1 /* $OpenBSD: uvm_vnode.c,v 1.98 2017/08/12 20:27:28 mpi Exp $ */ 2 /* $NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * Copyright (c) 1991, 1993 7 * The Regents of the University of California. 8 * Copyright (c) 1990 University of Utah. 9 * 10 * All rights reserved. 11 * 12 * This code is derived from software contributed to Berkeley by 13 * the Systems Programming Group of the University of Utah Computer 14 * Science Department. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94 41 * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp 42 */ 43 44 /* 45 * uvm_vnode.c: the vnode pager. 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/malloc.h> 52 #include <sys/vnode.h> 53 #include <sys/lock.h> 54 #include <sys/disklabel.h> 55 #include <sys/fcntl.h> 56 #include <sys/conf.h> 57 #include <sys/rwlock.h> 58 #include <sys/dkio.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm.h> 62 #include <uvm/uvm_vnode.h> 63 64 /* 65 * private global data structure 66 * 67 * we keep a list of writeable active vnode-backed VM objects for sync op. 68 * we keep a simpleq of vnodes that are currently being sync'd. 69 */ 70 71 LIST_HEAD(uvn_list_struct, uvm_vnode); 72 struct uvn_list_struct uvn_wlist; /* writeable uvns */ 73 74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode); 75 struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */ 76 struct rwlock uvn_sync_lock; /* locks sync operation */ 77 78 /* 79 * functions 80 */ 81 void uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *); 82 void uvn_detach(struct uvm_object *); 83 boolean_t uvn_flush(struct uvm_object *, voff_t, voff_t, int); 84 int uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int, 85 vm_prot_t, int, int); 86 void uvn_init(void); 87 int uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int); 88 int uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t); 89 void uvn_reference(struct uvm_object *); 90 91 /* 92 * master pager structure 93 */ 94 struct uvm_pagerops uvm_vnodeops = { 95 uvn_init, 96 uvn_reference, 97 uvn_detach, 98 NULL, /* no specialized fault routine required */ 99 uvn_flush, 100 uvn_get, 101 uvn_put, 102 uvn_cluster, 103 uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */ 104 }; 105 106 /* 107 * the ops! 108 */ 109 /* 110 * uvn_init 111 * 112 * init pager private data structures. 113 */ 114 void 115 uvn_init(void) 116 { 117 118 LIST_INIT(&uvn_wlist); 119 /* note: uvn_sync_q init'd in uvm_vnp_sync() */ 120 rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE); 121 } 122 123 /* 124 * uvn_attach 125 * 126 * attach a vnode structure to a VM object. if the vnode is already 127 * attached, then just bump the reference count by one and return the 128 * VM object. if not already attached, attach and return the new VM obj. 129 * the "accessprot" tells the max access the attaching thread wants to 130 * our pages. 131 * 132 * => in fact, nothing should be locked so that we can sleep here. 133 * => note that uvm_object is first thing in vnode structure, so their 134 * pointers are equiv. 135 */ 136 struct uvm_object * 137 uvn_attach(struct vnode *vp, vm_prot_t accessprot) 138 { 139 struct uvm_vnode *uvn = vp->v_uvm; 140 struct vattr vattr; 141 int oldflags, result; 142 struct partinfo pi; 143 u_quad_t used_vnode_size = 0; 144 145 /* first get a lock on the uvn. */ 146 while (uvn->u_flags & UVM_VNODE_BLOCKED) { 147 uvn->u_flags |= UVM_VNODE_WANTED; 148 UVM_WAIT(uvn, FALSE, "uvn_attach", 0); 149 } 150 151 /* if we're mapping a BLK device, make sure it is a disk. */ 152 if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) { 153 return(NULL); 154 } 155 156 /* 157 * now uvn must not be in a blocked state. 158 * first check to see if it is already active, in which case 159 * we can bump the reference count, check to see if we need to 160 * add it to the writeable list, and then return. 161 */ 162 if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */ 163 164 /* regain vref if we were persisting */ 165 if (uvn->u_obj.uo_refs == 0) { 166 vref(vp); 167 } 168 uvn->u_obj.uo_refs++; /* bump uvn ref! */ 169 170 /* check for new writeable uvn */ 171 if ((accessprot & PROT_WRITE) != 0 && 172 (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) { 173 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 174 /* we are now on wlist! */ 175 uvn->u_flags |= UVM_VNODE_WRITEABLE; 176 } 177 178 return (&uvn->u_obj); 179 } 180 181 /* 182 * need to call VOP_GETATTR() to get the attributes, but that could 183 * block (due to I/O), so we want to unlock the object before calling. 184 * however, we want to keep anyone else from playing with the object 185 * while it is unlocked. to do this we set UVM_VNODE_ALOCK which 186 * prevents anyone from attaching to the vnode until we are done with 187 * it. 188 */ 189 uvn->u_flags = UVM_VNODE_ALOCK; 190 191 if (vp->v_type == VBLK) { 192 /* 193 * We could implement this as a specfs getattr call, but: 194 * 195 * (1) VOP_GETATTR() would get the file system 196 * vnode operation, not the specfs operation. 197 * 198 * (2) All we want is the size, anyhow. 