1 /* $OpenBSD: uvm_vnode.c,v 1.118 2021/10/20 06:35:40 semarie Exp $ */ 2 /* $NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * Copyright (c) 1991, 1993 7 * The Regents of the University of California. 8 * Copyright (c) 1990 University of Utah. 9 * 10 * All rights reserved. 11 * 12 * This code is derived from software contributed to Berkeley by 13 * the Systems Programming Group of the University of Utah Computer 14 * Science Department. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94 41 * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp 42 */ 43 44 /* 45 * uvm_vnode.c: the vnode pager. 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/malloc.h> 52 #include <sys/vnode.h> 53 #include <sys/lock.h> 54 #include <sys/disklabel.h> 55 #include <sys/fcntl.h> 56 #include <sys/conf.h> 57 #include <sys/rwlock.h> 58 #include <sys/dkio.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm.h> 62 #include <uvm/uvm_vnode.h> 63 64 /* 65 * private global data structure 66 * 67 * we keep a list of writeable active vnode-backed VM objects for sync op. 68 * we keep a simpleq of vnodes that are currently being sync'd. 69 */ 70 71 LIST_HEAD(uvn_list_struct, uvm_vnode); 72 struct uvn_list_struct uvn_wlist; /* writeable uvns */ 73 74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode); 75 struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */ 76 struct rwlock uvn_sync_lock; /* locks sync operation */ 77 78 extern int rebooting; 79 80 /* 81 * functions 82 */ 83 void uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *); 84 void uvn_detach(struct uvm_object *); 85 boolean_t uvn_flush(struct uvm_object *, voff_t, voff_t, int); 86 int uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int, 87 vm_prot_t, int, int); 88 void uvn_init(void); 89 int uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int); 90 int uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t); 91 void uvn_reference(struct uvm_object *); 92 93 /* 94 * master pager structure 95 */ 96 const struct uvm_pagerops uvm_vnodeops = { 97 .pgo_init = uvn_init, 98 .pgo_reference = uvn_reference, 99 .pgo_detach = uvn_detach, 100 .pgo_flush = uvn_flush, 101 .pgo_get = uvn_get, 102 .pgo_put = uvn_put, 103 .pgo_cluster = uvn_cluster, 104 /* use generic version of this: see uvm_pager.c */ 105 .pgo_mk_pcluster = uvm_mk_pcluster, 106 }; 107 108 /* 109 * the ops! 110 */ 111 /* 112 * uvn_init 113 * 114 * init pager private data structures. 115 */ 116 void 117 uvn_init(void) 118 { 119 120 LIST_INIT(&uvn_wlist); 121 /* note: uvn_sync_q init'd in uvm_vnp_sync() */ 122 rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE); 123 } 124 125 /* 126 * uvn_attach 127 * 128 * attach a vnode structure to a VM object. if the vnode is already 129 * attached, then just bump the reference count by one and return the 130 * VM object. if not already attached, attach and return the new VM obj. 131 * the "accessprot" tells the max access the attaching thread wants to 132 * our pages. 133 * 134 * => in fact, nothing should be locked so that we can sleep here. 135 * => note that uvm_object is first thing in vnode structure, so their 136 * pointers are equiv. 137 */ 138 struct uvm_object * 139 uvn_attach(struct vnode *vp, vm_prot_t accessprot) 140 { 141 struct uvm_vnode *uvn = vp->v_uvm; 142 struct vattr vattr; 143 int oldflags, result; 144 struct partinfo pi; 145 u_quad_t used_vnode_size = 0; 146 147 /* first get a lock on the uvn. */ 148 while (uvn->u_flags & UVM_VNODE_BLOCKED) { 149 uvn->u_flags |= UVM_VNODE_WANTED; 150 tsleep_nsec(uvn, PVM, "uvn_attach", INFSLP); 151 } 152 153 /* if we're mapping a BLK device, make sure it is a disk. */ 154 if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) { 155 return NULL; 156 } 157 158 /* 159 * now uvn must not be in a blocked state. 160 * first check to see if it is already active, in which case 161 * we can bump the reference count, check to see if we need to 162 * add it to the writeable list, and then return. 163 */ 164 if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */ 165 166 /* regain vref if we were persisting */ 167 if (uvn->u_obj.uo_refs == 0) { 168 vref(vp); 169 } 170 uvn->u_obj.uo_refs++; /* bump uvn ref! */ 171 172 /* check for new writeable uvn */ 173 if ((accessprot & PROT_WRITE) != 0 && 174 (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) { 175 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 176 /* we are now on wlist! */ 177 uvn->u_flags |= UVM_VNODE_WRITEABLE; 178 } 179 180 return (&uvn->u_obj); 181 } 182 183 /* 184 * need to call VOP_GETATTR() to get the attributes, but that could 185 * block (due to I/O), so we want to unlock the object before calling. 186 * however, we want to keep anyone else from playing with the object 187 * while it is unlocked. to do this we set UVM_VNODE_ALOCK which 188 * prevents anyone from attaching to the vnode until we are done with 189 * it. 190 */ 191 uvn->u_flags = UVM_VNODE_ALOCK; 192 193 if (vp->v_type == VBLK) { 194 /* 195 * We could implement this as a specfs getattr call, but: 196 * 197 * (1) VOP_GETATTR() would get the file system 198 * vnode operation, not the specfs operation. 199 * 200 * (2) All we want is the size, anyhow. 