1 /* $OpenBSD: uvm_vnode.c,v 1.138 2024/12/27 12:04:40 mpi Exp $ */ 2 /* $NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * Copyright (c) 1991, 1993 7 * The Regents of the University of California. 8 * Copyright (c) 1990 University of Utah. 9 * 10 * All rights reserved. 11 * 12 * This code is derived from software contributed to Berkeley by 13 * the Systems Programming Group of the University of Utah Computer 14 * Science Department. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94 41 * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp 42 */ 43 44 /* 45 * uvm_vnode.c: the vnode pager. 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/malloc.h> 52 #include <sys/vnode.h> 53 #include <sys/lock.h> 54 #include <sys/disklabel.h> 55 #include <sys/fcntl.h> 56 #include <sys/conf.h> 57 #include <sys/rwlock.h> 58 #include <sys/dkio.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm.h> 62 #include <uvm/uvm_vnode.h> 63 64 /* 65 * private global data structure 66 * 67 * we keep a list of writeable active vnode-backed VM objects for sync op. 68 * we keep a simpleq of vnodes that are currently being sync'd. 69 */ 70 71 LIST_HEAD(, uvm_vnode) uvn_wlist; /* [K] writeable uvns */ 72 SIMPLEQ_HEAD(, uvm_vnode) uvn_sync_q; /* [S] sync'ing uvns */ 73 struct rwlock uvn_sync_lock; /* locks sync operation */ 74 75 extern int rebooting; 76 77 /* 78 * functions 79 */ 80 void uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *); 81 void uvn_detach(struct uvm_object *); 82 boolean_t uvn_flush(struct uvm_object *, voff_t, voff_t, int); 83 int uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int, 84 vm_prot_t, int, int); 85 void uvn_init(void); 86 int uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int); 87 int uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t); 88 void uvn_reference(struct uvm_object *); 89 90 /* 91 * master pager structure 92 */ 93 const struct uvm_pagerops uvm_vnodeops = { 94 .pgo_init = uvn_init, 95 .pgo_reference = uvn_reference, 96 .pgo_detach = uvn_detach, 97 .pgo_flush = uvn_flush, 98 .pgo_get = uvn_get, 99 .pgo_put = uvn_put, 100 .pgo_cluster = uvn_cluster, 101 /* use generic version of this: see uvm_pager.c */ 102 .pgo_mk_pcluster = uvm_mk_pcluster, 103 }; 104 105 /* 106 * the ops! 107 */ 108 /* 109 * uvn_init 110 * 111 * init pager private data structures. 112 */ 113 void 114 uvn_init(void) 115 { 116 117 LIST_INIT(&uvn_wlist); 118 /* note: uvn_sync_q init'd in uvm_vnp_sync() */ 119 rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE); 120 } 121 122 /* 123 * uvn_attach 124 * 125 * attach a vnode structure to a VM object. if the vnode is already 126 * attached, then just bump the reference count by one and return the 127 * VM object. if not already attached, attach and return the new VM obj. 128 * the "accessprot" tells the max access the attaching thread wants to 129 * our pages. 130 * 131 * => in fact, nothing should be locked so that we can sleep here. 132 * => note that uvm_object is first thing in vnode structure, so their 133 * pointers are equiv. 134 */ 135 struct uvm_object * 136 uvn_attach(struct vnode *vp, vm_prot_t accessprot) 137 { 138 struct uvm_vnode *uvn = vp->v_uvm; 139 struct vattr vattr; 140 int oldflags, result; 141 struct partinfo pi; 142 u_quad_t used_vnode_size = 0; 143 144 /* if we're mapping a BLK device, make sure it is a disk. */ 145 if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) { 146 return NULL; 147 } 148 149 /* first get a lock on the uvn. */ 150 rw_enter(uvn->u_obj.vmobjlock, RW_WRITE); 151 while (uvn->u_flags & UVM_VNODE_BLOCKED) { 152 uvn->u_flags |= UVM_VNODE_WANTED; 153 rwsleep_nsec(uvn, uvn->u_obj.vmobjlock, PVM, "uvn_attach", 154 INFSLP); 155 } 156 157 /* 158 * now uvn must not be in a blocked state. 159 * first check to see if it is already active, in which case 160 * we can bump the reference count, check to see if we need to 161 * add it to the writeable list, and then return. 162 */ 163 if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */ 164 165 /* regain vref if we were persisting */ 166 if (uvn->u_obj.uo_refs == 0) { 167 vref(vp); 168 } 169 uvn->u_obj.uo_refs++; /* bump uvn ref! */ 170 171 /* check for new writeable uvn */ 172 if ((accessprot & PROT_WRITE) != 0 && 173 (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) { 174 uvn->u_flags |= UVM_VNODE_WRITEABLE; 175 KERNEL_ASSERT_LOCKED(); 176 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 177 } 178 179 rw_exit(uvn->u_obj.vmobjlock); 180 return (&uvn->u_obj); 181 } 182 183 /* 184 * need to call VOP_GETATTR() to get the attributes, but that could 185 * block (due to I/O), so we want to unlock the object before calling. 186 * however, we want to keep anyone else from playing with the object 187 * while it is unlocked. to do this we set UVM_VNODE_ALOCK which 188 * prevents anyone from attaching to the vnode until we are done with 189 * it. 190 */ 191 uvn->u_flags = UVM_VNODE_ALOCK; 192 rw_exit(uvn->u_obj.vmobjlock); 193 194 if (vp->v_type == VBLK) { 195 /* 196 * We could implement this as a specfs getattr call, but: 197 * 198 * (1) VOP_GETATTR() would get the file system 199 * vnode operation, not the specfs operation. 200 * 201 * (2) All we want is the size, anyhow. 202 */ 203 result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev, 204 DIOCGPART, (caddr_t)&pi, FREAD, curproc); 205 if (result == 0) { 206 /* XXX should remember blocksize */ 207 used_vnode_size = (u_quad_t)pi.disklab->d_secsize * 208 (u_quad_t)DL_GETPSIZE(pi.part); 209 } 210 } else { 211 result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc); 212 if (result == 0) 213 used_vnode_size = vattr.va_size; 214 } 215 216 if (result != 0) { 217 rw_enter(uvn->u_obj.vmobjlock, RW_WRITE); 218 if (uvn->u_flags & UVM_VNODE_WANTED) 219 wakeup(uvn); 220 uvn->u_flags = 0; 221 rw_exit(uvn->u_obj.vmobjlock); 222 return NULL; 223 } 224 225 /* 226 * make sure that the newsize fits within a vaddr_t 227 * XXX: need to revise addressing data types 228 */ 229 #ifdef DEBUG 230 if (vp->v_type == VBLK) 231 printf("used_vnode_size = %llu\n", (long long)used_vnode_size); 232 #endif 233 234 /* now set up the uvn. */ 235 KASSERT(uvn->u_obj.uo_refs == 0); 236 uvn->u_obj.uo_refs++; 237 oldflags = uvn->u_flags; 238 uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST; 239 uvn->u_nio = 0; 240 uvn->u_size = used_vnode_size; 241 242 /* 243 * add a reference to the vnode. this reference will stay as long 244 * as there is a valid mapping of the vnode. dropped when the 245 * reference count goes to zero [and we either free or persist]. 