xref: /openbsd-src/sys/uvm/uvm_vnode.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: uvm_vnode.c,v 1.76 2011/07/04 20:35:35 deraadt Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by Charles D. Cranor,
27  *	Washington University, the University of California, Berkeley and
28  *	its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
46  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
47  */
48 
49 /*
50  * uvm_vnode.c: the vnode pager.
51  */
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/proc.h>
56 #include <sys/malloc.h>
57 #include <sys/vnode.h>
58 #include <sys/disklabel.h>
59 #include <sys/ioctl.h>
60 #include <sys/fcntl.h>
61 #include <sys/conf.h>
62 #include <sys/rwlock.h>
63 #include <sys/dkio.h>
64 #include <sys/specdev.h>
65 
66 #include <uvm/uvm.h>
67 #include <uvm/uvm_vnode.h>
68 
69 /*
70  * private global data structure
71  *
72  * we keep a list of writeable active vnode-backed VM objects for sync op.
73  * we keep a simpleq of vnodes that are currently being sync'd.
74  */
75 
76 LIST_HEAD(uvn_list_struct, uvm_vnode);
77 struct uvn_list_struct uvn_wlist;	/* writeable uvns */
78 
79 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
80 struct uvn_sq_struct uvn_sync_q;		/* sync'ing uvns */
81 struct rwlock uvn_sync_lock;			/* locks sync operation */
82 
83 /*
84  * functions
85  */
86 
87 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
88 void		 uvn_detach(struct uvm_object *);
89 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
90 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
91 		     vm_prot_t, int, int);
92 void		 uvn_init(void);
93 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
94 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
95 void		 uvn_reference(struct uvm_object *);
96 
97 /*
98  * master pager structure
99  */
100 
101 struct uvm_pagerops uvm_vnodeops = {
102 	uvn_init,
103 	uvn_reference,
104 	uvn_detach,
105 	NULL,			/* no specialized fault routine required */
106 	uvn_flush,
107 	uvn_get,
108 	uvn_put,
109 	uvn_cluster,
110 	uvm_mk_pcluster, /* use generic version of this: see uvm_pager.c */
111 };
112 
113 /*
114  * the ops!
115  */
116 
117 /*
118  * uvn_init
119  *
120  * init pager private data structures.
121  */
122 
123 void
124 uvn_init(void)
125 {
126 
127 	LIST_INIT(&uvn_wlist);
128 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
129 	rw_init(&uvn_sync_lock, "uvnsync");
130 }
131 
132 /*
133  * uvn_attach
134  *
135  * attach a vnode structure to a VM object.  if the vnode is already
136  * attached, then just bump the reference count by one and return the
137  * VM object.   if not already attached, attach and return the new VM obj.
138  * the "accessprot" tells the max access the attaching thread wants to
139  * our pages.
140  *
141  * => caller must _not_ already be holding the lock on the uvm_object.
142  * => in fact, nothing should be locked so that we can sleep here.
143  * => note that uvm_object is first thing in vnode structure, so their
144  *    pointers are equiv.
145  */
146 
147 struct uvm_object *
148 uvn_attach(void *arg, vm_prot_t accessprot)
149 {
150 	struct vnode *vp = arg;
151 	struct uvm_vnode *uvn = &vp->v_uvm;
152 	struct vattr vattr;
153 	int oldflags, result;
154 	struct partinfo pi;
155 	u_quad_t used_vnode_size;
156 
157 	used_vnode_size = (u_quad_t)0;	/* XXX gcc -Wuninitialized */
158 
159 	/*
160 	 * first get a lock on the uvn.
161 	 */
162 	simple_lock(&uvn->u_obj.vmobjlock);
163 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
164 		uvn->u_flags |= UVM_VNODE_WANTED;
165 		UVM_UNLOCK_AND_WAIT(uvn, &uvn->u_obj.vmobjlock, FALSE,
166 		    "uvn_attach", 0);
167 		simple_lock(&uvn->u_obj.vmobjlock);
168 	}
169 
170 	/*
171 	 * if we're mapping a BLK device, make sure it is a disk.
172 	 */
173 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
174 		simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
175 		return(NULL);
176 	}
177 
178 	/*
179 	 * now we have lock and uvn must not be in a blocked state.
180 	 * first check to see if it is already active, in which case
181 	 * we can bump the reference count, check to see if we need to
182 	 * add it to the writeable list, and then return.
