xref: /openbsd-src/sys/uvm/uvm_vnode.c (revision 9f11ffb7133c203312a01e4b986886bc88c7d74b)
1 /*	$OpenBSD: uvm_vnode.c,v 1.103 2018/07/16 16:44:09 helg Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
41  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42  */
43 
44 /*
45  * uvm_vnode.c: the vnode pager.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/lock.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/conf.h>
57 #include <sys/rwlock.h>
58 #include <sys/dkio.h>
59 #include <sys/specdev.h>
60 
61 #include <uvm/uvm.h>
62 #include <uvm/uvm_vnode.h>
63 
64 /*
65  * private global data structure
66  *
67  * we keep a list of writeable active vnode-backed VM objects for sync op.
68  * we keep a simpleq of vnodes that are currently being sync'd.
69  */
70 
71 LIST_HEAD(uvn_list_struct, uvm_vnode);
72 struct uvn_list_struct uvn_wlist;	/* writeable uvns */
73 
74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
75 struct uvn_sq_struct uvn_sync_q;		/* sync'ing uvns */
76 struct rwlock uvn_sync_lock;			/* locks sync operation */
77 
78 extern int rebooting;
79 
80 /*
81  * functions
82  */
83 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
84 void		 uvn_detach(struct uvm_object *);
85 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
86 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
87 		     vm_prot_t, int, int);
88 void		 uvn_init(void);
89 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
90 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
91 void		 uvn_reference(struct uvm_object *);
92 
93 /*
94  * master pager structure
95  */
96 struct uvm_pagerops uvm_vnodeops = {
97 	uvn_init,
98 	uvn_reference,
99 	uvn_detach,
100 	NULL,			/* no specialized fault routine required */
101 	uvn_flush,
102 	uvn_get,
103 	uvn_put,
104 	uvn_cluster,
105 	uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
106 };
107 
108 /*
109  * the ops!
110  */
111 /*
112  * uvn_init
113  *
114  * init pager private data structures.
115  */
116 void
117 uvn_init(void)
118 {
119 
120 	LIST_INIT(&uvn_wlist);
121 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
122 	rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
123 }
124 
125 /*
126  * uvn_attach
127  *
128  * attach a vnode structure to a VM object.  if the vnode is already
129  * attached, then just bump the reference count by one and return the
130  * VM object.   if not already attached, attach and return the new VM obj.
131  * the "accessprot" tells the max access the attaching thread wants to
132  * our pages.
133  *
134  * => in fact, nothing should be locked so that we can sleep here.
135  * => note that uvm_object is first thing in vnode structure, so their
136  *    pointers are equiv.
137  */
138 struct uvm_object *
139 uvn_attach(struct vnode *vp, vm_prot_t accessprot)
140 {
141 	struct uvm_vnode *uvn = vp->v_uvm;
142 	struct vattr vattr;
143 	int oldflags, result;
144 	struct partinfo pi;
145 	u_quad_t used_vnode_size = 0;
146 
147 	/* first get a lock on the uvn. */
148 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
149 		uvn->u_flags |= UVM_VNODE_WANTED;
150 		UVM_WAIT(uvn, FALSE, "uvn_attach", 0);
151 	}
152 
153 	/* if we're mapping a BLK device, make sure it is a disk. */
154 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
155 		return(NULL);
156 	}
157 
158 	/*
159 	 * now uvn must not be in a blocked state.
160 	 * first check to see if it is already active, in which case
161 	 * we can bump the reference count, check to see if we need to
162 	 * add it to the writeable list, and then return.
163 	 */
164 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
165 
166 		/* regain vref if we were persisting */
167 		if (uvn->u_obj.uo_refs == 0) {
168 			vref(vp);
169 		}
170 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
171 
172 		/* check for new writeable uvn */
173 		if ((accessprot & PROT_WRITE) != 0 &&
174 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
175 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
176 			/* we are now on wlist! */
177 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
178 		}
179 
180 		return (&uvn->u_obj);
181 	}
182 
183 	/*
184 	 * need to call VOP_GETATTR() to get the attributes, but that could
185 	 * block (due to I/O), so we want to unlock the object before calling.
186 	 * however, we want to keep anyone else from playing with the object
187 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
188 	 * prevents anyone from attaching to the vnode until we are done with
189 	 * it.
190 	 */
191 	uvn->u_flags = UVM_VNODE_ALOCK;
192 
193 	if (vp->v_type == VBLK) {
194 		/*
195 		 * We could implement this as a specfs getattr call, but:
196 		 *
197 		 *	(1) VOP_GETATTR() would get the file system
198 		 *	    vnode operation, not the specfs operation.
199 		 *
200 		 *	(2) All we want is the size, anyhow.
201 		 */
202 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
203 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
204 		if (result == 0) {
205 			/* XXX should remember blocksize */
206 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
207 			    (u_quad_t)DL_GETPSIZE(pi.part);
208 		}
209 	} else {
210 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
211 		if (result == 0)
212 			used_vnode_size = vattr.va_size;
213 	}
214 
215 	if (result != 0) {
216 		if (uvn->u_flags & UVM_VNODE_WANTED)
217 			wakeup(uvn);
218 		uvn->u_flags = 0;
219 		return(NULL);
220 	}
221 
222 	/*
223 	 * make sure that the newsize fits within a vaddr_t
224 	 * XXX: need to revise addressing data types
225 	 */
226 #ifdef DEBUG
227 	if (vp->v_type == VBLK)
228 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
229 #endif
230 
231 	/* now set up the uvn. */
232 	uvm_objinit(&uvn->u_obj, &uvm_vnodeops, 1);
233 	oldflags = uvn->u_flags;
234 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
235 	uvn->u_nio = 0;
236 	uvn->u_size = used_vnode_size;
237 
238 	/* if write access, we need to add it to the wlist */
239 	if (accessprot & PROT_WRITE) {
240 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
241 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
242 	}
243 
244 	/*
245 	 * add a reference to the vnode.   this reference will stay as long
246 	 * as there is a valid mapping of the vnode.   dropped when the
247 	 * reference count goes to zero [and we either free or persist].