246 */ 247 vref(vp); 248 249 /* if write access, we need to add it to the wlist */ 250 if (accessprot & PROT_WRITE) { 251 uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */ 252 KERNEL_ASSERT_LOCKED(); 253 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 254 } 255 256 if (oldflags & UVM_VNODE_WANTED) 257 wakeup(uvn); 258 259 return &uvn->u_obj; 260 } 261 262 263 /* 264 * uvn_reference 265 * 266 * duplicate a reference to a VM object. Note that the reference 267 * count must already be at least one (the passed in reference) so 268 * there is no chance of the uvn being killed out here. 269 * 270 * => caller must be using the same accessprot as was used at attach time 271 */ 272 273 274 void 275 uvn_reference(struct uvm_object *uobj) 276 { 277 #ifdef DEBUG 278 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 279 #endif 280 281 rw_enter(uobj->vmobjlock, RW_WRITE); 282 #ifdef DEBUG 283 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 284 printf("uvn_reference: ref=%d, flags=0x%x\n", 285 uobj->uo_refs, uvn->u_flags); 286 panic("uvn_reference: invalid state"); 287 } 288 #endif 289 uobj->uo_refs++; 290 rw_exit(uobj->vmobjlock); 291 } 292 293 /* 294 * uvn_detach 295 * 296 * remove a reference to a VM object. 297 * 298 * => caller must call with map locked. 299 * => this starts the detach process, but doesn't have to finish it 300 * (async i/o could still be pending). 301 */ 302 void 303 uvn_detach(struct uvm_object *uobj) 304 { 305 struct uvm_vnode *uvn; 306 struct vnode *vp; 307 int oldflags; 308 309 rw_enter(uobj->vmobjlock, RW_WRITE); 310 uobj->uo_refs--; /* drop ref! */ 311 if (uobj->uo_refs) { /* still more refs */ 312 rw_exit(uobj->vmobjlock); 313 return; 314 } 315 316 KERNEL_LOCK(); 317 /* get other pointers ... */ 318 uvn = (struct uvm_vnode *) uobj; 319 vp = uvn->u_vnode; 320 321 /* 322 * clear VTEXT flag now that there are no mappings left (VTEXT is used 323 * to keep an active text file from being overwritten). 324 */ 325 vp->v_flag &= ~VTEXT; 326 327 /* 328 * we just dropped the last reference to the uvn. see if we can 329 * let it "stick around". 330 */ 331 if (uvn->u_flags & UVM_VNODE_CANPERSIST) { 332 /* won't block */ 333 uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES); 334 goto out; 335 } 336 337 /* its a goner! */ 338 uvn->u_flags |= UVM_VNODE_DYING; 339 340 /* 341 * even though we may unlock in flush, no one can gain a reference 342 * to us until we clear the "dying" flag [because it blocks 343 * attaches]. we will not do that until after we've disposed of all 344 * the pages with uvn_flush(). note that before the flush the only 345 * pages that could be marked PG_BUSY are ones that are in async 346 * pageout by the daemon. (there can't be any pending "get"'s 347 * because there are no references to the object). 348 */ 349 (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 350 351 /* 352 * given the structure of this pager, the above flush request will 353 * create the following state: all the pages that were in the object 354 * have either been free'd or they are marked PG_BUSY and in the 355 * middle of an async io. If we still have pages we set the "relkill" 356 * state, so that in the case the vnode gets terminated we know 357 * to leave it alone. Otherwise we'll kill the vnode when it's empty. 358 */ 359 uvn->u_flags |= UVM_VNODE_RELKILL; 360 /* wait on any outstanding io */ 361 while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) { 362 uvn->u_flags |= UVM_VNODE_IOSYNC; 363 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term", 364 INFSLP); 365 } 366 367 if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) { 368 rw_exit(uobj->vmobjlock); 369 KERNEL_UNLOCK(); 370 return; 371 } 372 373 /* 374 * kill object now. note that we can't be on the sync q because 375 * all references are gone. 376 */ 377 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 378 LIST_REMOVE(uvn, u_wlist); 379 } 380 KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt)); 381 oldflags = uvn->u_flags; 382 uvn->u_flags = 0; 383 384 /* wake up any sleepers */ 385 if (oldflags & UVM_VNODE_WANTED) 386 wakeup(uvn); 387 out: 388 rw_exit(uobj->vmobjlock); 389 390 /* drop our reference to the vnode. */ 391 vrele(vp); 392 KERNEL_UNLOCK(); 393 } 394 395 /* 396 * uvm_vnp_terminate: external hook to clear out a vnode's VM 397 * 398 * called in two cases: 399 * [1] when a persisting vnode vm object (i.e. one with a zero reference 400 * count) needs to be freed so that a vnode can be reused. this 401 * happens under "getnewvnode" in vfs_subr.c. if the vnode from 402 * the free list is still attached (i.e. not VBAD) then vgone is 403 * called. as part of the vgone trace this should get called to 404 * free the vm object. this is the common case. 405 * [2] when a filesystem is being unmounted by force (MNT_FORCE, 406 * "umount -f") the vgone() function is called on active vnodes 407 * on the mounted file systems to kill their data (the vnodes become 408 * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a 409 * call here (even if the uvn is still in use -- i.e. has a non-zero 410 * reference count). this case happens at "umount -f" and during a 411 * "reboot/halt" operation. 412 * 413 * => the caller must XLOCK and VOP_LOCK the vnode before calling us 414 * [protects us from getting a vnode that is already in the DYING 415 * state...] 416 * => in case [2] the uvn is still alive after this call, but all I/O 417 * ops will fail (due to the backing vnode now being "dead"). this 418 * will prob. kill any process using the uvn due to pgo_get failing. 