xref: /openbsd-src/sys/uvm/uvm_vnode.c (revision 5a38ef86d0b61900239c7913d24a05e7b88a58f0)
1 /*	$OpenBSD: uvm_vnode.c,v 1.121 2021/12/15 12:53:53 mpi Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
41  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42  */
43 
44 /*
45  * uvm_vnode.c: the vnode pager.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/lock.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/conf.h>
57 #include <sys/rwlock.h>
58 #include <sys/dkio.h>
59 #include <sys/specdev.h>
60 
61 #include <uvm/uvm.h>
62 #include <uvm/uvm_vnode.h>
63 
64 /*
65  * private global data structure
66  *
67  * we keep a list of writeable active vnode-backed VM objects for sync op.
68  * we keep a simpleq of vnodes that are currently being sync'd.
69  */
70 
71 LIST_HEAD(uvn_list_struct, uvm_vnode);
72 struct uvn_list_struct uvn_wlist;	/* writeable uvns */
73 
74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
75 struct uvn_sq_struct uvn_sync_q;		/* sync'ing uvns */
76 struct rwlock uvn_sync_lock;			/* locks sync operation */
77 
78 extern int rebooting;
79 
80 /*
81  * functions
82  */
83 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
84 void		 uvn_detach(struct uvm_object *);
85 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
86 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
87 		     vm_prot_t, int, int);
88 void		 uvn_init(void);
89 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
90 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
91 void		 uvn_reference(struct uvm_object *);
92 
93 /*
94  * master pager structure
95  */
96 const struct uvm_pagerops uvm_vnodeops = {
97 	.pgo_init = uvn_init,
98 	.pgo_reference = uvn_reference,
99 	.pgo_detach = uvn_detach,
100 	.pgo_flush = uvn_flush,
101 	.pgo_get = uvn_get,
102 	.pgo_put = uvn_put,
103 	.pgo_cluster = uvn_cluster,
104 	/* use generic version of this: see uvm_pager.c */
105 	.pgo_mk_pcluster = uvm_mk_pcluster,
106 };
107 
108 /*
109  * the ops!
110  */
111 /*
112  * uvn_init
113  *
114  * init pager private data structures.
115  */
116 void
117 uvn_init(void)
118 {
119 
120 	LIST_INIT(&uvn_wlist);
121 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
122 	rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
123 }
124 
125 /*
126  * uvn_attach
127  *
128  * attach a vnode structure to a VM object.  if the vnode is already
129  * attached, then just bump the reference count by one and return the
130  * VM object.   if not already attached, attach and return the new VM obj.
131  * the "accessprot" tells the max access the attaching thread wants to
132  * our pages.
133  *
134  * => in fact, nothing should be locked so that we can sleep here.
135  * => note that uvm_object is first thing in vnode structure, so their
136  *    pointers are equiv.
137  */
138 struct uvm_object *
139 uvn_attach(struct vnode *vp, vm_prot_t accessprot)
140 {
141 	struct uvm_vnode *uvn = vp->v_uvm;
142 	struct vattr vattr;
143 	int oldflags, result;
144 	struct partinfo pi;
145 	u_quad_t used_vnode_size = 0;
146 
147 	/* first get a lock on the uvn. */
148 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
149 		uvn->u_flags |= UVM_VNODE_WANTED;
150 		tsleep_nsec(uvn, PVM, "uvn_attach", INFSLP);
151 	}
152 
153 	/* if we're mapping a BLK device, make sure it is a disk. */
154 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
155 		return NULL;
156 	}
157 
158 	/*
159 	 * now uvn must not be in a blocked state.
160 	 * first check to see if it is already active, in which case
161 	 * we can bump the reference count, check to see if we need to
162 	 * add it to the writeable list, and then return.
163 	 */
164 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
165 
166 		/* regain vref if we were persisting */
167 		if (uvn->u_obj.uo_refs == 0) {
168 			vref(vp);
169 		}
170 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
171 
172 		/* check for new writeable uvn */
173 		if ((accessprot & PROT_WRITE) != 0 &&
174 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
175 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
176 			/* we are now on wlist! */
177 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
178 		}
179 
180 		return (&uvn->u_obj);
181 	}
182 
183 	/*
184 	 * need to call VOP_GETATTR() to get the attributes, but that could
185 	 * block (due to I/O), so we want to unlock the object before calling.
186 	 * however, we want to keep anyone else from playing with the object
187 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
188 	 * prevents anyone from attaching to the vnode until we are done with
189 	 * it.
190 	 */
191 	uvn->u_flags = UVM_VNODE_ALOCK;
192 
193 	if (vp->v_type == VBLK) {
194 		/*
195 		 * We could implement this as a specfs getattr call, but:
196 		 *
197 		 *	(1) VOP_GETATTR() would get the file system
198 		 *	    vnode operation, not the specfs operation.
199 		 *
200 		 *	(2) All we want is the size, anyhow.
201 		 */
202 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
203 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
204 		if (result == 0) {
205 			/* XXX should remember blocksize */
206 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
207 			    (u_quad_t)DL_GETPSIZE(pi.part);
208 		}
209 	} else {
210 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
211 		if (result == 0)
212 			used_vnode_size = vattr.va_size;
213 	}
214 
215 	if (result != 0) {
216 		if (uvn->u_flags & UVM_VNODE_WANTED)
217 			wakeup(uvn);
218 		uvn->u_flags = 0;
219 		return NULL;
220 	}
221 
222 	/*
223 	 * make sure that the newsize fits within a vaddr_t
224 	 * XXX: need to revise addressing data types
225 	 */
226 #ifdef DEBUG
227 	if (vp->v_type == VBLK)
228 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
229 #endif
230 
231 	/* now set up the uvn. */
232 	KASSERT(uvn->u_obj.uo_refs == 0);
233 	uvn->u_obj.uo_refs++;
234 	oldflags = uvn->u_flags;
235 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
236 	uvn->u_nio = 0;
237 	uvn->u_size = used_vnode_size;
238 
239 	/* if write access, we need to add it to the wlist */
240 	if (accessprot & PROT_WRITE) {
241 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
242 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
243 	}
244 
245 	/*
246 	 * add a reference to the vnode.   this reference will stay as long
247 	 * as there is a valid mapping of the vnode.   dropped when the
248 	 * reference count goes to zero [and we either free or persist].
