correct live out 605 // value to propagate to the successors. 606 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 607 MBB->insert(FirstTerm, ClonedDV); 608 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 609 } 610 611 // Rewrite unassigned dbg_values to use the stack slot. 612 // TODO We can potentially do this for list debug values as well if we know 613 // how the dbg_values are getting unassigned. 614 if (DBG.isNonListDebugValue()) { 615 MachineOperand &MO = DBG.getDebugOperand(0); 616 if (MO.isReg() && MO.getReg() == 0) { 617 updateDbgValueForSpill(DBG, FI, 0); 618 } 619 } 620 } 621 // Now this register is spilled there is should not be any DBG_VALUE 622 // pointing to this register because they are all pointing to spilled value 623 // now. 624 LRIDbgOperands.clear(); 625 } 626 627 /// Insert reload instruction for \p PhysReg before \p Before. 628 void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, 629 Register VirtReg, MCPhysReg PhysReg) { 630 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 631 << printReg(PhysReg, TRI) << '\n'); 632 int FI = getStackSpaceFor(VirtReg); 633 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 634 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 635 ++NumLoads; 636 } 637 638 /// Get basic block begin insertion point. 639 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 640 /// instructions marking the begin of a basic block. This means we must insert 641 /// new instructions after such labels... 642 MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( 643 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 644 MachineBasicBlock::iterator I = MBB.begin(); 645 while (I != MBB.end()) { 646 if (I->isLabel()) { 647 ++I; 648 continue; 649 } 650 651 // Most reloads should be inserted after prolog instructions. 652 if (!TII->isBasicBlockPrologue(*I)) 653 break; 654 655 // However if a prolog instruction reads a register that needs to be 656 // reloaded, the reload should be inserted before the prolog. 657 for (MachineOperand &MO : I->operands()) { 658 if (MO.isReg()) 659 PrologLiveIns.insert(MO.getReg()); 660 } 661 662 ++I; 663 } 664 665 return I; 666 } 667 668 /// Reload all currently assigned virtual registers. 669 void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { 670 if (LiveVirtRegs.empty()) 671 return; 672 673 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 674 MCRegister Reg = P.PhysReg; 675 // Set state to live-in. This possibly overrides mappings to virtual 676 // registers but we don't care anymore at this point. 677 setPhysRegState(Reg, regLiveIn); 678 } 679 680 SmallSet<Register, 2> PrologLiveIns; 681 682 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 683 // of spilling here is deterministic, if arbitrary. 684 MachineBasicBlock::iterator InsertBefore = 685 getMBBBeginInsertionPoint(MBB, PrologLiveIns); 686 for (const LiveReg &LR : LiveVirtRegs) { 687 MCPhysReg PhysReg = LR.PhysReg; 688 if (PhysReg == 0 || LR.Error) 689 continue; 690 691 MCRegUnit FirstUnit = *TRI->regunits(PhysReg).begin(); 692 if (RegUnitStates[FirstUnit] == regLiveIn) 693 continue; 694 695 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 696 "no reload in start block. Missing vreg def?"); 697 698 if (PrologLiveIns.count(PhysReg)) { 699 // FIXME: Theoretically this should use an insert point skipping labels 700 // but I'm not sure how labels should interact with prolog instruction 701 // that need reloads. 702 reload(MBB.begin(), LR.VirtReg, PhysReg); 703 } else 704 reload(InsertBefore, LR.VirtReg, PhysReg); 705 } 706 LiveVirtRegs.clear(); 707 } 708 709 /// Handle the direct use of a physical register. Check that the register is 710 /// not used by a virtreg. Kill the physreg, marking it free. This may add 711 /// implicit kills to MO->getParent() and invalidate MO. 712 bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 713 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 714 bool displacedAny = displacePhysReg(MI, Reg); 715 setPhysRegState(Reg, regPreAssigned); 716 markRegUsedInInstr(Reg); 717 return displacedAny; 718 } 719 720 bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 721 bool displacedAny = displacePhysReg(MI, Reg); 722 setPhysRegState(Reg, regPreAssigned); 723 return displacedAny; 724 } 725 726 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 727 /// similar to defineVirtReg except the physreg is reserved instead of 728 /// allocated. 729 bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 730 bool displacedAny = false; 731 732 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 733 switch (unsigned VirtReg = RegUnitStates[Unit]) { 734 default: { 735 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 736 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 737 MachineBasicBlock::iterator ReloadBefore = 738 std::next((MachineBasicBlock::iterator)MI.getIterator()); 739 reload(ReloadBefore, VirtReg, LRI->PhysReg); 740 741 setPhysRegState(LRI->PhysReg, regFree); 742 LRI->PhysReg = 0; 743 LRI->Reloaded = true; 744 displacedAny = true; 745 break; 746 } 747 case regPreAssigned: 748 RegUnitStates[Unit] = regFree; 749 displacedAny = true; 750 break; 751 case regFree: 752 break; 753 } 754 } 755 return displacedAny; 756 } 757 758 void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) { 759 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 760 761 MCRegUnit FirstUnit = *TRI->regunits(PhysReg).begin(); 762 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 763 case regFree: 764 LLVM_DEBUG(dbgs() << '\n'); 765 return; 766 case regPreAssigned: 767 LLVM_DEBUG(dbgs() << '\n'); 768 setPhysRegState(PhysReg, regFree); 769 return; 770 default: { 771 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 772 assert(LRI != LiveVirtRegs.end()); 773 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 774 setPhysRegState(LRI->PhysReg, regFree); 775 LRI->PhysReg = 0; 776 } 777 return; 778 } 779 } 780 781 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 782 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 783 /// disabled - it can be allocated directly. 