419 */ 420 void 421 uvm_vnp_terminate(struct vnode *vp) 422 { 423 struct uvm_vnode *uvn = vp->v_uvm; 424 struct uvm_object *uobj = &uvn->u_obj; 425 int oldflags; 426 427 /* check if it is valid */ 428 rw_enter(uobj->vmobjlock, RW_WRITE); 429 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 430 rw_exit(uobj->vmobjlock); 431 return; 432 } 433 434 /* 435 * must be a valid uvn that is not already dying (because XLOCK 436 * protects us from that). the uvn can't in the ALOCK state 437 * because it is valid, and uvn's that are in the ALOCK state haven't 438 * been marked valid yet. 439 */ 440 #ifdef DEBUG 441 /* 442 * debug check: are we yanking the vnode out from under our uvn? 443 */ 444 if (uvn->u_obj.uo_refs) { 445 printf("uvm_vnp_terminate(%p): terminating active vnode " 446 "(refs=%d)\n", uvn, uvn->u_obj.uo_refs); 447 } 448 #endif 449 450 /* 451 * it is possible that the uvn was detached and is in the relkill 452 * state [i.e. waiting for async i/o to finish]. 453 * we take over the vnode now and cancel the relkill. 454 * we want to know when the i/o is done so we can recycle right 455 * away. note that a uvn can only be in the RELKILL state if it 456 * has a zero reference count. 457 */ 458 if (uvn->u_flags & UVM_VNODE_RELKILL) 459 uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */ 460 461 /* 462 * block the uvn by setting the dying flag, and then flush the 463 * pages. 464 * 465 * also, note that we tell I/O that we are already VOP_LOCK'd so 466 * that uvn_io doesn't attempt to VOP_LOCK again. 467 * 468 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated 469 * due to a forceful unmount might not be a good idea. maybe we 470 * need a way to pass in this info to uvn_flush through a 471 * pager-defined PGO_ constant [currently there are none]. 472 */ 473 uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED; 474 475 (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 476 477 /* 478 * as we just did a flush we expect all the pages to be gone or in 479 * the process of going. sleep to wait for the rest to go [via iosync]. 480 */ 481 while (uvn->u_obj.uo_npages) { 482 #ifdef DEBUG 483 struct vm_page *pp; 484 RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) { 485 if ((pp->pg_flags & PG_BUSY) == 0) 486 panic("uvm_vnp_terminate: detected unbusy pg"); 487 } 488 if (uvn->u_nio == 0) 489 panic("uvm_vnp_terminate: no I/O to wait for?"); 490 printf("uvm_vnp_terminate: waiting for I/O to fin.\n"); 491 /* 492 * XXXCDC: this is unlikely to happen without async i/o so we 493 * put a printf in just to keep an eye on it. 494 */ 495 #endif 496 uvn->u_flags |= UVM_VNODE_IOSYNC; 497 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term", 498 INFSLP); 499 } 500 501 /* 502 * done. now we free the uvn if its reference count is zero 503 * (true if we are zapping a persisting uvn). however, if we are 504 * terminating a uvn with active mappings we let it live ... future 505 * calls down to the vnode layer will fail. 506 */ 507 oldflags = uvn->u_flags; 508 if (uvn->u_obj.uo_refs) { 509 /* 510 * uvn must live on it is dead-vnode state until all references 511 * are gone. restore flags. clear CANPERSIST state. 512 */ 513 uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED| 514 UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST); 515 } else { 516 /* 517 * free the uvn now. note that the vref reference is already 518 * gone [it is dropped when we enter the persist state]. 519 */ 520 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 521 panic("uvm_vnp_terminate: io sync wanted bit set"); 522 523 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 524 LIST_REMOVE(uvn, u_wlist); 525 } 526 uvn->u_flags = 0; /* uvn is history, clear all bits */ 527 } 528 529 if (oldflags & UVM_VNODE_WANTED) 530 wakeup(uvn); 531 532 rw_exit(uobj->vmobjlock); 533 } 534 535 /* 536 * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go 537 * through the buffer cache and allow I/O in any size. These VOPs use 538 * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't 539 * go through the buffer cache or allow I/O sizes larger than a 540 * block]. we will eventually want to change this. 541 * 542 * issues to consider: 543 * uvm provides the uvm_aiodesc structure for async i/o management. 544 * there are two tailq's in the uvm. structure... one for pending async 545 * i/o and one for "done" async i/o. to do an async i/o one puts 546 * an aiodesc on the "pending" list (protected by splbio()), starts the 547 * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect 548 * some sort of "i/o done" function to be called (at splbio(), interrupt 549 * time). this function should remove the aiodesc from the pending list 550 * and place it on the "done" list and wakeup the daemon. the daemon 551 * will run at normal spl() and will remove all items from the "done" 552 * list and call the "aiodone" hook for each done request (see uvm_pager.c). 553 * [in the old vm code, this was done by calling the "put" routine with 554 * null arguments which made the code harder to read and understand because 555 * you had one function ("put") doing two things.] 556 * 557 * so the current pager needs: 558 * int uvn_aiodone(struct uvm_aiodesc *) 559 * 560 * => return 0 (aio finished, free it). otherwise requeue for later collection. 561 * => called with pageq's locked by the daemon. 562 * 563 * general outline: 564 * - drop "u_nio" (this req is done!) 565 * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio } 566 * - get "page" structures (atop?). 567 * - handle "wanted" pages 568 * dont forget to look at "object" wanted flag in all cases. 569 */ 570 571 /* 572 * uvn_flush: flush pages out of a uvm object. 573 * 574 * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller 575 * might want to unlock higher level resources (e.g. vm_map) 576 * before calling flush. 577 * => if PGO_CLEANIT is not set, then we will not block 578 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 579 * for flushing. 