xref: /openbsd-src/sys/uvm/uvm_vnode.c (revision dcc91c2622318df8f66a9bca2d2864253df1bfc3)
1 /*	$OpenBSD: uvm_vnode.c,v 1.133 2024/07/24 12:16:21 mpi Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
41  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42  */
43 
44 /*
45  * uvm_vnode.c: the vnode pager.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/lock.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/conf.h>
57 #include <sys/rwlock.h>
58 #include <sys/dkio.h>
59 #include <sys/specdev.h>
60 
61 #include <uvm/uvm.h>
62 #include <uvm/uvm_vnode.h>
63 
64 /*
65  * private global data structure
66  *
67  * we keep a list of writeable active vnode-backed VM objects for sync op.
68  * we keep a simpleq of vnodes that are currently being sync'd.
69  */
70 
71 LIST_HEAD(, uvm_vnode)		uvn_wlist;	/* [K] writeable uvns */
72 SIMPLEQ_HEAD(, uvm_vnode)	uvn_sync_q;	/* [S] sync'ing uvns */
73 struct rwlock uvn_sync_lock;			/* locks sync operation */
74 
75 extern int rebooting;
76 
77 /*
78  * functions
79  */
80 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
81 void		 uvn_detach(struct uvm_object *);
82 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
83 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
84 		     vm_prot_t, int, int);
85 void		 uvn_init(void);
86 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
87 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
88 void		 uvn_reference(struct uvm_object *);
89 
90 /*
91  * master pager structure
92  */
93 const struct uvm_pagerops uvm_vnodeops = {
94 	.pgo_init = uvn_init,
95 	.pgo_reference = uvn_reference,
96 	.pgo_detach = uvn_detach,
97 	.pgo_flush = uvn_flush,
98 	.pgo_get = uvn_get,
99 	.pgo_put = uvn_put,
100 	.pgo_cluster = uvn_cluster,
101 	/* use generic version of this: see uvm_pager.c */
102 	.pgo_mk_pcluster = uvm_mk_pcluster,
103 };
104 
105 /*
106  * the ops!
107  */
108 /*
109  * uvn_init
110  *
111  * init pager private data structures.
112  */
113 void
114 uvn_init(void)
115 {
116 
117 	LIST_INIT(&uvn_wlist);
118 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
119 	rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
120 }
121 
122 /*
123  * uvn_attach
124  *
125  * attach a vnode structure to a VM object.  if the vnode is already
126  * attached, then just bump the reference count by one and return the
127  * VM object.   if not already attached, attach and return the new VM obj.
128  * the "accessprot" tells the max access the attaching thread wants to
129  * our pages.
130  *
131  * => in fact, nothing should be locked so that we can sleep here.
132  * => note that uvm_object is first thing in vnode structure, so their
133  *    pointers are equiv.
134  */
135 struct uvm_object *
136 uvn_attach(struct vnode *vp, vm_prot_t accessprot)
137 {
138 	struct uvm_vnode *uvn = vp->v_uvm;
139 	struct vattr vattr;
140 	int oldflags, result;
141 	struct partinfo pi;
142 	u_quad_t used_vnode_size = 0;
143 
144 	/* if we're mapping a BLK device, make sure it is a disk. */
145 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
146 		return NULL;
147 	}
148 
149 	/* first get a lock on the uvn. */
150 	rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
151 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
152 		uvn->u_flags |= UVM_VNODE_WANTED;
153 		rwsleep_nsec(uvn, uvn->u_obj.vmobjlock, PVM, "uvn_attach",
154 		    INFSLP);
155 	}
156 
157 	/*
158 	 * now uvn must not be in a blocked state.
159 	 * first check to see if it is already active, in which case
160 	 * we can bump the reference count, check to see if we need to
161 	 * add it to the writeable list, and then return.
162 	 */
163 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
164 
165 		/* regain vref if we were persisting */
166 		if (uvn->u_obj.uo_refs == 0) {
167 			vref(vp);
168 		}
169 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
170 
171 		/* check for new writeable uvn */
172 		if ((accessprot & PROT_WRITE) != 0 &&
173 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
174 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
175 			KERNEL_ASSERT_LOCKED();
176 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
177 		}
178 
179 		rw_exit(uvn->u_obj.vmobjlock);
180 		return (&uvn->u_obj);
181 	}
182 
183 	/*
184 	 * need to call VOP_GETATTR() to get the attributes, but that could
185 	 * block (due to I/O), so we want to unlock the object before calling.
186 	 * however, we want to keep anyone else from playing with the object
187 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
188 	 * prevents anyone from attaching to the vnode until we are done with
189 	 * it.
190 	 */
191 	uvn->u_flags = UVM_VNODE_ALOCK;
192 	rw_exit(uvn->u_obj.vmobjlock);
193 
194 	if (vp->v_type == VBLK) {
195 		/*
196 		 * We could implement this as a specfs getattr call, but:
197 		 *
198 		 *	(1) VOP_GETATTR() would get the file system
199 		 *	    vnode operation, not the specfs operation.
200 		 *
201 		 *	(2) All we want is the size, anyhow.
202 		 */
203 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
204 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
205 		if (result == 0) {
206 			/* XXX should remember blocksize */
207 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
208 			    (u_quad_t)DL_GETPSIZE(pi.part);
209 		}
210 	} else {
211 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
212 		if (result == 0)
213 			used_vnode_size = vattr.va_size;
214 	}
215 
216 	if (result != 0) {
217 		rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
218 		if (uvn->u_flags & UVM_VNODE_WANTED)
219 			wakeup(uvn);
220 		uvn->u_flags = 0;
221 		rw_exit(uvn->u_obj.vmobjlock);
222 		return NULL;
223 	}
224 
225 	/*
226 	 * make sure that the newsize fits within a vaddr_t
227 	 * XXX: need to revise addressing data types
228 	 */
229 #ifdef DEBUG
230 	if (vp->v_type == VBLK)
231 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
232 #endif
233 
234 	/* now set up the uvn. */
235 	KASSERT(uvn->u_obj.uo_refs == 0);
236 	uvn->u_obj.uo_refs++;
237 	oldflags = uvn->u_flags;
238 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
239 	uvn->u_nio = 0;
240 	uvn->u_size = used_vnode_size;
241 
242 	/*
243 	 * add a reference to the vnode.   this reference will stay as long
244 	 * as there is a valid mapping of the vnode.   dropped when the
245 	 * reference count goes to zero [and we either free or persist].