249 	 */
250 	vref(vp);
251 	if (oldflags & UVM_VNODE_WANTED)
252 		wakeup(uvn);
253 
254 	return &uvn->u_obj;
255 }
256 
257 
258 /*
259  * uvn_reference
260  *
261  * duplicate a reference to a VM object.  Note that the reference
262  * count must already be at least one (the passed in reference) so
263  * there is no chance of the uvn being killed out here.
264  *
265  * => caller must be using the same accessprot as was used at attach time
266  */
267 
268 
269 void
270 uvn_reference(struct uvm_object *uobj)
271 {
272 #ifdef DEBUG
273 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
274 #endif
275 
276 #ifdef DEBUG
277 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
278 		printf("uvn_reference: ref=%d, flags=0x%x\n",
279 		    uobj->uo_refs, uvn->u_flags);
280 		panic("uvn_reference: invalid state");
281 	}
282 #endif
283 	rw_enter(uobj->vmobjlock, RW_WRITE);
284 	uobj->uo_refs++;
285 	rw_exit(uobj->vmobjlock);
286 }
287 
288 /*
289  * uvn_detach
290  *
291  * remove a reference to a VM object.
292  *
293  * => caller must call with map locked.
294  * => this starts the detach process, but doesn't have to finish it
295  *    (async i/o could still be pending).
296  */
297 void
298 uvn_detach(struct uvm_object *uobj)
299 {
300 	struct uvm_vnode *uvn;
301 	struct vnode *vp;
302 	int oldflags;
303 
304 	rw_enter(uobj->vmobjlock, RW_WRITE);
305 	uobj->uo_refs--;			/* drop ref! */
306 	if (uobj->uo_refs) {			/* still more refs */
307 		rw_exit(uobj->vmobjlock);
308 		return;
309 	}
310 
311 	/* get other pointers ... */
312 	uvn = (struct uvm_vnode *) uobj;
313 	vp = uvn->u_vnode;
314 
315 	/*
316 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
317 	 * to keep an active text file from being overwritten).
318 	 */
319 	vp->v_flag &= ~VTEXT;
320 
321 	/*
322 	 * we just dropped the last reference to the uvn.   see if we can
323 	 * let it "stick around".
324 	 */
325 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
326 		/* won't block */
327 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
328 		goto out;
329 	}
330 
331 	/* its a goner! */
332 	uvn->u_flags |= UVM_VNODE_DYING;
333 
334 	/*
335 	 * even though we may unlock in flush, no one can gain a reference
336 	 * to us until we clear the "dying" flag [because it blocks
337 	 * attaches].  we will not do that until after we've disposed of all
338 	 * the pages with uvn_flush().  note that before the flush the only
339 	 * pages that could be marked PG_BUSY are ones that are in async
340 	 * pageout by the daemon.  (there can't be any pending "get"'s
341 	 * because there are no references to the object).
342 	 */
343 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
344 
345 	/*
346 	 * given the structure of this pager, the above flush request will
347 	 * create the following state: all the pages that were in the object
348 	 * have either been free'd or they are marked PG_BUSY and in the
349 	 * middle of an async io. If we still have pages we set the "relkill"
350 	 * state, so that in the case the vnode gets terminated we know
351 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
352 	 */
353 	uvn->u_flags |= UVM_VNODE_RELKILL;
354 	/* wait on any outstanding io */
355 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
356 		uvn->u_flags |= UVM_VNODE_IOSYNC;
357 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
358 		    INFSLP);
359 	}
360 
361 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0)
362 		return;
363 
364 	/*
365 	 * kill object now.   note that we can't be on the sync q because
366 	 * all references are gone.
367 	 */
368 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
369 		LIST_REMOVE(uvn, u_wlist);
370 	}
371 	KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
372 	oldflags = uvn->u_flags;
373 	uvn->u_flags = 0;
374 
375 	/* wake up any sleepers */
376 	if (oldflags & UVM_VNODE_WANTED)
377 		wakeup(uvn);
378 out:
379 	rw_exit(uobj->vmobjlock);
380 
381 	/* drop our reference to the vnode. */
382 	vrele(vp);
383 
384 	return;
385 }
386 
387 /*
388  * uvm_vnp_terminate: external hook to clear out a vnode's VM
389  *
390  * called in two cases:
391  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
392  *      count) needs to be freed so that a vnode can be reused.  this
393  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
394  *      the free list is still attached (i.e. not VBAD) then vgone is
395  *	called.   as part of the vgone trace this should get called to
396  *	free the vm object.   this is the common case.
397  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
398  *	"umount -f") the vgone() function is called on active vnodes
399  *	on the mounted file systems to kill their data (the vnodes become
400  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
401  *	call here (even if the uvn is still in use -- i.e. has a non-zero
402  *	reference count).  this case happens at "umount -f" and during a
403  *	"reboot/halt" operation.
404  *
405  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
406  *	[protects us from getting a vnode that is already in the DYING
407  *	 state...]
408  * => in case [2] the uvn is still alive after this call, but all I/O
409  *	ops will fail (due to the backing vnode now being "dead").  this
410  *	will prob. kill any process using the uvn due to pgo_get failing.
411  */
412 void
413 uvm_vnp_terminate(struct vnode *vp)
414 {
415 	struct uvm_vnode *uvn = vp->v_uvm;
416 	struct uvm_object *uobj = &uvn->u_obj;
417 	int oldflags;
418 
419 	/* check if it is valid */
420 	rw_enter(uobj->vmobjlock, RW_WRITE);
421 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
422 		rw_exit(uobj->vmobjlock);
423 		return;
424 	}
425 
426 	/*
427 	 * must be a valid uvn that is not already dying (because XLOCK
428 	 * protects us from that).   the uvn can't in the ALOCK state
429 	 * because it is valid, and uvn's that are in the ALOCK state haven't
430 	 * been marked valid yet.
431 	 */
432 #ifdef DEBUG
433 	/*
434 	 * debug check: are we yanking the vnode out from under our uvn?