580 * => NOTE: we are allowed to lock the page queues, so the caller 581 * must not be holding the lock on them [e.g. pagedaemon had 582 * better not call us with the queues locked] 583 * => we return TRUE unless we encountered some sort of I/O error 584 * 585 * comment on "cleaning" object and PG_BUSY pages: 586 * this routine is holding the lock on the object. the only time 587 * that it can run into a PG_BUSY page that it does not own is if 588 * some other process has started I/O on the page (e.g. either 589 * a pagein, or a pageout). if the PG_BUSY page is being paged 590 * in, then it can not be dirty (!PG_CLEAN) because no one has 591 * had a chance to modify it yet. if the PG_BUSY page is being 592 * paged out then it means that someone else has already started 593 * cleaning the page for us (how nice!). in this case, if we 594 * have syncio specified, then after we make our pass through the 595 * object we need to wait for the other PG_BUSY pages to clear 596 * off (i.e. we need to do an iosync). also note that once a 597 * page is PG_BUSY it must stay in its object until it is un-busyed. 598 */ 599 boolean_t 600 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 601 { 602 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 603 struct vm_page *pp, *ptmp; 604 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp; 605 struct pglist dead; 606 int npages, result, lcv; 607 boolean_t retval, need_iosync, needs_clean; 608 voff_t curoff; 609 610 KASSERT(rw_write_held(uobj->vmobjlock)); 611 TAILQ_INIT(&dead); 612 613 /* get init vals and determine how we are going to traverse object */ 614 need_iosync = FALSE; 615 retval = TRUE; /* return value */ 616 if (flags & PGO_ALLPAGES) { 617 start = 0; 618 stop = round_page(uvn->u_size); 619 } else { 620 start = trunc_page(start); 621 stop = MIN(round_page(stop), round_page(uvn->u_size)); 622 } 623 624 /* 625 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as 626 * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint 627 * is wrong it will only prevent us from clustering... it won't break 628 * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster 629 * will set them as it syncs PG_CLEAN. This is only an issue if we 630 * are looking at non-inactive pages (because inactive page's PG_CLEAN 631 * bit is always up to date since there are no mappings). 632 * [borrowed PG_CLEANCHK idea from FreeBSD VM] 633 */ 634 if ((flags & PGO_CLEANIT) != 0) { 635 KASSERT(uobj->pgops->pgo_mk_pcluster != 0); 636 for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) { 637 if ((pp = uvm_pagelookup(uobj, curoff)) != NULL) 638 atomic_clearbits_int(&pp->pg_flags, 639 PG_CLEANCHK); 640 } 641 } 642 643 ppsp = NULL; /* XXX: shut up gcc */ 644 uvm_lock_pageq(); 645 /* locked: both page queues */ 646 for (curoff = start; curoff < stop; curoff += PAGE_SIZE) { 647 if ((pp = uvm_pagelookup(uobj, curoff)) == NULL) 648 continue; 649 /* 650 * handle case where we do not need to clean page (either 651 * because we are not clean or because page is not dirty or 652 * is busy): 653 * 654 * NOTE: we are allowed to deactivate a non-wired active 655 * PG_BUSY page, but once a PG_BUSY page is on the inactive 656 * queue it must stay put until it is !PG_BUSY (so as not to 657 * confuse pagedaemon). 658 */ 659 if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) { 660 needs_clean = FALSE; 661 if ((pp->pg_flags & PG_BUSY) != 0 && 662 (flags & (PGO_CLEANIT|PGO_SYNCIO)) == 663 (PGO_CLEANIT|PGO_SYNCIO)) 664 need_iosync = TRUE; 665 } else { 666 /* 667 * freeing: nuke all mappings so we can sync 668 * PG_CLEAN bit with no race 669 */ 670 if ((pp->pg_flags & PG_CLEAN) != 0 && 671 (flags & PGO_FREE) != 0 && 672 (pp->pg_flags & PQ_ACTIVE) != 0) 673 pmap_page_protect(pp, PROT_NONE); 674 if ((pp->pg_flags & PG_CLEAN) != 0 && 675 pmap_is_modified(pp)) 676 atomic_clearbits_int(&pp->pg_flags, PG_CLEAN); 677 atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK); 678 679 needs_clean = ((pp->pg_flags & PG_CLEAN) == 0); 680 } 681 682 /* if we don't need a clean, deactivate/free pages then cont. */ 683 if (!needs_clean) { 684 if (flags & PGO_DEACTIVATE) { 685 if (pp->wire_count == 0) { 686 uvm_pagedeactivate(pp); 687 } 688 } else if (flags & PGO_FREE) { 689 if (pp->pg_flags & PG_BUSY) { 690 uvm_unlock_pageq(); 691 uvm_pagewait(pp, uobj->vmobjlock, 692 "uvn_flsh"); 693 rw_enter(uobj->vmobjlock, RW_WRITE); 694 uvm_lock_pageq(); 695 curoff -= PAGE_SIZE; 696 continue; 697 } else { 698 pmap_page_protect(pp, PROT_NONE); 699 /* removed page from object */ 700 uvm_pageclean(pp); 701 TAILQ_INSERT_HEAD(&dead, pp, pageq); 702 } 703 } 704 continue; 705 } 706 707 /* 708 * pp points to a page in the object that we are 709 * working on. if it is !PG_CLEAN,!PG_BUSY and we asked 710 * for cleaning (PGO_CLEANIT). we clean it now. 711 * 712 * let uvm_pager_put attempted a clustered page out. 713 * note: locked: page queues. 714 */ 715 atomic_setbits_int(&pp->pg_flags, PG_BUSY); 716 UVM_PAGE_OWN(pp, "uvn_flush"); 717 pmap_page_protect(pp, PROT_READ); 718 /* if we're async, free the page in aiodoned */ 719 if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE) 720 atomic_setbits_int(&pp->pg_flags, PG_RELEASED); 721 ReTry: 722 ppsp = pps; 723 npages = sizeof(pps) / sizeof(struct vm_page *); 724 725 result = uvm_pager_put(uobj, pp, &ppsp, &npages, 726 flags | PGO_DOACTCLUST, start, stop); 727 728 /* 729 * if we did an async I/O it is remotely possible for the 730 * async i/o to complete and the page "pp" be freed or what 731 * not before we get a chance to relock the object. Therefore, 732 * we only touch it when it won't be freed, RELEASED took care 733 * of the rest. 734 */ 735 uvm_lock_pageq(); 736 737 /* 738 * VM_PAGER_AGAIN: given the structure of this pager, this 739 * can only happen when we are doing async I/O and can't 740 * map the pages into kernel memory (pager_map) due to lack 741 * of vm space. if this happens we drop back to sync I/O. 742 */ 743 if (result == VM_PAGER_AGAIN) { 744 /* 745 * it is unlikely, but page could have been released 746 * we ignore this now and retry the I/O. 747 * we will detect and 748 * handle the released page after the syncio I/O 749 * completes. 