199 */ 200 result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev, 201 DIOCGPART, (caddr_t)&pi, FREAD, curproc); 202 if (result == 0) { 203 /* XXX should remember blocksize */ 204 used_vnode_size = (u_quad_t)pi.disklab->d_secsize * 205 (u_quad_t)DL_GETPSIZE(pi.part); 206 } 207 } else { 208 result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc); 209 if (result == 0) 210 used_vnode_size = vattr.va_size; 211 } 212 213 if (result != 0) { 214 if (uvn->u_flags & UVM_VNODE_WANTED) 215 wakeup(uvn); 216 uvn->u_flags = 0; 217 return(NULL); 218 } 219 220 /* 221 * make sure that the newsize fits within a vaddr_t 222 * XXX: need to revise addressing data types 223 */ 224 #ifdef DEBUG 225 if (vp->v_type == VBLK) 226 printf("used_vnode_size = %llu\n", (long long)used_vnode_size); 227 #endif 228 229 /* now set up the uvn. */ 230 uvm_objinit(&uvn->u_obj, &uvm_vnodeops, 1); 231 oldflags = uvn->u_flags; 232 uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST; 233 uvn->u_nio = 0; 234 uvn->u_size = used_vnode_size; 235 236 /* if write access, we need to add it to the wlist */ 237 if (accessprot & PROT_WRITE) { 238 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 239 uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */ 240 } 241 242 /* 243 * add a reference to the vnode. this reference will stay as long 244 * as there is a valid mapping of the vnode. dropped when the 245 * reference count goes to zero [and we either free or persist]. 246 */ 247 vref(vp); 248 if (oldflags & UVM_VNODE_WANTED) 249 wakeup(uvn); 250 251 return(&uvn->u_obj); 252 } 253 254 255 /* 256 * uvn_reference 257 * 258 * duplicate a reference to a VM object. Note that the reference 259 * count must already be at least one (the passed in reference) so 260 * there is no chance of the uvn being killed out here. 261 * 262 * => caller must be using the same accessprot as was used at attach time 263 */ 264 265 266 void 267 uvn_reference(struct uvm_object *uobj) 268 { 269 #ifdef DEBUG 270 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 271 #endif 272 273 #ifdef DEBUG 274 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 275 printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags, 276 uobj->uo_refs); 277 panic("uvn_reference: invalid state"); 278 } 279 #endif 280 uobj->uo_refs++; 281 } 282 283 /* 284 * uvn_detach 285 * 286 * remove a reference to a VM object. 287 * 288 * => caller must call with map locked. 289 * => this starts the detach process, but doesn't have to finish it 290 * (async i/o could still be pending). 291 */ 292 void 293 uvn_detach(struct uvm_object *uobj) 294 { 295 struct uvm_vnode *uvn; 296 struct vnode *vp; 297 int oldflags; 298 299 300 uobj->uo_refs--; /* drop ref! */ 301 if (uobj->uo_refs) { /* still more refs */ 302 return; 303 } 304 305 /* get other pointers ... */ 306 uvn = (struct uvm_vnode *) uobj; 307 vp = uvn->u_vnode; 308 309 /* 310 * clear VTEXT flag now that there are no mappings left (VTEXT is used 311 * to keep an active text file from being overwritten). 312 */ 313 vp->v_flag &= ~VTEXT; 314 315 /* 316 * we just dropped the last reference to the uvn. see if we can 317 * let it "stick around". 318 */ 319 if (uvn->u_flags & UVM_VNODE_CANPERSIST) { 320 /* won't block */ 321 uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES); 322 vrele(vp); /* drop vnode reference */ 323 return; 324 } 325 326 /* its a goner! */ 327 uvn->u_flags |= UVM_VNODE_DYING; 328 329 /* 330 * even though we may unlock in flush, no one can gain a reference 331 * to us until we clear the "dying" flag [because it blocks 332 * attaches]. we will not do that until after we've disposed of all 333 * the pages with uvn_flush(). note that before the flush the only 334 * pages that could be marked PG_BUSY are ones that are in async 335 * pageout by the daemon. (there can't be any pending "get"'s 336 * because there are no references to the object). 337 */ 338 (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 339 340 /* 341 * given the structure of this pager, the above flush request will 342 * create the following state: all the pages that were in the object 343 * have either been free'd or they are marked PG_BUSY and in the 344 * middle of an async io. If we still have pages we set the "relkill" 345 * state, so that in the case the vnode gets terminated we know 346 * to leave it alone. Otherwise we'll kill the vnode when it's empty. 347 */ 348 uvn->u_flags |= UVM_VNODE_RELKILL; 349 /* wait on any outstanding io */ 350 while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) { 351 uvn->u_flags |= UVM_VNODE_IOSYNC; 352 UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0); 353 } 354 355 if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) 356 return; 357 358 /* 359 * kill object now. note that we can't be on the sync q because 360 * all references are gone. 361 */ 362 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 363 LIST_REMOVE(uvn, u_wlist); 364 } 365 KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt)); 366 oldflags = uvn->u_flags; 367 uvn->u_flags = 0; 368 369 /* wake up any sleepers */ 370 if (oldflags & UVM_VNODE_WANTED) 371 wakeup(uvn); 372 373 /* drop our reference to the vnode. */ 374 vrele(vp); 375 376 return; 377 } 378 379 /* 380 * uvm_vnp_terminate: external hook to clear out a vnode's VM 381 * 382 * called in two cases: 383 * [1] when a persisting vnode vm object (i.e. one with a zero reference 384 * count) needs to be freed so that a vnode can be reused. this 385 * happens under "getnewvnode" in vfs_subr.c. if the vnode from 386 * the free list is still attached (i.e. not VBAD) then vgone is 387 * called. as part of the vgone trace this should get called to 388 * free the vm object. this is the common case. 389 * [2] when a filesystem is being unmounted by force (MNT_FORCE, 390 * "umount -f") the vgone() function is called on active vnodes 391 * on the mounted file systems to kill their data (the vnodes become 392 * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a 393 * call here (even if the uvn is still in use -- i.e. has a non-zero 394 * reference count). this case happens at "umount -f" and during a 395 * "reboot/halt" operation. 