435 	 */
436 	if (uvn->u_obj.uo_refs) {
437 		printf("uvm_vnp_terminate(%p): terminating active vnode "
438 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
439 	}
440 #endif
441 
442 	/*
443 	 * it is possible that the uvn was detached and is in the relkill
444 	 * state [i.e. waiting for async i/o to finish].
445 	 * we take over the vnode now and cancel the relkill.
446 	 * we want to know when the i/o is done so we can recycle right
447 	 * away.   note that a uvn can only be in the RELKILL state if it
448 	 * has a zero reference count.
449 	 */
450 	if (uvn->u_flags & UVM_VNODE_RELKILL)
451 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
452 
453 	/*
454 	 * block the uvn by setting the dying flag, and then flush the
455 	 * pages.
456 	 *
457 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
458 	 * that uvn_io doesn't attempt to VOP_LOCK again.
459 	 *
460 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
461 	 *	due to a forceful unmount might not be a good idea.  maybe we
462 	 *	need a way to pass in this info to uvn_flush through a
463 	 *	pager-defined PGO_ constant [currently there are none].
464 	 */
465 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
466 
467 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
468 
469 	/*
470 	 * as we just did a flush we expect all the pages to be gone or in
471 	 * the process of going.  sleep to wait for the rest to go [via iosync].
472 	 */
473 	while (uvn->u_obj.uo_npages) {
474 #ifdef DEBUG
475 		struct vm_page *pp;
476 		RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
477 			if ((pp->pg_flags & PG_BUSY) == 0)
478 				panic("uvm_vnp_terminate: detected unbusy pg");
479 		}
480 		if (uvn->u_nio == 0)
481 			panic("uvm_vnp_terminate: no I/O to wait for?");
482 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
483 		/*
484 		 * XXXCDC: this is unlikely to happen without async i/o so we
485 		 * put a printf in just to keep an eye on it.
486 		 */
487 #endif
488 		uvn->u_flags |= UVM_VNODE_IOSYNC;
489 		rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term",
490 		    INFSLP);
491 	}
492 
493 	/*
494 	 * done.   now we free the uvn if its reference count is zero
495 	 * (true if we are zapping a persisting uvn).   however, if we are
496 	 * terminating a uvn with active mappings we let it live ... future
497 	 * calls down to the vnode layer will fail.
498 	 */
499 	oldflags = uvn->u_flags;
500 	if (uvn->u_obj.uo_refs) {
501 		/*
502 		 * uvn must live on it is dead-vnode state until all references
503 		 * are gone.   restore flags.    clear CANPERSIST state.
504 		 */
505 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
506 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
507 	} else {
508 		/*
509 		 * free the uvn now.   note that the vref reference is already
510 		 * gone [it is dropped when we enter the persist state].
511 		 */
512 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
513 			panic("uvm_vnp_terminate: io sync wanted bit set");
514 
515 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
516 			LIST_REMOVE(uvn, u_wlist);
517 		}
518 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
519 	}
520 
521 	if (oldflags & UVM_VNODE_WANTED)
522 		wakeup(uvn);
523 
524 	rw_exit(uobj->vmobjlock);
525 }
526 
527 /*
528  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
529  * through the buffer cache and allow I/O in any size.  These VOPs use
530  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
531  * go through the buffer cache or allow I/O sizes larger than a
532  * block].  we will eventually want to change this.
533  *
534  * issues to consider:
535  *   uvm provides the uvm_aiodesc structure for async i/o management.
536  * there are two tailq's in the uvm. structure... one for pending async
537  * i/o and one for "done" async i/o.   to do an async i/o one puts
538  * an aiodesc on the "pending" list (protected by splbio()), starts the
539  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
540  * some sort of "i/o done" function to be called (at splbio(), interrupt
541  * time).   this function should remove the aiodesc from the pending list
542  * and place it on the "done" list and wakeup the daemon.   the daemon
543  * will run at normal spl() and will remove all items from the "done"
544  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
545  * [in the old vm code, this was done by calling the "put" routine with
546  * null arguments which made the code harder to read and understand because
547  * you had one function ("put") doing two things.]
548  *
549  * so the current pager needs:
550  *   int uvn_aiodone(struct uvm_aiodesc *)
551  *
552  * => return 0 (aio finished, free it). otherwise requeue for later collection.
553  * => called with pageq's locked by the daemon.
554  *
555  * general outline:
556  * - drop "u_nio" (this req is done!)
557  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
558  * - get "page" structures (atop?).
559  * - handle "wanted" pages
560  * dont forget to look at "object" wanted flag in all cases.
561  */
562 
563 /*
564  * uvn_flush: flush pages out of a uvm object.
565  *
566  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
567  *	might want to unlock higher level resources (e.g. vm_map)
568  *	before calling flush.
569  * => if PGO_CLEANIT is not set, then we will not block
570  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
571  *	for flushing.
572  * => NOTE: we are allowed to lock the page queues, so the caller
573  *	must not be holding the lock on them [e.g. pagedaemon had
574  *	better not call us with the queues locked]
575  * => we return TRUE unless we encountered some sort of I/O error
576  *
577  * comment on "cleaning" object and PG_BUSY pages:
578  *	this routine is holding the lock on the object.   the only time
579  *	that it can run into a PG_BUSY page that it does not own is if
580  *	some other process has started I/O on the page (e.g. either
581  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
582  *	in, then it can not be dirty (!PG_CLEAN) because no one has
583  *	had a chance to modify it yet.    if the PG_BUSY page is being
584  *	paged out then it means that someone else has already started
585  *	cleaning the page for us (how nice!).    in this case, if we
586  *	have syncio specified, then after we make our pass through the
587  *	object we need to wait for the other PG_BUSY pages to clear
588  *	off (i.e. we need to do an iosync).   also note that once a
589  *	page is PG_BUSY it must stay in its object until it is un-busyed.