750 */ 751 #ifdef DIAGNOSTIC 752 if (flags & PGO_SYNCIO) 753 panic("%s: PGO_SYNCIO return 'try again' error (impossible)", __func__); 754 #endif 755 flags |= PGO_SYNCIO; 756 if (flags & PGO_FREE) 757 atomic_clearbits_int(&pp->pg_flags, 758 PG_RELEASED); 759 760 goto ReTry; 761 } 762 763 /* 764 * the cleaning operation is now done. finish up. note that 765 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us. 766 * if success (OK, PEND) then uvm_pager_put returns the cluster 767 * to us in ppsp/npages. 768 */ 769 /* 770 * for pending async i/o if we are not deactivating 771 * we can move on to the next page. aiodoned deals with 772 * the freeing case for us. 773 */ 774 if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0) 775 continue; 776 777 /* 778 * need to look at each page of the I/O operation, and do what 779 * we gotta do. 780 */ 781 for (lcv = 0 ; lcv < npages; lcv++) { 782 ptmp = ppsp[lcv]; 783 /* 784 * verify the page didn't get moved 785 */ 786 if (result == VM_PAGER_PEND && ptmp->uobject != uobj) 787 continue; 788 789 /* 790 * unbusy the page if I/O is done. note that for 791 * pending I/O it is possible that the I/O op 792 * finished 793 * (in which case the page is no longer busy). 794 */ 795 if (result != VM_PAGER_PEND) { 796 if (ptmp->pg_flags & PG_WANTED) 797 wakeup(ptmp); 798 799 atomic_clearbits_int(&ptmp->pg_flags, 800 PG_WANTED|PG_BUSY); 801 UVM_PAGE_OWN(ptmp, NULL); 802 atomic_setbits_int(&ptmp->pg_flags, 803 PG_CLEAN|PG_CLEANCHK); 804 if ((flags & PGO_FREE) == 0) 805 pmap_clear_modify(ptmp); 806 } 807 808 /* dispose of page */ 809 if (flags & PGO_DEACTIVATE) { 810 if (ptmp->wire_count == 0) { 811 uvm_pagedeactivate(ptmp); 812 } 813 } else if (flags & PGO_FREE && 814 result != VM_PAGER_PEND) { 815 if (result != VM_PAGER_OK) { 816 static struct timeval lasttime; 817 static const struct timeval interval = 818 { 5, 0 }; 819 820 if (ratecheck(&lasttime, &interval)) { 821 printf("%s: obj=%p, " 822 "offset=0x%llx. error " 823 "during pageout.\n", 824 __func__, pp->uobject, 825 (long long)pp->offset); 826 printf("%s: WARNING: " 827 "changes to page may be " 828 "lost!\n", __func__); 829 } 830 retval = FALSE; 831 } 832 pmap_page_protect(ptmp, PROT_NONE); 833 uvm_pageclean(ptmp); 834 TAILQ_INSERT_TAIL(&dead, ptmp, pageq); 835 } 836 837 } /* end of "lcv" for loop */ 838 839 } /* end of "pp" for loop */ 840 841 /* done with pagequeues: unlock */ 842 uvm_unlock_pageq(); 843 844 /* now wait for all I/O if required. */ 845 if (need_iosync) { 846 while (uvn->u_nio != 0) { 847 uvn->u_flags |= UVM_VNODE_IOSYNC; 848 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, 849 "uvn_flush", INFSLP); 850 } 851 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 852 wakeup(&uvn->u_flags); 853 uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED); 854 } 855 856 uvm_pglistfree(&dead); 857 858 return retval; 859 } 860 861 /* 862 * uvn_cluster 863 * 864 * we are about to do I/O in an object at offset. this function is called 865 * to establish a range of offsets around "offset" in which we can cluster 866 * I/O. 867 */ 868 869 void 870 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset, 871 voff_t *hoffset) 872 { 873 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 874 *loffset = offset; 875 876 KASSERT(rw_write_held(uobj->vmobjlock)); 877 878 if (*loffset >= uvn->u_size) 879 panic("uvn_cluster: offset out of range"); 880 881 /* 882 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value. 883 */ 884 *hoffset = *loffset + MAXBSIZE; 885 if (*hoffset > round_page(uvn->u_size)) /* past end? */ 886 *hoffset = round_page(uvn->u_size); 887 } 888 889 /* 890 * uvn_put: flush page data to backing store. 891 * 892 * => prefer map unlocked (not required) 893 * => flags: PGO_SYNCIO -- use sync. I/O 894 * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed) 895 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 896 * [thus we never do async i/o! see iodone comment] 897 */ 898 int 899 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags) 900 { 901 struct uvm_vnode *uvn = (struct uvm_vnode *)uobj; 902 int dying, retval; 903 904 KASSERT(rw_write_held(uobj->vmobjlock)); 905 906 /* 907 * Unless we're recycling this vnode, grab a reference to it 908 * to prevent it from being recycled from under our feet. 909 * This also makes sure we can don't panic if we end up in 910 * uvn_vnp_uncache() as a result of the I/O operation as that 911 * function assumes we hold a reference. 912 * 913 * If the vnode is in the process of being recycled by someone 914 * else, grabbing a reference will fail. In that case the 915 * pages will already be written out by whoever is cleaning 916 * the vnode, so simply return VM_PAGER_AGAIN such that we 917 * skip these pages. 918 */ 919 dying = (uvn->u_flags & UVM_VNODE_DYING); 920 if (!dying) { 921 if (vget(uvn->u_vnode, LK_NOWAIT)) 922 return VM_PAGER_AGAIN; 923 } 924 925 retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE); 926 927 if (!dying) 928 vrele(uvn->u_vnode); 929 930 return retval; 931 } 932 933 /* 934 * uvn_get: get pages (synchronously) from backing store 935 * 936 * => prefer map unlocked (not required) 937 * => flags: PGO_ALLPAGES: get all of the pages 938 * PGO_LOCKED: fault data structures are locked 939 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 940 * => NOTE: caller must check for released pages!! 941 */ 942 int 943 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 944 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 945 { 946 voff_t current_offset; 947 struct vm_page *ptmp; 948 int lcv, result, gotpages; 949 boolean_t done; 950 951 KASSERT(rw_lock_held(uobj->vmobjlock)); 952 KASSERT(rw_write_held(uobj->vmobjlock) || 953 ((flags & PGO_LOCKED) != 0 && (access_type & PROT_WRITE) == 0)); 954 955 /* step 1: handled the case where fault data structures are locked. */ 956 if (flags & PGO_LOCKED) { 957 /* 958 * gotpages is the current number of pages we've gotten (which 959 * we pass back up to caller via *npagesp. 