396 * 397 * => the caller must XLOCK and VOP_LOCK the vnode before calling us 398 * [protects us from getting a vnode that is already in the DYING 399 * state...] 400 * => in case [2] the uvn is still alive after this call, but all I/O 401 * ops will fail (due to the backing vnode now being "dead"). this 402 * will prob. kill any process using the uvn due to pgo_get failing. 403 */ 404 void 405 uvm_vnp_terminate(struct vnode *vp) 406 { 407 struct uvm_vnode *uvn = vp->v_uvm; 408 int oldflags; 409 410 /* check if it is valid */ 411 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 412 return; 413 } 414 415 /* 416 * must be a valid uvn that is not already dying (because XLOCK 417 * protects us from that). the uvn can't in the ALOCK state 418 * because it is valid, and uvn's that are in the ALOCK state haven't 419 * been marked valid yet. 420 */ 421 #ifdef DEBUG 422 /* 423 * debug check: are we yanking the vnode out from under our uvn? 424 */ 425 if (uvn->u_obj.uo_refs) { 426 printf("uvm_vnp_terminate(%p): terminating active vnode " 427 "(refs=%d)\n", uvn, uvn->u_obj.uo_refs); 428 } 429 #endif 430 431 /* 432 * it is possible that the uvn was detached and is in the relkill 433 * state [i.e. waiting for async i/o to finish]. 434 * we take over the vnode now and cancel the relkill. 435 * we want to know when the i/o is done so we can recycle right 436 * away. note that a uvn can only be in the RELKILL state if it 437 * has a zero reference count. 438 */ 439 if (uvn->u_flags & UVM_VNODE_RELKILL) 440 uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */ 441 442 /* 443 * block the uvn by setting the dying flag, and then flush the 444 * pages. 445 * 446 * also, note that we tell I/O that we are already VOP_LOCK'd so 447 * that uvn_io doesn't attempt to VOP_LOCK again. 448 * 449 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated 450 * due to a forceful unmount might not be a good idea. maybe we 451 * need a way to pass in this info to uvn_flush through a 452 * pager-defined PGO_ constant [currently there are none]. 453 */ 454 uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED; 455 456 (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 457 458 /* 459 * as we just did a flush we expect all the pages to be gone or in 460 * the process of going. sleep to wait for the rest to go [via iosync]. 461 */ 462 while (uvn->u_obj.uo_npages) { 463 #ifdef DEBUG 464 struct vm_page *pp; 465 RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) { 466 if ((pp->pg_flags & PG_BUSY) == 0) 467 panic("uvm_vnp_terminate: detected unbusy pg"); 468 } 469 if (uvn->u_nio == 0) 470 panic("uvm_vnp_terminate: no I/O to wait for?"); 471 printf("uvm_vnp_terminate: waiting for I/O to fin.\n"); 472 /* 473 * XXXCDC: this is unlikely to happen without async i/o so we 474 * put a printf in just to keep an eye on it. 475 */ 476 #endif 477 uvn->u_flags |= UVM_VNODE_IOSYNC; 478 UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0); 479 } 480 481 /* 482 * done. now we free the uvn if its reference count is zero 483 * (true if we are zapping a persisting uvn). however, if we are 484 * terminating a uvn with active mappings we let it live ... future 485 * calls down to the vnode layer will fail. 486 */ 487 oldflags = uvn->u_flags; 488 if (uvn->u_obj.uo_refs) { 489 /* 490 * uvn must live on it is dead-vnode state until all references 491 * are gone. restore flags. clear CANPERSIST state. 492 */ 493 uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED| 494 UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST); 495 } else { 496 /* 497 * free the uvn now. note that the vref reference is already 498 * gone [it is dropped when we enter the persist state]. 499 */ 500 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 501 panic("uvm_vnp_terminate: io sync wanted bit set"); 502 503 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 504 LIST_REMOVE(uvn, u_wlist); 505 } 506 uvn->u_flags = 0; /* uvn is history, clear all bits */ 507 } 508 509 if (oldflags & UVM_VNODE_WANTED) 510 wakeup(uvn); 511 } 512 513 /* 514 * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go 515 * through the buffer cache and allow I/O in any size. These VOPs use 516 * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't 517 * go through the buffer cache or allow I/O sizes larger than a 518 * block]. we will eventually want to change this. 519 * 520 * issues to consider: 521 * uvm provides the uvm_aiodesc structure for async i/o management. 522 * there are two tailq's in the uvm. structure... one for pending async 523 * i/o and one for "done" async i/o. to do an async i/o one puts 524 * an aiodesc on the "pending" list (protected by splbio()), starts the 525 * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect 526 * some sort of "i/o done" function to be called (at splbio(), interrupt 527 * time). this function should remove the aiodesc from the pending list 528 * and place it on the "done" list and wakeup the daemon. the daemon 529 * will run at normal spl() and will remove all items from the "done" 530 * list and call the "aiodone" hook for each done request (see uvm_pager.c). 531 * [in the old vm code, this was done by calling the "put" routine with 532 * null arguments which made the code harder to read and understand because 533 * you had one function ("put") doing two things.] 534 * 535 * so the current pager needs: 536 * int uvn_aiodone(struct uvm_aiodesc *) 537 * 538 * => return 0 (aio finished, free it). otherwise requeue for later collection. 539 * => called with pageq's locked by the daemon. 540 * 541 * general outline: 542 * - drop "u_nio" (this req is done!) 543 * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio } 544 * - get "page" structures (atop?). 