246 	 */
247 	vref(vp);
248 
249 	/* if write access, we need to add it to the wlist */
250 	if (accessprot & PROT_WRITE) {
251 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
252 		KERNEL_ASSERT_LOCKED();
253 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
254 	}
255 
256 	if (oldflags & UVM_VNODE_WANTED)
257 		wakeup(uvn);
258 
259 	return &uvn->u_obj;
260 }
261 
262 
263 /*
264  * uvn_reference
265  *
266  * duplicate a reference to a VM object.  Note that the reference
267  * count must already be at least one (the passed in reference) so
268  * there is no chance of the uvn being killed out here.
269  *
270  * => caller must be using the same accessprot as was used at attach time
271  */
272 
273 
274 void
275 uvn_reference(struct uvm_object *uobj)
276 {
277 #ifdef DEBUG
278 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
279 #endif
280 
281 	rw_enter(uobj->vmobjlock, RW_WRITE);
282 #ifdef DEBUG
283 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
284 		printf("uvn_reference: ref=%d, flags=0x%x\n",
285 		    uobj->uo_refs, uvn->u_flags);
286 		panic("uvn_reference: invalid state");
287 	}
288 #endif
289 	uobj->uo_refs++;
290 	rw_exit(uobj->vmobjlock);
291 }
292 
293 /*
294  * uvn_detach
295  *
296  * remove a reference to a VM object.
297  *
298  * => caller must call with map locked.
299  * => this starts the detach process, but doesn't have to finish it
300  *    (async i/o could still be pending).
301  */
302 void
303 uvn_detach(struct uvm_object *uobj)
304 {
305 	struct uvm_vnode *uvn;
306 	struct vnode *vp;
307 	int oldflags;
308 
309 	KERNEL_LOCK();
310 	rw_enter(uobj->vmobjlock, RW_WRITE);
311 	uobj->uo_refs--;			/* drop ref! */
312 	if (uobj->uo_refs) {			/* still more refs */
313 		rw_exit(uobj->vmobjlock);
314 		KERNEL_UNLOCK();
315 		return;
316 	}
317 
318 	/* get other pointers ... */
319 	uvn = (struct uvm_vnode *) uobj;
320 	vp = uvn->u_vnode;
321 
322 	/*
323 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
324 	 * to keep an active text file from being overwritten).
325 	 */
326 	vp->v_flag &= ~VTEXT;
327 
328 	/*
329 	 * we just dropped the last reference to the uvn.   see if we can
330 	 * let it "stick around".
331 	 */
332 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
333 		/* won't block */
334 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
335 		goto out;
336 	}
337 
338 	/* its a goner! */
339 	uvn->u_flags |= UVM_VNODE_DYING;
340 
341 	/*
342 	 * even though we may unlock in flush, no one can gain a reference
343 	 * to us until we clear the "dying" flag [because it blocks
344 	 * attaches].  we will not do that until after we've disposed of all
345 	 * the pages with uvn_flush().  note that before the flush the only
346 	 * pages that could be marked PG_BUSY are ones that are in async
347 	 * pageout by the daemon.  (there can't be any pending "get"'s
348 	 * because there are no references to the object).
349 	 */
350 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
351 
352 	/*
353 	 * given the structure of this pager, the above flush request will
354 	 * create the following state: all the pages that were in the object
355 	 * have either been free'd or they are marked PG_BUSY and in the
356 	 * middle of an async io. If we still have pages we set the "relkill"
357 	 * state, so that in the case the vnode gets terminated we know
358 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
359 	 */
360 	uvn->u_flags |= UVM_VNODE_RELKILL;
361 	/* wait on any outstanding io */
362 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
363 		uvn->u_flags |= UVM_VNODE_IOSYNC;
364 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
365 		    INFSLP);
366 	}
367 
368 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) {
369 		rw_exit(uobj->vmobjlock);
370 		KERNEL_UNLOCK();
371 		return;
372 	}
373 
374 	/*
375 	 * kill object now.   note that we can't be on the sync q because
376 	 * all references are gone.
377 	 */
378 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
379 		LIST_REMOVE(uvn, u_wlist);
380 	}
381 	KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
382 	oldflags = uvn->u_flags;
383 	uvn->u_flags = 0;
384 
385 	/* wake up any sleepers */
386 	if (oldflags & UVM_VNODE_WANTED)
387 		wakeup(uvn);
388 out:
389 	rw_exit(uobj->vmobjlock);
390 
391 	/* drop our reference to the vnode. */
392 	vrele(vp);
393 	KERNEL_UNLOCK();
394 }
395 
396 /*
397  * uvm_vnp_terminate: external hook to clear out a vnode's VM
398  *
399  * called in two cases:
400  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
401  *      count) needs to be freed so that a vnode can be reused.  this
402  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
403  *      the free list is still attached (i.e. not VBAD) then vgone is
404  *	called.   as part of the vgone trace this should get called to
405  *	free the vm object.   this is the common case.
406  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
407  *	"umount -f") the vgone() function is called on active vnodes
408  *	on the mounted file systems to kill their data (the vnodes become
409  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
410  *	call here (even if the uvn is still in use -- i.e. has a non-zero
411  *	reference count).  this case happens at "umount -f" and during a
412  *	"reboot/halt" operation.
413  *
414  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
415  *	[protects us from getting a vnode that is already in the DYING
416  *	 state...]
417  * => in case [2] the uvn is still alive after this call, but all I/O
418  *	ops will fail (due to the backing vnode now being "dead").  this
419  *	will prob. kill any process using the uvn due to pgo_get failing.
420  */
421 void
422 uvm_vnp_terminate(struct vnode *vp)
423 {
424 	struct uvm_vnode *uvn = vp->v_uvm;
425 	struct uvm_object *uobj = &uvn->u_obj;
426 	int oldflags;
427 
428 	/* check if it is valid */
429 	rw_enter(uobj->vmobjlock, RW_WRITE);
430 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
431 		rw_exit(uobj->vmobjlock);
432 		return;
433 	}
434 
435 	/*
436 	 * must be a valid uvn that is not already dying (because XLOCK
437 	 * protects us from that).   the uvn can't in the ALOCK state
438 	 * because it is valid, and uvn's that are in the ALOCK state haven't
439 	 * been marked valid yet.
440 	 */
441 #ifdef DEBUG
442 	/*
443 	 * debug check: are we yanking the vnode out from under our uvn?