960 */ 961 gotpages = 0; 962 963 /* 964 * step 1a: get pages that are already resident. only do this 965 * if the data structures are locked (i.e. the first time 966 * through). 967 */ 968 done = TRUE; /* be optimistic */ 969 970 for (lcv = 0, current_offset = offset ; lcv < *npagesp ; 971 lcv++, current_offset += PAGE_SIZE) { 972 /* do we care about this page? if not, skip it */ 973 if (pps[lcv] == PGO_DONTCARE) 974 continue; 975 976 /* lookup page */ 977 ptmp = uvm_pagelookup(uobj, current_offset); 978 979 /* 980 * to be useful must get a non-busy page 981 */ 982 if (ptmp == NULL || (ptmp->pg_flags & PG_BUSY) != 0) { 983 if (lcv == centeridx || 984 (flags & PGO_ALLPAGES) != 0) 985 /* need to do a wait or I/O! */ 986 done = FALSE; 987 continue; 988 } 989 990 /* 991 * useful page: busy it and plug it in our 992 * result array 993 */ 994 pps[lcv] = ptmp; 995 gotpages++; 996 997 } 998 999 /* 1000 * XXX: given the "advice", should we consider async read-ahead? 1001 * XXX: fault current does deactivate of pages behind us. is 1002 * this good (other callers might now). 1003 */ 1004 /* 1005 * XXX: read-ahead currently handled by buffer cache (bread) 1006 * level. 1007 * XXX: no async i/o available. 1008 * XXX: so we don't do anything now. 1009 */ 1010 1011 /* 1012 * step 1c: now we've either done everything needed or we to 1013 * unlock and do some waiting or I/O. 1014 */ 1015 *npagesp = gotpages; /* let caller know */ 1016 return done ? VM_PAGER_OK : VM_PAGER_UNLOCK; 1017 } 1018 1019 /* 1020 * step 2: get non-resident or busy pages. 1021 * data structures are unlocked. 1022 * 1023 * XXX: because we can't do async I/O at this level we get things 1024 * page at a time (otherwise we'd chunk). the VOP_READ() will do 1025 * async-read-ahead for us at a lower level. 1026 */ 1027 for (lcv = 0, current_offset = offset; 1028 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) { 1029 1030 /* skip over pages we've already gotten or don't want */ 1031 /* skip over pages we don't _have_ to get */ 1032 if (pps[lcv] != NULL || (lcv != centeridx && 1033 (flags & PGO_ALLPAGES) == 0)) 1034 continue; 1035 1036 /* 1037 * we have yet to locate the current page (pps[lcv]). we first 1038 * look for a page that is already at the current offset. if 1039 * we fine a page, we check to see if it is busy or released. 1040 * if that is the case, then we sleep on the page until it is 1041 * no longer busy or released and repeat the lookup. if the 1042 * page we found is neither busy nor released, then we busy it 1043 * (so we own it) and plug it into pps[lcv]. this breaks the 1044 * following while loop and indicates we are ready to move on 1045 * to the next page in the "lcv" loop above. 1046 * 1047 * if we exit the while loop with pps[lcv] still set to NULL, 1048 * then it means that we allocated a new busy/fake/clean page 1049 * ptmp in the object and we need to do I/O to fill in the data. 1050 */ 1051 while (pps[lcv] == NULL) { /* top of "pps" while loop */ 1052 /* look for a current page */ 1053 ptmp = uvm_pagelookup(uobj, current_offset); 1054 1055 /* nope? allocate one now (if we can) */ 1056 if (ptmp == NULL) { 1057 ptmp = uvm_pagealloc(uobj, current_offset, 1058 NULL, 0); 1059 1060 /* out of RAM? */ 1061 if (ptmp == NULL) { 1062 uvm_wait("uvn_getpage"); 1063 1064 /* goto top of pps while loop */ 1065 continue; 1066 } 1067 1068 /* 1069 * got new page ready for I/O. break pps 1070 * while loop. pps[lcv] is still NULL. 1071 */ 1072 break; 1073 } 1074 1075 /* page is there, see if we need to wait on it */ 1076 if ((ptmp->pg_flags & PG_BUSY) != 0) { 1077 uvm_pagewait(ptmp, uobj->vmobjlock, "uvn_get"); 1078 rw_enter(uobj->vmobjlock, RW_WRITE); 1079 continue; /* goto top of pps while loop */ 1080 } 1081 1082 /* 1083 * if we get here then the page has become resident 1084 * and unbusy between steps 1 and 2. we busy it 1085 * now (so we own it) and set pps[lcv] (so that we 1086 * exit the while loop). 1087 */ 1088 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1089 UVM_PAGE_OWN(ptmp, "uvn_get2"); 1090 pps[lcv] = ptmp; 1091 } 1092 1093 /* 1094 * if we own the a valid page at the correct offset, pps[lcv] 1095 * will point to it. nothing more to do except go to the 1096 * next page. 1097 */ 1098 if (pps[lcv]) 1099 continue; /* next lcv */ 1100 1101 /* 1102 * we have a "fake/busy/clean" page that we just allocated. do 1103 * I/O to fill it with valid data. 1104 */ 1105 result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1, 1106 PGO_SYNCIO|PGO_NOWAIT, UIO_READ); 1107 1108 /* 1109 * I/O done. because we used syncio the result can not be 1110 * PEND or AGAIN. 1111 */ 1112 if (result != VM_PAGER_OK) { 1113 if (ptmp->pg_flags & PG_WANTED) 1114 wakeup(ptmp); 1115 1116 atomic_clearbits_int(&ptmp->pg_flags, 1117 PG_WANTED|PG_BUSY); 1118 UVM_PAGE_OWN(ptmp, NULL); 1119 uvm_lock_pageq(); 1120 uvm_pagefree(ptmp); 1121 uvm_unlock_pageq(); 1122 rw_exit(uobj->vmobjlock); 1123 return result; 1124 } 1125 1126 /* 1127 * we got the page! clear the fake flag (indicates valid 1128 * data now in page) and plug into our result array. note 1129 * that page is still busy. 1130 * 1131 * it is the callers job to: 1132 * => check if the page is released 1133 * => unbusy the page 1134 * => activate the page 1135 */ 1136 1137 /* data is valid ... */ 1138 atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE); 1139 pmap_clear_modify(ptmp); /* ... and clean */ 1140 pps[lcv] = ptmp; 1141 1142 } 1143 1144 1145 rw_exit(uobj->vmobjlock); 1146 return (VM_PAGER_OK); 1147 } 1148 1149 /* 1150 * uvn_io: do I/O to a vnode 1151 * 1152 * => prefer map unlocked (not required) 1153 * => flags: PGO_SYNCIO -- use sync. I/O 1154 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 1155 * [thus we never do async i/o! see iodone comment] 1156 */ 1157 1158 int 1159 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw) 1160 { 1161 struct uvm_object *uobj = &uvn->u_obj; 1162 struct vnode *vn; 1163 