545 * - handle "wanted" pages 546 * dont forget to look at "object" wanted flag in all cases. 547 */ 548 549 /* 550 * uvn_flush: flush pages out of a uvm object. 551 * 552 * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller 553 * might want to unlock higher level resources (e.g. vm_map) 554 * before calling flush. 555 * => if PGO_CLEANIT is not set, then we will not block 556 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 557 * for flushing. 558 * => NOTE: we are allowed to lock the page queues, so the caller 559 * must not be holding the lock on them [e.g. pagedaemon had 560 * better not call us with the queues locked] 561 * => we return TRUE unless we encountered some sort of I/O error 562 * 563 * comment on "cleaning" object and PG_BUSY pages: 564 * this routine is holding the lock on the object. the only time 565 * that it can run into a PG_BUSY page that it does not own is if 566 * some other process has started I/O on the page (e.g. either 567 * a pagein, or a pageout). if the PG_BUSY page is being paged 568 * in, then it can not be dirty (!PG_CLEAN) because no one has 569 * had a chance to modify it yet. if the PG_BUSY page is being 570 * paged out then it means that someone else has already started 571 * cleaning the page for us (how nice!). in this case, if we 572 * have syncio specified, then after we make our pass through the 573 * object we need to wait for the other PG_BUSY pages to clear 574 * off (i.e. we need to do an iosync). also note that once a 575 * page is PG_BUSY it must stay in its object until it is un-busyed. 576 */ 577 boolean_t 578 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 579 { 580 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 581 struct vm_page *pp, *ptmp; 582 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp; 583 int npages, result, lcv; 584 boolean_t retval, need_iosync, needs_clean; 585 voff_t curoff; 586 587 /* get init vals and determine how we are going to traverse object */ 588 need_iosync = FALSE; 589 retval = TRUE; /* return value */ 590 if (flags & PGO_ALLPAGES) { 591 start = 0; 592 stop = round_page(uvn->u_size); 593 } else { 594 start = trunc_page(start); 595 stop = MIN(round_page(stop), round_page(uvn->u_size)); 596 } 597 598 /* 599 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as 600 * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint 601 * is wrong it will only prevent us from clustering... it won't break 602 * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster 603 * will set them as it syncs PG_CLEAN. This is only an issue if we 604 * are looking at non-inactive pages (because inactive page's PG_CLEAN 605 * bit is always up to date since there are no mappings). 606 * [borrowed PG_CLEANCHK idea from FreeBSD VM] 607 */ 608 if ((flags & PGO_CLEANIT) != 0) { 609 KASSERT(uobj->pgops->pgo_mk_pcluster != 0); 610 for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) { 611 if ((pp = uvm_pagelookup(uobj, curoff)) != NULL) 612 atomic_clearbits_int(&pp->pg_flags, 613 PG_CLEANCHK); 614 } 615 } 616 617 ppsp = NULL; /* XXX: shut up gcc */ 618 uvm_lock_pageq(); 619 /* locked: both page queues */ 620 for (curoff = start; curoff < stop; curoff += PAGE_SIZE) { 621 if ((pp = uvm_pagelookup(uobj, curoff)) == NULL) 622 continue; 623 /* 624 * handle case where we do not need to clean page (either 625 * because we are not clean or because page is not dirty or 626 * is busy): 627 * 628 * NOTE: we are allowed to deactivate a non-wired active 629 * PG_BUSY page, but once a PG_BUSY page is on the inactive 630 * queue it must stay put until it is !PG_BUSY (so as not to 631 * confuse pagedaemon). 632 */ 633 if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) { 634 needs_clean = FALSE; 635 if ((pp->pg_flags & PG_BUSY) != 0 && 636 (flags & (PGO_CLEANIT|PGO_SYNCIO)) == 637 (PGO_CLEANIT|PGO_SYNCIO)) 638 need_iosync = TRUE; 639 } else { 640 /* 641 * freeing: nuke all mappings so we can sync 642 * PG_CLEAN bit with no race 643 */ 644 if ((pp->pg_flags & PG_CLEAN) != 0 && 645 (flags & PGO_FREE) != 0 && 646 (pp->pg_flags & PQ_ACTIVE) != 0) 647 pmap_page_protect(pp, PROT_NONE); 648 if ((pp->pg_flags & PG_CLEAN) != 0 && 649 pmap_is_modified(pp)) 650 atomic_clearbits_int(&pp->pg_flags, PG_CLEAN); 651 atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK); 652 653 needs_clean = ((pp->pg_flags & PG_CLEAN) == 0); 654 } 655 656 /* if we don't need a clean, deactivate/free pages then cont. */ 657 if (!needs_clean) { 658 if (flags & PGO_DEACTIVATE) { 659 if (pp->wire_count == 0) { 660 pmap_page_protect(pp, PROT_NONE); 661 uvm_pagedeactivate(pp); 662 } 663 } else if (flags & PGO_FREE) { 664 if (pp->pg_flags & PG_BUSY) { 665 atomic_setbits_int(&pp->pg_flags, 666 PG_WANTED); 667 uvm_unlock_pageq(); 668 UVM_WAIT(pp, 0, "uvn_flsh", 0); 669 uvm_lock_pageq(); 670 curoff -= PAGE_SIZE; 671 continue; 672 } else { 673 pmap_page_protect(pp, PROT_NONE); 674 /* removed page from object */ 675 uvm_pagefree(pp); 676 } 677 } 678 continue; 679 } 680 681 /* 682 * pp points to a page in the object that we are 683 * working on. if it is !PG_CLEAN,!PG_BUSY and we asked 684 * for cleaning (PGO_CLEANIT). we clean it now. 685 * 686 * let uvm_pager_put attempted a clustered page out. 687 * note: locked: page queues. 