248 	 */
249 	vref(vp);
250 	if (oldflags & UVM_VNODE_WANTED)
251 		wakeup(uvn);
252 
253 	return(&uvn->u_obj);
254 }
255 
256 
257 /*
258  * uvn_reference
259  *
260  * duplicate a reference to a VM object.  Note that the reference
261  * count must already be at least one (the passed in reference) so
262  * there is no chance of the uvn being killed out here.
263  *
264  * => caller must be using the same accessprot as was used at attach time
265  */
266 
267 
268 void
269 uvn_reference(struct uvm_object *uobj)
270 {
271 #ifdef DEBUG
272 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
273 #endif
274 
275 #ifdef DEBUG
276 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
277 		printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags,
278 		    uobj->uo_refs);
279 		panic("uvn_reference: invalid state");
280 	}
281 #endif
282 	uobj->uo_refs++;
283 }
284 
285 /*
286  * uvn_detach
287  *
288  * remove a reference to a VM object.
289  *
290  * => caller must call with map locked.
291  * => this starts the detach process, but doesn't have to finish it
292  *    (async i/o could still be pending).
293  */
294 void
295 uvn_detach(struct uvm_object *uobj)
296 {
297 	struct uvm_vnode *uvn;
298 	struct vnode *vp;
299 	int oldflags;
300 
301 
302 	uobj->uo_refs--;			/* drop ref! */
303 	if (uobj->uo_refs) {			/* still more refs */
304 		return;
305 	}
306 
307 	/* get other pointers ... */
308 	uvn = (struct uvm_vnode *) uobj;
309 	vp = uvn->u_vnode;
310 
311 	/*
312 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
313 	 * to keep an active text file from being overwritten).
314 	 */
315 	vp->v_flag &= ~VTEXT;
316 
317 	/*
318 	 * we just dropped the last reference to the uvn.   see if we can
319 	 * let it "stick around".
320 	 */
321 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
322 		/* won't block */
323 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
324 		vrele(vp);			/* drop vnode reference */
325 		return;
326 	}
327 
328 	/* its a goner! */
329 	uvn->u_flags |= UVM_VNODE_DYING;
330 
331 	/*
332 	 * even though we may unlock in flush, no one can gain a reference
333 	 * to us until we clear the "dying" flag [because it blocks
334 	 * attaches].  we will not do that until after we've disposed of all
335 	 * the pages with uvn_flush().  note that before the flush the only
336 	 * pages that could be marked PG_BUSY are ones that are in async
337 	 * pageout by the daemon.  (there can't be any pending "get"'s
338 	 * because there are no references to the object).
339 	 */
340 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
341 
342 	/*
343 	 * given the structure of this pager, the above flush request will
344 	 * create the following state: all the pages that were in the object
345 	 * have either been free'd or they are marked PG_BUSY and in the
346 	 * middle of an async io. If we still have pages we set the "relkill"
347 	 * state, so that in the case the vnode gets terminated we know
348 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
349 	 */
350 	uvn->u_flags |= UVM_VNODE_RELKILL;
351 	/* wait on any outstanding io */
352 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
353 		uvn->u_flags |= UVM_VNODE_IOSYNC;
354 		UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0);
355 	}
356 
357 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0)
358 		return;
359 
360 	/*
361 	 * kill object now.   note that we can't be on the sync q because
362 	 * all references are gone.
363 	 */
364 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
365 		LIST_REMOVE(uvn, u_wlist);
366 	}
367 	KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
368 	oldflags = uvn->u_flags;
369 	uvn->u_flags = 0;
370 
371 	/* wake up any sleepers */
372 	if (oldflags & UVM_VNODE_WANTED)
373 		wakeup(uvn);
374 
375 	/* drop our reference to the vnode. */
376 	vrele(vp);
377 
378 	return;
379 }
380 
381 /*
382  * uvm_vnp_terminate: external hook to clear out a vnode's VM
383  *
384  * called in two cases:
385  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
386  *      count) needs to be freed so that a vnode can be reused.  this
387  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
388  *      the free list is still attached (i.e. not VBAD) then vgone is
389  *	called.   as part of the vgone trace this should get called to
390  *	free the vm object.   this is the common case.
391  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
392  *	"umount -f") the vgone() function is called on active vnodes
393  *	on the mounted file systems to kill their data (the vnodes become
394  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
395  *	call here (even if the uvn is still in use -- i.e. has a non-zero
396  *	reference count).  this case happens at "umount -f" and during a
397  *	"reboot/halt" operation.
398  *
399  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
400  *	[protects us from getting a vnode that is already in the DYING
401  *	 state...]
402  * => in case [2] the uvn is still alive after this call, but all I/O
403  *	ops will fail (due to the backing vnode now being "dead").  this
404  *	will prob. kill any process using the uvn due to pgo_get failing.
405  */
406 void
407 uvm_vnp_terminate(struct vnode *vp)
408 {
409 	struct uvm_vnode *uvn = vp->v_uvm;
410 	int oldflags;
411 
412 	/* check if it is valid */
413 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
414 		return;
415 	}
416 
417 	/*
418 	 * must be a valid uvn that is not already dying (because XLOCK
419 	 * protects us from that).   the uvn can't in the ALOCK state
420 	 * because it is valid, and uvn's that are in the ALOCK state haven't
421 	 * been marked valid yet.
422 	 */
423 #ifdef DEBUG
424 	/*
425 	 * debug check: are we yanking the vnode out from under our uvn?