590  */
591 boolean_t
592 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
593 {
594 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
595 	struct vm_page *pp, *ptmp;
596 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
597 	struct pglist dead;
598 	int npages, result, lcv;
599 	boolean_t retval, need_iosync, needs_clean;
600 	voff_t curoff;
601 
602 	KASSERT(rw_write_held(uobj->vmobjlock));
603 	TAILQ_INIT(&dead);
604 
605 	/* get init vals and determine how we are going to traverse object */
606 	need_iosync = FALSE;
607 	retval = TRUE;		/* return value */
608 	if (flags & PGO_ALLPAGES) {
609 		start = 0;
610 		stop = round_page(uvn->u_size);
611 	} else {
612 		start = trunc_page(start);
613 		stop = MIN(round_page(stop), round_page(uvn->u_size));
614 	}
615 
616 	/*
617 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
618 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
619 	 * is wrong it will only prevent us from clustering... it won't break
620 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
621 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
622 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
623 	 * bit is always up to date since there are no mappings).
624 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
625 	 */
626 	if ((flags & PGO_CLEANIT) != 0) {
627 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
628 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
629 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
630 				atomic_clearbits_int(&pp->pg_flags,
631 				    PG_CLEANCHK);
632 		}
633 	}
634 
635 	ppsp = NULL;		/* XXX: shut up gcc */
636 	uvm_lock_pageq();
637 	/* locked: both page queues */
638 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
639 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
640 			continue;
641 		/*
642 		 * handle case where we do not need to clean page (either
643 		 * because we are not clean or because page is not dirty or
644 		 * is busy):
645 		 *
646 		 * NOTE: we are allowed to deactivate a non-wired active
647 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
648 		 * queue it must stay put until it is !PG_BUSY (so as not to
649 		 * confuse pagedaemon).
650 		 */
651 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
652 			needs_clean = FALSE;
653 			if ((pp->pg_flags & PG_BUSY) != 0 &&
654 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
655 			             (PGO_CLEANIT|PGO_SYNCIO))
656 				need_iosync = TRUE;
657 		} else {
658 			/*
659 			 * freeing: nuke all mappings so we can sync
660 			 * PG_CLEAN bit with no race
661 			 */
662 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
663 			    (flags & PGO_FREE) != 0 &&
664 			    (pp->pg_flags & PQ_ACTIVE) != 0)
665 				pmap_page_protect(pp, PROT_NONE);
666 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
667 			    pmap_is_modified(pp))
668 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
669 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
670 
671 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
672 		}
673 
674 		/* if we don't need a clean, deactivate/free pages then cont. */
675 		if (!needs_clean) {
676 			if (flags & PGO_DEACTIVATE) {
677 				if (pp->wire_count == 0) {
678 					pmap_page_protect(pp, PROT_NONE);
679 					uvm_pagedeactivate(pp);
680 				}
681 			} else if (flags & PGO_FREE) {
682 				if (pp->pg_flags & PG_BUSY) {
683 					atomic_setbits_int(&pp->pg_flags,
684 					    PG_WANTED);
685 					uvm_unlock_pageq();
686 					rwsleep_nsec(pp, uobj->vmobjlock, PVM,
687 					    "uvn_flsh", INFSLP);
688 					uvm_lock_pageq();
689 					curoff -= PAGE_SIZE;
690 					continue;
691 				} else {
692 					pmap_page_protect(pp, PROT_NONE);
693 					/* removed page from object */
694 					uvm_pageclean(pp);
695 					TAILQ_INSERT_HEAD(&dead, pp, pageq);
696 				}
697 			}
698 			continue;
699 		}
700 
701 		/*
702 		 * pp points to a page in the object that we are
703 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
704 		 * for cleaning (PGO_CLEANIT).  we clean it now.
705 		 *
706 		 * let uvm_pager_put attempted a clustered page out.
707 		 * note: locked: page queues.
708 		 */
709 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
710 		UVM_PAGE_OWN(pp, "uvn_flush");
711 		pmap_page_protect(pp, PROT_READ);
712 		/* if we're async, free the page in aiodoned */
713 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
714 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
715 ReTry:
716 		ppsp = pps;
717 		npages = sizeof(pps) / sizeof(struct vm_page *);
718 
719 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
720 			   flags | PGO_DOACTCLUST, start, stop);
721 
722 		/*
723 		 * if we did an async I/O it is remotely possible for the
724 		 * async i/o to complete and the page "pp" be freed or what
725 		 * not before we get a chance to relock the object. Therefore,
726 		 * we only touch it when it won't be freed, RELEASED took care
727 		 * of the rest.
728 		 */
729 		uvm_lock_pageq();
730 
731 		/*
732 		 * VM_PAGER_AGAIN: given the structure of this pager, this
733 		 * can only happen when we are doing async I/O and can't
734 		 * map the pages into kernel memory (pager_map) due to lack
735 		 * of vm space.   if this happens we drop back to sync I/O.
736 		 */
737 		if (result == VM_PAGER_AGAIN) {
738 			/*
739 			 * it is unlikely, but page could have been released
740 			 * we ignore this now and retry the I/O.
741 			 * we will detect and
742 			 * handle the released page after the syncio I/O
743 			 * completes.
744 			 */
745 #ifdef DIAGNOSTIC
746 			if (flags & PGO_SYNCIO)
747 	panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
748 #endif
749 			flags |= PGO_SYNCIO;
750 			if (flags & PGO_FREE)
751 				atomic_clearbits_int(&pp->pg_flags,
752 				    PG_RELEASED);
753 
754 			goto ReTry;
755 		}
756 
757 		/*
758 		 * the cleaning operation is now done.   finish up.  note that
759 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
760 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
761 		 * to us in ppsp/npages.
762 		 */
763 		/*
764 		 * for pending async i/o if we are not deactivating
765 		 * we can move on to the next page. aiodoned deals with
766 		 * the freeing case for us.
767 		 */
768 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
769 			continue;
770 
771 		/*
772 		 * need to look at each page of the I/O operation, and do what
773 		 * we gotta do.
774 		 */
775 		for (lcv = 0 ; lcv < npages; lcv++) {
776 			ptmp = ppsp[lcv];
777 			/*
778 			 * verify the page didn't get moved
779 			 */
780 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
781 				continue;
782 
783 			/*
784 			 * unbusy the page if I/O is done.   note that for
785 			 * pending I/O it is possible that the I/O op
786 			 * finished
787 			 * (in which case the page is no longer busy).