784 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 785 unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { 786 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 787 switch (unsigned VirtReg = RegUnitStates[Unit]) { 788 case regFree: 789 break; 790 case regPreAssigned: 791 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 792 << printReg(PhysReg, TRI) << '\n'); 793 return spillImpossible; 794 default: { 795 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 796 findLiveVirtReg(VirtReg)->LiveOut; 797 return SureSpill ? spillClean : spillDirty; 798 } 799 } 800 } 801 return 0; 802 } 803 804 void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, 805 Register VirtReg, 806 MCPhysReg Reg) { 807 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 808 if (UDBGValIter == DanglingDbgValues.end()) 809 return; 810 811 SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; 812 for (MachineInstr *DbgValue : Dangling) { 813 assert(DbgValue->isDebugValue()); 814 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 815 continue; 816 817 // Test whether the physreg survives from the definition to the DBG_VALUE. 818 MCPhysReg SetToReg = Reg; 819 unsigned Limit = 20; 820 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 821 E = DbgValue->getIterator(); 822 I != E; ++I) { 823 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 824 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 825 << '\n'); 826 SetToReg = 0; 827 break; 828 } 829 } 830 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 831 MO.setReg(SetToReg); 832 if (SetToReg != 0) 833 MO.setIsRenamable(); 834 } 835 } 836 Dangling.clear(); 837 } 838 839 /// This method updates local state so that we know that PhysReg is the 840 /// proper container for VirtReg now. The physical register must not be used 841 /// for anything else when this is called. 842 void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 843 MCPhysReg PhysReg) { 844 Register VirtReg = LR.VirtReg; 845 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 846 << printReg(PhysReg, TRI) << '\n'); 847 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 848 assert(PhysReg != 0 && "Trying to assign no register"); 849 LR.PhysReg = PhysReg; 850 setPhysRegState(PhysReg, VirtReg); 851 852 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 853 } 854 855 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } 856 857 Register RegAllocFastImpl::traceCopyChain(Register Reg) const { 858 static const unsigned ChainLengthLimit = 3; 859 unsigned C = 0; 860 do { 861 if (Reg.isPhysical()) 862 return Reg; 863 assert(Reg.isVirtual()); 864 865 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 866 if (!VRegDef || !isCoalescable(*VRegDef)) 867 return 0; 868 Reg = VRegDef->getOperand(1).getReg(); 869 } while (++C <= ChainLengthLimit); 870 return 0; 871 } 872 873 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 874 /// chain of copies to check whether we reach a physical register we can 875 /// coalesce with. 876 Register RegAllocFastImpl::traceCopies(Register VirtReg) const { 877 static const unsigned DefLimit = 3; 878 unsigned C = 0; 879 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 880 if (isCoalescable(MI)) { 881 Register Reg = MI.getOperand(1).getReg(); 882 Reg = traceCopyChain(Reg); 883 if (Reg.isValid()) 884 return Reg; 885 } 886 887 if (++C >= DefLimit) 888 break; 889 } 890 return Register(); 891 } 892 893 /// Allocates a physical register for VirtReg. 894 void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, 895 Register Hint0, bool LookAtPhysRegUses) { 896 const Register VirtReg = LR.VirtReg; 897 assert(LR.PhysReg == 0); 898 899 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 900 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 901 << " in class " << TRI->getRegClassName(&RC) 902 << " with hint " << printReg(Hint0, TRI) << '\n'); 903 904 // Take hint when possible. 