183 	 */
184 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
185 
186 		/* regain vref if we were persisting */
187 		if (uvn->u_obj.uo_refs == 0) {
188 			vref(vp);
189 		}
190 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
191 
192 		/* check for new writeable uvn */
193 		if ((accessprot & VM_PROT_WRITE) != 0 &&
194 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
195 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
196 			/* we are now on wlist! */
197 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
198 		}
199 
200 		/* unlock and return */
201 		simple_unlock(&uvn->u_obj.vmobjlock);
202 		return (&uvn->u_obj);
203 	}
204 
205 	/*
206 	 * need to call VOP_GETATTR() to get the attributes, but that could
207 	 * block (due to I/O), so we want to unlock the object before calling.
208 	 * however, we want to keep anyone else from playing with the object
209 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
210 	 * prevents anyone from attaching to the vnode until we are done with
211 	 * it.
212 	 */
213 	uvn->u_flags = UVM_VNODE_ALOCK;
214 	simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock in case we sleep */
215 		/* XXX: curproc? */
216 
217 	if (vp->v_type == VBLK) {
218 		/*
219 		 * We could implement this as a specfs getattr call, but:
220 		 *
221 		 *	(1) VOP_GETATTR() would get the file system
222 		 *	    vnode operation, not the specfs operation.
223 		 *
224 		 *	(2) All we want is the size, anyhow.
225 		 */
226 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
227 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
228 		if (result == 0) {
229 			/* XXX should remember blocksize */
230 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
231 			    (u_quad_t)DL_GETPSIZE(pi.part);
232 		}
233 	} else {
234 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
235 		if (result == 0)
236 			used_vnode_size = vattr.va_size;
237 	}
238 
239 	/* relock object */
240 	simple_lock(&uvn->u_obj.vmobjlock);
241 
242 	if (result != 0) {
243 		if (uvn->u_flags & UVM_VNODE_WANTED)
244 			wakeup(uvn);
245 		uvn->u_flags = 0;
246 		simple_unlock(&uvn->u_obj.vmobjlock); /* drop lock */
247 		return(NULL);
248 	}
249 
250 	/*
251 	 * make sure that the newsize fits within a vaddr_t
252 	 * XXX: need to revise addressing data types
253 	 */
254 #ifdef DEBUG
255 	if (vp->v_type == VBLK)
256 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
257 #endif
258 
259 	/*
260 	 * now set up the uvn.
261 	 */
262 	uvm_objinit(&uvn->u_obj, &uvm_vnodeops, 1);
263 	oldflags = uvn->u_flags;
264 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
265 	uvn->u_nio = 0;
266 	uvn->u_size = used_vnode_size;
267 
268 	/* if write access, we need to add it to the wlist */
269 	if (accessprot & VM_PROT_WRITE) {
270 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
271 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
272 	}
273 
274 	/*
275 	 * add a reference to the vnode.   this reference will stay as long
276 	 * as there is a valid mapping of the vnode.   dropped when the
277 	 * reference count goes to zero [and we either free or persist].
278 	 */
279 	vref(vp);
280 	simple_unlock(&uvn->u_obj.vmobjlock);
281 	if (oldflags & UVM_VNODE_WANTED)
282 		wakeup(uvn);
283 
284 	return(&uvn->u_obj);
285 }
286 
287 
288 /*
289  * uvn_reference
290  *
291  * duplicate a reference to a VM object.  Note that the reference
292  * count must already be at least one (the passed in reference) so
293  * there is no chance of the uvn being killed or locked out here.
294  *
295  * => caller must call with object unlocked.
296  * => caller must be using the same accessprot as was used at attach time
297  */
298 
299 
300 void
301 uvn_reference(struct uvm_object *uobj)
302 {
303 #ifdef DEBUG
304 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
305 #endif
306 
307 	simple_lock(&uobj->vmobjlock);
308 #ifdef DEBUG
309 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
310 		printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags,
311 		    uobj->uo_refs);
312 		panic("uvn_reference: invalid state");
313 	}
314 #endif
315 	uobj->uo_refs++;
316 	simple_unlock(&uobj->vmobjlock);
317 }
318 
319 /*
320  * uvn_detach
321  *
322  * remove a reference to a VM object.
323  *
324  * => caller must call with object unlocked and map locked.
325  * => this starts the detach process, but doesn't have to finish it
326  *    (async i/o could still be pending).