201 */ 202 result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev, 203 DIOCGPART, (caddr_t)&pi, FREAD, curproc); 204 if (result == 0) { 205 /* XXX should remember blocksize */ 206 used_vnode_size = (u_quad_t)pi.disklab->d_secsize * 207 (u_quad_t)DL_GETPSIZE(pi.part); 208 } 209 } else { 210 result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc); 211 if (result == 0) 212 used_vnode_size = vattr.va_size; 213 } 214 215 if (result != 0) { 216 if (uvn->u_flags & UVM_VNODE_WANTED) 217 wakeup(uvn); 218 uvn->u_flags = 0; 219 return NULL; 220 } 221 222 /* 223 * make sure that the newsize fits within a vaddr_t 224 * XXX: need to revise addressing data types 225 */ 226 #ifdef DEBUG 227 if (vp->v_type == VBLK) 228 printf("used_vnode_size = %llu\n", (long long)used_vnode_size); 229 #endif 230 231 /* now set up the uvn. */ 232 uvm_obj_init(&uvn->u_obj, &uvm_vnodeops, 1); 233 oldflags = uvn->u_flags; 234 uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST; 235 uvn->u_nio = 0; 236 uvn->u_size = used_vnode_size; 237 238 /* if write access, we need to add it to the wlist */ 239 if (accessprot & PROT_WRITE) { 240 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 241 uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */ 242 } 243 244 /* 245 * add a reference to the vnode. this reference will stay as long 246 * as there is a valid mapping of the vnode. dropped when the 247 * reference count goes to zero [and we either free or persist]. 248 */ 249 vref(vp); 250 if (oldflags & UVM_VNODE_WANTED) 251 wakeup(uvn); 252 253 return &uvn->u_obj; 254 } 255 256 257 /* 258 * uvn_reference 259 * 260 * duplicate a reference to a VM object. Note that the reference 261 * count must already be at least one (the passed in reference) so 262 * there is no chance of the uvn being killed out here. 263 * 264 * => caller must be using the same accessprot as was used at attach time 265 */ 266 267 268 void 269 uvn_reference(struct uvm_object *uobj) 270 { 271 #ifdef DEBUG 272 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 273 #endif 274 275 #ifdef DEBUG 276 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 277 printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags, 278 uobj->uo_refs); 279 panic("uvn_reference: invalid state"); 280 } 281 #endif 282 KERNEL_ASSERT_LOCKED(); 283 uobj->uo_refs++; 284 } 285 286 /* 287 * uvn_detach 288 * 289 * remove a reference to a VM object. 290 * 291 * => caller must call with map locked. 292 * => this starts the detach process, but doesn't have to finish it 293 * (async i/o could still be pending). 294 */ 295 void 296 uvn_detach(struct uvm_object *uobj) 297 { 298 struct uvm_vnode *uvn; 299 struct vnode *vp; 300 int oldflags; 301 302 KERNEL_ASSERT_LOCKED(); 303 uobj->uo_refs--; /* drop ref! */ 304 if (uobj->uo_refs) { /* still more refs */ 305 return; 306 } 307 308 /* get other pointers ... */ 309 uvn = (struct uvm_vnode *) uobj; 310 vp = uvn->u_vnode; 311 312 /* 313 * clear VTEXT flag now that there are no mappings left (VTEXT is used 314 * to keep an active text file from being overwritten). 315 */ 316 vp->v_flag &= ~VTEXT; 317 318 /* 319 * we just dropped the last reference to the uvn. see if we can 320 * let it "stick around". 321 */ 322 if (uvn->u_flags & UVM_VNODE_CANPERSIST) { 323 /* won't block */ 324 uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES); 325 vrele(vp); /* drop vnode reference */ 326 return; 327 } 328 329 /* its a goner! */ 330 uvn->u_flags |= UVM_VNODE_DYING; 331 332 /* 333 * even though we may unlock in flush, no one can gain a reference 334 * to us until we clear the "dying" flag [because it blocks 335 * attaches]. we will not do that until after we've disposed of all 336 * the pages with uvn_flush(). note that before the flush the only 337 * pages that could be marked PG_BUSY are ones that are in async 338 * pageout by the daemon. (there can't be any pending "get"'s 339 * because there are no references to the object). 340 */ 341 (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 342 343 /* 344 * given the structure of this pager, the above flush request will 345 * create the following state: all the pages that were in the object 346 * have either been free'd or they are marked PG_BUSY and in the 347 * middle of an async io. If we still have pages we set the "relkill" 348 * state, so that in the case the vnode gets terminated we know 349 * to leave it alone. Otherwise we'll kill the vnode when it's empty. 350 */ 351 uvn->u_flags |= UVM_VNODE_RELKILL; 352 /* wait on any outstanding io */ 353 while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) { 354 uvn->u_flags |= UVM_VNODE_IOSYNC; 355 tsleep_nsec(&uvn->u_nio, PVM, "uvn_term", INFSLP); 356 } 357 358 if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) 359 return; 360 361 /* 362 * kill object now. note that we can't be on the sync q because 363 * all references are gone. 364 */ 365 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 366 LIST_REMOVE(uvn, u_wlist); 367 } 368 KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt)); 369 oldflags = uvn->u_flags; 370 uvn->u_flags = 0; 371 372 /* wake up any sleepers */ 373 if (oldflags & UVM_VNODE_WANTED) 374 wakeup(uvn); 375 376 /* drop our reference to the vnode. */ 377 vrele(vp); 378 379 return; 380 } 381 382 /* 383 * uvm_vnp_terminate: external hook to clear out a vnode's VM 384 * 385 * called in two cases: 386 * [1] when a persisting vnode vm object (i.e. one with a zero reference 387 * count) needs to be freed so that a vnode can be reused. this 388 * happens under "getnewvnode" in vfs_subr.c. if the vnode from 389 * the free list is still attached (i.e. not VBAD) then vgone is 390 * called. as part of the vgone trace this should get called to 391 * free the vm object. this is the common case. 392 * [2] when a filesystem is being unmounted by force (MNT_FORCE, 393 * "umount -f") the vgone() function is called on active vnodes 394 * on the mounted file systems to kill their data (the vnodes become 395 * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a 396 * call here (even if the uvn is still in use -- i.e. has a non-zero 397 * reference count). this case happens at "umount -f" and during a 398 * "reboot/halt" operation. 399 * 400 * => the caller must XLOCK and VOP_LOCK the vnode before calling us 401 * [protects us from getting a vnode that is already in the DYING 402 * state...] 