444 	 */
445 	if (uvn->u_obj.uo_refs) {
446 		printf("uvm_vnp_terminate(%p): terminating active vnode "
447 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
448 	}
449 #endif
450 
451 	/*
452 	 * it is possible that the uvn was detached and is in the relkill
453 	 * state [i.e. waiting for async i/o to finish].
454 	 * we take over the vnode now and cancel the relkill.
455 	 * we want to know when the i/o is done so we can recycle right
456 	 * away.   note that a uvn can only be in the RELKILL state if it
457 	 * has a zero reference count.
458 	 */
459 	if (uvn->u_flags & UVM_VNODE_RELKILL)
460 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
461 
462 	/*
463 	 * block the uvn by setting the dying flag, and then flush the
464 	 * pages.
465 	 *
466 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
467 	 * that uvn_io doesn't attempt to VOP_LOCK again.
468 	 *
469 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
470 	 *	due to a forceful unmount might not be a good idea.  maybe we
471 	 *	need a way to pass in this info to uvn_flush through a
472 	 *	pager-defined PGO_ constant [currently there are none].
473 	 */
474 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
475 
476 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
477 
478 	/*
479 	 * as we just did a flush we expect all the pages to be gone or in
480 	 * the process of going.  sleep to wait for the rest to go [via iosync].
481 	 */
482 	while (uvn->u_obj.uo_npages) {
483 #ifdef DEBUG
484 		struct vm_page *pp;
485 		RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
486 			if ((pp->pg_flags & PG_BUSY) == 0)
487 				panic("uvm_vnp_terminate: detected unbusy pg");
488 		}
489 		if (uvn->u_nio == 0)
490 			panic("uvm_vnp_terminate: no I/O to wait for?");
491 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
492 		/*
493 		 * XXXCDC: this is unlikely to happen without async i/o so we
494 		 * put a printf in just to keep an eye on it.
495 		 */
496 #endif
497 		uvn->u_flags |= UVM_VNODE_IOSYNC;
498 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
499 		    INFSLP);
500 	}
501 
502 	/*
503 	 * done.   now we free the uvn if its reference count is zero
504 	 * (true if we are zapping a persisting uvn).   however, if we are
505 	 * terminating a uvn with active mappings we let it live ... future
506 	 * calls down to the vnode layer will fail.
507 	 */
508 	oldflags = uvn->u_flags;
509 	if (uvn->u_obj.uo_refs) {
510 		/*
511 		 * uvn must live on it is dead-vnode state until all references
512 		 * are gone.   restore flags.    clear CANPERSIST state.
513 		 */
514 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
515 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
516 	} else {
517 		/*
518 		 * free the uvn now.   note that the vref reference is already
519 		 * gone [it is dropped when we enter the persist state].
520 		 */
521 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
522 			panic("uvm_vnp_terminate: io sync wanted bit set");
523 
524 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
525 			LIST_REMOVE(uvn, u_wlist);
526 		}
527 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
528 	}
529 
530 	if (oldflags & UVM_VNODE_WANTED)
531 		wakeup(uvn);
532 
533 	rw_exit(uobj->vmobjlock);
534 }
535 
536 /*
537  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
538  * through the buffer cache and allow I/O in any size.  These VOPs use
539  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
540  * go through the buffer cache or allow I/O sizes larger than a
541  * block].  we will eventually want to change this.
542  *
543  * issues to consider:
544  *   uvm provides the uvm_aiodesc structure for async i/o management.
545  * there are two tailq's in the uvm. structure... one for pending async
546  * i/o and one for "done" async i/o.   to do an async i/o one puts
547  * an aiodesc on the "pending" list (protected by splbio()), starts the
548  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
549  * some sort of "i/o done" function to be called (at splbio(), interrupt
550  * time).   this function should remove the aiodesc from the pending list
551  * and place it on the "done" list and wakeup the daemon.   the daemon
552  * will run at normal spl() and will remove all items from the "done"
553  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
554  * [in the old vm code, this was done by calling the "put" routine with
555  * null arguments which made the code harder to read and understand because
556  * you had one function ("put") doing two things.]
557  *
558  * so the current pager needs:
559  *   int uvn_aiodone(struct uvm_aiodesc *)
560  *
561  * => return 0 (aio finished, free it). otherwise requeue for later collection.
562  * => called with pageq's locked by the daemon.
563  *
564  * general outline:
565  * - drop "u_nio" (this req is done!)
566  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
567  * - get "page" structures (atop?).
568  * - handle "wanted" pages
569  * dont forget to look at "object" wanted flag in all cases.
570  */
571 
572 /*
573  * uvn_flush: flush pages out of a uvm object.
574  *
575  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
576  *	might want to unlock higher level resources (e.g. vm_map)
577  *	before calling flush.
578  * => if PGO_CLEANIT is not set, then we will not block
579  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
580  *	for flushing.
581  * => NOTE: we are allowed to lock the page queues, so the caller
582  *	must not be holding the lock on them [e.g. pagedaemon had
583  *	better not call us with the queues locked]
584  * => we return TRUE unless we encountered some sort of I/O error
585  *
586  * comment on "cleaning" object and PG_BUSY pages:
587  *	this routine is holding the lock on the object.   the only time
588  *	that it can run into a PG_BUSY page that it does not own is if
589  *	some other process has started I/O on the page (e.g. either
590  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
591  *	in, then it can not be dirty (!PG_CLEAN) because no one has
592  *	had a chance to modify it yet.    if the PG_BUSY page is being
593  *	paged out then it means that someone else has already started
594  *	cleaning the page for us (how nice!).    in this case, if we
595  *	have syncio specified, then after we make our pass through the
596  *	object we need to wait for the other PG_BUSY pages to clear
597  *	off (i.e. we need to do an iosync).   also note that once a
598  *	page is PG_BUSY it must stay in its object until it is un-busyed.
599  */
600 boolean_t
601 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
602 {
603 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
604 	struct vm_page *pp, *ptmp;
605 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
606 	struct pglist dead;
607 	int npages, result, lcv;
608 	boolean_t retval, need_iosync, needs_clean;
609 	voff_t curoff;
610 
611 	KASSERT(rw_write_held(uobj->vmobjlock));
612 	TAILQ_INIT(&dead);
613 
614 	/* get init vals and determine how we are going to traverse object */
615 	need_iosync = FALSE;
616 	retval = TRUE;		/* return value */
617 	if (flags & PGO_ALLPAGES) {
618 		start = 0;
619 		stop = round_page(uvn->u_size);
620 	} else {
621 		start = trunc_page(start);
622 		stop = MIN(round_page(stop), round_page(uvn->u_size));
623 	}
624 
625 	/*
626 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
627 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
628 	 * is wrong it will only prevent us from clustering... it won't break
629 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
630 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
631 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
632 	 * bit is always up to date since there are no mappings).