426 	 */
427 	if (uvn->u_obj.uo_refs) {
428 		printf("uvm_vnp_terminate(%p): terminating active vnode "
429 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
430 	}
431 #endif
432 
433 	/*
434 	 * it is possible that the uvn was detached and is in the relkill
435 	 * state [i.e. waiting for async i/o to finish].
436 	 * we take over the vnode now and cancel the relkill.
437 	 * we want to know when the i/o is done so we can recycle right
438 	 * away.   note that a uvn can only be in the RELKILL state if it
439 	 * has a zero reference count.
440 	 */
441 	if (uvn->u_flags & UVM_VNODE_RELKILL)
442 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
443 
444 	/*
445 	 * block the uvn by setting the dying flag, and then flush the
446 	 * pages.
447 	 *
448 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
449 	 * that uvn_io doesn't attempt to VOP_LOCK again.
450 	 *
451 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
452 	 *	due to a forceful unmount might not be a good idea.  maybe we
453 	 *	need a way to pass in this info to uvn_flush through a
454 	 *	pager-defined PGO_ constant [currently there are none].
455 	 */
456 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
457 
458 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
459 
460 	/*
461 	 * as we just did a flush we expect all the pages to be gone or in
462 	 * the process of going.  sleep to wait for the rest to go [via iosync].
463 	 */
464 	while (uvn->u_obj.uo_npages) {
465 #ifdef DEBUG
466 		struct vm_page *pp;
467 		RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
468 			if ((pp->pg_flags & PG_BUSY) == 0)
469 				panic("uvm_vnp_terminate: detected unbusy pg");
470 		}
471 		if (uvn->u_nio == 0)
472 			panic("uvm_vnp_terminate: no I/O to wait for?");
473 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
474 		/*
475 		 * XXXCDC: this is unlikely to happen without async i/o so we
476 		 * put a printf in just to keep an eye on it.
477 		 */
478 #endif
479 		uvn->u_flags |= UVM_VNODE_IOSYNC;
480 		UVM_WAIT(&uvn->u_nio, FALSE, "uvn_term", 0);
481 	}
482 
483 	/*
484 	 * done.   now we free the uvn if its reference count is zero
485 	 * (true if we are zapping a persisting uvn).   however, if we are
486 	 * terminating a uvn with active mappings we let it live ... future
487 	 * calls down to the vnode layer will fail.
488 	 */
489 	oldflags = uvn->u_flags;
490 	if (uvn->u_obj.uo_refs) {
491 		/*
492 		 * uvn must live on it is dead-vnode state until all references
493 		 * are gone.   restore flags.    clear CANPERSIST state.
494 		 */
495 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
496 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
497 	} else {
498 		/*
499 		 * free the uvn now.   note that the vref reference is already
500 		 * gone [it is dropped when we enter the persist state].
501 		 */
502 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
503 			panic("uvm_vnp_terminate: io sync wanted bit set");
504 
505 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
506 			LIST_REMOVE(uvn, u_wlist);
507 		}
508 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
509 	}
510 
511 	if (oldflags & UVM_VNODE_WANTED)
512 		wakeup(uvn);
513 }
514 
515 /*
516  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
517  * through the buffer cache and allow I/O in any size.  These VOPs use
518  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
519  * go through the buffer cache or allow I/O sizes larger than a
520  * block].  we will eventually want to change this.
521  *
522  * issues to consider:
523  *   uvm provides the uvm_aiodesc structure for async i/o management.
524  * there are two tailq's in the uvm. structure... one for pending async
525  * i/o and one for "done" async i/o.   to do an async i/o one puts
526  * an aiodesc on the "pending" list (protected by splbio()), starts the
527  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
528  * some sort of "i/o done" function to be called (at splbio(), interrupt
529  * time).   this function should remove the aiodesc from the pending list
530  * and place it on the "done" list and wakeup the daemon.   the daemon
531  * will run at normal spl() and will remove all items from the "done"
532  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
533  * [in the old vm code, this was done by calling the "put" routine with
534  * null arguments which made the code harder to read and understand because
535  * you had one function ("put") doing two things.]
536  *
537  * so the current pager needs:
538  *   int uvn_aiodone(struct uvm_aiodesc *)
539  *
540  * => return 0 (aio finished, free it). otherwise requeue for later collection.
541  * => called with pageq's locked by the daemon.
542  *
543  * general outline:
544  * - drop "u_nio" (this req is done!)
545  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
546  * - get "page" structures (atop?).
547  * - handle "wanted" pages
548  * dont forget to look at "object" wanted flag in all cases.
549  */
550 
551 /*
552  * uvn_flush: flush pages out of a uvm object.
553  *
554  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
555  *	might want to unlock higher level resources (e.g. vm_map)
556  *	before calling flush.
557  * => if PGO_CLEANIT is not set, then we will not block
558  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
559  *	for flushing.
560  * => NOTE: we are allowed to lock the page queues, so the caller
561  *	must not be holding the lock on them [e.g. pagedaemon had
562  *	better not call us with the queues locked]
563  * => we return TRUE unless we encountered some sort of I/O error
564  *
565  * comment on "cleaning" object and PG_BUSY pages:
566  *	this routine is holding the lock on the object.   the only time
567  *	that it can run into a PG_BUSY page that it does not own is if
568  *	some other process has started I/O on the page (e.g. either
569  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
570  *	in, then it can not be dirty (!PG_CLEAN) because no one has
571  *	had a chance to modify it yet.    if the PG_BUSY page is being
572  *	paged out then it means that someone else has already started
573  *	cleaning the page for us (how nice!).    in this case, if we
574  *	have syncio specified, then after we make our pass through the
575  *	object we need to wait for the other PG_BUSY pages to clear
576  *	off (i.e. we need to do an iosync).   also note that once a
577  *	page is PG_BUSY it must stay in its object until it is un-busyed.