403 * => in case [2] the uvn is still alive after this call, but all I/O 404 * ops will fail (due to the backing vnode now being "dead"). this 405 * will prob. kill any process using the uvn due to pgo_get failing. 406 */ 407 void 408 uvm_vnp_terminate(struct vnode *vp) 409 { 410 struct uvm_vnode *uvn = vp->v_uvm; 411 int oldflags; 412 413 /* check if it is valid */ 414 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 415 return; 416 } 417 418 /* 419 * must be a valid uvn that is not already dying (because XLOCK 420 * protects us from that). the uvn can't in the ALOCK state 421 * because it is valid, and uvn's that are in the ALOCK state haven't 422 * been marked valid yet. 423 */ 424 #ifdef DEBUG 425 /* 426 * debug check: are we yanking the vnode out from under our uvn? 427 */ 428 if (uvn->u_obj.uo_refs) { 429 printf("uvm_vnp_terminate(%p): terminating active vnode " 430 "(refs=%d)\n", uvn, uvn->u_obj.uo_refs); 431 } 432 #endif 433 434 /* 435 * it is possible that the uvn was detached and is in the relkill 436 * state [i.e. waiting for async i/o to finish]. 437 * we take over the vnode now and cancel the relkill. 438 * we want to know when the i/o is done so we can recycle right 439 * away. note that a uvn can only be in the RELKILL state if it 440 * has a zero reference count. 441 */ 442 if (uvn->u_flags & UVM_VNODE_RELKILL) 443 uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */ 444 445 /* 446 * block the uvn by setting the dying flag, and then flush the 447 * pages. 448 * 449 * also, note that we tell I/O that we are already VOP_LOCK'd so 450 * that uvn_io doesn't attempt to VOP_LOCK again. 451 * 452 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated 453 * due to a forceful unmount might not be a good idea. maybe we 454 * need a way to pass in this info to uvn_flush through a 455 * pager-defined PGO_ constant [currently there are none]. 456 */ 457 uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED; 458 459 (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 460 461 /* 462 * as we just did a flush we expect all the pages to be gone or in 463 * the process of going. sleep to wait for the rest to go [via iosync]. 464 */ 465 while (uvn->u_obj.uo_npages) { 466 #ifdef DEBUG 467 struct vm_page *pp; 468 RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) { 469 if ((pp->pg_flags & PG_BUSY) == 0) 470 panic("uvm_vnp_terminate: detected unbusy pg"); 471 } 472 if (uvn->u_nio == 0) 473 panic("uvm_vnp_terminate: no I/O to wait for?"); 474 printf("uvm_vnp_terminate: waiting for I/O to fin.\n"); 475 /* 476 * XXXCDC: this is unlikely to happen without async i/o so we 477 * put a printf in just to keep an eye on it. 478 */ 479 #endif 480 uvn->u_flags |= UVM_VNODE_IOSYNC; 481 tsleep_nsec(&uvn->u_nio, PVM, "uvn_term", INFSLP); 482 } 483 484 /* 485 * done. now we free the uvn if its reference count is zero 486 * (true if we are zapping a persisting uvn). however, if we are 487 * terminating a uvn with active mappings we let it live ... future 488 * calls down to the vnode layer will fail. 489 */ 490 oldflags = uvn->u_flags; 491 if (uvn->u_obj.uo_refs) { 492 /* 493 * uvn must live on it is dead-vnode state until all references 494 * are gone. restore flags. clear CANPERSIST state. 495 */ 496 uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED| 497 UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST); 498 } else { 499 /* 500 * free the uvn now. note that the vref reference is already 501 * gone [it is dropped when we enter the persist state]. 502 */ 503 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 504 panic("uvm_vnp_terminate: io sync wanted bit set"); 505 506 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 507 LIST_REMOVE(uvn, u_wlist); 508 } 509 uvn->u_flags = 0; /* uvn is history, clear all bits */ 510 } 511 512 if (oldflags & UVM_VNODE_WANTED) 513 wakeup(uvn); 514 } 515 516 /* 517 * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go 518 * through the buffer cache and allow I/O in any size. These VOPs use 519 * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't 520 * go through the buffer cache or allow I/O sizes larger than a 521 * block]. we will eventually want to change this. 522 * 523 * issues to consider: 524 * uvm provides the uvm_aiodesc structure for async i/o management. 525 * there are two tailq's in the uvm. structure... one for pending async 526 * i/o and one for "done" async i/o. to do an async i/o one puts 527 * an aiodesc on the "pending" list (protected by splbio()), starts the 528 * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect 529 * some sort of "i/o done" function to be called (at splbio(), interrupt 530 * time). this function should remove the aiodesc from the pending list 531 * and place it on the "done" list and wakeup the daemon. the daemon 532 * will run at normal spl() and will remove all items from the "done" 533 * list and call the "aiodone" hook for each done request (see uvm_pager.c). 534 * [in the old vm code, this was done by calling the "put" routine with 535 * null arguments which made the code harder to read and understand because 536 * you had one function ("put") doing two things.] 537 * 538 * so the current pager needs: 539 * int uvn_aiodone(struct uvm_aiodesc *) 540 * 541 * => return 0 (aio finished, free it). otherwise requeue for later collection. 542 * => called with pageq's locked by the daemon. 543 * 544 * general outline: 545 * - drop "u_nio" (this req is done!) 546 * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio } 547 * - get "page" structures (atop?). 548 * - handle "wanted" pages 549 * dont forget to look at "object" wanted flag in all cases. 