633 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
634 	 */
635 	if ((flags & PGO_CLEANIT) != 0) {
636 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
637 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
638 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
639 				atomic_clearbits_int(&pp->pg_flags,
640 				    PG_CLEANCHK);
641 		}
642 	}
643 
644 	ppsp = NULL;		/* XXX: shut up gcc */
645 	uvm_lock_pageq();
646 	/* locked: both page queues */
647 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
648 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
649 			continue;
650 		/*
651 		 * handle case where we do not need to clean page (either
652 		 * because we are not clean or because page is not dirty or
653 		 * is busy):
654 		 *
655 		 * NOTE: we are allowed to deactivate a non-wired active
656 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
657 		 * queue it must stay put until it is !PG_BUSY (so as not to
658 		 * confuse pagedaemon).
659 		 */
660 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
661 			needs_clean = FALSE;
662 			if ((pp->pg_flags & PG_BUSY) != 0 &&
663 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
664 			             (PGO_CLEANIT|PGO_SYNCIO))
665 				need_iosync = TRUE;
666 		} else {
667 			/*
668 			 * freeing: nuke all mappings so we can sync
669 			 * PG_CLEAN bit with no race
670 			 */
671 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
672 			    (flags & PGO_FREE) != 0 &&
673 			    (pp->pg_flags & PQ_ACTIVE) != 0)
674 				pmap_page_protect(pp, PROT_NONE);
675 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
676 			    pmap_is_modified(pp))
677 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
678 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
679 
680 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
681 		}
682 
683 		/* if we don't need a clean, deactivate/free pages then cont. */
684 		if (!needs_clean) {
685 			if (flags & PGO_DEACTIVATE) {
686 				if (pp->wire_count == 0) {
687 					pmap_page_protect(pp, PROT_NONE);
688 					uvm_pagedeactivate(pp);
689 				}
690 			} else if (flags & PGO_FREE) {
691 				if (pp->pg_flags & PG_BUSY) {
692 					uvm_unlock_pageq();
693 					uvm_pagewait(pp, uobj->vmobjlock,
694 					    "uvn_flsh");
695 					rw_enter(uobj->vmobjlock, RW_WRITE);
696 					uvm_lock_pageq();
697 					curoff -= PAGE_SIZE;
698 					continue;
699 				} else {
700 					pmap_page_protect(pp, PROT_NONE);
701 					/* removed page from object */
702 					uvm_pageclean(pp);
703 					TAILQ_INSERT_HEAD(&dead, pp, pageq);
704 				}
705 			}
706 			continue;
707 		}
708 
709 		/*
710 		 * pp points to a page in the object that we are
711 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
712 		 * for cleaning (PGO_CLEANIT).  we clean it now.
713 		 *
714 		 * let uvm_pager_put attempted a clustered page out.
715 		 * note: locked: page queues.
716 		 */
717 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
718 		UVM_PAGE_OWN(pp, "uvn_flush");
719 		pmap_page_protect(pp, PROT_READ);
720 		/* if we're async, free the page in aiodoned */
721 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
722 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
723 ReTry:
724 		ppsp = pps;
725 		npages = sizeof(pps) / sizeof(struct vm_page *);
726 
727 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
728 			   flags | PGO_DOACTCLUST, start, stop);
729 
730 		/*
731 		 * if we did an async I/O it is remotely possible for the
732 		 * async i/o to complete and the page "pp" be freed or what
733 		 * not before we get a chance to relock the object. Therefore,
734 		 * we only touch it when it won't be freed, RELEASED took care
735 		 * of the rest.
736 		 */
737 		uvm_lock_pageq();
738 
739 		/*
740 		 * VM_PAGER_AGAIN: given the structure of this pager, this
741 		 * can only happen when we are doing async I/O and can't
742 		 * map the pages into kernel memory (pager_map) due to lack
743 		 * of vm space.   if this happens we drop back to sync I/O.
744 		 */
745 		if (result == VM_PAGER_AGAIN) {
746 			/*
747 			 * it is unlikely, but page could have been released
748 			 * we ignore this now and retry the I/O.
749 			 * we will detect and
750 			 * handle the released page after the syncio I/O
751 			 * completes.
752 			 */
753 #ifdef DIAGNOSTIC
754 			if (flags & PGO_SYNCIO)
755 	panic("%s: PGO_SYNCIO return 'try again' error (impossible)", __func__);
756 #endif
757 			flags |= PGO_SYNCIO;
758 			if (flags & PGO_FREE)
759 				atomic_clearbits_int(&pp->pg_flags,
760 				    PG_RELEASED);
761 
762 			goto ReTry;
763 		}
764 
765 		/*
766 		 * the cleaning operation is now done.   finish up.  note that
767 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
768 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
769 		 * to us in ppsp/npages.
770 		 */
771 		/*
772 		 * for pending async i/o if we are not deactivating
773 		 * we can move on to the next page. aiodoned deals with
774 		 * the freeing case for us.
775 		 */
776 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
777 			continue;
778 
779 		/*
780 		 * need to look at each page of the I/O operation, and do what
781 		 * we gotta do.
782 		 */
783 		for (lcv = 0 ; lcv < npages; lcv++) {
784 			ptmp = ppsp[lcv];
785 			/*
786 			 * verify the page didn't get moved
787 			 */
788 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
789 				continue;
790 
791 			/*
792 			 * unbusy the page if I/O is done.   note that for
793 			 * pending I/O it is possible that the I/O op
794 			 * finished
795 			 * (in which case the page is no longer busy).