688 */ 689 atomic_setbits_int(&pp->pg_flags, PG_BUSY); 690 UVM_PAGE_OWN(pp, "uvn_flush"); 691 pmap_page_protect(pp, PROT_READ); 692 /* if we're async, free the page in aiodoned */ 693 if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE) 694 atomic_setbits_int(&pp->pg_flags, PG_RELEASED); 695 ReTry: 696 ppsp = pps; 697 npages = sizeof(pps) / sizeof(struct vm_page *); 698 699 result = uvm_pager_put(uobj, pp, &ppsp, &npages, 700 flags | PGO_DOACTCLUST, start, stop); 701 702 /* 703 * if we did an async I/O it is remotely possible for the 704 * async i/o to complete and the page "pp" be freed or what 705 * not before we get a chance to relock the object. Therefore, 706 * we only touch it when it won't be freed, RELEASED took care 707 * of the rest. 708 */ 709 uvm_lock_pageq(); 710 711 /* 712 * VM_PAGER_AGAIN: given the structure of this pager, this 713 * can only happen when we are doing async I/O and can't 714 * map the pages into kernel memory (pager_map) due to lack 715 * of vm space. if this happens we drop back to sync I/O. 716 */ 717 if (result == VM_PAGER_AGAIN) { 718 /* 719 * it is unlikely, but page could have been released 720 * we ignore this now and retry the I/O. 721 * we will detect and 722 * handle the released page after the syncio I/O 723 * completes. 724 */ 725 #ifdef DIAGNOSTIC 726 if (flags & PGO_SYNCIO) 727 panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)"); 728 #endif 729 flags |= PGO_SYNCIO; 730 if (flags & PGO_FREE) 731 atomic_clearbits_int(&pp->pg_flags, 732 PG_RELEASED); 733 734 goto ReTry; 735 } 736 737 /* 738 * the cleaning operation is now done. finish up. note that 739 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us. 740 * if success (OK, PEND) then uvm_pager_put returns the cluster 741 * to us in ppsp/npages. 742 */ 743 /* 744 * for pending async i/o if we are not deactivating 745 * we can move on to the next page. aiodoned deals with 746 * the freeing case for us. 747 */ 748 if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0) 749 continue; 750 751 /* 752 * need to look at each page of the I/O operation, and do what 753 * we gotta do. 754 */ 755 for (lcv = 0 ; lcv < npages; lcv++) { 756 ptmp = ppsp[lcv]; 757 /* 758 * verify the page didn't get moved 759 */ 760 if (result == VM_PAGER_PEND && ptmp->uobject != uobj) 761 continue; 762 763 /* 764 * unbusy the page if I/O is done. note that for 765 * pending I/O it is possible that the I/O op 766 * finished 767 * (in which case the page is no longer busy). 768 */ 769 if (result != VM_PAGER_PEND) { 770 if (ptmp->pg_flags & PG_WANTED) 771 wakeup(ptmp); 772 773 atomic_clearbits_int(&ptmp->pg_flags, 774 PG_WANTED|PG_BUSY); 775 UVM_PAGE_OWN(ptmp, NULL); 776 atomic_setbits_int(&ptmp->pg_flags, 777 PG_CLEAN|PG_CLEANCHK); 778 if ((flags & PGO_FREE) == 0) 779 pmap_clear_modify(ptmp); 780 } 781 782 /* dispose of page */ 783 if (flags & PGO_DEACTIVATE) { 784 if (ptmp->wire_count == 0) { 785 pmap_page_protect(ptmp, PROT_NONE); 786 uvm_pagedeactivate(ptmp); 787 } 788 } else if (flags & PGO_FREE && 789 result != VM_PAGER_PEND) { 790 if (result != VM_PAGER_OK) { 791 printf("uvn_flush: obj=%p, " 792 "offset=0x%llx. error " 793 "during pageout.\n", 794 pp->uobject, 795 (long long)pp->offset); 796 printf("uvn_flush: WARNING: " 797 "changes to page may be " 798 "lost!\n"); 799 retval = FALSE; 800 } 801 pmap_page_protect(ptmp, PROT_NONE); 802 uvm_pagefree(ptmp); 803 } 804 805 } /* end of "lcv" for loop */ 806 807 } /* end of "pp" for loop */ 808 809 /* done with pagequeues: unlock */ 810 uvm_unlock_pageq(); 811 812 /* now wait for all I/O if required. */ 813 if (need_iosync) { 814 while (uvn->u_nio != 0) { 815 uvn->u_flags |= UVM_VNODE_IOSYNC; 816 UVM_WAIT(&uvn->u_nio, FALSE, "uvn_flush", 0); 817 } 818 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 819 wakeup(&uvn->u_flags); 820 uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED); 821 } 822 823 return(retval); 824 } 825 826 /* 827 * uvn_cluster 828 * 829 * we are about to do I/O in an object at offset. this function is called 830 * to establish a range of offsets around "offset" in which we can cluster 831 * I/O. 832 */ 833 834 void 835 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset, 836 voff_t *hoffset) 837 { 838 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 839 *loffset = offset; 840 841 if (*loffset >= uvn->u_size) 842 panic("uvn_cluster: offset out of range"); 843 844 /* 845 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value. 846 */ 847 *hoffset = *loffset + MAXBSIZE; 848 if (*hoffset > round_page(uvn->u_size)) /* past end? */ 849 *hoffset = round_page(uvn->u_size); 850 851 return; 852 } 853 854 /* 855 * uvn_put: flush page data to backing store. 856 * 857 * => prefer map unlocked (not required) 858 * => flags: PGO_SYNCIO -- use sync. I/O 859 * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed) 860 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 861 * [thus we never do async i/o! see iodone comment] 862 */ 863 int 864 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags) 865 { 866 int retval; 867 868 retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE); 869 870 return(retval); 871 } 872 873 /* 874 * uvn_get: get pages (synchronously) from backing store 875 * 876 * => prefer map unlocked (not required) 877 * => flags: PGO_ALLPAGES: get all of the pages 878 * PGO_LOCKED: fault data structures are locked 879 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 880 * => NOTE: caller must check for released pages!! 881 */ 882 int 883 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 884 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 885 { 886 voff_t current_offset; 887 struct vm_page *ptmp; 888 int lcv, result, gotpages; 889 boolean_t done; 890 891 /* step 1: handled the case where fault data structures are locked. */ 892 if (flags & PGO_LOCKED) { 893 /* 894 * gotpages is the current number of pages we've gotten (which 895 * we pass back up to caller via *npagesp. 