788 			 */
789 			if (result != VM_PAGER_PEND) {
790 				if (ptmp->pg_flags & PG_WANTED)
791 					wakeup(ptmp);
792 
793 				atomic_clearbits_int(&ptmp->pg_flags,
794 				    PG_WANTED|PG_BUSY);
795 				UVM_PAGE_OWN(ptmp, NULL);
796 				atomic_setbits_int(&ptmp->pg_flags,
797 				    PG_CLEAN|PG_CLEANCHK);
798 				if ((flags & PGO_FREE) == 0)
799 					pmap_clear_modify(ptmp);
800 			}
801 
802 			/* dispose of page */
803 			if (flags & PGO_DEACTIVATE) {
804 				if (ptmp->wire_count == 0) {
805 					pmap_page_protect(ptmp, PROT_NONE);
806 					uvm_pagedeactivate(ptmp);
807 				}
808 			} else if (flags & PGO_FREE &&
809 			    result != VM_PAGER_PEND) {
810 				if (result != VM_PAGER_OK) {
811 					printf("uvn_flush: obj=%p, "
812 					   "offset=0x%llx.  error "
813 					   "during pageout.\n",
814 					    pp->uobject,
815 					    (long long)pp->offset);
816 					printf("uvn_flush: WARNING: "
817 					    "changes to page may be "
818 					    "lost!\n");
819 					retval = FALSE;
820 				}
821 				pmap_page_protect(ptmp, PROT_NONE);
822 				uvm_pageclean(ptmp);
823 				TAILQ_INSERT_TAIL(&dead, ptmp, pageq);
824 			}
825 
826 		}		/* end of "lcv" for loop */
827 
828 	}		/* end of "pp" for loop */
829 
830 	/* done with pagequeues: unlock */
831 	uvm_unlock_pageq();
832 
833 	/* now wait for all I/O if required. */
834 	if (need_iosync) {
835 		while (uvn->u_nio != 0) {
836 			uvn->u_flags |= UVM_VNODE_IOSYNC;
837 			rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM,
838 			    "uvn_flush", INFSLP);
839 		}
840 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
841 			wakeup(&uvn->u_flags);
842 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
843 	}
844 
845 	uvm_pglistfree(&dead);
846 
847 	return retval;
848 }
849 
850 /*
851  * uvn_cluster
852  *
853  * we are about to do I/O in an object at offset.   this function is called
854  * to establish a range of offsets around "offset" in which we can cluster
855  * I/O.
856  */
857 
858 void
859 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
860     voff_t *hoffset)
861 {
862 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
863 	*loffset = offset;
864 
865 	if (*loffset >= uvn->u_size)
866 		panic("uvn_cluster: offset out of range");
867 
868 	/*
869 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
870 	 */
871 	*hoffset = *loffset + MAXBSIZE;
872 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
873 		*hoffset = round_page(uvn->u_size);
874 
875 	return;
876 }
877 
878 /*
879  * uvn_put: flush page data to backing store.
880  *
881  * => prefer map unlocked (not required)
882  * => flags: PGO_SYNCIO -- use sync. I/O
883  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
884  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
885  *	[thus we never do async i/o!  see iodone comment]
886  */
887 int
888 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
889 {
890 	int retval;
891 
892 	KASSERT(rw_write_held(uobj->vmobjlock));
893 
894 	retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
895 
896 	return retval;
897 }
898 
899 /*
900  * uvn_get: get pages (synchronously) from backing store
901  *
902  * => prefer map unlocked (not required)
903  * => flags: PGO_ALLPAGES: get all of the pages
904  *           PGO_LOCKED: fault data structures are locked
905  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
906  * => NOTE: caller must check for released pages!!
907  */
908 int
909 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
910     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
911 {
912 	voff_t current_offset;
913 	struct vm_page *ptmp;
914 	int lcv, result, gotpages;
915 	boolean_t done;
916 
917 	KASSERT(((flags & PGO_LOCKED) != 0 && rw_lock_held(uobj->vmobjlock)) ||
918 	    (flags & PGO_LOCKED) == 0);
919 
920 	/* step 1: handled the case where fault data structures are locked. */
921 	if (flags & PGO_LOCKED) {
922 		/*
923 		 * gotpages is the current number of pages we've gotten (which
924 		 * we pass back up to caller via *npagesp.
925 		 */
926 		gotpages = 0;
927 
928 		/*
929 		 * step 1a: get pages that are already resident.   only do this
930 		 * if the data structures are locked (i.e. the first time
931 		 * through).
932 		 */
933 		done = TRUE;	/* be optimistic */
934 
935 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
936 		    lcv++, current_offset += PAGE_SIZE) {
937 
938 			/* do we care about this page?  if not, skip it */
939 			if (pps[lcv] == PGO_DONTCARE)
940 				continue;
941 
942 			/* lookup page */
943 			ptmp = uvm_pagelookup(uobj, current_offset);
944 
945 			/* to be useful must get a non-busy, non-released pg */
946 			if (ptmp == NULL ||
947 			    (ptmp->pg_flags & PG_BUSY) != 0) {
948 				if (lcv == centeridx || (flags & PGO_ALLPAGES)
949 				    != 0)
950 					done = FALSE;	/* need to do a wait or I/O! */
951 				continue;
952 			}
953 
954 			/*
955 			 * useful page: busy it and plug it in our
956 			 * result array
957 			 */
958 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
959 			UVM_PAGE_OWN(ptmp, "uvn_get1");
960 			pps[lcv] = ptmp;
961 			gotpages++;
962 
963 		}
964 
965 		/*
966 		 * XXX: given the "advice", should we consider async read-ahead?
967 		 * XXX: fault current does deactivate of pages behind us.  is
968 		 * this good (other callers might now).
969 		 */
970 		/*
971 		 * XXX: read-ahead currently handled by buffer cache (bread)
972 		 * level.
973 		 * XXX: no async i/o available.
974 		 * XXX: so we don't do anything now.
975 		 */
976 
977 		/*
978 		 * step 1c: now we've either done everything needed or we to
979 		 * unlock and do some waiting or I/O.
980 		 */
981 
982 		*npagesp = gotpages;		/* let caller know */
983 		if (done)
984 			return VM_PAGER_OK;		/* bingo! */
985 		else
986 			return VM_PAGER_UNLOCK;
987 	}
988 
989 	/*
990 	 * step 2: get non-resident or busy pages.