905 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 906 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 907 // Take hint if the register is currently free. 908 if (isPhysRegFree(Hint0)) { 909 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 910 << '\n'); 911 assignVirtToPhysReg(MI, LR, Hint0); 912 return; 913 } else { 914 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 915 << " occupied\n"); 916 } 917 } else { 918 Hint0 = Register(); 919 } 920 921 // Try other hint. 922 Register Hint1 = traceCopies(VirtReg); 923 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 924 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 925 // Take hint if the register is currently free. 926 if (isPhysRegFree(Hint1)) { 927 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 928 << '\n'); 929 assignVirtToPhysReg(MI, LR, Hint1); 930 return; 931 } else { 932 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 933 << " occupied\n"); 934 } 935 } else { 936 Hint1 = Register(); 937 } 938 939 MCPhysReg BestReg = 0; 940 unsigned BestCost = spillImpossible; 941 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 942 for (MCPhysReg PhysReg : AllocationOrder) { 943 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 944 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 945 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 946 continue; 947 } 948 949 unsigned Cost = calcSpillCost(PhysReg); 950 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 951 // Immediate take a register with cost 0. 952 if (Cost == 0) { 953 assignVirtToPhysReg(MI, LR, PhysReg); 954 return; 955 } 956 957 if (PhysReg == Hint0 || PhysReg == Hint1) 958 Cost -= spillPrefBonus; 959 960 if (Cost < BestCost) { 961 BestReg = PhysReg; 962 BestCost = Cost; 963 } 964 } 965 966 if (!BestReg) { 967 // Nothing we can do: Report an error and keep going with an invalid 968 // allocation. 969 LR.PhysReg = getErrorAssignment(LR, MI, RC); 970 LR.Error = true; 971 return; 972 } 973 974 displacePhysReg(MI, BestReg); 975 assignVirtToPhysReg(MI, LR, BestReg); 976 } 977 978 void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { 979 assert(MO.isUndef() && "expected undef use"); 980 Register VirtReg = MO.getReg(); 981 assert(VirtReg.isVirtual() && "Expected virtreg"); 982 if (!shouldAllocateRegister(VirtReg)) 983 return; 984 985 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 986 MCPhysReg PhysReg; 987 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 988 PhysReg = LRI->PhysReg; 989 } else { 990 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 991 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 992 if (AllocationOrder.empty()) { 993 // All registers in the class were reserved. 994 // 995 // It might be OK to take any entry from the class as this is an undef 996 // use, but accepting this would give different behavior than greedy and 997 // basic. 998 PhysReg = getErrorAssignment(*LRI, *MO.getParent(), RC); 999 LRI->Error = true; 1000 } else 1001 PhysReg = AllocationOrder.front(); 1002 } 1003 1004 unsigned SubRegIdx = MO.getSubReg(); 1005 if (SubRegIdx != 0) { 1006 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 1007 MO.setSubReg(0); 1008 } 1009 MO.setReg(PhysReg); 1010 MO.setIsRenamable(true); 1011 } 1012 1013 /// Variation of defineVirtReg() with special handling for livethrough regs 1014 /// (tied or earlyclobber) that may interfere with preassigned uses. 1015 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1016 bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, 1017 unsigned OpNum, 1018 Register VirtReg) { 1019 if (!shouldAllocateRegister(VirtReg)) 1020 return false; 1021 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 1022 if (LRI != LiveVirtRegs.end()) { 1023 MCPhysReg PrevReg = LRI->PhysReg; 1024 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 1025 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 1026 << " (tied/earlyclobber resolution)\n"); 1027 freePhysReg(PrevReg); 1028 LRI->PhysReg = 0; 1029 allocVirtReg(MI, *LRI, 0, true); 1030 MachineBasicBlock::iterator InsertBefore = 1031 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1032 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 1033 << printReg(PrevReg, TRI) << '\n'); 1034 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 1035 TII->get(TargetOpcode::COPY), PrevReg) 1036 .addReg(LRI->PhysReg, llvm::RegState::Kill); 1037 } 1038 MachineOperand &MO = MI.getOperand(OpNum); 1039 if (MO.getSubReg() && !MO.isUndef()) { 1040 LRI->LastUse = &MI; 1041 } 1042 } 1043 return defineVirtReg(MI, OpNum, VirtReg, true); 1044 } 1045 1046 /// Allocates a register for VirtReg definition. Typically the register is 1047 /// already assigned from a use of the virtreg, however we still need to 1048 /// perform an allocation if: 1049 /// - It is a dead definition without any uses. 1050 /// - The value is live out and all uses are in different basic blocks. 1051 /// 1052 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1053 bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, 1054 Register VirtReg, bool LookAtPhysRegUses) { 1055 assert(VirtReg.isVirtual() && "Not a virtual register"); 1056 if (!shouldAllocateRegister(VirtReg)) 1057 return false; 1058 MachineOperand &MO = MI.getOperand(OpNum); 1059 LiveRegMap::iterator LRI; 1060 bool New; 1061 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1062 if (New) { 1063 if (!MO.isDead()) { 1064 if (mayLiveOut(VirtReg)) { 1065 LRI->LiveOut = true; 1066 } else { 1067 // It is a dead def without the dead flag; add the flag now. 1068 MO.setIsDead(true); 1069 } 1070 } 1071 } 1072 if (LRI->PhysReg == 0) { 1073 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 1074 } else { 1075 assert((!