796 			 */
797 			if (result != VM_PAGER_PEND) {
798 				if (ptmp->pg_flags & PG_WANTED)
799 					wakeup(ptmp);
800 
801 				atomic_clearbits_int(&ptmp->pg_flags,
802 				    PG_WANTED|PG_BUSY);
803 				UVM_PAGE_OWN(ptmp, NULL);
804 				atomic_setbits_int(&ptmp->pg_flags,
805 				    PG_CLEAN|PG_CLEANCHK);
806 				if ((flags & PGO_FREE) == 0)
807 					pmap_clear_modify(ptmp);
808 			}
809 
810 			/* dispose of page */
811 			if (flags & PGO_DEACTIVATE) {
812 				if (ptmp->wire_count == 0) {
813 					pmap_page_protect(ptmp, PROT_NONE);
814 					uvm_pagedeactivate(ptmp);
815 				}
816 			} else if (flags & PGO_FREE &&
817 			    result != VM_PAGER_PEND) {
818 				if (result != VM_PAGER_OK) {
819 					static struct timeval lasttime;
820 					static const struct timeval interval =
821 					    { 5, 0 };
822 
823 					if (ratecheck(&lasttime, &interval)) {
824 						printf("%s: obj=%p, "
825 						   "offset=0x%llx.  error "
826 						   "during pageout.\n",
827 						    __func__, pp->uobject,
828 						    (long long)pp->offset);
829 						printf("%s: WARNING: "
830 						    "changes to page may be "
831 						    "lost!\n", __func__);
832 					}
833 					retval = FALSE;
834 				}
835 				pmap_page_protect(ptmp, PROT_NONE);
836 				uvm_pageclean(ptmp);
837 				TAILQ_INSERT_TAIL(&dead, ptmp, pageq);
838 			}
839 
840 		}		/* end of "lcv" for loop */
841 
842 	}		/* end of "pp" for loop */
843 
844 	/* done with pagequeues: unlock */
845 	uvm_unlock_pageq();
846 
847 	/* now wait for all I/O if required. */
848 	if (need_iosync) {
849 		while (uvn->u_nio != 0) {
850 			uvn->u_flags |= UVM_VNODE_IOSYNC;
851 			rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM,
852 			    "uvn_flush", INFSLP);
853 		}
854 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
855 			wakeup(&uvn->u_flags);
856 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
857 	}
858 
859 	uvm_pglistfree(&dead);
860 
861 	return retval;
862 }
863 
864 /*
865  * uvn_cluster
866  *
867  * we are about to do I/O in an object at offset.   this function is called
868  * to establish a range of offsets around "offset" in which we can cluster
869  * I/O.
870  */
871 
872 void
873 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
874     voff_t *hoffset)
875 {
876 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
877 	*loffset = offset;
878 
879 	KASSERT(rw_write_held(uobj->vmobjlock));
880 
881 	if (*loffset >= uvn->u_size)
882 		panic("uvn_cluster: offset out of range");
883 
884 	/*
885 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
886 	 */
887 	*hoffset = *loffset + MAXBSIZE;
888 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
889 		*hoffset = round_page(uvn->u_size);
890 }
891 
892 /*
893  * uvn_put: flush page data to backing store.
894  *
895  * => prefer map unlocked (not required)
896  * => flags: PGO_SYNCIO -- use sync. I/O
897  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
898  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
899  *	[thus we never do async i/o!  see iodone comment]
900  */
901 int
902 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
903 {
904 	struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
905 	int dying, retval;
906 
907 	KASSERT(rw_write_held(uobj->vmobjlock));
908 
909 	/*
910 	 * Unless we're recycling this vnode, grab a reference to it
911 	 * to prevent it from being recycled from under our feet.
912 	 * This also makes sure we can don't panic if we end up in
913 	 * uvn_vnp_uncache() as a result of the I/O operation as that
914 	 * function assumes we hold a reference.
915 	 *
916 	 * If the vnode is in the process of being recycled by someone
917 	 * else, grabbing a reference will fail.  In that case the
918 	 * pages will already be written out by whoever is cleaning
919 	 * the vnode, so simply return VM_PAGER_AGAIN such that we
920 	 * skip these pages.
921 	 */
922 	dying = (uvn->u_flags & UVM_VNODE_DYING);
923 	if (!dying) {
924 		if (vget(uvn->u_vnode, LK_NOWAIT))
925 			return VM_PAGER_AGAIN;
926 	}
927 
928 	retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
929 
930 	if (!dying)
931 		vrele(uvn->u_vnode);
932 
933 	return retval;
934 }
935 
936 /*
937  * uvn_get: get pages (synchronously) from backing store
938  *
939  * => prefer map unlocked (not required)
940  * => flags: PGO_ALLPAGES: get all of the pages
941  *           PGO_LOCKED: fault data structures are locked
942  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
943  * => NOTE: caller must check for released pages!!
944  */
945 int
946 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
947     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
948 {
949 	voff_t current_offset;
950 	struct vm_page *ptmp;
951 	int lcv, result, gotpages;
952 	boolean_t done;
953 
954 	KASSERT(((flags & PGO_LOCKED) != 0 && rw_lock_held(uobj->vmobjlock)) ||
955 	    (flags & PGO_LOCKED) == 0);
956 
957 	/* step 1: handled the case where fault data structures are locked. */
958 	if (flags & PGO_LOCKED) {
959 		/*
960 		 * gotpages is the current number of pages we've gotten (which
961 		 * we pass back up to caller via *npagesp.
962 		 */
963 		gotpages = 0;
964 
965 		/*
966 		 * step 1a: get pages that are already resident.   only do this
967 		 * if the data structures are locked (i.e. the first time
968 		 * through).
969 		 */
970 		done = TRUE;	/* be optimistic */
971 
972 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
973 		    lcv++, current_offset += PAGE_SIZE) {
974 
975 			/* do we care about this page?  if not, skip it */
976 			if (pps[lcv] == PGO_DONTCARE)
977 				continue;
978 
979 			/* lookup page */
980 			ptmp = uvm_pagelookup(uobj, current_offset);
981 
982 			/* to be useful must get a non-busy, non-released pg */
983 			if (ptmp == NULL ||
984 			    (ptmp->pg_flags & PG_BUSY) != 0) {
985 				if (lcv == centeridx || (flags & PGO_ALLPAGES)
986 				    != 0)
987 					done = FALSE;	/* need to do a wait or I/O! */
988 				continue;
989 			}
990 
991 			/*
992 			 * useful page: busy it and plug it in our
993 			 * result array
994 			 */
995 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
996 			UVM_PAGE_OWN(ptmp, "uvn_get1");
997 			pps[lcv] = ptmp;
998 			gotpages++;
999 
1000 		}
1001 
1002 		/*
1003 		 * XXX: given the "advice", should we consider async read-ahead?
1004 		 * XXX: fault current does deactivate of pages behind us.  is
1005 		 * this good (other callers might now).
1006 		 */
1007 		/*
1008 		 * XXX: read-ahead currently handled by buffer cache (bread)
1009 		 * level.