327  */
328 void
329 uvn_detach(struct uvm_object *uobj)
330 {
331 	struct uvm_vnode *uvn;
332 	struct vnode *vp;
333 	int oldflags;
334 
335 	simple_lock(&uobj->vmobjlock);
336 
337 	uobj->uo_refs--;			/* drop ref! */
338 	if (uobj->uo_refs) {			/* still more refs */
339 		simple_unlock(&uobj->vmobjlock);
340 		return;
341 	}
342 
343 	/*
344 	 * get other pointers ...
345 	 */
346 
347 	uvn = (struct uvm_vnode *) uobj;
348 	vp = (struct vnode *) uobj;
349 
350 	/*
351 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
352 	 * to keep an active text file from being overwritten).
353 	 */
354 	vp->v_flag &= ~VTEXT;
355 
356 	/*
357 	 * we just dropped the last reference to the uvn.   see if we can
358 	 * let it "stick around".
359 	 */
360 
361 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
362 		/* won't block */
363 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
364 		simple_unlock(&uobj->vmobjlock);
365 		vrele(vp);			/* drop vnode reference */
366 		return;
367 	}
368 
369 	/*
370 	 * its a goner!
371 	 */
372 
373 	uvn->u_flags |= UVM_VNODE_DYING;
374 
375 	/*
376 	 * even though we may unlock in flush, no one can gain a reference
377 	 * to us until we clear the "dying" flag [because it blocks
378 	 * attaches].  we will not do that until after we've disposed of all
379 	 * the pages with uvn_flush().  note that before the flush the only
380 	 * pages that could be marked PG_BUSY are ones that are in async
381 	 * pageout by the daemon.  (there can't be any pending "get"'s
382 	 * because there are no references to the object).
383 	 */
384 
385 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
386 
387 	/*
388 	 * given the structure of this pager, the above flush request will
389 	 * create the following state: all the pages that were in the object
390 	 * have either been free'd or they are marked PG_BUSY and in the
391 	 * middle of an async io. If we still have pages we set the "relkill"
392 	 * state, so that in the case the vnode gets terminated we know
393 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
394 	 */
395 
396 	uvn->u_flags |= UVM_VNODE_RELKILL;
397 	/* wait on any outstanding io */
398 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
399 		uvn->u_flags |= UVM_VNODE_IOSYNC;
400 		UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock, FALSE,
401 		    "uvn_term",0);
402 		simple_lock(&uvn->u_obj.vmobjlock);
403 	}
404 
405 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0)
406 		return;
407 
408 	/*
409 	 * kill object now.   note that we can't be on the sync q because
410 	 * all references are gone.
411 	 */
412 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
413 		LIST_REMOVE(uvn, u_wlist);
414 	}
415 	KASSERT(RB_EMPTY(&uobj->memt));
416 	oldflags = uvn->u_flags;
417 	uvn->u_flags = 0;
418 	simple_unlock(&uobj->vmobjlock);
419 
420 	/* wake up any sleepers */
421 	if (oldflags & UVM_VNODE_WANTED)
422 		wakeup(uvn);
423 
424 	/*
425 	 * drop our reference to the vnode.
426 	 */
427 	vrele(vp);
428 
429 	return;
430 }
431 
432 /*
433  * uvm_vnp_terminate: external hook to clear out a vnode's VM
434  *
435  * called in two cases:
436  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
437  *      count) needs to be freed so that a vnode can be reused.  this
438  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
439  *      the free list is still attached (i.e. not VBAD) then vgone is
440  *	called.   as part of the vgone trace this should get called to
441  *	free the vm object.   this is the common case.
442  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
443  *	"umount -f") the vgone() function is called on active vnodes
444  *	on the mounted file systems to kill their data (the vnodes become
445  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
446  *	call here (even if the uvn is still in use -- i.e. has a non-zero
447  *	reference count).  this case happens at "umount -f" and during a
448  *	"reboot/halt" operation.
449  *
450  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
451  *	[protects us from getting a vnode that is already in the DYING
452  *	 state...]
453  * => in case [2] the uvn is still alive after this call, but all I/O
454  *	ops will fail (due to the backing vnode now being "dead").  this
455  *	will prob. kill any process using the uvn due to pgo_get failing.