550 */ 551 552 /* 553 * uvn_flush: flush pages out of a uvm object. 554 * 555 * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller 556 * might want to unlock higher level resources (e.g. vm_map) 557 * before calling flush. 558 * => if PGO_CLEANIT is not set, then we will not block 559 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 560 * for flushing. 561 * => NOTE: we are allowed to lock the page queues, so the caller 562 * must not be holding the lock on them [e.g. pagedaemon had 563 * better not call us with the queues locked] 564 * => we return TRUE unless we encountered some sort of I/O error 565 * 566 * comment on "cleaning" object and PG_BUSY pages: 567 * this routine is holding the lock on the object. the only time 568 * that it can run into a PG_BUSY page that it does not own is if 569 * some other process has started I/O on the page (e.g. either 570 * a pagein, or a pageout). if the PG_BUSY page is being paged 571 * in, then it can not be dirty (!PG_CLEAN) because no one has 572 * had a chance to modify it yet. if the PG_BUSY page is being 573 * paged out then it means that someone else has already started 574 * cleaning the page for us (how nice!). in this case, if we 575 * have syncio specified, then after we make our pass through the 576 * object we need to wait for the other PG_BUSY pages to clear 577 * off (i.e. we need to do an iosync). also note that once a 578 * page is PG_BUSY it must stay in its object until it is un-busyed. 579 */ 580 boolean_t 581 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 582 { 583 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 584 struct vm_page *pp, *ptmp; 585 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp; 586 struct pglist dead; 587 int npages, result, lcv; 588 boolean_t retval, need_iosync, needs_clean; 589 voff_t curoff; 590 591 KERNEL_ASSERT_LOCKED(); 592 TAILQ_INIT(&dead); 593 594 /* get init vals and determine how we are going to traverse object */ 595 need_iosync = FALSE; 596 retval = TRUE; /* return value */ 597 if (flags & PGO_ALLPAGES) { 598 start = 0; 599 stop = round_page(uvn->u_size); 600 } else { 601 start = trunc_page(start); 602 stop = MIN(round_page(stop), round_page(uvn->u_size)); 603 } 604 605 /* 606 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as 607 * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint 608 * is wrong it will only prevent us from clustering... it won't break 609 * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster 610 * will set them as it syncs PG_CLEAN. This is only an issue if we 611 * are looking at non-inactive pages (because inactive page's PG_CLEAN 612 * bit is always up to date since there are no mappings). 613 * [borrowed PG_CLEANCHK idea from FreeBSD VM] 614 */ 615 if ((flags & PGO_CLEANIT) != 0) { 616 KASSERT(uobj->pgops->pgo_mk_pcluster != 0); 617 for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) { 618 if ((pp = uvm_pagelookup(uobj, curoff)) != NULL) 619 atomic_clearbits_int(&pp->pg_flags, 620 PG_CLEANCHK); 621 } 622 } 623 624 ppsp = NULL; /* XXX: shut up gcc */ 625 uvm_lock_pageq(); 626 /* locked: both page queues */ 627 for (curoff = start; curoff < stop; curoff += PAGE_SIZE) { 628 if ((pp = uvm_pagelookup(uobj, curoff)) == NULL) 629 continue; 630 /* 631 * handle case where we do not need to clean page (either 632 * because we are not clean or because page is not dirty or 633 * is busy): 634 * 635 * NOTE: we are allowed to deactivate a non-wired active 636 * PG_BUSY page, but once a PG_BUSY page is on the inactive 637 * queue it must stay put until it is !PG_BUSY (so as not to 638 * confuse pagedaemon). 639 */ 640 if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) { 641 needs_clean = FALSE; 642 if ((pp->pg_flags & PG_BUSY) != 0 && 643 (flags & (PGO_CLEANIT|PGO_SYNCIO)) == 644 (PGO_CLEANIT|PGO_SYNCIO)) 645 need_iosync = TRUE; 646 } else { 647 /* 648 * freeing: nuke all mappings so we can sync 649 * PG_CLEAN bit with no race 650 */ 651 if ((pp->pg_flags & PG_CLEAN) != 0 && 652 (flags & PGO_FREE) != 0 && 653 (pp->pg_flags & PQ_ACTIVE) != 0) 654 pmap_page_protect(pp, PROT_NONE); 655 if ((pp->pg_flags & PG_CLEAN) != 0 && 656 pmap_is_modified(pp)) 657 atomic_clearbits_int(&pp->pg_flags, PG_CLEAN); 658 atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK); 659 660 needs_clean = ((pp->pg_flags & PG_CLEAN) == 0); 661 } 662 663 /* if we don't need a clean, deactivate/free pages then cont. */ 664 if (!needs_clean) { 665 if (flags & PGO_DEACTIVATE) { 666 if (pp->wire_count == 0) { 667 pmap_page_protect(pp, PROT_NONE); 668 uvm_pagedeactivate(pp); 669 } 670 } else if (flags & PGO_FREE) { 671 if (pp->pg_flags & PG_BUSY) { 672 atomic_setbits_int(&pp->pg_flags, 673 PG_WANTED); 674 uvm_unlock_pageq(); 675 tsleep_nsec(pp, PVM, "uvn_flsh", 676 INFSLP); 677 uvm_lock_pageq(); 678 curoff -= PAGE_SIZE; 679 continue; 680 } else { 681 pmap_page_protect(pp, PROT_NONE); 682 /* removed page from object */ 683 uvm_pageclean(pp); 684 TAILQ_INSERT_HEAD(&dead, pp, pageq); 685 } 686 } 687 continue; 688 } 689 690 /* 691 * pp points to a page in the object that we are 692 * working on. if it is !PG_CLEAN,!PG_BUSY and we asked 693 * for cleaning (PGO_CLEANIT). we clean it now. 694 * 695 * let uvm_pager_put attempted a clustered page out. 696 * note: locked: page queues. 