578  */
579 boolean_t
580 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
581 {
582 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
583 	struct vm_page *pp, *ptmp;
584 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
585 	int npages, result, lcv;
586 	boolean_t retval, need_iosync, needs_clean;
587 	voff_t curoff;
588 
589 	/* get init vals and determine how we are going to traverse object */
590 	need_iosync = FALSE;
591 	retval = TRUE;		/* return value */
592 	if (flags & PGO_ALLPAGES) {
593 		start = 0;
594 		stop = round_page(uvn->u_size);
595 	} else {
596 		start = trunc_page(start);
597 		stop = MIN(round_page(stop), round_page(uvn->u_size));
598 	}
599 
600 	/*
601 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
602 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
603 	 * is wrong it will only prevent us from clustering... it won't break
604 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
605 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
606 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
607 	 * bit is always up to date since there are no mappings).
608 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
609 	 */
610 	if ((flags & PGO_CLEANIT) != 0) {
611 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
612 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
613 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
614 				atomic_clearbits_int(&pp->pg_flags,
615 				    PG_CLEANCHK);
616 		}
617 	}
618 
619 	ppsp = NULL;		/* XXX: shut up gcc */
620 	uvm_lock_pageq();
621 	/* locked: both page queues */
622 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
623 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
624 			continue;
625 		/*
626 		 * handle case where we do not need to clean page (either
627 		 * because we are not clean or because page is not dirty or
628 		 * is busy):
629 		 *
630 		 * NOTE: we are allowed to deactivate a non-wired active
631 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
632 		 * queue it must stay put until it is !PG_BUSY (so as not to
633 		 * confuse pagedaemon).
634 		 */
635 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
636 			needs_clean = FALSE;
637 			if ((pp->pg_flags & PG_BUSY) != 0 &&
638 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
639 			             (PGO_CLEANIT|PGO_SYNCIO))
640 				need_iosync = TRUE;
641 		} else {
642 			/*
643 			 * freeing: nuke all mappings so we can sync
644 			 * PG_CLEAN bit with no race
645 			 */
646 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
647 			    (flags & PGO_FREE) != 0 &&
648 			    (pp->pg_flags & PQ_ACTIVE) != 0)
649 				pmap_page_protect(pp, PROT_NONE);
650 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
651 			    pmap_is_modified(pp))
652 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
653 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
654 
655 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
656 		}
657 
658 		/* if we don't need a clean, deactivate/free pages then cont. */
659 		if (!needs_clean) {
660 			if (flags & PGO_DEACTIVATE) {
661 				if (pp->wire_count == 0) {
662 					pmap_page_protect(pp, PROT_NONE);
663 					uvm_pagedeactivate(pp);
664 				}
665 			} else if (flags & PGO_FREE) {
666 				if (pp->pg_flags & PG_BUSY) {
667 					atomic_setbits_int(&pp->pg_flags,
668 					    PG_WANTED);
669 					uvm_unlock_pageq();
670 					UVM_WAIT(pp, 0, "uvn_flsh", 0);
671 					uvm_lock_pageq();
672 					curoff -= PAGE_SIZE;
673 					continue;
674 				} else {
675 					pmap_page_protect(pp, PROT_NONE);
676 					/* removed page from object */
677 					uvm_pagefree(pp);
678 				}
679 			}
680 			continue;
681 		}
682 
683 		/*
684 		 * pp points to a page in the object that we are
685 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
686 		 * for cleaning (PGO_CLEANIT).  we clean it now.
687 		 *
688 		 * let uvm_pager_put attempted a clustered page out.
689 		 * note: locked: page queues.
690 		 */
691 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
692 		UVM_PAGE_OWN(pp, "uvn_flush");
693 		pmap_page_protect(pp, PROT_READ);
694 		/* if we're async, free the page in aiodoned */
695 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
696 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
697 ReTry:
698 		ppsp = pps;
699 		npages = sizeof(pps) / sizeof(struct vm_page *);
700 
701 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
702 			   flags | PGO_DOACTCLUST, start, stop);
703 
704 		/*
705 		 * if we did an async I/O it is remotely possible for the
706 		 * async i/o to complete and the page "pp" be freed or what
707 		 * not before we get a chance to relock the object. Therefore,
708 		 * we only touch it when it won't be freed, RELEASED took care
709 		 * of the rest.
710 		 */
711 		uvm_lock_pageq();
712 
713 		/*
714 		 * VM_PAGER_AGAIN: given the structure of this pager, this
715 		 * can only happen when we are doing async I/O and can't
716 		 * map the pages into kernel memory (pager_map) due to lack
717 		 * of vm space.   if this happens we drop back to sync I/O.
718 		 */
719 		if (result == VM_PAGER_AGAIN) {
720 			/*
721 			 * it is unlikely, but page could have been released
722 			 * we ignore this now and retry the I/O.
723 			 * we will detect and
724 			 * handle the released page after the syncio I/O
725 			 * completes.
726 			 */
727 #ifdef DIAGNOSTIC
728 			if (flags & PGO_SYNCIO)
729 	panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
730 #endif
731 			flags |= PGO_SYNCIO;
732 			if (flags & PGO_FREE)
733 				atomic_clearbits_int(&pp->pg_flags,
734 				    PG_RELEASED);
735 
736 			goto ReTry;
737 		}
738 
739 		/*
740 		 * the cleaning operation is now done.   finish up.  note that
741 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
742 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
743 		 * to us in ppsp/npages.
744 		 */
745 		/*
746 		 * for pending async i/o if we are not deactivating
747 		 * we can move on to the next page. aiodoned deals with
748 		 * the freeing case for us.
749 		 */
750 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
751 			continue;
752 
753 		/*
754 		 * need to look at each page of the I/O operation, and do what
755 		 * we gotta do.