991 	 * data structures are unlocked.
992 	 *
993 	 * XXX: because we can't do async I/O at this level we get things
994 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
995 	 * async-read-ahead for us at a lower level.
996 	 */
997 	for (lcv = 0, current_offset = offset;
998 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
999 
1000 		/* skip over pages we've already gotten or don't want */
1001 		/* skip over pages we don't _have_ to get */
1002 		if (pps[lcv] != NULL || (lcv != centeridx &&
1003 		    (flags & PGO_ALLPAGES) == 0))
1004 			continue;
1005 
1006 		/*
1007 		 * we have yet to locate the current page (pps[lcv]).   we first
1008 		 * look for a page that is already at the current offset.   if
1009 		 * we fine a page, we check to see if it is busy or released.
1010 		 * if that is the case, then we sleep on the page until it is
1011 		 * no longer busy or released and repeat the lookup.    if the
1012 		 * page we found is neither busy nor released, then we busy it
1013 		 * (so we own it) and plug it into pps[lcv].   this breaks the
1014 		 * following while loop and indicates we are ready to move on
1015 		 * to the next page in the "lcv" loop above.
1016 		 *
1017 		 * if we exit the while loop with pps[lcv] still set to NULL,
1018 		 * then it means that we allocated a new busy/fake/clean page
1019 		 * ptmp in the object and we need to do I/O to fill in the data.
1020 		 */
1021 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
1022 			/* look for a current page */
1023 			ptmp = uvm_pagelookup(uobj, current_offset);
1024 
1025 			/* nope?   allocate one now (if we can) */
1026 			if (ptmp == NULL) {
1027 				ptmp = uvm_pagealloc(uobj, current_offset,
1028 				    NULL, 0);
1029 
1030 				/* out of RAM? */
1031 				if (ptmp == NULL) {
1032 					uvm_wait("uvn_getpage");
1033 
1034 					/* goto top of pps while loop */
1035 					continue;
1036 				}
1037 
1038 				/*
1039 				 * got new page ready for I/O.  break pps
1040 				 * while loop.  pps[lcv] is still NULL.
1041 				 */
1042 				break;
1043 			}
1044 
1045 			/* page is there, see if we need to wait on it */
1046 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1047 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1048 				rwsleep_nsec(ptmp, uobj->vmobjlock, PVM,
1049 				    "uvn_get", INFSLP);
1050 				continue;	/* goto top of pps while loop */
1051 			}
1052 
1053 			/*
1054 			 * if we get here then the page has become resident
1055 			 * and unbusy between steps 1 and 2.  we busy it
1056 			 * now (so we own it) and set pps[lcv] (so that we
1057 			 * exit the while loop).
1058 			 */
1059 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1060 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1061 			pps[lcv] = ptmp;
1062 		}
1063 
1064 		/*
1065 		 * if we own the a valid page at the correct offset, pps[lcv]
1066 		 * will point to it.   nothing more to do except go to the
1067 		 * next page.
1068 		 */
1069 		if (pps[lcv])
1070 			continue;			/* next lcv */
1071 
1072 		/*
1073 		 * we have a "fake/busy/clean" page that we just allocated.  do
1074 		 * I/O to fill it with valid data.
1075 		 */
1076 		result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1077 		    PGO_SYNCIO|PGO_NOWAIT, UIO_READ);
1078 
1079 		/*
1080 		 * I/O done.  because we used syncio the result can not be
1081 		 * PEND or AGAIN.
1082 		 */
1083 		if (result != VM_PAGER_OK) {
1084 			if (ptmp->pg_flags & PG_WANTED)
1085 				wakeup(ptmp);
1086 
1087 			atomic_clearbits_int(&ptmp->pg_flags,
1088 			    PG_WANTED|PG_BUSY);
1089 			UVM_PAGE_OWN(ptmp, NULL);
1090 			uvm_lock_pageq();
1091 			uvm_pagefree(ptmp);
1092 			uvm_unlock_pageq();
1093 			rw_exit(uobj->vmobjlock);
1094 			return result;
1095 		}
1096 
1097 		/*
1098 		 * we got the page!   clear the fake flag (indicates valid
1099 		 * data now in page) and plug into our result array.   note
1100 		 * that page is still busy.
1101 		 *
1102 		 * it is the callers job to:
1103 		 * => check if the page is released
1104 		 * => unbusy the page
1105 		 * => activate the page
1106 		 */
1107 
1108 		/* data is valid ... */
1109 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1110 		pmap_clear_modify(ptmp);		/* ... and clean */
1111 		pps[lcv] = ptmp;
1112 
1113 	}
1114 
1115 
1116 	rw_exit(uobj->vmobjlock);
1117 	return (VM_PAGER_OK);
1118 }
1119 
1120 /*
1121  * uvn_io: do I/O to a vnode
1122  *
1123  * => prefer map unlocked (not required)
1124  * => flags: PGO_SYNCIO -- use sync. I/O
1125  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1126  *	[thus we never do async i/o!  see iodone comment]
1127  */
1128 
1129 int
1130 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1131 {
1132 	struct uvm_object *uobj = &uvn->u_obj;
1133 	struct vnode *vn;
1134 	struct uio uio;
1135 	struct iovec iov;
1136 	vaddr_t kva;
1137 	off_t file_offset;
1138 	int waitf, result, mapinflags;
1139 	size_t got, wanted;
1140 	int netunlocked = 0;
1141 	int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0;
1142 
1143 	KASSERT(rw_write_held(uobj->vmobjlock));
1144 
1145 	/* init values */
1146 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1147 	vn = uvn->u_vnode;
1148 	file_offset = pps[0]->offset;
1149 
1150 	/* check for sync'ing I/O. */
1151 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1152 		if (waitf == M_NOWAIT) {
1153 			return VM_PAGER_AGAIN;
1154 		}
1155 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1156 		rwsleep_nsec(&uvn->u_flags, uobj->vmobjlock, PVM, "uvn_iosync",
1157 		    INFSLP);
1158 	}
1159 
1160 	/* check size */
1161 	if (file_offset >= uvn->u_size) {
1162 		return VM_PAGER_BAD;
1163 	}
1164 
1165 	/* first try and map the pages in (without waiting) */
1166 	mapinflags = (rw == UIO_READ) ?