896 */ 897 gotpages = 0; 898 899 /* 900 * step 1a: get pages that are already resident. only do this 901 * if the data structures are locked (i.e. the first time 902 * through). 903 */ 904 done = TRUE; /* be optimistic */ 905 906 for (lcv = 0, current_offset = offset ; lcv < *npagesp ; 907 lcv++, current_offset += PAGE_SIZE) { 908 909 /* do we care about this page? if not, skip it */ 910 if (pps[lcv] == PGO_DONTCARE) 911 continue; 912 913 /* lookup page */ 914 ptmp = uvm_pagelookup(uobj, current_offset); 915 916 /* to be useful must get a non-busy, non-released pg */ 917 if (ptmp == NULL || 918 (ptmp->pg_flags & PG_BUSY) != 0) { 919 if (lcv == centeridx || (flags & PGO_ALLPAGES) 920 != 0) 921 done = FALSE; /* need to do a wait or I/O! */ 922 continue; 923 } 924 925 /* 926 * useful page: busy it and plug it in our 927 * result array 928 */ 929 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 930 UVM_PAGE_OWN(ptmp, "uvn_get1"); 931 pps[lcv] = ptmp; 932 gotpages++; 933 934 } 935 936 /* 937 * XXX: given the "advice", should we consider async read-ahead? 938 * XXX: fault current does deactive of pages behind us. is 939 * this good (other callers might now). 940 */ 941 /* 942 * XXX: read-ahead currently handled by buffer cache (bread) 943 * level. 944 * XXX: no async i/o available. 945 * XXX: so we don't do anything now. 946 */ 947 948 /* 949 * step 1c: now we've either done everything needed or we to 950 * unlock and do some waiting or I/O. 951 */ 952 953 *npagesp = gotpages; /* let caller know */ 954 if (done) 955 return(VM_PAGER_OK); /* bingo! */ 956 else 957 return(VM_PAGER_UNLOCK); 958 } 959 960 /* 961 * step 2: get non-resident or busy pages. 962 * data structures are unlocked. 963 * 964 * XXX: because we can't do async I/O at this level we get things 965 * page at a time (otherwise we'd chunk). the VOP_READ() will do 966 * async-read-ahead for us at a lower level. 967 */ 968 for (lcv = 0, current_offset = offset; 969 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) { 970 971 /* skip over pages we've already gotten or don't want */ 972 /* skip over pages we don't _have_ to get */ 973 if (pps[lcv] != NULL || (lcv != centeridx && 974 (flags & PGO_ALLPAGES) == 0)) 975 continue; 976 977 /* 978 * we have yet to locate the current page (pps[lcv]). we first 979 * look for a page that is already at the current offset. if 980 * we fine a page, we check to see if it is busy or released. 981 * if that is the case, then we sleep on the page until it is 982 * no longer busy or released and repeat the lookup. if the 983 * page we found is neither busy nor released, then we busy it 984 * (so we own it) and plug it into pps[lcv]. this breaks the 985 * following while loop and indicates we are ready to move on 986 * to the next page in the "lcv" loop above. 987 * 988 * if we exit the while loop with pps[lcv] still set to NULL, 989 * then it means that we allocated a new busy/fake/clean page 990 * ptmp in the object and we need to do I/O to fill in the data. 991 */ 992 while (pps[lcv] == NULL) { /* top of "pps" while loop */ 993 /* look for a current page */ 994 ptmp = uvm_pagelookup(uobj, current_offset); 995 996 /* nope? allocate one now (if we can) */ 997 if (ptmp == NULL) { 998 ptmp = uvm_pagealloc(uobj, current_offset, 999 NULL, 0); 1000 1001 /* out of RAM? */ 1002 if (ptmp == NULL) { 1003 uvm_wait("uvn_getpage"); 1004 1005 /* goto top of pps while loop */ 1006 continue; 1007 } 1008 1009 /* 1010 * got new page ready for I/O. break pps 1011 * while loop. pps[lcv] is still NULL. 1012 */ 1013 break; 1014 } 1015 1016 /* page is there, see if we need to wait on it */ 1017 if ((ptmp->pg_flags & PG_BUSY) != 0) { 1018 atomic_setbits_int(&ptmp->pg_flags, PG_WANTED); 1019 UVM_WAIT(ptmp, FALSE, "uvn_get", 0); 1020 continue; /* goto top of pps while loop */ 1021 } 1022 1023 /* 1024 * if we get here then the page has become resident 1025 * and unbusy between steps 1 and 2. we busy it 1026 * now (so we own it) and set pps[lcv] (so that we 1027 * exit the while loop). 1028 */ 1029 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1030 UVM_PAGE_OWN(ptmp, "uvn_get2"); 1031 pps[lcv] = ptmp; 1032 } 1033 1034 /* 1035 * if we own the a valid page at the correct offset, pps[lcv] 1036 * will point to it. nothing more to do except go to the 1037 * next page. 1038 */ 1039 if (pps[lcv]) 1040 continue; /* next lcv */ 1041 1042 /* 1043 * we have a "fake/busy/clean" page that we just allocated. do 1044 * I/O to fill it with valid data. 1045 */ 1046 result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1, 1047 PGO_SYNCIO, UIO_READ); 1048 1049 /* 1050 * I/O done. because we used syncio the result can not be 1051 * PEND or AGAIN. 1052 */ 1053 if (result != VM_PAGER_OK) { 1054 if (ptmp->pg_flags & PG_WANTED) 1055 wakeup(ptmp); 1056 1057 atomic_clearbits_int(&ptmp->pg_flags, 1058 PG_WANTED|PG_BUSY); 1059 UVM_PAGE_OWN(ptmp, NULL); 1060 uvm_lock_pageq(); 1061 uvm_pagefree(ptmp); 1062 uvm_unlock_pageq(); 1063 return(result); 1064 } 1065 1066 /* 1067 * we got the page! clear the fake flag (indicates valid 1068 * data now in page) and plug into our result array. note 1069 * that page is still busy. 1070 * 1071 * it is the callers job to: 1072 * => check if the page is released 1073 * => unbusy the page 1074 * => activate the page 1075 */ 1076 1077 /* data is valid ... */ 1078 atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE); 1079 pmap_clear_modify(ptmp); /* ... and clean */ 1080 pps[lcv] = ptmp; 1081 1082 } 1083 1084 return (VM_PAGER_OK); 1085 } 1086 1087 /* 1088 * uvn_io: do I/O to a vnode 1089 * 1090 * => prefer map unlocked (not