756 		 */
757 		for (lcv = 0 ; lcv < npages; lcv++) {
758 			ptmp = ppsp[lcv];
759 			/*
760 			 * verify the page didn't get moved
761 			 */
762 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
763 				continue;
764 
765 			/*
766 			 * unbusy the page if I/O is done.   note that for
767 			 * pending I/O it is possible that the I/O op
768 			 * finished
769 			 * (in which case the page is no longer busy).
770 			 */
771 			if (result != VM_PAGER_PEND) {
772 				if (ptmp->pg_flags & PG_WANTED)
773 					wakeup(ptmp);
774 
775 				atomic_clearbits_int(&ptmp->pg_flags,
776 				    PG_WANTED|PG_BUSY);
777 				UVM_PAGE_OWN(ptmp, NULL);
778 				atomic_setbits_int(&ptmp->pg_flags,
779 				    PG_CLEAN|PG_CLEANCHK);
780 				if ((flags & PGO_FREE) == 0)
781 					pmap_clear_modify(ptmp);
782 			}
783 
784 			/* dispose of page */
785 			if (flags & PGO_DEACTIVATE) {
786 				if (ptmp->wire_count == 0) {
787 					pmap_page_protect(ptmp, PROT_NONE);
788 					uvm_pagedeactivate(ptmp);
789 				}
790 			} else if (flags & PGO_FREE &&
791 			    result != VM_PAGER_PEND) {
792 				if (result != VM_PAGER_OK) {
793 					printf("uvn_flush: obj=%p, "
794 					   "offset=0x%llx.  error "
795 					   "during pageout.\n",
796 					    pp->uobject,
797 					    (long long)pp->offset);
798 					printf("uvn_flush: WARNING: "
799 					    "changes to page may be "
800 					    "lost!\n");
801 					retval = FALSE;
802 				}
803 				pmap_page_protect(ptmp, PROT_NONE);
804 				uvm_pagefree(ptmp);
805 			}
806 
807 		}		/* end of "lcv" for loop */
808 
809 	}		/* end of "pp" for loop */
810 
811 	/* done with pagequeues: unlock */
812 	uvm_unlock_pageq();
813 
814 	/* now wait for all I/O if required. */
815 	if (need_iosync) {
816 		while (uvn->u_nio != 0) {
817 			uvn->u_flags |= UVM_VNODE_IOSYNC;
818 			UVM_WAIT(&uvn->u_nio, FALSE, "uvn_flush", 0);
819 		}
820 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
821 			wakeup(&uvn->u_flags);
822 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
823 	}
824 
825 	return(retval);
826 }
827 
828 /*
829  * uvn_cluster
830  *
831  * we are about to do I/O in an object at offset.   this function is called
832  * to establish a range of offsets around "offset" in which we can cluster
833  * I/O.
834  */
835 
836 void
837 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
838     voff_t *hoffset)
839 {
840 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
841 	*loffset = offset;
842 
843 	if (*loffset >= uvn->u_size)
844 		panic("uvn_cluster: offset out of range");
845 
846 	/*
847 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
848 	 */
849 	*hoffset = *loffset + MAXBSIZE;
850 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
851 		*hoffset = round_page(uvn->u_size);
852 
853 	return;
854 }
855 
856 /*
857  * uvn_put: flush page data to backing store.
858  *
859  * => prefer map unlocked (not required)
860  * => flags: PGO_SYNCIO -- use sync. I/O
861  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
862  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
863  *	[thus we never do async i/o!  see iodone comment]
864  */
865 int
866 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
867 {
868 	int retval;
869 
870 	retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
871 
872 	return(retval);
873 }
874 
875 /*
876  * uvn_get: get pages (synchronously) from backing store
877  *
878  * => prefer map unlocked (not required)
879  * => flags: PGO_ALLPAGES: get all of the pages
880  *           PGO_LOCKED: fault data structures are locked
881  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
882  * => NOTE: caller must check for released pages!!
883  */
884 int
885 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
886     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
887 {
888 	voff_t current_offset;
889 	struct vm_page *ptmp;
890 	int lcv, result, gotpages;
891 	boolean_t done;
892 
893 	/* step 1: handled the case where fault data structures are locked. */
894 	if (flags & PGO_LOCKED) {
895 		/*
896 		 * gotpages is the current number of pages we've gotten (which
897 		 * we pass back up to caller via *npagesp.
898 		 */
899 		gotpages = 0;
900 
901 		/*
902 		 * step 1a: get pages that are already resident.   only do this
903 		 * if the data structures are locked (i.e. the first time
904 		 * through).
905 		 */
906 		done = TRUE;	/* be optimistic */
907 
908 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
909 		    lcv++, current_offset += PAGE_SIZE) {
910 
911 			/* do we care about this page?  if not, skip it */
912 			if (pps[lcv] == PGO_DONTCARE)
913 				continue;
914 
915 			/* lookup page */
916 			ptmp = uvm_pagelookup(uobj, current_offset);
917 
918 			/* to be useful must get a non-busy, non-released pg */
919 			if (ptmp == NULL ||
920 			    (ptmp->pg_flags & PG_BUSY) != 0) {
921 				if (lcv == centeridx || (flags & PGO_ALLPAGES)
922 				    != 0)
923 					done = FALSE;	/* need to do a wait or I/O! */
924 				continue;
925 			}
926 
927 			/*
928 			 * useful page: busy it and plug it in our
929 			 * result array
930 			 */
931 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
932 			UVM_PAGE_OWN(ptmp, "uvn_get1");
933 			pps[lcv] = ptmp;
934 			gotpages++;
935 
936 		}
937 
938 		/*
939 		 * XXX: given the "advice", should we consider async read-ahead?
940 		 * XXX: fault current does deactive of pages behind us.  is
941 		 * this good (other callers might now).
942 		 */
943 		/*
944 		 * XXX: read-ahead currently handled by buffer cache (bread)
945 		 * level.