1010 		 * XXX: no async i/o available.
1011 		 * XXX: so we don't do anything now.
1012 		 */
1013 
1014 		/*
1015 		 * step 1c: now we've either done everything needed or we to
1016 		 * unlock and do some waiting or I/O.
1017 		 */
1018 
1019 		*npagesp = gotpages;		/* let caller know */
1020 		if (done)
1021 			return VM_PAGER_OK;		/* bingo! */
1022 		else
1023 			return VM_PAGER_UNLOCK;
1024 	}
1025 
1026 	/*
1027 	 * step 2: get non-resident or busy pages.
1028 	 * data structures are unlocked.
1029 	 *
1030 	 * XXX: because we can't do async I/O at this level we get things
1031 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
1032 	 * async-read-ahead for us at a lower level.
1033 	 */
1034 	for (lcv = 0, current_offset = offset;
1035 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
1036 
1037 		/* skip over pages we've already gotten or don't want */
1038 		/* skip over pages we don't _have_ to get */
1039 		if (pps[lcv] != NULL || (lcv != centeridx &&
1040 		    (flags & PGO_ALLPAGES) == 0))
1041 			continue;
1042 
1043 		/*
1044 		 * we have yet to locate the current page (pps[lcv]).   we first
1045 		 * look for a page that is already at the current offset.   if
1046 		 * we fine a page, we check to see if it is busy or released.
1047 		 * if that is the case, then we sleep on the page until it is
1048 		 * no longer busy or released and repeat the lookup.    if the
1049 		 * page we found is neither busy nor released, then we busy it
1050 		 * (so we own it) and plug it into pps[lcv].   this breaks the
1051 		 * following while loop and indicates we are ready to move on
1052 		 * to the next page in the "lcv" loop above.
1053 		 *
1054 		 * if we exit the while loop with pps[lcv] still set to NULL,
1055 		 * then it means that we allocated a new busy/fake/clean page
1056 		 * ptmp in the object and we need to do I/O to fill in the data.
1057 		 */
1058 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
1059 			/* look for a current page */
1060 			ptmp = uvm_pagelookup(uobj, current_offset);
1061 
1062 			/* nope?   allocate one now (if we can) */
1063 			if (ptmp == NULL) {
1064 				ptmp = uvm_pagealloc(uobj, current_offset,
1065 				    NULL, 0);
1066 
1067 				/* out of RAM? */
1068 				if (ptmp == NULL) {
1069 					uvm_wait("uvn_getpage");
1070 
1071 					/* goto top of pps while loop */
1072 					continue;
1073 				}
1074 
1075 				/*
1076 				 * got new page ready for I/O.  break pps
1077 				 * while loop.  pps[lcv] is still NULL.
1078 				 */
1079 				break;
1080 			}
1081 
1082 			/* page is there, see if we need to wait on it */
1083 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1084 				uvm_pagewait(ptmp, uobj->vmobjlock, "uvn_get");
1085 				rw_enter(uobj->vmobjlock, RW_WRITE);
1086 				continue;	/* goto top of pps while loop */
1087 			}
1088 
1089 			/*
1090 			 * if we get here then the page has become resident
1091 			 * and unbusy between steps 1 and 2.  we busy it
1092 			 * now (so we own it) and set pps[lcv] (so that we
1093 			 * exit the while loop).
1094 			 */
1095 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1096 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1097 			pps[lcv] = ptmp;
1098 		}
1099 
1100 		/*
1101 		 * if we own the a valid page at the correct offset, pps[lcv]
1102 		 * will point to it.   nothing more to do except go to the
1103 		 * next page.
1104 		 */
1105 		if (pps[lcv])
1106 			continue;			/* next lcv */
1107 
1108 		/*
1109 		 * we have a "fake/busy/clean" page that we just allocated.  do
1110 		 * I/O to fill it with valid data.
1111 		 */
1112 		result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1113 		    PGO_SYNCIO|PGO_NOWAIT, UIO_READ);
1114 
1115 		/*
1116 		 * I/O done.  because we used syncio the result can not be
1117 		 * PEND or AGAIN.
1118 		 */
1119 		if (result != VM_PAGER_OK) {
1120 			if (ptmp->pg_flags & PG_WANTED)
1121 				wakeup(ptmp);
1122 
1123 			atomic_clearbits_int(&ptmp->pg_flags,
1124 			    PG_WANTED|PG_BUSY);
1125 			UVM_PAGE_OWN(ptmp, NULL);
1126 			uvm_lock_pageq();
1127 			uvm_pagefree(ptmp);
1128 			uvm_unlock_pageq();
1129 			rw_exit(uobj->vmobjlock);
1130 			return result;
1131 		}
1132 
1133 		/*
1134 		 * we got the page!   clear the fake flag (indicates valid
1135 		 * data now in page) and plug into our result array.   note
1136 		 * that page is still busy.
1137 		 *
1138 		 * it is the callers job to:
1139 		 * => check if the page is released
1140 		 * => unbusy the page
1141 		 * => activate the page
1142 		 */
1143 
1144 		/* data is valid ... */
1145 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1146 		pmap_clear_modify(ptmp);		/* ... and clean */
1147 		pps[lcv] = ptmp;
1148 
1149 	}
1150 
1151 
1152 	rw_exit(uobj->vmobjlock);
1153 	return (VM_PAGER_OK);
1154 }
1155 
1156 /*
1157  * uvn_io: do I/O to a vnode
1158  *
1159  * => prefer map unlocked (not required)
1160  * => flags: PGO_SYNCIO -- use sync. I/O
1161  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1162  *	[thus we never do async i/o!  see iodone comment]
1163  */
1164 
1165 int
1166 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1167 {
1168 	struct uvm_object *uobj = &uvn->u_obj;
1169 	struct vnode *vn;
1170 	struct uio uio;
1171 	struct iovec iov;
1172 	vaddr_t kva;
1173 	off_t file_offset;
1174 	int waitf, result, mapinflags;
1175 	size_t got, wanted;
1176 	int vnlocked, netunlocked = 0;
1177 	int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0;
1178 	voff_t uvnsize;
1179 
1180 	KASSERT(rw_write_held(uobj->vmobjlock));
1181 
1182 	/* init values */
1183 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1184 	vn = uvn->u_vnode;
1185 	file_offset = pps[0]->offset;
1186 
1187 	/* check for sync'ing I/O. */
1188 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1189 		if (waitf == M_NOWAIT) {
1190 			return VM_PAGER_AGAIN;
1191 		}
1192 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1193 		rwsleep_nsec(&uvn->u_flags, uobj->vmobjlock, PVM, "uvn_iosync",
1194 		    INFSLP);
1195 	}
1196 
1197 	/* check size */
1198 	if (file_offset >= uvn->u_size) {
1199 		return VM_PAGER_BAD;
1200 	}
1201 
1202 	/* first try and map the pages in (without waiting) */
1203 	mapinflags = (rw == UIO_READ) ?