697 */ 698 atomic_setbits_int(&pp->pg_flags, PG_BUSY); 699 UVM_PAGE_OWN(pp, "uvn_flush"); 700 pmap_page_protect(pp, PROT_READ); 701 /* if we're async, free the page in aiodoned */ 702 if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE) 703 atomic_setbits_int(&pp->pg_flags, PG_RELEASED); 704 ReTry: 705 ppsp = pps; 706 npages = sizeof(pps) / sizeof(struct vm_page *); 707 708 result = uvm_pager_put(uobj, pp, &ppsp, &npages, 709 flags | PGO_DOACTCLUST, start, stop); 710 711 /* 712 * if we did an async I/O it is remotely possible for the 713 * async i/o to complete and the page "pp" be freed or what 714 * not before we get a chance to relock the object. Therefore, 715 * we only touch it when it won't be freed, RELEASED took care 716 * of the rest. 717 */ 718 uvm_lock_pageq(); 719 720 /* 721 * VM_PAGER_AGAIN: given the structure of this pager, this 722 * can only happen when we are doing async I/O and can't 723 * map the pages into kernel memory (pager_map) due to lack 724 * of vm space. if this happens we drop back to sync I/O. 725 */ 726 if (result == VM_PAGER_AGAIN) { 727 /* 728 * it is unlikely, but page could have been released 729 * we ignore this now and retry the I/O. 730 * we will detect and 731 * handle the released page after the syncio I/O 732 * completes. 733 */ 734 #ifdef DIAGNOSTIC 735 if (flags & PGO_SYNCIO) 736 panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)"); 737 #endif 738 flags |= PGO_SYNCIO; 739 if (flags & PGO_FREE) 740 atomic_clearbits_int(&pp->pg_flags, 741 PG_RELEASED); 742 743 goto ReTry; 744 } 745 746 /* 747 * the cleaning operation is now done. finish up. note that 748 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us. 749 * if success (OK, PEND) then uvm_pager_put returns the cluster 750 * to us in ppsp/npages. 751 */ 752 /* 753 * for pending async i/o if we are not deactivating 754 * we can move on to the next page. aiodoned deals with 755 * the freeing case for us. 756 */ 757 if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0) 758 continue; 759 760 /* 761 * need to look at each page of the I/O operation, and do what 762 * we gotta do. 763 */ 764 for (lcv = 0 ; lcv < npages; lcv++) { 765 ptmp = ppsp[lcv]; 766 /* 767 * verify the page didn't get moved 768 */ 769 if (result == VM_PAGER_PEND && ptmp->uobject != uobj) 770 continue; 771 772 /* 773 * unbusy the page if I/O is done. note that for 774 * pending I/O it is possible that the I/O op 775 * finished 776 * (in which case the page is no longer busy). 777 */ 778 if (result != VM_PAGER_PEND) { 779 if (ptmp->pg_flags & PG_WANTED) 780 wakeup(ptmp); 781 782 atomic_clearbits_int(&ptmp->pg_flags, 783 PG_WANTED|PG_BUSY); 784 UVM_PAGE_OWN(ptmp, NULL); 785 atomic_setbits_int(&ptmp->pg_flags, 786 PG_CLEAN|PG_CLEANCHK); 787 if ((flags & PGO_FREE) == 0) 788 pmap_clear_modify(ptmp); 789 } 790 791 /* dispose of page */ 792 if (flags & PGO_DEACTIVATE) { 793 if (ptmp->wire_count == 0) { 794 pmap_page_protect(ptmp, PROT_NONE); 795 uvm_pagedeactivate(ptmp); 796 } 797 } else if (flags & PGO_FREE && 798 result != VM_PAGER_PEND) { 799 if (result != VM_PAGER_OK) { 800 printf("uvn_flush: obj=%p, " 801 "offset=0x%llx. error " 802 "during pageout.\n", 803 pp->uobject, 804 (long long)pp->offset); 805 printf("uvn_flush: WARNING: " 806 "changes to page may be " 807 "lost!\n"); 808 retval = FALSE; 809 } 810 pmap_page_protect(ptmp, PROT_NONE); 811 uvm_pageclean(ptmp); 812 TAILQ_INSERT_TAIL(&dead, ptmp, pageq); 813 } 814 815 } /* end of "lcv" for loop */ 816 817 } /* end of "pp" for loop */ 818 819 /* done with pagequeues: unlock */ 820 uvm_unlock_pageq(); 821 822 /* now wait for all I/O if required. */ 823 if (need_iosync) { 824 while (uvn->u_nio != 0) { 825 uvn->u_flags |= UVM_VNODE_IOSYNC; 826 tsleep_nsec(&uvn->u_nio, PVM, "uvn_flush", INFSLP); 827 } 828 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 829 wakeup(&uvn->u_flags); 830 uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED); 831 } 832 833 uvm_pglistfree(&dead); 834 835 return retval; 836 } 837 838 /* 839 * uvn_cluster 840 * 841 * we are about to do I/O in an object at offset. this function is called 842 * to establish a range of offsets around "offset" in which we can cluster 843 * I/O. 844 */ 845 846 void 847 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset, 848 voff_t *hoffset) 849 { 850 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 851 *loffset = offset; 852 853 if (*loffset >= uvn->u_size) 854 panic("uvn_cluster: offset out of range"); 855 856 /* 857 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value. 858 */ 859 *hoffset = *loffset + MAXBSIZE; 860 if (*hoffset > round_page(uvn->u_size)) /* past end? */ 861 *hoffset = round_page(uvn->u_size); 862 863 return; 864 } 865 866 /* 867 * uvn_put: flush page data to backing store. 868 * 869 * => prefer map unlocked (not required) 870 * => flags: PGO_SYNCIO -- use sync. I/O 871 * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed) 872 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 873 * [thus we never do async i/o! see iodone comment] 874 */ 875 int 876 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags) 877 { 878 int retval; 879 880 KERNEL_ASSERT_LOCKED(); 881 882 retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE); 883 884 return retval; 885 } 886 887 /* 888 * uvn_get: get pages (synchronously) from backing store 889 * 890 * => prefer map unlocked (not required) 891 * => flags: PGO_ALLPAGES: get all of the pages 892 * PGO_LOCKED: fault data structures are locked 893 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 894 * => NOTE: caller must check for released pages!! 895 */ 896 int 897 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 898 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 899 { 900 voff_t current_offset; 901 struct vm_page *ptmp; 902 int lcv, result, gotpages; 903 boolean_t done; 904 905 KERNEL_ASSERT_LOCKED(); 906 907 /* step 1: handled the case where fault data structures are locked. */ 908 if (flags & PGO_LOCKED) { 909 /* 910 * gotpages is the current number of pages we've gotten (which 911 * we pass back up to caller via *npagesp. 