struct uio uio; 1164 struct iovec iov; 1165 vaddr_t kva; 1166 off_t file_offset; 1167 int waitf, result, mapinflags; 1168 size_t got, wanted; 1169 int vnlocked, netunlocked = 0; 1170 int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0; 1171 voff_t uvnsize; 1172 1173 KASSERT(rw_write_held(uobj->vmobjlock)); 1174 1175 /* init values */ 1176 waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT; 1177 vn = uvn->u_vnode; 1178 file_offset = pps[0]->offset; 1179 1180 /* check for sync'ing I/O. */ 1181 while (uvn->u_flags & UVM_VNODE_IOSYNC) { 1182 if (waitf == M_NOWAIT) { 1183 return VM_PAGER_AGAIN; 1184 } 1185 uvn->u_flags |= UVM_VNODE_IOSYNCWANTED; 1186 rwsleep_nsec(&uvn->u_flags, uobj->vmobjlock, PVM, "uvn_iosync", 1187 INFSLP); 1188 } 1189 1190 /* check size */ 1191 if (file_offset >= uvn->u_size) { 1192 return VM_PAGER_BAD; 1193 } 1194 1195 /* first try and map the pages in (without waiting) */ 1196 mapinflags = (rw == UIO_READ) ? 1197 UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE; 1198 1199 kva = uvm_pagermapin(pps, npages, mapinflags); 1200 if (kva == 0 && waitf == M_NOWAIT) { 1201 return VM_PAGER_AGAIN; 1202 } 1203 1204 /* 1205 * ok, now bump u_nio up. at this point we are done with uvn 1206 * and can unlock it. if we still don't have a kva, try again 1207 * (this time with sleep ok). 1208 */ 1209 uvn->u_nio++; /* we have an I/O in progress! */ 1210 vnlocked = (uvn->u_flags & UVM_VNODE_VNISLOCKED); 1211 uvnsize = uvn->u_size; 1212 rw_exit(uobj->vmobjlock); 1213 if (kva == 0) 1214 kva = uvm_pagermapin(pps, npages, 1215 mapinflags | UVMPAGER_MAPIN_WAITOK); 1216 1217 /* 1218 * ok, mapped in. our pages are PG_BUSY so they are not going to 1219 * get touched (so we can look at "offset" without having to lock 1220 * the object). set up for I/O. 1221 */ 1222 /* fill out uio/iov */ 1223 iov.iov_base = (caddr_t) kva; 1224 wanted = (size_t)npages << PAGE_SHIFT; 1225 if (file_offset + wanted > uvnsize) 1226 wanted = uvnsize - file_offset; /* XXX: needed? */ 1227 iov.iov_len = wanted; 1228 uio.uio_iov = &iov; 1229 uio.uio_iovcnt = 1; 1230 uio.uio_offset = file_offset; 1231 uio.uio_segflg = UIO_SYSSPACE; 1232 uio.uio_rw = rw; 1233 uio.uio_resid = wanted; 1234 uio.uio_procp = curproc; 1235 1236 /* 1237 * This process may already have the NET_LOCK(), if we 1238 * faulted in copyin() or copyout() in the network stack. 1239 */ 1240 if (rw_status(&netlock) == RW_WRITE) { 1241 NET_UNLOCK(); 1242 netunlocked = 1; 1243 } 1244 1245 /* do the I/O! (XXX: curproc?) */ 1246 /* 1247 * This process may already have this vnode locked, if we faulted in 1248 * copyin() or copyout() on a region backed by this vnode 1249 * while doing I/O to the vnode. If this is the case, don't 1250 * panic.. instead, return the error to the user. 1251 * 1252 * XXX this is a stopgap to prevent a panic. 1253 * Ideally, this kind of operation *should* work. 1254 */ 1255 result = 0; 1256 KERNEL_LOCK(); 1257 if (!vnlocked) 1258 result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags); 1259 if (result == 0) { 1260 /* NOTE: vnode now locked! */ 1261 if (rw == UIO_READ) 1262 result = VOP_READ(vn, &uio, 0, curproc->p_ucred); 1263 else 1264 result = VOP_WRITE(vn, &uio, 1265 (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0, 1266 curproc->p_ucred); 1267 1268 if (!vnlocked) 1269 VOP_UNLOCK(vn); 1270 1271 } 1272 KERNEL_UNLOCK(); 1273 1274 if (netunlocked) 1275 NET_LOCK(); 1276 1277 1278 /* NOTE: vnode now unlocked (unless vnislocked) */ 1279 /* 1280 * result == unix style errno (0 == OK!) 1281 * 1282 * zero out rest of buffer (if needed) 1283 */ 1284 if (result == 0) { 1285 got = wanted - uio.uio_resid; 1286 1287 if (wanted && got == 0) { 1288 result = EIO; /* XXX: error? */ 1289 } else if (got < PAGE_SIZE * npages && rw == UIO_READ) { 1290 memset((void *) (kva + got), 0, 1291 ((size_t)npages << PAGE_SHIFT) - got); 1292 } 1293 } 1294 1295 /* now remove pager mapping */ 1296 uvm_pagermapout(kva, npages); 1297 1298 /* now clean up the object (i.e. drop I/O count) */ 1299 rw_enter(uobj->vmobjlock, RW_WRITE); 1300 uvn->u_nio--; /* I/O DONE! */ 1301 if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) { 1302 wakeup(&uvn->u_nio); 1303 } 1304 1305 if (result == 0) { 1306 return VM_PAGER_OK; 1307 } else if (result == EBUSY) { 1308 KASSERT(flags & PGO_NOWAIT); 1309 return VM_PAGER_AGAIN; 1310 } else { 1311 if (rebooting) { 1312 KERNEL_LOCK(); 1313 while (rebooting) 1314 tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP); 1315 KERNEL_UNLOCK(); 1316 } 1317 return VM_PAGER_ERROR; 1318 } 1319 } 1320 1321 /* 1322 * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference 1323 * is gone we will kill the object (flushing dirty pages back to the vnode 1324 * if needed). 1325 * 1326 * => returns TRUE if there was no uvm_object attached or if there was 1327 * one and we killed it [i.e. if there is no active uvn] 1328 * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if 1329 * needed] 1330 * 1331 * => XXX: given that we now kill uvn's when a vnode is recycled (without 1332 * having to hold a reference on the vnode) and given a working 1333 * uvm_vnp_sync(), how does that effect the need for this function? 1334 * [XXXCDC: seems like it can die?] 1335 * 1336 * => XXX: this function should DIE once we merge the VM and buffer 1337 * cache. 