required) 1091 * => flags: PGO_SYNCIO -- use sync. I/O 1092 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 1093 * [thus we never do async i/o! see iodone comment] 1094 */ 1095 1096 int 1097 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw) 1098 { 1099 struct vnode *vn; 1100 struct uio uio; 1101 struct iovec iov; 1102 vaddr_t kva; 1103 off_t file_offset; 1104 int waitf, result, mapinflags; 1105 size_t got, wanted; 1106 1107 /* init values */ 1108 waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT; 1109 vn = uvn->u_vnode; 1110 file_offset = pps[0]->offset; 1111 1112 /* check for sync'ing I/O. */ 1113 while (uvn->u_flags & UVM_VNODE_IOSYNC) { 1114 if (waitf == M_NOWAIT) { 1115 return(VM_PAGER_AGAIN); 1116 } 1117 uvn->u_flags |= UVM_VNODE_IOSYNCWANTED; 1118 UVM_WAIT(&uvn->u_flags, FALSE, "uvn_iosync", 0); 1119 } 1120 1121 /* check size */ 1122 if (file_offset >= uvn->u_size) { 1123 return(VM_PAGER_BAD); 1124 } 1125 1126 /* first try and map the pages in (without waiting) */ 1127 mapinflags = (rw == UIO_READ) ? 1128 UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE; 1129 1130 kva = uvm_pagermapin(pps, npages, mapinflags); 1131 if (kva == 0 && waitf == M_NOWAIT) { 1132 return(VM_PAGER_AGAIN); 1133 } 1134 1135 /* 1136 * ok, now bump u_nio up. at this point we are done with uvn 1137 * and can unlock it. if we still don't have a kva, try again 1138 * (this time with sleep ok). 1139 */ 1140 uvn->u_nio++; /* we have an I/O in progress! */ 1141 if (kva == 0) 1142 kva = uvm_pagermapin(pps, npages, 1143 mapinflags | UVMPAGER_MAPIN_WAITOK); 1144 1145 /* 1146 * ok, mapped in. our pages are PG_BUSY so they are not going to 1147 * get touched (so we can look at "offset" without having to lock 1148 * the object). set up for I/O. 1149 */ 1150 /* fill out uio/iov */ 1151 iov.iov_base = (caddr_t) kva; 1152 wanted = (size_t)npages << PAGE_SHIFT; 1153 if (file_offset + wanted > uvn->u_size) 1154 wanted = uvn->u_size - file_offset; /* XXX: needed? */ 1155 iov.iov_len = wanted; 1156 uio.uio_iov = &iov; 1157 uio.uio_iovcnt = 1; 1158 uio.uio_offset = file_offset; 1159 uio.uio_segflg = UIO_SYSSPACE; 1160 uio.uio_rw = rw; 1161 uio.uio_resid = wanted; 1162 uio.uio_procp = curproc; 1163 1164 /* do the I/O! (XXX: curproc?) */ 1165 /* 1166 * This process may already have this vnode locked, if we faulted in 1167 * copyin() or copyout() on a region backed by this vnode 1168 * while doing I/O to the vnode. If this is the case, don't 1169 * panic.. instead, return the error to the user. 1170 * 1171 * XXX this is a stopgap to prevent a panic. 1172 * Ideally, this kind of operation *should* work. 1173 */ 1174 result = 0; 1175 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1176 result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL, curproc); 1177 1178 if (result == 0) { 1179 int netlocked = (rw_status(&netlock) == RW_WRITE); 1180 1181 /* 1182 * This process may already have the NET_LOCK(), if we 1183 * faulted in copyin() or copyout() in the network stack. 1184 */ 1185 if (netlocked) 1186 NET_UNLOCK(); 1187 1188 /* NOTE: vnode now locked! */ 1189 if (rw == UIO_READ) 1190 result = VOP_READ(vn, &uio, 0, curproc->p_ucred); 1191 else 1192 result = VOP_WRITE(vn, &uio, 1193 (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0, 1194 curproc->p_ucred); 1195 1196 if (netlocked) 1197 NET_LOCK(); 1198 1199 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1200 VOP_UNLOCK(vn, curproc); 1201 } 1202 1203 /* NOTE: vnode now unlocked (unless vnislocked) */ 1204 /* 1205 * result == unix style errno (0 == OK!) 1206 * 1207 * zero out rest of buffer (if needed) 1208 */ 1209 if (result == 0) { 1210 got = wanted - uio.uio_resid; 1211 1212 if (wanted && got == 0) { 1213 result = EIO; /* XXX: error? */ 1214 } else if (got < PAGE_SIZE * npages && rw == UIO_READ) { 1215 memset((void *) (kva + got), 0, 1216 ((size_t)npages << PAGE_SHIFT) - got); 1217 } 1218 } 1219 1220 /* now remove pager mapping */ 1221 uvm_pagermapout(kva, npages); 1222 1223 /* now clean up the object (i.e. drop I/O count) */ 1224 uvn->u_nio--; /* I/O DONE! */ 1225 if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) { 1226 wakeup(&uvn->u_nio); 1227 } 1228 1229 if (result == 0) 1230 return(VM_PAGER_OK); 1231 else 1232 return(VM_PAGER_ERROR); 1233 } 1234 1235 /* 1236 * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference 1237 * is gone we will kill the object (flushing dirty pages back to the vnode 1238 * if needed). 1239 * 1240 * => returns TRUE if there was no uvm_object attached or if there was 1241 * one and we killed it [i.e. if there is no active uvn] 1242 * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if 1243 * needed] 1244 * 1245 * => XXX: given that we now kill uvn's when a vnode is recycled (without 1246 * having to hold a reference on the vnode) and given a working 1247 * uvm_vnp_sync(), how does that effect the need for this function? 1248 * [XXXCDC: seems like it can die?] 1249 * 1250 * => XXX: this function should DIE once we merge the VM and buffer 1251 * cache. 