946 		 * XXX: no async i/o available.
947 		 * XXX: so we don't do anything now.
948 		 */
949 
950 		/*
951 		 * step 1c: now we've either done everything needed or we to
952 		 * unlock and do some waiting or I/O.
953 		 */
954 
955 		*npagesp = gotpages;		/* let caller know */
956 		if (done)
957 			return(VM_PAGER_OK);		/* bingo! */
958 		else
959 			return(VM_PAGER_UNLOCK);
960 	}
961 
962 	/*
963 	 * step 2: get non-resident or busy pages.
964 	 * data structures are unlocked.
965 	 *
966 	 * XXX: because we can't do async I/O at this level we get things
967 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
968 	 * async-read-ahead for us at a lower level.
969 	 */
970 	for (lcv = 0, current_offset = offset;
971 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
972 
973 		/* skip over pages we've already gotten or don't want */
974 		/* skip over pages we don't _have_ to get */
975 		if (pps[lcv] != NULL || (lcv != centeridx &&
976 		    (flags & PGO_ALLPAGES) == 0))
977 			continue;
978 
979 		/*
980 		 * we have yet to locate the current page (pps[lcv]).   we first
981 		 * look for a page that is already at the current offset.   if
982 		 * we fine a page, we check to see if it is busy or released.
983 		 * if that is the case, then we sleep on the page until it is
984 		 * no longer busy or released and repeat the lookup.    if the
985 		 * page we found is neither busy nor released, then we busy it
986 		 * (so we own it) and plug it into pps[lcv].   this breaks the
987 		 * following while loop and indicates we are ready to move on
988 		 * to the next page in the "lcv" loop above.
989 		 *
990 		 * if we exit the while loop with pps[lcv] still set to NULL,
991 		 * then it means that we allocated a new busy/fake/clean page
992 		 * ptmp in the object and we need to do I/O to fill in the data.
993 		 */
994 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
995 			/* look for a current page */
996 			ptmp = uvm_pagelookup(uobj, current_offset);
997 
998 			/* nope?   allocate one now (if we can) */
999 			if (ptmp == NULL) {
1000 				ptmp = uvm_pagealloc(uobj, current_offset,
1001 				    NULL, 0);
1002 
1003 				/* out of RAM? */
1004 				if (ptmp == NULL) {
1005 					uvm_wait("uvn_getpage");
1006 
1007 					/* goto top of pps while loop */
1008 					continue;
1009 				}
1010 
1011 				/*
1012 				 * got new page ready for I/O.  break pps
1013 				 * while loop.  pps[lcv] is still NULL.
1014 				 */
1015 				break;
1016 			}
1017 
1018 			/* page is there, see if we need to wait on it */
1019 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1020 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1021 				UVM_WAIT(ptmp, FALSE, "uvn_get", 0);
1022 				continue;	/* goto top of pps while loop */
1023 			}
1024 
1025 			/*
1026 			 * if we get here then the page has become resident
1027 			 * and unbusy between steps 1 and 2.  we busy it
1028 			 * now (so we own it) and set pps[lcv] (so that we
1029 			 * exit the while loop).
1030 			 */
1031 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1032 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1033 			pps[lcv] = ptmp;
1034 		}
1035 
1036 		/*
1037 		 * if we own the a valid page at the correct offset, pps[lcv]
1038 		 * will point to it.   nothing more to do except go to the
1039 		 * next page.
1040 		 */
1041 		if (pps[lcv])
1042 			continue;			/* next lcv */
1043 
1044 		/*
1045 		 * we have a "fake/busy/clean" page that we just allocated.  do
1046 		 * I/O to fill it with valid data.
1047 		 */
1048 		result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1049 		    PGO_SYNCIO, UIO_READ);
1050 
1051 		/*
1052 		 * I/O done.  because we used syncio the result can not be
1053 		 * PEND or AGAIN.
1054 		 */
1055 		if (result != VM_PAGER_OK) {
1056 			if (ptmp->pg_flags & PG_WANTED)
1057 				wakeup(ptmp);
1058 
1059 			atomic_clearbits_int(&ptmp->pg_flags,
1060 			    PG_WANTED|PG_BUSY);
1061 			UVM_PAGE_OWN(ptmp, NULL);
1062 			uvm_lock_pageq();
1063 			uvm_pagefree(ptmp);
1064 			uvm_unlock_pageq();
1065 			return(result);
1066 		}
1067 
1068 		/*
1069 		 * we got the page!   clear the fake flag (indicates valid
1070 		 * data now in page) and plug into our result array.   note
1071 		 * that page is still busy.
1072 		 *
1073 		 * it is the callers job to:
1074 		 * => check if the page is released
1075 		 * => unbusy the page
1076 		 * => activate the page
1077 		 */
1078 
1079 		/* data is valid ... */
1080 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1081 		pmap_clear_modify(ptmp);		/* ... and clean */
1082 		pps[lcv] = ptmp;
1083 
1084 	}
1085 
1086 	return (VM_PAGER_OK);
1087 }
1088 
1089 /*
1090  * uvn_io: do I/O to a vnode
1091  *
1092  * => prefer map unlocked (not required)
1093  * => flags: PGO_SYNCIO -- use sync. I/O
1094  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1095  *	[thus we never do async i/o!  see iodone comment]
1096  */
1097 
1098 int
1099 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1100 {
1101 	struct vnode *vn;
1102 	struct uio uio;
1103 	struct iovec iov;
1104 	vaddr_t kva;
1105 	off_t file_offset;
1106 	int waitf, result, mapinflags;
1107 	size_t got, wanted;
1108 	int netunlocked = 0;
1109 
1110 	/* init values */
1111 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1112 	vn = uvn->u_vnode;
1113 	file_offset = pps[0]->offset;
1114 
1115 	/* check for sync'ing I/O. */
1116 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1117 		if (waitf == M_NOWAIT) {
1118 			return(VM_PAGER_AGAIN);
1119 		}
1120 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1121 		UVM_WAIT(&uvn->u_flags, FALSE, "uvn_iosync", 0);
1122 	}
1123 
1124 	/* check size */
1125 	if (file_offset >= uvn->u_size) {
1126 		return(VM_PAGER_BAD);
1127 	}
1128 
1129 	/* first try and map the pages in (without waiting) */
1130 	mapinflags = (rw == UIO_READ) ?