456  */
457 
458 void
459 uvm_vnp_terminate(struct vnode *vp)
460 {
461 	struct uvm_vnode *uvn = &vp->v_uvm;
462 	int oldflags;
463 
464 	/*
465 	 * lock object and check if it is valid
466 	 */
467 	simple_lock(&uvn->u_obj.vmobjlock);
468 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
469 		simple_unlock(&uvn->u_obj.vmobjlock);
470 		return;
471 	}
472 
473 	/*
474 	 * must be a valid uvn that is not already dying (because XLOCK
475 	 * protects us from that).   the uvn can't in the ALOCK state
476 	 * because it is valid, and uvn's that are in the ALOCK state haven't
477 	 * been marked valid yet.
478 	 */
479 
480 #ifdef DEBUG
481 	/*
482 	 * debug check: are we yanking the vnode out from under our uvn?
483 	 */
484 	if (uvn->u_obj.uo_refs) {
485 		printf("uvm_vnp_terminate(%p): terminating active vnode "
486 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
487 	}
488 #endif
489 
490 	/*
491 	 * it is possible that the uvn was detached and is in the relkill
492 	 * state [i.e. waiting for async i/o to finish].
493 	 * we take over the vnode now and cancel the relkill.
494 	 * we want to know when the i/o is done so we can recycle right
495 	 * away.   note that a uvn can only be in the RELKILL state if it
496 	 * has a zero reference count.
497 	 */
498 
499 	if (uvn->u_flags & UVM_VNODE_RELKILL)
500 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
501 
502 	/*
503 	 * block the uvn by setting the dying flag, and then flush the
504 	 * pages.  (note that flush may unlock object while doing I/O, but
505 	 * it will re-lock it before it returns control here).
506 	 *
507 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
508 	 * that uvn_io doesn't attempt to VOP_LOCK again.
509 	 *
510 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
511 	 *	due to a forceful unmount might not be a good idea.  maybe we
512 	 *	need a way to pass in this info to uvn_flush through a
513 	 *	pager-defined PGO_ constant [currently there are none].
514 	 */
515 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
516 
517 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
518 
519 	/*
520 	 * as we just did a flush we expect all the pages to be gone or in
521 	 * the process of going.  sleep to wait for the rest to go [via iosync].
522 	 */
523 
524 	while (uvn->u_obj.uo_npages) {
525 #ifdef DEBUG
526 		struct vm_page *pp;
527 		RB_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
528 			if ((pp->pg_flags & PG_BUSY) == 0)
529 				panic("uvm_vnp_terminate: detected unbusy pg");
530 		}
531 		if (uvn->u_nio == 0)
532 			panic("uvm_vnp_terminate: no I/O to wait for?");
533 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
534 		/*
535 		 * XXXCDC: this is unlikely to happen without async i/o so we
536 		 * put a printf in just to keep an eye on it.
537 		 */
538 #endif
539 		uvn->u_flags |= UVM_VNODE_IOSYNC;
540 		UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock, FALSE,
541 		    "uvn_term",0);
542 		simple_lock(&uvn->u_obj.vmobjlock);
543 	}
544 
545 	/*
546 	 * done.   now we free the uvn if its reference count is zero
547 	 * (true if we are zapping a persisting uvn).   however, if we are
548 	 * terminating a uvn with active mappings we let it live ... future
549 	 * calls down to the vnode layer will fail.
550 	 */
551 
552 	oldflags = uvn->u_flags;
553 	if (uvn->u_obj.uo_refs) {
554 
555 		/*
556 		 * uvn must live on it is dead-vnode state until all references
557 		 * are gone.   restore flags.    clear CANPERSIST state.
558 		 */
559 
560 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
561 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
562 
563 	} else {
564 
565 		/*
566 		 * free the uvn now.   note that the vref reference is already
567 		 * gone [it is dropped when we enter the persist state].
568 		 */
569 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
570 			panic("uvm_vnp_terminate: io sync wanted bit set");
571 
572 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
573 			LIST_REMOVE(uvn, u_wlist);
574 		}
575 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
576 	}
577 
578 	if (oldflags & UVM_VNODE_WANTED)
579 		wakeup(uvn);		/* object lock still held */
580 
581 	simple_unlock(&uvn->u_obj.vmobjlock);
582 
583 }
584 
585 /*
586  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
587  * through the buffer cache and allow I/O in any size.  These VOPs use
588  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
589  * go through the buffer cache or allow I/O sizes larger than a
590  * block].  we will eventually want to change this.
591  *
592  * issues to consider:
593  *   uvm provides the uvm_aiodesc structure for async i/o management.