1167 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1168 
1169 	kva = uvm_pagermapin(pps, npages, mapinflags);
1170 	if (kva == 0 && waitf == M_NOWAIT) {
1171 		return VM_PAGER_AGAIN;
1172 	}
1173 
1174 	/*
1175 	 * ok, now bump u_nio up.   at this point we are done with uvn
1176 	 * and can unlock it.   if we still don't have a kva, try again
1177 	 * (this time with sleep ok).
1178 	 */
1179 	uvn->u_nio++;			/* we have an I/O in progress! */
1180 	rw_exit(uobj->vmobjlock);
1181 	if (kva == 0)
1182 		kva = uvm_pagermapin(pps, npages,
1183 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1184 
1185 	/*
1186 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1187 	 * get touched (so we can look at "offset" without having to lock
1188 	 * the object).  set up for I/O.
1189 	 */
1190 	/* fill out uio/iov */
1191 	iov.iov_base = (caddr_t) kva;
1192 	wanted = (size_t)npages << PAGE_SHIFT;
1193 	if (file_offset + wanted > uvn->u_size)
1194 		wanted = uvn->u_size - file_offset;	/* XXX: needed? */
1195 	iov.iov_len = wanted;
1196 	uio.uio_iov = &iov;
1197 	uio.uio_iovcnt = 1;
1198 	uio.uio_offset = file_offset;
1199 	uio.uio_segflg = UIO_SYSSPACE;
1200 	uio.uio_rw = rw;
1201 	uio.uio_resid = wanted;
1202 	uio.uio_procp = curproc;
1203 
1204 	/*
1205 	 * This process may already have the NET_LOCK(), if we
1206 	 * faulted in copyin() or copyout() in the network stack.
1207 	 */
1208 	if (rw_status(&netlock) == RW_WRITE) {
1209 		NET_UNLOCK();
1210 		netunlocked = 1;
1211 	}
1212 
1213 	/* do the I/O!  (XXX: curproc?) */
1214 	/*
1215 	 * This process may already have this vnode locked, if we faulted in
1216 	 * copyin() or copyout() on a region backed by this vnode
1217 	 * while doing I/O to the vnode.  If this is the case, don't
1218 	 * panic.. instead, return the error to the user.
1219 	 *
1220 	 * XXX this is a stopgap to prevent a panic.
1221 	 * Ideally, this kind of operation *should* work.
1222 	 */
1223 	result = 0;
1224 	KERNEL_LOCK();
1225 	if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1226 		result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags);
1227 	if (result == 0) {
1228 		/* NOTE: vnode now locked! */
1229 		if (rw == UIO_READ)
1230 			result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1231 		else
1232 			result = VOP_WRITE(vn, &uio,
1233 			    (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1234 			    curproc->p_ucred);
1235 
1236 		if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1237 			VOP_UNLOCK(vn);
1238 
1239 	}
1240 	KERNEL_UNLOCK();
1241 
1242 	if (netunlocked)
1243 		NET_LOCK();
1244 
1245 
1246 	/* NOTE: vnode now unlocked (unless vnislocked) */
1247 	/*
1248 	 * result == unix style errno (0 == OK!)
1249 	 *
1250 	 * zero out rest of buffer (if needed)
1251 	 */
1252 	if (result == 0) {
1253 		got = wanted - uio.uio_resid;
1254 
1255 		if (wanted && got == 0) {
1256 			result = EIO;		/* XXX: error? */
1257 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1258 			memset((void *) (kva + got), 0,
1259 			       ((size_t)npages << PAGE_SHIFT) - got);
1260 		}
1261 	}
1262 
1263 	/* now remove pager mapping */
1264 	uvm_pagermapout(kva, npages);
1265 
1266 	/* now clean up the object (i.e. drop I/O count) */
1267 	rw_enter(uobj->vmobjlock, RW_WRITE);
1268 	uvn->u_nio--;			/* I/O DONE! */
1269 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1270 		wakeup(&uvn->u_nio);
1271 	}
1272 
1273 	if (result == 0) {
1274 		return VM_PAGER_OK;
1275 	} else if (result == EBUSY) {
1276 		KASSERT(flags & PGO_NOWAIT);
1277 		return VM_PAGER_AGAIN;
1278 	} else {
1279 		if (rebooting) {
1280 			KERNEL_LOCK();
1281 			while (rebooting)
1282 				tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP);
1283 			KERNEL_UNLOCK();
1284 		}
1285 		return VM_PAGER_ERROR;
1286 	}
1287 }
1288 
1289 /*
1290  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1291  * is gone we will kill the object (flushing dirty pages back to the vnode
1292  * if needed).
1293  *
1294  * => returns TRUE if there was no uvm_object attached or if there was
1295  *	one and we killed it [i.e. if there is no active uvn]
1296  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1297  *	needed]
1298  *
1299  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1300  *	having to hold a reference on the vnode) and given a working
1301  *	uvm_vnp_sync(), how does that effect the need for this function?
1302  *      [XXXCDC: seems like it can die?]
1303  *
1304  * => XXX: this function should DIE once we merge the VM and buffer
1305  *	cache.
1306  *
1307  * research shows that this is called in the following places:
1308  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1309  *	changes sizes
1310  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1311  *	are written to
1312  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1313  *	is off
1314  * ffs_realloccg: when we can't extend the current block and have
1315  *	to allocate a new one we call this [XXX: why?]
1316  * nfsrv_rename, rename_files: called when the target filename is there
1317  *	and we want to remove it
1318  * nfsrv_remove, sys_unlink: called on file we are removing
1319  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1320  *	then return "text busy"
1321  * nfs_open: seems to uncache any file opened with nfs
1322  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1323  * fusefs_open: uncaches any file that is opened
1324  * fusefs_write: uncaches on every write
1325  */
1326 
1327 int
1328 uvm_vnp_uncache(struct vnode *vp)
1329 {
1330 	struct uvm_vnode *uvn = vp->v_uvm;
1331 	struct uvm_object *uobj = &uvn->u_obj;
1332 
1333 	/* lock uvn part of the vnode and check if we need to do anything */
1334 
1335 	rw_enter(uobj->vmobjlock, RW_WRITE);
1336 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1337 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1338 		rw_exit(uobj->vmobjlock);
1339 		return TRUE;
1340 	}
1341 
1342 	/*
1343 	 * we have a valid, non-blocked uvn.   clear persist flag.