1131 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1132 
1133 	kva = uvm_pagermapin(pps, npages, mapinflags);
1134 	if (kva == 0 && waitf == M_NOWAIT) {
1135 		return(VM_PAGER_AGAIN);
1136 	}
1137 
1138 	/*
1139 	 * ok, now bump u_nio up.   at this point we are done with uvn
1140 	 * and can unlock it.   if we still don't have a kva, try again
1141 	 * (this time with sleep ok).
1142 	 */
1143 	uvn->u_nio++;			/* we have an I/O in progress! */
1144 	if (kva == 0)
1145 		kva = uvm_pagermapin(pps, npages,
1146 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1147 
1148 	/*
1149 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1150 	 * get touched (so we can look at "offset" without having to lock
1151 	 * the object).  set up for I/O.
1152 	 */
1153 	/* fill out uio/iov */
1154 	iov.iov_base = (caddr_t) kva;
1155 	wanted = (size_t)npages << PAGE_SHIFT;
1156 	if (file_offset + wanted > uvn->u_size)
1157 		wanted = uvn->u_size - file_offset;	/* XXX: needed? */
1158 	iov.iov_len = wanted;
1159 	uio.uio_iov = &iov;
1160 	uio.uio_iovcnt = 1;
1161 	uio.uio_offset = file_offset;
1162 	uio.uio_segflg = UIO_SYSSPACE;
1163 	uio.uio_rw = rw;
1164 	uio.uio_resid = wanted;
1165 	uio.uio_procp = curproc;
1166 
1167 	/*
1168 	 * This process may already have the NET_LOCK(), if we
1169 	 * faulted in copyin() or copyout() in the network stack.
1170 	 */
1171 	if (rw_status(&netlock) == RW_WRITE) {
1172 		NET_UNLOCK();
1173 		netunlocked = 1;
1174 	}
1175 
1176 	/* do the I/O!  (XXX: curproc?) */
1177 	/*
1178 	 * This process may already have this vnode locked, if we faulted in
1179 	 * copyin() or copyout() on a region backed by this vnode
1180 	 * while doing I/O to the vnode.  If this is the case, don't
1181 	 * panic.. instead, return the error to the user.
1182 	 *
1183 	 * XXX this is a stopgap to prevent a panic.
1184 	 * Ideally, this kind of operation *should* work.
1185 	 */
1186 	result = 0;
1187 	if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1188 		result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL);
1189 
1190 	if (result == 0) {
1191 		/* NOTE: vnode now locked! */
1192 		if (rw == UIO_READ)
1193 			result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1194 		else
1195 			result = VOP_WRITE(vn, &uio,
1196 			    (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1197 			    curproc->p_ucred);
1198 
1199 		if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1200 			VOP_UNLOCK(vn);
1201 
1202 	}
1203 
1204 	if (netunlocked)
1205 		NET_LOCK();
1206 
1207 
1208 	/* NOTE: vnode now unlocked (unless vnislocked) */
1209 	/*
1210 	 * result == unix style errno (0 == OK!)
1211 	 *
1212 	 * zero out rest of buffer (if needed)
1213 	 */
1214 	if (result == 0) {
1215 		got = wanted - uio.uio_resid;
1216 
1217 		if (wanted && got == 0) {
1218 			result = EIO;		/* XXX: error? */
1219 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1220 			memset((void *) (kva + got), 0,
1221 			       ((size_t)npages << PAGE_SHIFT) - got);
1222 		}
1223 	}
1224 
1225 	/* now remove pager mapping */
1226 	uvm_pagermapout(kva, npages);
1227 
1228 	/* now clean up the object (i.e. drop I/O count) */
1229 	uvn->u_nio--;			/* I/O DONE! */
1230 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1231 		wakeup(&uvn->u_nio);
1232 	}
1233 
1234 	if (result == 0) {
1235 		return(VM_PAGER_OK);
1236 	} else {
1237 		while (rebooting)
1238 			tsleep(&rebooting, PVM, "uvndead", 0);
1239 		return(VM_PAGER_ERROR);
1240 	}
1241 }
1242 
1243 /*
1244  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1245  * is gone we will kill the object (flushing dirty pages back to the vnode
1246  * if needed).
1247  *
1248  * => returns TRUE if there was no uvm_object attached or if there was
1249  *	one and we killed it [i.e. if there is no active uvn]
1250  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1251  *	needed]
1252  *
1253  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1254  *	having to hold a reference on the vnode) and given a working
1255  *	uvm_vnp_sync(), how does that effect the need for this function?
1256  *      [XXXCDC: seems like it can die?]
1257  *
1258  * => XXX: this function should DIE once we merge the VM and buffer
1259  *	cache.
1260  *
1261  * research shows that this is called in the following places:
1262  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1263  *	changes sizes
1264  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1265  *	are written to
1266  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1267  *	is off
1268  * ffs_realloccg: when we can't extend the current block and have
1269  *	to allocate a new one we call this [XXX: why?]