594  * there are two tailq's in the uvm. structure... one for pending async
595  * i/o and one for "done" async i/o.   to do an async i/o one puts
596  * an aiodesc on the "pending" list (protected by splbio()), starts the
597  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
598  * some sort of "i/o done" function to be called (at splbio(), interrupt
599  * time).   this function should remove the aiodesc from the pending list
600  * and place it on the "done" list and wakeup the daemon.   the daemon
601  * will run at normal spl() and will remove all items from the "done"
602  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
603  * [in the old vm code, this was done by calling the "put" routine with
604  * null arguments which made the code harder to read and understand because
605  * you had one function ("put") doing two things.]
606  *
607  * so the current pager needs:
608  *   int uvn_aiodone(struct uvm_aiodesc *)
609  *
610  * => return 0 (aio finished, free it). otherwise requeue for later collection.
611  * => called with pageq's locked by the daemon.
612  *
613  * general outline:
614  * - "try" to lock object.   if fail, just return (will try again later)
615  * - drop "u_nio" (this req is done!)
616  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
617  * - get "page" structures (atop?).
618  * - handle "wanted" pages
619  * dont forget to look at "object" wanted flag in all cases.
620  */
621 
622 
623 /*
624  * uvn_flush: flush pages out of a uvm object.
625  *
626  * => object should be locked by caller.   we may _unlock_ the object
627  *	if (and only if) we need to clean a page (PGO_CLEANIT).
628  *	we return with the object locked.
629  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
630  *	might want to unlock higher level resources (e.g. vm_map)
631  *	before calling flush.
632  * => if PGO_CLEANIT is not set, then we will neither unlock the object
633  *	or block.
634  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
635  *	for flushing.
636  * => NOTE: we are allowed to lock the page queues, so the caller
637  *	must not be holding the lock on them [e.g. pagedaemon had
638  *	better not call us with the queues locked]
639  * => we return TRUE unless we encountered some sort of I/O error
640  *
641  * comment on "cleaning" object and PG_BUSY pages:
642  *	this routine is holding the lock on the object.   the only time
643  *	that it can run into a PG_BUSY page that it does not own is if
644  *	some other process has started I/O on the page (e.g. either
645  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
646  *	in, then it can not be dirty (!PG_CLEAN) because no one has
647  *	had a chance to modify it yet.    if the PG_BUSY page is being
648  *	paged out then it means that someone else has already started
649  *	cleaning the page for us (how nice!).    in this case, if we
650  *	have syncio specified, then after we make our pass through the
651  *	object we need to wait for the other PG_BUSY pages to clear
652  *	off (i.e. we need to do an iosync).   also note that once a
653  *	page is PG_BUSY it must stay in its object until it is un-busyed.
654  */
655 
656 #define UVN_HASH_PENALTY 4	/* XXX: a guess */
657 
658 boolean_t
659 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
660 {
661 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
662 	struct vm_page *pp, *ptmp;
663 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
664 	int npages, result, lcv;
665 	boolean_t retval, need_iosync, needs_clean;
666 	voff_t curoff;
667 
668 	/*
669 	 * get init vals and determine how we are going to traverse object
670 	 */
671 
672 	need_iosync = FALSE;
673 	retval = TRUE;		/* return value */
674 	if (flags & PGO_ALLPAGES) {
675 		start = 0;
676 		stop = round_page(uvn->u_size);
677 	} else {
678 		start = trunc_page(start);
679 		stop = MIN(round_page(stop), round_page(uvn->u_size));
680 	}
681 
682 	/*
683 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
684 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
685 	 * is wrong it will only prevent us from clustering... it won't break
686 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
687 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
688 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
689 	 * bit is always up to date since there are no mappings).
690 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
691 	 */
692 
693 	if ((flags & PGO_CLEANIT) != 0) {
694 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
695 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
696 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
697 				atomic_clearbits_int(&pp->pg_flags,
698 				    PG_CLEANCHK);
699 		}
700 	}
701 
702 	ppsp = NULL;		/* XXX: shut up gcc */
703 	uvm_lock_pageq();	/* page queues locked */
704 	/* locked: both page queues and uobj */
705 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
706 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
707 			continue;
708 
709 		/*
710 		 * handle case where we do not need to clean page (either
711 		 * because we are not clean or because page is not dirty or
712 		 * is busy):
713 		 *
714 		 * NOTE: we are allowed to deactivate a non-wired active
715 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
716 		 * queue it must stay put until it is !PG_BUSY (so as not to
717 		 * confuse pagedaemon).