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) || LRI->Error) && 1076 "TODO: preassign mismatch"); 1077 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 1078 << " use existing assignment to " 1079 << printReg(LRI->PhysReg, TRI) << '\n'); 1080 } 1081 1082 MCPhysReg PhysReg = LRI->PhysReg; 1083 if (LRI->Reloaded || LRI->LiveOut) { 1084 if (!MI.isImplicitDef()) { 1085 MachineBasicBlock::iterator SpillBefore = 1086 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1087 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut 1088 << " RL: " << LRI->Reloaded << '\n'); 1089 bool Kill = LRI->LastUse == nullptr; 1090 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 1091 1092 // We need to place additional spills for each indirect destination of an 1093 // INLINEASM_BR. 1094 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 1095 int FI = StackSlotForVirtReg[VirtReg]; 1096 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1097 for (MachineOperand &MO : MI.operands()) { 1098 if (MO.isMBB()) { 1099 MachineBasicBlock *Succ = MO.getMBB(); 1100 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI, 1101 &RC, TRI, VirtReg); 1102 ++NumStores; 1103 Succ->addLiveIn(PhysReg); 1104 } 1105 } 1106 } 1107 1108 LRI->LastUse = nullptr; 1109 } 1110 LRI->LiveOut = false; 1111 LRI->Reloaded = false; 1112 } 1113 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1114 BundleVirtRegsMap[VirtReg] = PhysReg; 1115 } 1116 markRegUsedInInstr(PhysReg); 1117 return setPhysReg(MI, MO, PhysReg); 1118 } 1119 1120 /// Allocates a register for a VirtReg use. 1121 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1122 bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, 1123 Register VirtReg) { 1124 assert(VirtReg.isVirtual() && "Not a virtual register"); 1125 if (!shouldAllocateRegister(VirtReg)) 1126 return false; 1127 LiveRegMap::iterator LRI; 1128 bool New; 1129 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1130 if (New) { 1131 if (!MO.isKill()) { 1132 if (mayLiveOut(VirtReg)) { 1133 LRI->LiveOut = true; 1134 } else { 1135 // It is a last (killing) use without the kill flag; add the flag now. 1136 MO.setIsKill(true); 1137 } 1138 } 1139 } else { 1140 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 1141 } 1142 1143 // If necessary allocate a register. 1144 if (LRI->PhysReg == 0) { 1145 assert(!MO.isTied() && "tied op should be allocated"); 1146 Register Hint; 1147 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 1148 Hint = MI.getOperand(0).getReg(); 1149 if (Hint.isVirtual()) { 1150 assert(!shouldAllocateRegister(Hint)); 1151 Hint = Register(); 1152 } else { 1153 assert(Hint.isPhysical() && 1154 "Copy destination should already be assigned"); 1155 } 1156 } 1157 allocVirtReg(MI, *LRI, Hint, false); 1158 } 1159 1160 LRI->LastUse = &MI; 1161 1162 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1163 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1164 } 1165 markRegUsedInInstr(LRI->PhysReg); 1166 return setPhysReg(MI, MO, LRI->PhysReg); 1167 } 1168 1169 /// Query a physical register to use as a filler in contexts where the 1170 /// allocation has failed. This will raise an error, but not abort the 1171 /// compilation. 1172 MCPhysReg RegAllocFastImpl::getErrorAssignment(const LiveReg &LR, 1173 MachineInstr &MI, 1174 const TargetRegisterClass &RC) { 1175 MachineFunction &MF = *MI.getMF(); 1176 1177 // Avoid repeating the error every time a register is used. 1178 bool EmitError = !MF.getProperties().hasProperty( 1179 MachineFunctionProperties::Property::FailedRegAlloc); 1180 if (EmitError) 1181 MF.getProperties().set(MachineFunctionProperties::Property::FailedRegAlloc); 1182 1183 // If the allocation order was empty, all registers in the class were 1184 // probably reserved. Fall back to taking the first register in the class, 1185 // even if it's reserved. 1186 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1187 if (AllocationOrder.empty()) { 1188 const Function &Fn = MF.getFunction(); 1189 if (EmitError) { 1190 Fn.getContext().diagnose(DiagnosticInfoRegAllocFailure( 1191 "no registers from class available to allocate", Fn, 1192 MI.getDebugLoc())); 1193 } 1194 1195 ArrayRef<MCPhysReg> RawRegs = RC.getRegisters(); 1196 assert(!RawRegs.empty() && "register classes cannot have no registers"); 1197 return RawRegs.front(); 1198 } 1199 1200 if (!LR.Error && EmitError) { 1201 // Nothing we can do: Report an error and keep going with an invalid 1202 // allocation. 1203 if (MI.isInlineAsm()) { 1204 MI.emitInlineAsmError( 1205 "inline assembly requires more registers than available"); 1206 } else { 1207 const Function &Fn = MBB->getParent()->getFunction(); 1208 Fn.getContext().diagnose(DiagnosticInfoRegAllocFailure( 1209 "ran out of registers during register allocation", Fn, 1210 MI.getDebugLoc())); 1211 } 1212 } 1213 1214 return AllocationOrder.front(); 1215 } 1216 1217 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. 1218 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1219 bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1220 MCPhysReg PhysReg) { 1221 if (!MO.getSubReg()) { 1222 MO.setReg(PhysReg); 1223 MO.setIsRenamable(true); 1224 return false; 1225 } 1226 1227 // Handle subregister index. 1228 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1229 MO.setIsRenamable(true); 1230 // Note: We leave the subreg number around a little longer in case of defs. 1231 // This is so that the register freeing logic in allocateInstruction can still 1232 // recognize this as subregister defs. The code there will clear the number. 