1252 * 1253 * research shows that this is called in the following places: 1254 * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode 1255 * changes sizes 1256 * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we 1257 * are written to 1258 * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit 1259 * is off 1260 * ffs_realloccg: when we can't extend the current block and have 1261 * to allocate a new one we call this [XXX: why?] 1262 * nfsrv_rename, rename_files: called when the target filename is there 1263 * and we want to remove it 1264 * nfsrv_remove, sys_unlink: called on file we are removing 1265 * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache 1266 * then return "text busy" 1267 * nfs_open: seems to uncache any file opened with nfs 1268 * vn_writechk: if VTEXT vnode and can't uncache return "text busy" 1269 */ 1270 1271 int 1272 uvm_vnp_uncache(struct vnode *vp) 1273 { 1274 struct uvm_vnode *uvn = vp->v_uvm; 1275 1276 /* lock uvn part of the vnode and check if we need to do anything */ 1277 1278 if ((uvn->u_flags & UVM_VNODE_VALID) == 0 || 1279 (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) { 1280 return(TRUE); 1281 } 1282 1283 /* 1284 * we have a valid, non-blocked uvn. clear persist flag. 1285 * if uvn is currently active we can return now. 1286 */ 1287 uvn->u_flags &= ~UVM_VNODE_CANPERSIST; 1288 if (uvn->u_obj.uo_refs) { 1289 return(FALSE); 1290 } 1291 1292 /* 1293 * uvn is currently persisting! we have to gain a reference to 1294 * it so that we can call uvn_detach to kill the uvn. 1295 */ 1296 vref(vp); /* seems ok, even with VOP_LOCK */ 1297 uvn->u_obj.uo_refs++; /* value is now 1 */ 1298 1299 #ifdef VFSLCKDEBUG 1300 /* 1301 * carry over sanity check from old vnode pager: the vnode should 1302 * be VOP_LOCK'd, and we confirm it here. 1303 */ 1304 if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp)) 1305 panic("uvm_vnp_uncache: vnode not locked!"); 1306 #endif 1307 1308 /* 1309 * now drop our reference to the vnode. if we have the sole 1310 * reference to the vnode then this will cause it to die [as we 1311 * just cleared the persist flag]. we have to unlock the vnode 1312 * while we are doing this as it may trigger I/O. 1313 * 1314 * XXX: it might be possible for uvn to get reclaimed while we are 1315 * unlocked causing us to return TRUE when we should not. we ignore 1316 * this as a false-positive return value doesn't hurt us. 1317 */ 1318 VOP_UNLOCK(vp, curproc); 1319 uvn_detach(&uvn->u_obj); 1320 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curproc); 1321 1322 return(TRUE); 1323 } 1324 1325 /* 1326 * uvm_vnp_setsize: grow or shrink a vnode uvn 1327 * 1328 * grow => just update size value 1329 * shrink => toss un-needed pages 1330 * 1331 * => we assume that the caller has a reference of some sort to the 1332 * vnode in question so that it will not be yanked out from under 1333 * us. 1334 * 1335 * called from: 1336 * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos]) 1337 * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write) 1338 * => ffs_balloc [XXX: why? doesn't WRITE handle?] 1339 * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr 1340 * => union fs: union_newsize 1341 */ 1342 1343 void 1344 uvm_vnp_setsize(struct vnode *vp, off_t newsize) 1345 { 1346 struct uvm_vnode *uvn = vp->v_uvm; 1347 1348 /* lock uvn and check for valid object, and if valid: do it! */ 1349 if (uvn->u_flags & UVM_VNODE_VALID) { 1350 1351 /* 1352 * now check if the size has changed: if we shrink we had better 1353 * toss some pages... 1354 */ 1355 1356 if (uvn->u_size > newsize) { 1357 (void)uvn_flush(&uvn->u_obj, newsize, 1358 uvn->u_size, PGO_FREE); 1359 } 1360 uvn->u_size = newsize; 1361 } 1362 } 1363 1364 /* 1365 * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes. 1366 * 1367 * => called from sys_sync with no VM structures locked 1368 * => only one process can do a sync at a time (because the uvn 1369 * structure only has one queue for sync'ing). we ensure this 1370 * by holding the uvn_sync_lock while the sync is in progress. 1371 * other processes attempting a sync will sleep on this lock 1372 * until we are done. 1373 */ 1374 void 1375 uvm_vnp_sync(struct mount *mp) 1376 { 1377 struct uvm_vnode *uvn; 1378 struct vnode *vp; 1379 1380 /* 1381 * step 1: ensure we are only ones using the uvn_sync_q by locking 1382 * our lock... 1383 */ 1384 rw_enter_write(&uvn_sync_lock); 1385 1386 /* 1387 * step 2: build up a simpleq of uvns of interest based on the 1388 * write list. we gain a reference to uvns of interest. 1389 */ 1390 SIMPLEQ_INIT(&uvn_sync_q); 1391 LIST_FOREACH(uvn, &uvn_wlist, u_wlist) { 1392 vp = uvn->u_vnode; 1393 if (mp && vp->v_mount != mp) 1394 continue; 1395 1396 /* 1397 * If the vnode is "blocked" it means it must be dying, which 1398 * in turn means its in the process of being flushed out so 1399 * we can safely skip it. 1400 * 1401 * note that uvn must already be valid because we found it on 1402 * the wlist (this also means it can't be ALOCK'd). 1403 */ 1404 if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0) 1405 continue; 1406 1407 /* 1408 * gain reference. watch out for persisting uvns (need to 1409 * regain vnode REF). 1410 */ 1411 if (uvn->u_obj.uo_refs == 0) 1412 vref(vp); 1413 uvn->u_obj.uo_refs++; 1414 1415 SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq); 1416 } 1417 1418 /* step 3: we now have a list of uvn's that may need cleaning. */ 1419 SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) { 1420 #ifdef DEBUG 1421 if (uvn->u_flags & UVM_VNODE_DYING) { 1422 printf("uvm_vnp_sync: dying vnode on sync list\n"); 1423 } 1424 #endif 1425 uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST); 1426 1427 /* 1428 * if we have the only reference and we just cleaned the uvn, 1429 * then we can pull it out of the UVM_VNODE_WRITEABLE state 1430 * thus allowing us to avoid thinking about flushing it again 1431 * on later sync ops. 1432 */ 1433 if (uvn->u_obj.uo_refs == 1 && 1434 (uvn->u_flags & UVM_VNODE_WRITEABLE)) { 1435 LIST_REMOVE(uvn, u_wlist); 1436 uvn->u_flags &= ~UVM_VNODE_WRITEABLE; 1437 } 1438 1439 /* now drop our reference to the uvn */ 1440 uvn_detach(&uvn->u_obj); 1441 } 1442 1443 rw_exit_write(&uvn_sync_lock); 1444 } 1445