1338 * 1339 * research shows that this is called in the following places: 1340 * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode 1341 * changes sizes 1342 * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we 1343 * are written to 1344 * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit 1345 * is off 1346 * ffs_realloccg: when we can't extend the current block and have 1347 * to allocate a new one we call this [XXX: why?] 1348 * nfsrv_rename, rename_files: called when the target filename is there 1349 * and we want to remove it 1350 * nfsrv_remove, sys_unlink: called on file we are removing 1351 * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache 1352 * then return "text busy" 1353 * nfs_open: seems to uncache any file opened with nfs 1354 * vn_writechk: if VTEXT vnode and can't uncache return "text busy" 1355 * fusefs_open: uncaches any file that is opened 1356 * fusefs_write: uncaches on every write 1357 */ 1358 1359 int 1360 uvm_vnp_uncache(struct vnode *vp) 1361 { 1362 struct uvm_vnode *uvn = vp->v_uvm; 1363 struct uvm_object *uobj = &uvn->u_obj; 1364 1365 /* lock uvn part of the vnode and check if we need to do anything */ 1366 1367 rw_enter(uobj->vmobjlock, RW_WRITE); 1368 if ((uvn->u_flags & UVM_VNODE_VALID) == 0 || 1369 (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) { 1370 rw_exit(uobj->vmobjlock); 1371 return TRUE; 1372 } 1373 1374 /* 1375 * we have a valid, non-blocked uvn. clear persist flag. 1376 * if uvn is currently active we can return now. 1377 */ 1378 uvn->u_flags &= ~UVM_VNODE_CANPERSIST; 1379 if (uvn->u_obj.uo_refs) { 1380 rw_exit(uobj->vmobjlock); 1381 return FALSE; 1382 } 1383 1384 /* 1385 * uvn is currently persisting! we have to gain a reference to 1386 * it so that we can call uvn_detach to kill the uvn. 1387 */ 1388 vref(vp); /* seems ok, even with VOP_LOCK */ 1389 uvn->u_obj.uo_refs++; /* value is now 1 */ 1390 rw_exit(uobj->vmobjlock); 1391 1392 #ifdef VFSLCKDEBUG 1393 /* 1394 * carry over sanity check from old vnode pager: the vnode should 1395 * be VOP_LOCK'd, and we confirm it here. 1396 */ 1397 if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp)) 1398 panic("uvm_vnp_uncache: vnode not locked!"); 1399 #endif 1400 1401 /* 1402 * now drop our reference to the vnode. if we have the sole 1403 * reference to the vnode then this will cause it to die [as we 1404 * just cleared the persist flag]. we have to unlock the vnode 1405 * while we are doing this as it may trigger I/O. 1406 * 1407 * XXX: it might be possible for uvn to get reclaimed while we are 1408 * unlocked causing us to return TRUE when we should not. we ignore 1409 * this as a false-positive return value doesn't hurt us. 1410 */ 1411 VOP_UNLOCK(vp); 1412 uvn_detach(&uvn->u_obj); 1413 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1414 1415 return TRUE; 1416 } 1417 1418 /* 1419 * uvm_vnp_setsize: grow or shrink a vnode uvn 1420 * 1421 * grow => just update size value 1422 * shrink => toss un-needed pages 1423 * 1424 * => we assume that the caller has a reference of some sort to the 1425 * vnode in question so that it will not be yanked out from under 1426 * us. 1427 * 1428 * called from: 1429 * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos], 1430 * fusefs_setattr) 1431 * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write 1432 * fusefs_write) 1433 * => ffs_balloc [XXX: why? doesn't WRITE handle?] 1434 * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr 1435 * => union fs: union_newsize 1436 */ 1437 1438 void 1439 uvm_vnp_setsize(struct vnode *vp, off_t newsize) 1440 { 1441 struct uvm_vnode *uvn = vp->v_uvm; 1442 struct uvm_object *uobj = &uvn->u_obj; 1443 1444 KERNEL_ASSERT_LOCKED(); 1445 1446 rw_enter(uobj->vmobjlock, RW_WRITE); 1447 1448 /* lock uvn and check for valid object, and if valid: do it! */ 1449 if (uvn->u_flags & UVM_VNODE_VALID) { 1450 1451 /* 1452 * now check if the size has changed: if we shrink we had better 1453 * toss some pages... 1454 */ 1455 1456 if (uvn->u_size > newsize) { 1457 (void)uvn_flush(&uvn->u_obj, newsize, 1458 uvn->u_size, PGO_FREE); 1459 } 1460 uvn->u_size = newsize; 1461 } 1462 rw_exit(uobj->vmobjlock); 1463 } 1464 1465 /* 1466 * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes. 1467 * 1468 * => called from sys_sync with no VM structures locked 1469 * => only one process can do a sync at a time (because the uvn 1470 * structure only has one queue for sync'ing). we ensure this 1471 * by holding the uvn_sync_lock while the sync is in progress. 1472 * other processes attempting a sync will sleep on this lock 1473 * until we are done. 1474 */ 1475 void 1476 uvm_vnp_sync(struct mount *mp) 1477 { 1478 struct uvm_vnode *uvn; 1479 struct vnode *vp; 1480 1481 /* 1482 * step 1: ensure we are only ones using the uvn_sync_q by locking 1483 * our lock... 1484 */ 1485 rw_enter_write(&uvn_sync_lock); 1486 1487 /* 1488 * step 2: build up a simpleq of uvns of interest based on the 1489 * write list. we gain a reference to uvns of interest. 1490 */ 1491 SIMPLEQ_INIT(&uvn_sync_q); 1492 LIST_FOREACH(uvn, &uvn_wlist, u_wlist) { 1493 vp = uvn->u_vnode; 1494 if (mp && vp->v_mount != mp) 1495 continue; 1496 1497 /* 1498 * If the vnode is "blocked" it means it must be dying, which 1499 * in turn means its in the process of being flushed out so 1500 * we can safely skip it. 1501 * 1502 * note that uvn must already be valid because we found it on 1503 * the wlist (this also means it can't be ALOCK'd). 1504 */ 1505 if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0) 1506 continue; 1507 1508 /* 1509 * gain reference. watch out for persisting uvns (need to 1510 * regain vnode REF). 1511 */ 1512 if (uvn->u_obj.uo_refs == 0) 1513 vref(vp); 1514 uvn->u_obj.uo_refs++; 1515 1516 SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq); 1517 } 1518 1519 /* step 3: we now have a list of uvn's that may need cleaning. */ 1520 SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) { 1521 rw_enter(uvn->u_obj.vmobjlock, RW_WRITE); 1522 #ifdef DEBUG 1523 if (uvn->u_flags & UVM_VNODE_DYING) { 1524 printf("uvm_vnp_sync: dying vnode on sync list\n"); 1525 } 1526 #endif 1527 uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST); 1528 1529 /* 1530 * if we have the only reference and we just cleaned the uvn, 1531 * then we can pull it out of the UVM_VNODE_WRITEABLE state 1532 * thus allowing us to avoid thinking about flushing it again 1533 * on later sync ops. 1534 */ 1535 if (uvn->u_obj.uo_refs == 1 && 1536 (uvn->u_flags & UVM_VNODE_WRITEABLE)) { 1537 LIST_REMOVE(uvn, u_wlist); 1538 uvn->u_flags &= ~UVM_VNODE_WRITEABLE; 1539 } 1540 rw_exit(uvn->u_obj.vmobjlock); 1541 1542 /* now drop our reference to the uvn */ 1543 uvn_detach(&uvn->u_obj); 1544 } 1545 1546 rw_exit_write(&uvn_sync_lock); 1547 } 1548