1344 	 * if uvn is currently active we can return now.
1345 	 */
1346 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1347 	if (uvn->u_obj.uo_refs) {
1348 		rw_exit(uobj->vmobjlock);
1349 		return FALSE;
1350 	}
1351 
1352 	/*
1353 	 * uvn is currently persisting!   we have to gain a reference to
1354 	 * it so that we can call uvn_detach to kill the uvn.
1355 	 */
1356 	vref(vp);			/* seems ok, even with VOP_LOCK */
1357 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1358 	rw_exit(uobj->vmobjlock);
1359 
1360 #ifdef VFSLCKDEBUG
1361 	/*
1362 	 * carry over sanity check from old vnode pager: the vnode should
1363 	 * be VOP_LOCK'd, and we confirm it here.
1364 	 */
1365 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1366 		panic("uvm_vnp_uncache: vnode not locked!");
1367 #endif
1368 
1369 	/*
1370 	 * now drop our reference to the vnode.   if we have the sole
1371 	 * reference to the vnode then this will cause it to die [as we
1372 	 * just cleared the persist flag].   we have to unlock the vnode
1373 	 * while we are doing this as it may trigger I/O.
1374 	 *
1375 	 * XXX: it might be possible for uvn to get reclaimed while we are
1376 	 * unlocked causing us to return TRUE when we should not.   we ignore
1377 	 * this as a false-positive return value doesn't hurt us.
1378 	 */
1379 	VOP_UNLOCK(vp);
1380 	uvn_detach(&uvn->u_obj);
1381 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1382 
1383 	return TRUE;
1384 }
1385 
1386 /*
1387  * uvm_vnp_setsize: grow or shrink a vnode uvn
1388  *
1389  * grow   => just update size value
1390  * shrink => toss un-needed pages
1391  *
1392  * => we assume that the caller has a reference of some sort to the
1393  *	vnode in question so that it will not be yanked out from under
1394  *	us.
1395  *
1396  * called from:
1397  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1398  *     fusefs_setattr)
1399  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1400  *     fusefs_write)
1401  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1402  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1403  *  => union fs: union_newsize
1404  */
1405 
1406 void
1407 uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1408 {
1409 	struct uvm_vnode *uvn = vp->v_uvm;
1410 	struct uvm_object *uobj = &uvn->u_obj;
1411 
1412 	KERNEL_ASSERT_LOCKED();
1413 
1414 	rw_enter(uobj->vmobjlock, RW_WRITE);
1415 
1416 	/* lock uvn and check for valid object, and if valid: do it! */
1417 	if (uvn->u_flags & UVM_VNODE_VALID) {
1418 
1419 		/*
1420 		 * now check if the size has changed: if we shrink we had better
1421 		 * toss some pages...
1422 		 */
1423 
1424 		if (uvn->u_size > newsize) {
1425 			(void)uvn_flush(&uvn->u_obj, newsize,
1426 			    uvn->u_size, PGO_FREE);
1427 		}
1428 		uvn->u_size = newsize;
1429 	}
1430 	rw_exit(uobj->vmobjlock);
1431 }
1432 
1433 /*
1434  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1435  *
1436  * => called from sys_sync with no VM structures locked
1437  * => only one process can do a sync at a time (because the uvn
1438  *    structure only has one queue for sync'ing).  we ensure this
1439  *    by holding the uvn_sync_lock while the sync is in progress.
1440  *    other processes attempting a sync will sleep on this lock
1441  *    until we are done.
1442  */
1443 void
1444 uvm_vnp_sync(struct mount *mp)
1445 {
1446 	struct uvm_vnode *uvn;
1447 	struct vnode *vp;
1448 
1449 	/*
1450 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1451 	 * our lock...
1452 	 */
1453 	rw_enter_write(&uvn_sync_lock);
1454 
1455 	/*
1456 	 * step 2: build up a simpleq of uvns of interest based on the
1457 	 * write list.   we gain a reference to uvns of interest.
1458 	 */
1459 	SIMPLEQ_INIT(&uvn_sync_q);
1460 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1461 		vp = uvn->u_vnode;
1462 		if (mp && vp->v_mount != mp)
1463 			continue;
1464 
1465 		/*
1466 		 * If the vnode is "blocked" it means it must be dying, which
1467 		 * in turn means its in the process of being flushed out so
1468 		 * we can safely skip it.
1469 		 *
1470 		 * note that uvn must already be valid because we found it on
1471 		 * the wlist (this also means it can't be ALOCK'd).
1472 		 */
1473 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1474 			continue;
1475 
1476 		/*
1477 		 * gain reference.   watch out for persisting uvns (need to
1478 		 * regain vnode REF).
1479 		 */
1480 		if (uvn->u_obj.uo_refs == 0)
1481 			vref(vp);
1482 		uvn->u_obj.uo_refs++;
1483 
1484 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1485 	}
1486 
1487 	/* step 3: we now have a list of uvn's that may need cleaning. */
1488 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1489 		rw_enter(uvn->u_obj.vmobjlock, RW_WRITE);
1490 #ifdef DEBUG
1491 		if (uvn->u_flags & UVM_VNODE_DYING) {
1492 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1493 		}
1494 #endif
1495 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1496 
1497 		/*
1498 		 * if we have the only reference and we just cleaned the uvn,
1499 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1500 		 * thus allowing us to avoid thinking about flushing it again
1501 		 * on later sync ops.
1502 		 */
1503 		if (uvn->u_obj.uo_refs == 1 &&
1504 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1505 			LIST_REMOVE(uvn, u_wlist);
1506 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1507 		}
1508 		rw_exit(uvn->u_obj.vmobjlock);
1509 
1510 		/* now drop our reference to the uvn */
1511 		uvn_detach(&uvn->u_obj);
1512 	}
1513 
1514 	rw_exit_write(&uvn_sync_lock);
1515 }
1516