718 		 */
719 
720 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
721 			needs_clean = FALSE;
722 			if ((pp->pg_flags & PG_BUSY) != 0 &&
723 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
724 			             (PGO_CLEANIT|PGO_SYNCIO))
725 				need_iosync = TRUE;
726 		} else {
727 			/*
728 			 * freeing: nuke all mappings so we can sync
729 			 * PG_CLEAN bit with no race
730 			 */
731 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
732 			    (flags & PGO_FREE) != 0 &&
733 			    (pp->pg_flags & PQ_ACTIVE) != 0)
734 				pmap_page_protect(pp, VM_PROT_NONE);
735 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
736 			    pmap_is_modified(pp))
737 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
738 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
739 
740 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
741 		}
742 
743 		/*
744 		 * if we don't need a clean... deactivate/free pages then cont.
745 		 */
746 		if (!needs_clean) {
747 			if (flags & PGO_DEACTIVATE) {
748 				if (pp->wire_count == 0) {
749 					pmap_page_protect(pp, VM_PROT_NONE);
750 					uvm_pagedeactivate(pp);
751 				}
752 			} else if (flags & PGO_FREE) {
753 				if (pp->pg_flags & PG_BUSY) {
754 					atomic_setbits_int(&pp->pg_flags,
755 					    PG_WANTED);
756 					uvm_unlock_pageq();
757 					UVM_UNLOCK_AND_WAIT(pp,
758 					    &uobj->vmobjlock, 0, "uvn_flsh", 0);
759 					simple_lock(&uobj->vmobjlock);
760 					uvm_lock_pageq();
761 					curoff -= PAGE_SIZE;
762 					continue;
763 				} else {
764 					pmap_page_protect(pp, VM_PROT_NONE);
765 					/* removed page from object */
766 					uvm_pagefree(pp);
767 				}
768 			}
769 			continue;
770 		}
771 
772 		/*
773 		 * pp points to a page in the locked object that we are
774 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
775 		 * for cleaning (PGO_CLEANIT).  we clean it now.
776 		 *
777 		 * let uvm_pager_put attempted a clustered page out.
778 		 * note: locked: uobj and page queues.
779 		 */
780 
781 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
782 		UVM_PAGE_OWN(pp, "uvn_flush");
783 		pmap_page_protect(pp, VM_PROT_READ);
784 		/* if we're async, free the page in aiodoned */
785 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
786 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
787 ReTry:
788 		ppsp = pps;
789 		npages = sizeof(pps) / sizeof(struct vm_page *);
790 
791 		/* locked: page queues, uobj */
792 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
793 			   flags | PGO_DOACTCLUST, start, stop);
794 		/* unlocked: page queues, uobj */
795 
796 		/*
797 		 * if we did an async I/O it is remotely possible for the
798 		 * async i/o to complete and the page "pp" be freed or what
799 		 * not before we get a chance to relock the object. Therefore,
800 		 * we only touch it when it won't be freed, RELEASED took care
801 		 * of the rest.
802 		 */
803 
804 		/* relock! */
805 		simple_lock(&uobj->vmobjlock);
806 		uvm_lock_pageq();
807 
808 		/*
809 		 * VM_PAGER_AGAIN: given the structure of this pager, this
810 		 * can only happen when we are doing async I/O and can't
811 		 * map the pages into kernel memory (pager_map) due to lack
812 		 * of vm space.   if this happens we drop back to sync I/O.
813 		 */
814 
815 		if (result == VM_PAGER_AGAIN) {
816 			/*
817 			 * it is unlikely, but page could have been released
818 			 * while we had the object lock dropped.   we ignore
819 			 * this now and retry the I/O.  we will detect and
820 			 * handle the released page after the syncio I/O
821 			 * completes.
822 			 */
823 #ifdef DIAGNOSTIC
824 			if (flags & PGO_SYNCIO)
825 	panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
826 #endif
827 			flags |= PGO_SYNCIO;
828 			if (flags & PGO_FREE)
829 				atomic_clearbits_int(&pp->pg_flags,
830 				    PG_RELEASED);
831 
832 			goto ReTry;
833 		}
834 
835 		/*
836 		 * the cleaning operation is now done.   finish up.  note that
837 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
838 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
839 		 * to us in ppsp/npages.