1204 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1205 
1206 	kva = uvm_pagermapin(pps, npages, mapinflags);
1207 	if (kva == 0 && waitf == M_NOWAIT) {
1208 		return VM_PAGER_AGAIN;
1209 	}
1210 
1211 	/*
1212 	 * ok, now bump u_nio up.   at this point we are done with uvn
1213 	 * and can unlock it.   if we still don't have a kva, try again
1214 	 * (this time with sleep ok).
1215 	 */
1216 	uvn->u_nio++;			/* we have an I/O in progress! */
1217 	vnlocked = (uvn->u_flags & UVM_VNODE_VNISLOCKED);
1218 	uvnsize = uvn->u_size;
1219 	rw_exit(uobj->vmobjlock);
1220 	if (kva == 0)
1221 		kva = uvm_pagermapin(pps, npages,
1222 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1223 
1224 	/*
1225 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1226 	 * get touched (so we can look at "offset" without having to lock
1227 	 * the object).  set up for I/O.
1228 	 */
1229 	/* fill out uio/iov */
1230 	iov.iov_base = (caddr_t) kva;
1231 	wanted = (size_t)npages << PAGE_SHIFT;
1232 	if (file_offset + wanted > uvnsize)
1233 		wanted = uvnsize - file_offset;	/* XXX: needed? */
1234 	iov.iov_len = wanted;
1235 	uio.uio_iov = &iov;
1236 	uio.uio_iovcnt = 1;
1237 	uio.uio_offset = file_offset;
1238 	uio.uio_segflg = UIO_SYSSPACE;
1239 	uio.uio_rw = rw;
1240 	uio.uio_resid = wanted;
1241 	uio.uio_procp = curproc;
1242 
1243 	/*
1244 	 * This process may already have the NET_LOCK(), if we
1245 	 * faulted in copyin() or copyout() in the network stack.
1246 	 */
1247 	if (rw_status(&netlock) == RW_WRITE) {
1248 		NET_UNLOCK();
1249 		netunlocked = 1;
1250 	}
1251 
1252 	/* do the I/O!  (XXX: curproc?) */
1253 	/*
1254 	 * This process may already have this vnode locked, if we faulted in
1255 	 * copyin() or copyout() on a region backed by this vnode
1256 	 * while doing I/O to the vnode.  If this is the case, don't
1257 	 * panic.. instead, return the error to the user.
1258 	 *
1259 	 * XXX this is a stopgap to prevent a panic.
1260 	 * Ideally, this kind of operation *should* work.
1261 	 */
1262 	result = 0;
1263 	KERNEL_LOCK();
1264 	if (!vnlocked)
1265 		result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags);
1266 	if (result == 0) {
1267 		/* NOTE: vnode now locked! */
1268 		if (rw == UIO_READ)
1269 			result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1270 		else
1271 			result = VOP_WRITE(vn, &uio,
1272 			    (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1273 			    curproc->p_ucred);
1274 
1275 		if (!vnlocked)
1276 			VOP_UNLOCK(vn);
1277 
1278 	}
1279 	KERNEL_UNLOCK();
1280 
1281 	if (netunlocked)
1282 		NET_LOCK();
1283 
1284 
1285 	/* NOTE: vnode now unlocked (unless vnislocked) */
1286 	/*
1287 	 * result == unix style errno (0 == OK!)
1288 	 *
1289 	 * zero out rest of buffer (if needed)
1290 	 */
1291 	if (result == 0) {
1292 		got = wanted - uio.uio_resid;
1293 
1294 		if (wanted && got == 0) {
1295 			result = EIO;		/* XXX: error? */
1296 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1297 			memset((void *) (kva + got), 0,
1298 			       ((size_t)npages << PAGE_SHIFT) - got);
1299 		}
1300 	}
1301 
1302 	/* now remove pager mapping */
1303 	uvm_pagermapout(kva, npages);
1304 
1305 	/* now clean up the object (i.e. drop I/O count) */
1306 	rw_enter(uobj->vmobjlock, RW_WRITE);
1307 	uvn->u_nio--;			/* I/O DONE! */
1308 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1309 		wakeup(&uvn->u_nio);
1310 	}
1311 
1312 	if (result == 0) {
1313 		return VM_PAGER_OK;
1314 	} else if (result == EBUSY) {
1315 		KASSERT(flags & PGO_NOWAIT);
1316 		return VM_PAGER_AGAIN;
1317 	} else {
1318 		if (rebooting) {
1319 			KERNEL_LOCK();
1320 			while (rebooting)
1321 				tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP);
1322 			KERNEL_UNLOCK();
1323 		}
1324 		return VM_PAGER_ERROR;
1325 	}
1326 }
1327 
1328 /*
1329  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1330  * is gone we will kill the object (flushing dirty pages back to the vnode
1331  * if needed).
1332  *
1333  * => returns TRUE if there was no uvm_object attached or if there was
1334  *	one and we killed it [i.e. if there is no active uvn]
1335  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1336  *	needed]
1337  *
1338  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1339  *	having to hold a reference on the vnode) and given a working
1340  *	uvm_vnp_sync(), how does that effect the need for this function?
1341  *      [XXXCDC: seems like it can die?]
1342  *
1343  * => XXX: this function should DIE once we merge the VM and buffer
1344  *	cache.
1345  *
1346  * research shows that this is called in the following places:
1347  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1348  *	changes sizes
1349  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1350  *	are written to
1351  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1352  *	is off
1353  * ffs_realloccg: when we can't extend the current block and have
1354  *	to allocate a new one we call this [XXX: why?]