912 */ 913 gotpages = 0; 914 915 /* 916 * step 1a: get pages that are already resident. only do this 917 * if the data structures are locked (i.e. the first time 918 * through). 919 */ 920 done = TRUE; /* be optimistic */ 921 922 for (lcv = 0, current_offset = offset ; lcv < *npagesp ; 923 lcv++, current_offset += PAGE_SIZE) { 924 925 /* do we care about this page? if not, skip it */ 926 if (pps[lcv] == PGO_DONTCARE) 927 continue; 928 929 /* lookup page */ 930 ptmp = uvm_pagelookup(uobj, current_offset); 931 932 /* to be useful must get a non-busy, non-released pg */ 933 if (ptmp == NULL || 934 (ptmp->pg_flags & PG_BUSY) != 0) { 935 if (lcv == centeridx || (flags & PGO_ALLPAGES) 936 != 0) 937 done = FALSE; /* need to do a wait or I/O! */ 938 continue; 939 } 940 941 /* 942 * useful page: busy it and plug it in our 943 * result array 944 */ 945 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 946 UVM_PAGE_OWN(ptmp, "uvn_get1"); 947 pps[lcv] = ptmp; 948 gotpages++; 949 950 } 951 952 /* 953 * XXX: given the "advice", should we consider async read-ahead? 954 * XXX: fault current does deactivate of pages behind us. is 955 * this good (other callers might now). 956 */ 957 /* 958 * XXX: read-ahead currently handled by buffer cache (bread) 959 * level. 960 * XXX: no async i/o available. 961 * XXX: so we don't do anything now. 962 */ 963 964 /* 965 * step 1c: now we've either done everything needed or we to 966 * unlock and do some waiting or I/O. 967 */ 968 969 *npagesp = gotpages; /* let caller know */ 970 if (done) 971 return VM_PAGER_OK; /* bingo! */ 972 else 973 return VM_PAGER_UNLOCK; 974 } 975 976 /* 977 * step 2: get non-resident or busy pages. 978 * data structures are unlocked. 979 * 980 * XXX: because we can't do async I/O at this level we get things 981 * page at a time (otherwise we'd chunk). the VOP_READ() will do 982 * async-read-ahead for us at a lower level. 983 */ 984 for (lcv = 0, current_offset = offset; 985 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) { 986 987 /* skip over pages we've already gotten or don't want */ 988 /* skip over pages we don't _have_ to get */ 989 if (pps[lcv] != NULL || (lcv != centeridx && 990 (flags & PGO_ALLPAGES) == 0)) 991 continue; 992 993 /* 994 * we have yet to locate the current page (pps[lcv]). we first 995 * look for a page that is already at the current offset. if 996 * we fine a page, we check to see if it is busy or released. 997 * if that is the case, then we sleep on the page until it is 998 * no longer busy or released and repeat the lookup. if the 999 * page we found is neither busy nor released, then we busy it 1000 * (so we own it) and plug it into pps[lcv]. this breaks the 1001 * following while loop and indicates we are ready to move on 1002 * to the next page in the "lcv" loop above. 1003 * 1004 * if we exit the while loop with pps[lcv] still set to NULL, 1005 * then it means that we allocated a new busy/fake/clean page 1006 * ptmp in the object and we need to do I/O to fill in the data. 1007 */ 1008 while (pps[lcv] == NULL) { /* top of "pps" while loop */ 1009 /* look for a current page */ 1010 ptmp = uvm_pagelookup(uobj, current_offset); 1011 1012 /* nope? allocate one now (if we can) */ 1013 if (ptmp == NULL) { 1014 ptmp = uvm_pagealloc(uobj, current_offset, 1015 NULL, 0); 1016 1017 /* out of RAM? */ 1018 if (ptmp == NULL) { 1019 uvm_wait("uvn_getpage"); 1020 1021 /* goto top of pps while loop */ 1022 continue; 1023 } 1024 1025 /* 1026 * got new page ready for I/O. break pps 1027 * while loop. pps[lcv] is still NULL. 1028 */ 1029 break; 1030 } 1031 1032 /* page is there, see if we need to wait on it */ 1033 if ((ptmp->pg_flags & PG_BUSY) != 0) { 1034 atomic_setbits_int(&ptmp->pg_flags, PG_WANTED); 1035 tsleep_nsec(ptmp, PVM, "uvn_get", INFSLP); 1036 continue; /* goto top of pps while loop */ 1037 } 1038 1039 /* 1040 * if we get here then the page has become resident 1041 * and unbusy between steps 1 and 2. we busy it 1042 * now (so we own it) and set pps[lcv] (so that we 1043 * exit the while loop). 1044 */ 1045 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1046 UVM_PAGE_OWN(ptmp, "uvn_get2"); 1047 pps[lcv] = ptmp; 1048 } 1049 1050 /* 1051 * if we own the a valid page at the correct offset, pps[lcv] 1052 * will point to it. nothing more to do except go to the 1053 * next page. 1054 */ 1055 if (pps[lcv]) 1056 continue; /* next lcv */ 1057 1058 /* 1059 * we have a "fake/busy/clean" page that we just allocated. do 1060 * I/O to fill it with valid data. 1061 */ 1062 result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1, 1063 PGO_SYNCIO|PGO_NOWAIT, UIO_READ); 1064 1065 /* 1066 * I/O done. because we used syncio the result can not be 1067 * PEND or AGAIN. 1068 */ 1069 if (result != VM_PAGER_OK) { 1070 if (ptmp->pg_flags & PG_WANTED) 1071 wakeup(ptmp); 1072 1073 atomic_clearbits_int(&ptmp->pg_flags, 1074 PG_WANTED|PG_BUSY); 1075 UVM_PAGE_OWN(ptmp, NULL); 1076 uvm_lock_pageq(); 1077 uvm_pagefree(ptmp); 1078 uvm_unlock_pageq(); 1079 return result; 1080 } 1081 1082 /* 1083 * we got the page! clear the fake flag (indicates valid 1084 * data now in page) and plug into our result array. note 1085 * that page is still busy. 1086 * 1087 * it is the callers job to: 1088 * => check if the page is released 1089 * => unbusy the page 1090 * => activate the page 1091 */ 1092 1093 /* data is valid ... */ 1094 atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE); 1095 pmap_clear_modify(ptmp); /* ... and clean */ 1096 pps[lcv] = ptmp; 1097 1098 } 1099 1100 return (VM_PAGER_OK); 1101 } 1102 1103 /* 1104 * uvn_io: do I/O to a vnode 1105 * 1106 * => prefer map unlocked (not required) 1107 * => flags: PGO_SYNCIO -- use sync. I/O 1108 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 1109 * [thus we never do async i/o! see iodone comment] 1110 */ 1111 1112 int 1113 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw) 1114 { 1115 struct vnode *vn; 1116 struct uio uio; 1117 struct iovec iov; 1118 vaddr_t kva; 1119 off_t file_offset; 1120 int waitf, result, mapinflags; 1121 size_t got, wanted; 1122 int netunlocked = 0; 1123 int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0; 1124 1125 /* init values */ 1126 waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT; 1127 vn = uvn->u_vnode; 1128 file_offset = pps[0]->offset; 1129 1130 /* check for sync'ing I/O. */ 1131 while (uvn->u_flags & UVM_VNODE_IOSYNC) { 1132 if (waitf == M_NOWAIT) { 1133 return VM_PAGER_AGAIN; 1134 } 1135 uvn->u_flags |= UVM_VNODE_IOSYNCWANTED; 1136 tsleep_nsec(&uvn->u_flags, PVM, "uvn_iosync", INFSLP); 1137 } 1138 1139 /* check size */ 1140 if (file_offset >= uvn->u_size) { 1141 return VM_PAGER_BAD; 1142 } 1143 1144 /* first try and map the pages in (without waiting) */ 1145 mapinflags = (rw == UIO_READ) ? 1146 UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE; 1147 1148 kva = uvm_pagermapin(pps, npages, mapinflags); 1149 if (kva == 0 && waitf == M_NOWAIT) { 1150 return VM_PAGER_AGAIN; 1151 } 1152 1153 /* 1154 * ok, now bump u_nio up. at this point we are done with uvn 1155 * and can unlock it. if we still don't have a kva, try again 1156 * (this time with sleep ok). 1157 */ 1158 uvn->u_nio++; /* we have an I/O in progress! */ 1159 if (kva == 0) 1160 kva = uvm_pagermapin(pps, npages, 1161 mapinflags | UVMPAGER_MAPIN_WAITOK); 1162 1163 /* 1164 * ok, mapped in. our pages are PG_BUSY so they are not going to 1165 * get touched (so we can look at "offset" without having to lock 1166 * the object). set up for I/O. 1167 */ 1168 /* fill out uio/iov */ 1169 iov.iov_base = (caddr_t) kva; 1170 wanted = (size_t)npages << PAGE_SHIFT; 1171 if (file_offset + wanted > uvn->u_size) 1172 wanted = uvn->u_size - file_offset; /* XXX: needed? */ 1173 iov.iov_len = wanted; 1174 uio.uio_iov = &iov; 1175 uio.uio_iovcnt = 1; 1176 uio.uio_offset = file_offset; 1177 uio.uio_segflg = UIO_SYSSPACE; 1178 uio.uio_rw = rw; 1179 uio.uio_resid = wanted; 1180 uio.uio_procp = curproc; 1181 1182 /* 1183 * This process may already have the NET_LOCK(), if we 1184 * faulted in copyin() or copyout() in the network stack. 1185 */ 1186 if (rw_status(&netlock) == RW_WRITE) { 1187 NET_UNLOCK(); 1188 netunlocked = 1; 1189 } 1190 1191 /* do the I/O! (XXX: curproc?) */ 1192 /* 1193 * This process may already have this vnode locked, if we faulted in 1194 * copyin() or copyout() on a region backed by this vnode 1195 * while doing I/O to the vnode. If this is the case, don't 1196 * panic.. instead, return the error to the user. 1197 * 1198 * XXX this is a stopgap to prevent a panic. 1199 * Ideally, this kind of operation *should* work. 1200 */ 1201 result = 0; 1202 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1203 result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags); 1204 if (result == 0) { 1205 /* NOTE: vnode now locked! */ 1206 if (rw == UIO_READ) 1207 result = VOP_READ(vn, &uio, 0, curproc->p_ucred); 1208 else 1209 result = VOP_WRITE(vn, &uio, 1210 (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0, 1211 curproc->p_ucred); 1212 1213 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1214 VOP_UNLOCK(vn); 1215 1216 } 1217 1218 if (netunlocked) 1219 NET_LOCK(); 1220 1221 1222 /* NOTE: vnode now unlocked (unless vnislocked) */ 1223 /* 1224 * result == unix style errno (0 == OK!) 1225 * 1226 * zero out rest of buffer (if needed) 1227 */ 1228 if (result == 0) { 1229 got = wanted - uio.uio_resid; 1230 1231 if (wanted && got == 0) { 1232 result = EIO; /* XXX: error? */ 1233 } else if (got < PAGE_SIZE * npages && rw == UIO_READ) { 1234 memset((void *) (kva + got), 0, 1235 ((size_t)npages << PAGE_SHIFT) - got); 1236 } 1237 } 1238 1239 /* now remove pager mapping */ 1240 uvm_pagermapout(kva, npages); 1241 1242 /* now clean up the object (i.e. drop I/O count) */ 1243 uvn->u_nio--; /* I/O DONE! */ 1244 if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) { 1245 wakeup(&uvn->u_nio); 1246 } 1247 1248 if (result == 0) { 1249 return VM_PAGER_OK; 1250 } else if (result == EBUSY) { 1251 KASSERT(flags & PGO_NOWAIT); 1252 return VM_PAGER_AGAIN; 1253 } else { 1254 while (rebooting) 1255 tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP); 1256 return VM_PAGER_ERROR; 1257 } 1258 } 1259 1260 /* 1261 * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference 1262 * is gone we will kill the object (flushing dirty pages back to the vnode 1263 * if needed). 1264 * 1265 * => returns TRUE if there was no uvm_object attached or if there was 1266 * one and we killed it [i.e. if there is no active uvn] 1267 * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if 1268 * needed] 1269 * 1270 * => XXX: given that we now kill uvn's when a vnode is recycled (without 1271 * having to hold a reference on the vnode) and given a working 1272 * uvm_vnp_sync(), how does that effect the need for this function? 1273 * [XXXCDC: seems like it can die?] 1274 * 1275 * => XXX: this function should DIE once we merge the VM and buffer 1276 * cache. 