1270  * nfsrv_rename, rename_files: called when the target filename is there
1271  *	and we want to remove it
1272  * nfsrv_remove, sys_unlink: called on file we are removing
1273  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1274  *	then return "text busy"
1275  * nfs_open: seems to uncache any file opened with nfs
1276  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1277  * fusefs_open: uncaches any file that is opened
1278  * fusefs_write: uncaches on every write
1279  */
1280 
1281 int
1282 uvm_vnp_uncache(struct vnode *vp)
1283 {
1284 	struct uvm_vnode *uvn = vp->v_uvm;
1285 
1286 	/* lock uvn part of the vnode and check if we need to do anything */
1287 
1288 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1289 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1290 		return(TRUE);
1291 	}
1292 
1293 	/*
1294 	 * we have a valid, non-blocked uvn.   clear persist flag.
1295 	 * if uvn is currently active we can return now.
1296 	 */
1297 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1298 	if (uvn->u_obj.uo_refs) {
1299 		return(FALSE);
1300 	}
1301 
1302 	/*
1303 	 * uvn is currently persisting!   we have to gain a reference to
1304 	 * it so that we can call uvn_detach to kill the uvn.
1305 	 */
1306 	vref(vp);			/* seems ok, even with VOP_LOCK */
1307 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1308 
1309 #ifdef VFSLCKDEBUG
1310 	/*
1311 	 * carry over sanity check from old vnode pager: the vnode should
1312 	 * be VOP_LOCK'd, and we confirm it here.
1313 	 */
1314 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1315 		panic("uvm_vnp_uncache: vnode not locked!");
1316 #endif
1317 
1318 	/*
1319 	 * now drop our reference to the vnode.   if we have the sole
1320 	 * reference to the vnode then this will cause it to die [as we
1321 	 * just cleared the persist flag].   we have to unlock the vnode
1322 	 * while we are doing this as it may trigger I/O.
1323 	 *
1324 	 * XXX: it might be possible for uvn to get reclaimed while we are
1325 	 * unlocked causing us to return TRUE when we should not.   we ignore
1326 	 * this as a false-positive return value doesn't hurt us.
1327 	 */
1328 	VOP_UNLOCK(vp);
1329 	uvn_detach(&uvn->u_obj);
1330 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1331 
1332 	return(TRUE);
1333 }
1334 
1335 /*
1336  * uvm_vnp_setsize: grow or shrink a vnode uvn
1337  *
1338  * grow   => just update size value
1339  * shrink => toss un-needed pages
1340  *
1341  * => we assume that the caller has a reference of some sort to the
1342  *	vnode in question so that it will not be yanked out from under
1343  *	us.
1344  *
1345  * called from:
1346  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1347  *     fusefs_setattr)
1348  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1349  *     fusefs_write)
1350  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1351  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1352  *  => union fs: union_newsize
1353  */
1354 
1355 void
1356 uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1357 {
1358 	struct uvm_vnode *uvn = vp->v_uvm;
1359 
1360 	/* lock uvn and check for valid object, and if valid: do it! */
1361 	if (uvn->u_flags & UVM_VNODE_VALID) {
1362 
1363 		/*
1364 		 * now check if the size has changed: if we shrink we had better
1365 		 * toss some pages...
1366 		 */
1367 
1368 		if (uvn->u_size > newsize) {
1369 			(void)uvn_flush(&uvn->u_obj, newsize,
1370 			    uvn->u_size, PGO_FREE);
1371 		}
1372 		uvn->u_size = newsize;
1373 	}
1374 }
1375 
1376 /*
1377  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1378  *
1379  * => called from sys_sync with no VM structures locked
1380  * => only one process can do a sync at a time (because the uvn
1381  *    structure only has one queue for sync'ing).  we ensure this
1382  *    by holding the uvn_sync_lock while the sync is in progress.
1383  *    other processes attempting a sync will sleep on this lock
1384  *    until we are done.
1385  */
1386 void
1387 uvm_vnp_sync(struct mount *mp)
1388 {
1389 	struct uvm_vnode *uvn;
1390 	struct vnode *vp;
1391 
1392 	/*
1393 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1394 	 * our lock...
1395 	 */
1396 	rw_enter_write(&uvn_sync_lock);
1397 
1398 	/*
1399 	 * step 2: build up a simpleq of uvns of interest based on the
1400 	 * write list.   we gain a reference to uvns of interest.
1401 	 */
1402 	SIMPLEQ_INIT(&uvn_sync_q);
1403 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1404 		vp = uvn->u_vnode;
1405 		if (mp && vp->v_mount != mp)
1406 			continue;
1407 
1408 		/*
1409 		 * If the vnode is "blocked" it means it must be dying, which
1410 		 * in turn means its in the process of being flushed out so
1411 		 * we can safely skip it.
1412 		 *
1413 		 * note that uvn must already be valid because we found it on
1414 		 * the wlist (this also means it can't be ALOCK'd).
1415 		 */
1416 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1417 			continue;
1418 
1419 		/*
1420 		 * gain reference.   watch out for persisting uvns (need to
1421 		 * regain vnode REF).
1422 		 */
1423 		if (uvn->u_obj.uo_refs == 0)
1424 			vref(vp);
1425 		uvn->u_obj.uo_refs++;
1426 
1427 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1428 	}
1429 
1430 	/* step 3: we now have a list of uvn's that may need cleaning. */
1431 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1432 #ifdef DEBUG
1433 		if (uvn->u_flags & UVM_VNODE_DYING) {
1434 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1435 		}
1436 #endif
1437 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1438 
1439 		/*
1440 		 * if we have the only reference and we just cleaned the uvn,
1441 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1442 		 * thus allowing us to avoid thinking about flushing it again
1443 		 * on later sync ops.
1444 		 */
1445 		if (uvn->u_obj.uo_refs == 1 &&
1446 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1447 			LIST_REMOVE(uvn, u_wlist);
1448 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1449 		}
1450 
1451 		/* now drop our reference to the uvn */
1452 		uvn_detach(&uvn->u_obj);
1453 	}
1454 
1455 	rw_exit_write(&uvn_sync_lock);
1456 }
1457