1233 if (!MO.isDef()) 1234 MO.setSubReg(0); 1235 1236 // A kill flag implies killing the full register. Add corresponding super 1237 // register kill. 1238 if (MO.isKill()) { 1239 MI.addRegisterKilled(PhysReg, TRI, true); 1240 // Conservatively assume implicit MOs were re-arranged 1241 return true; 1242 } 1243 1244 // A <def,read-undef> of a sub-register requires an implicit def of the full 1245 // register. 1246 if (MO.isDef() && MO.isUndef()) { 1247 if (MO.isDead()) 1248 MI.addRegisterDead(PhysReg, TRI, true); 1249 else 1250 MI.addRegisterDefined(PhysReg, TRI); 1251 // Conservatively assume implicit MOs were re-arranged 1252 return true; 1253 } 1254 return false; 1255 } 1256 1257 #ifndef NDEBUG 1258 1259 void RegAllocFastImpl::dumpState() const { 1260 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1261 ++Unit) { 1262 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1263 case regFree: 1264 break; 1265 case regPreAssigned: 1266 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1267 break; 1268 case regLiveIn: 1269 llvm_unreachable("Should not have regLiveIn in map"); 1270 default: { 1271 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1272 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1273 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1274 if (I->LiveOut || I->Reloaded) { 1275 dbgs() << '['; 1276 if (I->LiveOut) 1277 dbgs() << 'O'; 1278 if (I->Reloaded) 1279 dbgs() << 'R'; 1280 dbgs() << ']'; 1281 } 1282 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1283 break; 1284 } 1285 } 1286 } 1287 dbgs() << '\n'; 1288 // Check that LiveVirtRegs is the inverse. 1289 for (const LiveReg &LR : LiveVirtRegs) { 1290 Register VirtReg = LR.VirtReg; 1291 assert(VirtReg.isVirtual() && "Bad map key"); 1292 MCPhysReg PhysReg = LR.PhysReg; 1293 if (PhysReg != 0) { 1294 assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg"); 1295 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1296 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); 1297 } 1298 } 1299 } 1300 } 1301 #endif 1302 1303 /// Count number of defs consumed from each register class by \p Reg 1304 void RegAllocFastImpl::addRegClassDefCounts( 1305 MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const { 1306 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1307 1308 if (Reg.isVirtual()) { 1309 if (!shouldAllocateRegister(Reg)) 1310 return; 1311 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1312 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1313 RCIdx != RCIdxEnd; ++RCIdx) { 1314 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1315 // FIXME: Consider aliasing sub/super registers. 1316 if (OpRC->hasSubClassEq(IdxRC)) 1317 ++RegClassDefCounts[RCIdx]; 1318 } 1319 1320 return; 1321 } 1322 1323 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1324 RCIdx != RCIdxEnd; ++RCIdx) { 1325 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1326 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1327 if (IdxRC->contains(*Alias)) { 1328 ++RegClassDefCounts[RCIdx]; 1329 break; 1330 } 1331 } 1332 } 1333 } 1334 1335 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands 1336 /// that are to be allocated. Those are ordered in a way that small classes, 1337 /// early clobbers and livethroughs are allocated first. 1338 void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { 1339 DefOperandIndexes.clear(); 1340 1341 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1342 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1343 const MachineOperand &MO = MI.getOperand(I); 1344 if (!MO.isReg()) 1345 continue; 1346 Register Reg = MO.getReg(); 1347 if (MO.readsReg()) { 1348 if (Reg.isPhysical()) { 1349 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); 1350 markPhysRegUsedInInstr(Reg); 1351 } 1352 } 1353 1354 if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg)) 1355 DefOperandIndexes.push_back(I); 1356 } 1357 1358 // Most instructions only have one virtual def, so there's no point in 1359 // computing the possible number of defs for every register class. 1360 if (DefOperandIndexes.size() <= 1) 1361 return; 1362 1363 // Track number of defs which may consume a register from the class. This is 1364 // used to assign registers for possibly-too-small classes first. Example: 1365 // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd 1366 // registers first so that the gr32 don't use the gr32_abcd registers before 1367 // we assign these. 1368 SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1369 1370 for (const MachineOperand &MO : MI.all_defs()) 1371 addRegClassDefCounts(RegClassDefCounts, MO.getReg()); 1372 1373 llvm::sort(DefOperandIndexes, [&](unsigned I0, unsigned I1) { 1374 const MachineOperand &MO0 = MI.getOperand(I0); 1375 const MachineOperand &MO1 = MI.getOperand(I1); 1376 Register Reg0 = MO0.getReg(); 1377 Register Reg1 = MO1.getReg(); 1378 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1379 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1380 1381 // Identify regclass that are easy to use up completely just in this 1382 // instruction. 1383 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1384 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1385 1386 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1387 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1388 if (SmallClass0 > SmallClass1) 1389 return true; 1390 if (SmallClass0 < SmallClass1) 1391 return false; 1392 1393 // Allocate early clobbers and livethrough operands first. 