1277 * 1278 * research shows that this is called in the following places: 1279 * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode 1280 * changes sizes 1281 * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we 1282 * are written to 1283 * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit 1284 * is off 1285 * ffs_realloccg: when we can't extend the current block and have 1286 * to allocate a new one we call this [XXX: why?] 1287 * nfsrv_rename, rename_files: called when the target filename is there 1288 * and we want to remove it 1289 * nfsrv_remove, sys_unlink: called on file we are removing 1290 * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache 1291 * then return "text busy" 1292 * nfs_open: seems to uncache any file opened with nfs 1293 * vn_writechk: if VTEXT vnode and can't uncache return "text busy" 1294 * fusefs_open: uncaches any file that is opened 1295 * fusefs_write: uncaches on every write 1296 */ 1297 1298 int 1299 uvm_vnp_uncache(struct vnode *vp) 1300 { 1301 struct uvm_vnode *uvn = vp->v_uvm; 1302 1303 /* lock uvn part of the vnode and check if we need to do anything */ 1304 1305 if ((uvn->u_flags & UVM_VNODE_VALID) == 0 || 1306 (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) { 1307 return TRUE; 1308 } 1309 1310 /* 1311 * we have a valid, non-blocked uvn. clear persist flag. 1312 * if uvn is currently active we can return now. 1313 */ 1314 uvn->u_flags &= ~UVM_VNODE_CANPERSIST; 1315 if (uvn->u_obj.uo_refs) { 1316 return FALSE; 1317 } 1318 1319 /* 1320 * uvn is currently persisting! we have to gain a reference to 1321 * it so that we can call uvn_detach to kill the uvn. 1322 */ 1323 vref(vp); /* seems ok, even with VOP_LOCK */ 1324 uvn->u_obj.uo_refs++; /* value is now 1 */ 1325 1326 #ifdef VFSLCKDEBUG 1327 /* 1328 * carry over sanity check from old vnode pager: the vnode should 1329 * be VOP_LOCK'd, and we confirm it here. 1330 */ 1331 if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp)) 1332 panic("uvm_vnp_uncache: vnode not locked!"); 1333 #endif 1334 1335 /* 1336 * now drop our reference to the vnode. if we have the sole 1337 * reference to the vnode then this will cause it to die [as we 1338 * just cleared the persist flag]. we have to unlock the vnode 1339 * while we are doing this as it may trigger I/O. 1340 * 1341 * XXX: it might be possible for uvn to get reclaimed while we are 1342 * unlocked causing us to return TRUE when we should not. we ignore 1343 * this as a false-positive return value doesn't hurt us. 1344 */ 1345 VOP_UNLOCK(vp); 1346 uvn_detach(&uvn->u_obj); 1347 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1348 1349 return TRUE; 1350 } 1351 1352 /* 1353 * uvm_vnp_setsize: grow or shrink a vnode uvn 1354 * 1355 * grow => just update size value 1356 * shrink => toss un-needed pages 1357 * 1358 * => we assume that the caller has a reference of some sort to the 1359 * vnode in question so that it will not be yanked out from under 1360 * us. 1361 * 1362 * called from: 1363 * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos], 1364 * fusefs_setattr) 1365 * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write 1366 * fusefs_write) 1367 * => ffs_balloc [XXX: why? doesn't WRITE handle?] 1368 * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr 1369 * => union fs: union_newsize 1370 */ 1371 1372 void 1373 uvm_vnp_setsize(struct vnode *vp, off_t newsize) 1374 { 1375 struct uvm_vnode *uvn = vp->v_uvm; 1376 1377 /* lock uvn and check for valid object, and if valid: do it! */ 1378 if (uvn->u_flags & UVM_VNODE_VALID) { 1379 1380 /* 1381 * now check if the size has changed: if we shrink we had better 1382 * toss some pages... 1383 */ 1384 1385 if (uvn->u_size > newsize) { 1386 (void)uvn_flush(&uvn->u_obj, newsize, 1387 uvn->u_size, PGO_FREE); 1388 } 1389 uvn->u_size = newsize; 1390 } 1391 } 1392 1393 /* 1394 * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes. 1395 * 1396 * => called from sys_sync with no VM structures locked 1397 * => only one process can do a sync at a time (because the uvn 1398 * structure only has one queue for sync'ing). we ensure this 1399 * by holding the uvn_sync_lock while the sync is in progress. 1400 * other processes attempting a sync will sleep on this lock 1401 * until we are done. 1402 */ 1403 void 1404 uvm_vnp_sync(struct mount *mp) 1405 { 1406 struct uvm_vnode *uvn; 1407 struct vnode *vp; 1408 1409 /* 1410 * step 1: ensure we are only ones using the uvn_sync_q by locking 1411 * our lock... 1412 */ 1413 rw_enter_write(&uvn_sync_lock); 1414 1415 /* 1416 * step 2: build up a simpleq of uvns of interest based on the 1417 * write list. we gain a reference to uvns of interest. 1418 */ 1419 SIMPLEQ_INIT(&uvn_sync_q); 1420 LIST_FOREACH(uvn, &uvn_wlist, u_wlist) { 1421 vp = uvn->u_vnode; 1422 if (mp && vp->v_mount != mp) 1423 continue; 1424 1425 /* 1426 * If the vnode is "blocked" it means it must be dying, which 1427 * in turn means its in the process of being flushed out so 1428 * we can safely skip it. 1429 * 1430 * note that uvn must already be valid because we found it on 1431 * the wlist (this also means it can't be ALOCK'd). 1432 */ 1433 if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0) 1434 continue; 1435 1436 /* 1437 * gain reference. watch out for persisting uvns (need to 1438 * regain vnode REF). 1439 */ 1440 if (uvn->u_obj.uo_refs == 0) 1441 vref(vp); 1442 uvn->u_obj.uo_refs++; 1443 1444 SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq); 1445 } 1446 1447 /* step 3: we now have a list of uvn's that may need cleaning. */ 1448 SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) { 1449 #ifdef DEBUG 1450 if (uvn->u_flags & UVM_VNODE_DYING) { 1451 printf("uvm_vnp_sync: dying vnode on sync list\n"); 1452 } 1453 #endif 1454 uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST); 1455 1456 /* 1457 * if we have the only reference and we just cleaned the uvn, 1458 * then we can pull it out of the UVM_VNODE_WRITEABLE state 1459 * thus allowing us to avoid thinking about flushing it again 1460 * on later sync ops. 1461 */ 1462 if (uvn->u_obj.uo_refs == 1 && 1463 (uvn->u_flags & UVM_VNODE_WRITEABLE)) { 1464 LIST_REMOVE(uvn, u_wlist); 1465 uvn->u_flags &= ~UVM_VNODE_WRITEABLE; 1466 } 1467 1468 /* now drop our reference to the uvn */ 1469 uvn_detach(&uvn->u_obj); 1470 } 1471 1472 rw_exit_write(&uvn_sync_lock); 1473 } 1474