1355  * nfsrv_rename, rename_files: called when the target filename is there
1356  *	and we want to remove it
1357  * nfsrv_remove, sys_unlink: called on file we are removing
1358  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1359  *	then return "text busy"
1360  * nfs_open: seems to uncache any file opened with nfs
1361  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1362  * fusefs_open: uncaches any file that is opened
1363  * fusefs_write: uncaches on every write
1364  */
1365 
1366 int
1367 uvm_vnp_uncache(struct vnode *vp)
1368 {
1369 	struct uvm_vnode *uvn = vp->v_uvm;
1370 	struct uvm_object *uobj = &uvn->u_obj;
1371 
1372 	/* lock uvn part of the vnode and check if we need to do anything */
1373 
1374 	rw_enter(uobj->vmobjlock, RW_WRITE);
1375 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1376 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1377 		rw_exit(uobj->vmobjlock);
1378 		return TRUE;
1379 	}
1380 
1381 	/*
1382 	 * we have a valid, non-blocked uvn.   clear persist flag.
1383 	 * if uvn is currently active we can return now.
1384 	 */
1385 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1386 	if (uvn->u_obj.uo_refs) {
1387 		rw_exit(uobj->vmobjlock);
1388 		return FALSE;
1389 	}
1390 
1391 	/*
1392 	 * uvn is currently persisting!   we have to gain a reference to
1393 	 * it so that we can call uvn_detach to kill the uvn.
1394 	 */
1395 	vref(vp);			/* seems ok, even with VOP_LOCK */
1396 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1397 	rw_exit(uobj->vmobjlock);
1398 
1399 #ifdef VFSLCKDEBUG
1400 	/*
1401 	 * carry over sanity check from old vnode pager: the vnode should
1402 	 * be VOP_LOCK'd, and we confirm it here.
1403 	 */
1404 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1405 		panic("uvm_vnp_uncache: vnode not locked!");
1406 #endif
1407 
1408 	/*
1409 	 * now drop our reference to the vnode.   if we have the sole
1410 	 * reference to the vnode then this will cause it to die [as we
1411 	 * just cleared the persist flag].   we have to unlock the vnode
1412 	 * while we are doing this as it may trigger I/O.
1413 	 *
1414 	 * XXX: it might be possible for uvn to get reclaimed while we are
1415 	 * unlocked causing us to return TRUE when we should not.   we ignore
1416 	 * this as a false-positive return value doesn't hurt us.
1417 	 */
1418 	VOP_UNLOCK(vp);
1419 	uvn_detach(&uvn->u_obj);
1420 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1421 
1422 	return TRUE;
1423 }
1424 
1425 /*
1426  * uvm_vnp_setsize: grow or shrink a vnode uvn
1427  *
1428  * grow   => just update size value
1429  * shrink => toss un-needed pages
1430  *
1431  * => we assume that the caller has a reference of some sort to the
1432  *	vnode in question so that it will not be yanked out from under
1433  *	us.
1434  *
1435  * called from:
1436  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1437  *     fusefs_setattr)
1438  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1439  *     fusefs_write)
1440  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1441  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1442  *  => union fs: union_newsize
1443  */
1444 
1445 void
1446 uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1447 {
1448 	struct uvm_vnode *uvn = vp->v_uvm;
1449 	struct uvm_object *uobj = &uvn->u_obj;
1450 
1451 	KERNEL_ASSERT_LOCKED();
1452 
1453 	rw_enter(uobj->vmobjlock, RW_WRITE);
1454 
1455 	/* lock uvn and check for valid object, and if valid: do it! */
1456 	if (uvn->u_flags & UVM_VNODE_VALID) {
1457 
1458 		/*
1459 		 * now check if the size has changed: if we shrink we had better
1460 		 * toss some pages...
1461 		 */
1462 
1463 		if (uvn->u_size > newsize) {
1464 			(void)uvn_flush(&uvn->u_obj, newsize,
1465 			    uvn->u_size, PGO_FREE);
1466 		}
1467 		uvn->u_size = newsize;
1468 	}
1469 	rw_exit(uobj->vmobjlock);
1470 }
1471 
1472 /*
1473  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1474  *
1475  * => called from sys_sync with no VM structures locked
1476  * => only one process can do a sync at a time (because the uvn
1477  *    structure only has one queue for sync'ing).  we ensure this
1478  *    by holding the uvn_sync_lock while the sync is in progress.
1479  *    other processes attempting a sync will sleep on this lock
1480  *    until we are done.
1481  */
1482 void
1483 uvm_vnp_sync(struct mount *mp)
1484 {
1485 	struct uvm_vnode *uvn;
1486 	struct vnode *vp;
1487 
1488 	/*
1489 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1490 	 * our lock...
1491 	 */
1492 	rw_enter_write(&uvn_sync_lock);
1493 
1494 	/*
1495 	 * step 2: build up a simpleq of uvns of interest based on the
1496 	 * write list.   we gain a reference to uvns of interest.
1497 	 */
1498 	SIMPLEQ_INIT(&uvn_sync_q);
1499 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1500 		vp = uvn->u_vnode;
1501 		if (mp && vp->v_mount != mp)
1502 			continue;
1503 
1504 		/*
1505 		 * If the vnode is "blocked" it means it must be dying, which
1506 		 * in turn means its in the process of being flushed out so
1507 		 * we can safely skip it.
1508 		 *
1509 		 * note that uvn must already be valid because we found it on
1510 		 * the wlist (this also means it can't be ALOCK'd).
1511 		 */
1512 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1513 			continue;
1514 
1515 		/*
1516 		 * gain reference.   watch out for persisting uvns (need to
1517 		 * regain vnode REF).
1518 		 */
1519 		if (uvn->u_obj.uo_refs == 0)
1520 			vref(vp);
1521 		uvn->u_obj.uo_refs++;
1522 
1523 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1524 	}
1525 
1526 	/* step 3: we now have a list of uvn's that may need cleaning. */
1527 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1528 		rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
1529 #ifdef DEBUG
1530 		if (uvn->u_flags & UVM_VNODE_DYING) {
1531 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1532 		}
1533 #endif
1534 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1535 
1536 		/*
1537 		 * if we have the only reference and we just cleaned the uvn,
1538 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1539 		 * thus allowing us to avoid thinking about flushing it again
1540 		 * on later sync ops.
1541 		 */
1542 		if (uvn->u_obj.uo_refs == 1 &&
1543 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1544 			LIST_REMOVE(uvn, u_wlist);
1545 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1546 		}
1547 		rw_exit(uvn->u_obj.vmobjlock);
1548 
1549 		/* now drop our reference to the uvn */
1550 		uvn_detach(&uvn->u_obj);
1551 	}
1552 
1553 	rw_exit_write(&uvn_sync_lock);
1554 }
1555