1394 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1395 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1396 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1397 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1398 if (Livethrough0 > Livethrough1) 1399 return true; 1400 if (Livethrough0 < Livethrough1) 1401 return false; 1402 1403 // Tie-break rule: operand index. 1404 return I0 < I1; 1405 }); 1406 } 1407 1408 // Returns true if MO is tied and the operand it's tied to is not Undef (not 1409 // Undef is not the same thing as Def). 1410 static bool isTiedToNotUndef(const MachineOperand &MO) { 1411 if (!MO.isTied()) 1412 return false; 1413 const MachineInstr &MI = *MO.getParent(); 1414 unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO)); 1415 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1416 return !TiedMO.isUndef(); 1417 } 1418 1419 void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { 1420 // The basic algorithm here is: 1421 // 1. Mark registers of def operands as free 1422 // 2. Allocate registers to use operands and place reload instructions for 1423 // registers displaced by the allocation. 1424 // 1425 // However we need to handle some corner cases: 1426 // - pre-assigned defs and uses need to be handled before the other def/use 1427 // operands are processed to avoid the allocation heuristics clashing with 1428 // the pre-assignment. 1429 // - The "free def operands" step has to come last instead of first for tied 1430 // operands and early-clobbers. 1431 1432 InstrGen += 2; 1433 // In the event we ever get more than 2**31 instructions... 1434 if (LLVM_UNLIKELY(InstrGen == 0)) { 1435 UsedInInstr.assign(UsedInInstr.size(), 0); 1436 InstrGen = 2; 1437 } 1438 RegMasks.clear(); 1439 BundleVirtRegsMap.clear(); 1440 1441 // Scan for special cases; Apply pre-assigned register defs to state. 1442 bool HasPhysRegUse = false; 1443 bool HasRegMask = false; 1444 bool HasVRegDef = false; 1445 bool HasDef = false; 1446 bool HasEarlyClobber = false; 1447 bool NeedToAssignLiveThroughs = false; 1448 for (MachineOperand &MO : MI.operands()) { 1449 if (MO.isReg()) { 1450 Register Reg = MO.getReg(); 1451 if (Reg.isVirtual()) { 1452 if (!shouldAllocateRegister(Reg)) 1453 continue; 1454 if (MO.isDef()) { 1455 HasDef = true; 1456 HasVRegDef = true; 1457 if (MO.isEarlyClobber()) { 1458 HasEarlyClobber = true; 1459 NeedToAssignLiveThroughs = true; 1460 } 1461 if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) 1462 NeedToAssignLiveThroughs = true; 1463 } 1464 } else if (Reg.isPhysical()) { 1465 if (!MRI->isReserved(Reg)) { 1466 if (MO.isDef()) { 1467 HasDef = true; 1468 bool displacedAny = definePhysReg(MI, Reg); 1469 if (MO.isEarlyClobber()) 1470 HasEarlyClobber = true; 1471 if (!displacedAny) 1472 MO.setIsDead(true); 1473 } 1474 if (MO.readsReg()) 1475 HasPhysRegUse = true; 1476 } 1477 } 1478 } else if (MO.isRegMask()) { 1479 HasRegMask = true; 1480 RegMasks.push_back(MO.getRegMask()); 1481 } 1482 } 1483 1484 // Allocate virtreg defs. 1485 if (HasDef) { 1486 if (HasVRegDef) { 1487 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop 1488 // multiple times to ensure no operand is missed. 1489 bool ReArrangedImplicitOps = true; 1490 1491 // Special handling for early clobbers, tied operands or subregister defs: 1492 // Compared to "normal" defs these: 1493 // - Must not use a register that is pre-assigned for a use operand. 1494 // - In order to solve tricky inline assembly constraints we change the 1495 // heuristic to figure out a good operand order before doing 1496 // assignments. 1497 if (NeedToAssignLiveThroughs) { 1498 while (ReArrangedImplicitOps) { 1499 ReArrangedImplicitOps = false; 1500 findAndSortDefOperandIndexes(MI); 1501 for (unsigned OpIdx : DefOperandIndexes) { 1502 MachineOperand &MO = MI.getOperand(OpIdx); 1503 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1504 Register Reg = MO.getReg(); 1505 if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || 1506 (MO.getSubReg() && !MO.isUndef())) { 1507 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); 1508 } else { 1509 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); 1510 } 1511 // Implicit operands of MI were re-arranged, 1512 // re-compute DefOperandIndexes. 1513 if (ReArrangedImplicitOps) 1514 break; 1515 } 1516 } 1517 } else { 1518 // Assign virtual register defs. 1519 while (ReArrangedImplicitOps) { 1520 ReArrangedImplicitOps = false; 1521 for (MachineOperand &MO : MI.all_defs()) { 1522 Register Reg = MO.getReg(); 1523 if (Reg.isVirtual()) { 1524 ReArrangedImplicitOps = 1525 defineVirtReg(MI, MI.getOperandNo(&MO), Reg); 1526 if (ReArrangedImplicitOps) 1527 break; 1528 } 1529 } 1530 } 1531 } 1532 } 1533 1534 // Free registers occupied by defs. 1535 // Iterate operands in reverse order, so we see the implicit super register 1536 // defs first (we added them earlier in case of <def,read-undef>). 1537 for (MachineOperand &MO : reverse(MI.all_defs())) { 1538 Register Reg = MO.getReg(); 1539 1540 // subreg defs don't free the full register. We left the subreg number 1541 // around as a marker in setPhysReg() to recognize this case here. 1542 if (Reg.isPhysical() && MO.getSubReg() != 0) { 1543 MO.setSubReg(0); 1544 continue; 1545 } 1546 1547 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1548 "tied def assigned to clobbered register"); 1549 1550 // Do not free tied operands and early clobbers. 