840 		 */
841 
842 		/*
843 		 * for pending async i/o if we are not deactivating
844 		 * we can move on to the next page. aiodoned deals with
845 		 * the freeing case for us.
846 		 */
847 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
848 			continue;
849 
850 		/*
851 		 * need to look at each page of the I/O operation, and do what
852 		 * we gotta do.
853 		 */
854 
855 		for (lcv = 0 ; lcv < npages; lcv++) {
856 			ptmp = ppsp[lcv];
857 
858 			/*
859 			 * verify the page didn't get moved while obj was
860 			 * unlocked
861 			 */
862 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
863 				continue;
864 
865 			/*
866 			 * unbusy the page if I/O is done.   note that for
867 			 * pending I/O it is possible that the I/O op
868 			 * finished before we relocked the object (in
869 			 * which case the page is no longer busy).
870 			 */
871 
872 			if (result != VM_PAGER_PEND) {
873 				if (ptmp->pg_flags & PG_WANTED)
874 					/* still holding object lock */
875 					wakeup(ptmp);
876 
877 				atomic_clearbits_int(&ptmp->pg_flags,
878 				    PG_WANTED|PG_BUSY);
879 				UVM_PAGE_OWN(ptmp, NULL);
880 				atomic_setbits_int(&ptmp->pg_flags,
881 				    PG_CLEAN|PG_CLEANCHK);
882 				if ((flags & PGO_FREE) == 0)
883 					pmap_clear_modify(ptmp);
884 			}
885 
886 			/*
887 			 * dispose of page
888 			 */
889 
890 			if (flags & PGO_DEACTIVATE) {
891 				if (ptmp->wire_count == 0) {
892 					pmap_page_protect(ptmp, VM_PROT_NONE);
893 					uvm_pagedeactivate(ptmp);
894 				}
895 			} else if (flags & PGO_FREE &&
896 			    result != VM_PAGER_PEND) {
897 				if (result != VM_PAGER_OK) {
898 					printf("uvn_flush: obj=%p, "
899 					   "offset=0x%llx.  error "
900 					   "during pageout.\n",
901 					    pp->uobject,
902 					    (long long)pp->offset);
903 					printf("uvn_flush: WARNING: "
904 					    "changes to page may be "
905 					    "lost!\n");
906 					retval = FALSE;
907 				}
908 				pmap_page_protect(ptmp, VM_PROT_NONE);
909 				uvm_pagefree(ptmp);
910 			}
911 
912 		}		/* end of "lcv" for loop */
913 
914 	}		/* end of "pp" for loop */
915 
916 	/*
917 	 * done with pagequeues: unlock
918 	 */
919 	uvm_unlock_pageq();
920 
921 	/*
922 	 * now wait for all I/O if required.
923 	 */
924 	if (need_iosync) {
925 		while (uvn->u_nio != 0) {
926 			uvn->u_flags |= UVM_VNODE_IOSYNC;
927 			UVM_UNLOCK_AND_WAIT(&uvn->u_nio, &uvn->u_obj.vmobjlock,
928 			  FALSE, "uvn_flush",0);
929 			simple_lock(&uvn->u_obj.vmobjlock);
930 		}
931 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
932 			wakeup(&uvn->u_flags);
933 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
934 	}
935 
936 	/* return, with object locked! */
937 	return(retval);
938 }
939 
940 /*
941  * uvn_cluster
942  *
943  * we are about to do I/O in an object at offset.   this function is called
944  * to establish a range of offsets around "offset" in which we can cluster
945  * I/O.
946  *
947  * - currently doesn't matter if obj locked or not.
948  */
949 
950 void
951 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
952     voff_t *hoffset)
953 {
954 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
955 	*loffset = offset;
956 
957 	if (*loffset >= uvn->u_size)
958 		panic("uvn_cluster: offset out of range");
959 
960 	/*
961 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
962 	 */
963 	*hoffset = *loffset + MAXBSIZE;
964 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
965 		*hoffset = round_page(uvn->u_size);
966 
967 	return;
968 }
969 
970 /*
971  * uvn_put: flush page data to backing store.
972  *
973  * => prefer map unlocked (not required)
974  * => object must be locked!   we will _unlock_ it before starting I/O.