1551 if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) 1552 continue; 1553 if (!Reg) 1554 continue; 1555 if (Reg.isVirtual()) { 1556 assert(!shouldAllocateRegister(Reg)); 1557 continue; 1558 } 1559 assert(Reg.isPhysical()); 1560 if (MRI->isReserved(Reg)) 1561 continue; 1562 freePhysReg(Reg); 1563 unmarkRegUsedInInstr(Reg); 1564 } 1565 } 1566 1567 // Displace clobbered registers. 1568 if (HasRegMask) { 1569 assert(!RegMasks.empty() && "expected RegMask"); 1570 // MRI bookkeeping. 1571 for (const auto *RM : RegMasks) 1572 MRI->addPhysRegsUsedFromRegMask(RM); 1573 1574 // Displace clobbered registers. 1575 for (const LiveReg &LR : LiveVirtRegs) { 1576 MCPhysReg PhysReg = LR.PhysReg; 1577 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1578 displacePhysReg(MI, PhysReg); 1579 } 1580 } 1581 1582 // Apply pre-assigned register uses to state. 1583 if (HasPhysRegUse) { 1584 for (MachineOperand &MO : MI.operands()) { 1585 if (!MO.isReg() || !MO.readsReg()) 1586 continue; 1587 Register Reg = MO.getReg(); 1588 if (!Reg.isPhysical()) 1589 continue; 1590 if (MRI->isReserved(Reg)) 1591 continue; 1592 if (!usePhysReg(MI, Reg)) 1593 MO.setIsKill(true); 1594 } 1595 } 1596 1597 // Allocate virtreg uses and insert reloads as necessary. 1598 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple 1599 // times to ensure no operand is missed. 1600 bool HasUndefUse = false; 1601 bool ReArrangedImplicitMOs = true; 1602 while (ReArrangedImplicitMOs) { 1603 ReArrangedImplicitMOs = false; 1604 for (MachineOperand &MO : MI.operands()) { 1605 if (!MO.isReg() || !MO.isUse()) 1606 continue; 1607 Register Reg = MO.getReg(); 1608 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1609 continue; 1610 1611 if (MO.isUndef()) { 1612 HasUndefUse = true; 1613 continue; 1614 } 1615 1616 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1617 // the def block (removing the vreg uses). 1618 mayLiveIn(Reg); 1619 1620 assert(!MO.isInternalRead() && "Bundles not supported"); 1621 assert(MO.readsReg() && "reading use"); 1622 ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg); 1623 if (ReArrangedImplicitMOs) 1624 break; 1625 } 1626 } 1627 1628 // Allocate undef operands. This is a separate step because in a situation 1629 // like ` = OP undef %X, %X` both operands need the same register assign 1630 // so we should perform the normal assignment first. 1631 if (HasUndefUse) { 1632 for (MachineOperand &MO : MI.all_uses()) { 1633 Register Reg = MO.getReg(); 1634 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1635 continue; 1636 1637 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1638 allocVirtRegUndef(MO); 1639 } 1640 } 1641 1642 // Free early clobbers. 1643 if (HasEarlyClobber) { 1644 for (MachineOperand &MO : reverse(MI.all_defs())) { 1645 if (!MO.isEarlyClobber()) 1646 continue; 1647 assert(!MO.getSubReg() && "should be already handled in def processing"); 1648 1649 Register Reg = MO.getReg(); 1650 if (!Reg) 1651 continue; 1652 if (Reg.isVirtual()) { 1653 assert(!shouldAllocateRegister(Reg)); 1654 continue; 1655 } 1656 assert(Reg.isPhysical() && "should have register assigned"); 1657 1658 // We sometimes get odd situations like: 1659 // early-clobber %x0 = INSTRUCTION %x0 1660 // which is semantically questionable as the early-clobber should 1661 // apply before the use. But in practice we consider the use to 1662 // happen before the early clobber now. Don't free the early clobber 1663 // register in this case. 1664 if (MI.readsRegister(Reg, TRI)) 1665 continue; 1666 1667 freePhysReg(Reg); 1668 } 1669 } 1670 1671 LLVM_DEBUG(dbgs() << "<< " << MI); 1672 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1673 MI.getNumOperands() == 2) { 1674 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1675 Coalesced.push_back(&MI); 1676 } 1677 } 1678 1679 void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { 1680 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1681 // mostly constants and frame indices. 1682 assert(MI.isDebugValue() && "not a DBG_VALUE*"); 1683 for (const auto &MO : MI.debug_operands()) { 1684 if (!MO.isReg()) 1685 continue; 1686 Register Reg = MO.getReg(); 1687 if (!Reg.isVirtual()) 1688 continue; 1689 if (!shouldAllocateRegister(Reg)) 1690 continue; 1691 1692 // Already spilled to a stackslot? 1693 int SS = StackSlotForVirtReg[Reg]; 1694 if (SS != -1) { 1695 // Modify DBG_VALUE now that the value is in a spill slot. 1696 updateDbgValueForSpill(MI, SS, Reg); 1697 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1698 continue; 1699 } 1700 1701 // See if this virtual register has already been allocated to a physical 1702 // register or spilled to a stack slot. 1703 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1704 SmallVector<MachineOperand *> DbgOps; 1705 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1706 DbgOps.push_back(&Op); 1707 1708 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1709 // Update every use of Reg within MI. 1710 for (auto &RegMO : DbgOps) 1711 setPhysReg(MI, *RegMO, LRI->PhysReg); 1712 } else { 1713 DanglingDbgValues[Reg].push_back(&MI); 1714 } 1715 1716 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1717 // that future spills of Reg will have DBG_VALUEs. 1718 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1719 } 1720 } 1721 1722 void RegAllocFastImpl::handleBundle(MachineInstr &MI) { 1723 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1724 ++BundledMI; 1725 while (BundledMI->isBundledWithPred()) { 1726 for (MachineOperand &MO : BundledMI->operands()) { 1727 if (!MO.isReg()) 1728 continue; 1729 1730 Register Reg = MO.getReg(); 1731 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1732 continue; 1733 1734 DenseMap<Register, MCPhysReg>::iterator DI; 1735 DI = BundleVirtRegsMap.find(Reg); 1736 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1737 1738 setPhysReg(MI, MO, DI->second); 1739 } 1740 1741 ++BundledMI; 1742 } 1743 } 1744 1745 void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { 1746 this->MBB = &MBB; 1747 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1748 1749 PosIndexes.unsetInitialized(); 1750 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1751 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1752 1753 for (const auto &LiveReg : MBB.liveouts()) 1754 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1755 1756 Coalesced.clear(); 1757 1758 // Traverse block in reverse order allocating instructions one by one. 1759 for (MachineInstr &MI : reverse(MBB)) { 1760 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); 1761 1762 // Special handling for debug values. Note that they are not allowed to 1763 // affect codegen of the other instructions in any way. 1764 if (MI.isDebugValue()) { 1765 handleDebugValue(MI); 1766 continue; 1767 } 1768 1769 allocateInstruction(MI); 1770 1771 // Once BUNDLE header is assigned registers, same assignments need to be 1772 // done for bundled MIs. 1773 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1774 handleBundle(MI); 1775 } 1776 } 1777 1778 LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState()); 1779 1780 // Spill all physical registers holding virtual registers now. 1781 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1782 reloadAtBegin(MBB); 1783 1784 // Erase all the coalesced copies. We are delaying it until now because 1785 // LiveVirtRegs might refer to the instrs. 1786 for (MachineInstr *MI : Coalesced) 1787 MBB.erase(MI); 1788 NumCoalesced += Coalesced.size(); 1789 1790 for (auto &UDBGPair : DanglingDbgValues) { 1791 for (MachineInstr *DbgValue : UDBGPair.second) { 1792 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1793 // Nothing to do if the vreg was spilled in the meantime. 1794 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1795 continue; 1796 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1797 << '\n'); 1798 DbgValue->setDebugValueUndef(); 1799 } 1800 } 1801 DanglingDbgValues.clear(); 1802 1803 LLVM_DEBUG(MBB.dump()); 1804 } 1805 1806 bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { 1807 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1808 << "********** Function: " << MF.getName() << '\n'); 1809 MRI = &MF.getRegInfo(); 1810 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1811 TRI = STI.getRegisterInfo(); 1812 TII = STI.getInstrInfo(); 1813 MFI = &MF.getFrameInfo(); 1814 MRI->freezeReservedRegs(); 1815 RegClassInfo.runOnMachineFunction(MF); 1816 unsigned NumRegUnits = TRI->getNumRegUnits(); 1817 InstrGen = 0; 1818 UsedInInstr.assign(NumRegUnits, 0); 1819 1820 // initialize the virtual->physical register map to have a 'null' 1821 // mapping for all virtual registers 1822 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1823 StackSlotForVirtReg.resize(NumVirtRegs); 1824 LiveVirtRegs.setUniverse(NumVirtRegs); 1825 MayLiveAcrossBlocks.clear(); 1826 MayLiveAcrossBlocks.resize(NumVirtRegs); 1827 1828 // Loop over all of the basic blocks, eliminating virtual register references 1829 for (MachineBasicBlock &MBB : MF) 1830 allocateBasicBlock(MBB); 1831 1832 if (ClearVirtRegs) { 1833 // All machine operands and other references to virtual registers have been 1834 // replaced. Remove the virtual registers. 1835 MRI->clearVirtRegs(); 1836 } 1837 1838 StackSlotForVirtReg.clear(); 1839 LiveDbgValueMap.clear(); 1840 return true; 1841 } 1842 1843 PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, 1844 MachineFunctionAnalysisManager &) { 1845 MFPropsModifier _(*this, MF); 1846 RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); 1847 bool Changed = Impl.runOnMachineFunction(MF); 1848 if (!Changed) 1849 return PreservedAnalyses::all(); 1850 auto PA = getMachineFunctionPassPreservedAnalyses(); 1851 PA.preserveSet<CFGAnalyses>(); 1852 return PA; 1853 } 1854 1855 void RegAllocFastPass::printPipeline( 1856 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1857 bool PrintFilterName = Opts.FilterName != "all"; 1858 bool PrintNoClearVRegs = !Opts.ClearVRegs; 1859 bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; 1860 1861 OS << "regallocfast"; 1862 if (PrintFilterName || PrintNoClearVRegs) { 1863 OS << '<'; 1864 if (PrintFilterName) 1865 OS << "filter=" << Opts.FilterName; 1866 if (PrintSemicolon) 1867 OS << ';'; 1868 if (PrintNoClearVRegs) 1869 OS << "no-clear-vregs"; 1870 OS << '>'; 1871 } 1872 } 1873 1874 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } 1875 1876 FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor, 1877 bool ClearVirtRegs) { 1878 return new RegAllocFast(Ftor, ClearVirtRegs); 1879 } 1880