975  * => flags: PGO_SYNCIO -- use sync. I/O
976  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
977  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
978  *	[thus we never do async i/o!  see iodone comment]
979  */
980 
981 int
982 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
983 {
984 	int retval;
985 
986 	/* note: object locked */
987 	retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE);
988 	/* note: object unlocked */
989 
990 	return(retval);
991 }
992 
993 
994 /*
995  * uvn_get: get pages (synchronously) from backing store
996  *
997  * => prefer map unlocked (not required)
998  * => object must be locked!  we will _unlock_ it before starting any I/O.
999  * => flags: PGO_ALLPAGES: get all of the pages
1000  *           PGO_LOCKED: fault data structures are locked
1001  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1002  * => NOTE: caller must check for released pages!!
1003  */
1004 
1005 int
1006 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
1007     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
1008 {
1009 	voff_t current_offset;
1010 	struct vm_page *ptmp;
1011 	int lcv, result, gotpages;
1012 	boolean_t done;
1013 
1014 	/*
1015 	 * step 1: handled the case where fault data structures are locked.
1016 	 */
1017 
1018 	if (flags & PGO_LOCKED) {
1019 
1020 		/*
1021 		 * gotpages is the current number of pages we've gotten (which
1022 		 * we pass back up to caller via *npagesp.
1023 		 */
1024 
1025 		gotpages = 0;
1026 
1027 		/*
1028 		 * step 1a: get pages that are already resident.   only do this
1029 		 * if the data structures are locked (i.e. the first time
1030 		 * through).
1031 		 */
1032 
1033 		done = TRUE;	/* be optimistic */
1034 
1035 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
1036 		    lcv++, current_offset += PAGE_SIZE) {
1037 
1038 			/* do we care about this page?  if not, skip it */
1039 			if (pps[lcv] == PGO_DONTCARE)
1040 				continue;
1041 
1042 			/* lookup page */
1043 			ptmp = uvm_pagelookup(uobj, current_offset);
1044 
1045 			/* to be useful must get a non-busy, non-released pg */
1046 			if (ptmp == NULL ||
1047 			    (ptmp->pg_flags & PG_BUSY) != 0) {
1048 				if (lcv == centeridx || (flags & PGO_ALLPAGES)
1049 				    != 0)
1050 				done = FALSE;	/* need to do a wait or I/O! */
1051 				continue;
1052 			}
1053 
1054 			/*
1055 			 * useful page: busy/lock it and plug it in our
1056 			 * result array
1057 			 */
1058 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1059 			UVM_PAGE_OWN(ptmp, "uvn_get1");
1060 			pps[lcv] = ptmp;
1061 			gotpages++;
1062 
1063 		}	/* "for" lcv loop */
1064 
1065 		/*
1066 		 * XXX: given the "advice", should we consider async read-ahead?
1067 		 * XXX: fault current does deactive of pages behind us.  is
1068 		 * this good (other callers might now).
1069 		 */
1070 		/*
1071 		 * XXX: read-ahead currently handled by buffer cache (bread)
1072 		 * level.
1073 		 * XXX: no async i/o available.
1074 		 * XXX: so we don't do anything now.
1075 		 */
1076 
1077 		/*
1078 		 * step 1c: now we've either done everything needed or we to
1079 		 * unlock and do some waiting or I/O.
1080 		 */
1081 
1082 		*npagesp = gotpages;		/* let caller know */
1083 		if (done)
1084 			return(VM_PAGER_OK);		/* bingo! */
1085 		else
1086 			/* EEK!   Need to unlock and I/O */
1087 			return(VM_PAGER_UNLOCK);
1088 	}
1089 
1090 	/*
1091 	 * step 2: get non-resident or busy pages.
1092 	 * object is locked.   data structures are unlocked.
1093 	 *
1094 	 * XXX: because we can't do async I/O at this level we get things
1095 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
1096 	 * async-read-ahead for us at a lower level.
1097 	 */
1098 
1099 	for (lcv = 0, current_offset = offset;
1100 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
1101 
1102 		/* skip over pages we've already gotten or don't want */
1103 		/* skip over pages we don't _have_ to get */
1104 		if (pps[lcv] != NULL || (lcv != centeridx &&
1105 		    (flags & PGO_ALLPAGES) == 0))
1106 			continue;
1107 
1108 		/*
1109 		 * we have yet to locate the current page (pps[lcv]).   we first
1110 		 * look for a page that is already at the current offset.   if
1111 		 * we fine a page, we check to see if it is busy or released.
1112 		 * if that is the case, then we sleep on the page until it is
1113 		 * no longer busy or released and repeat the lookup.    if the
1114 		 * page we found is neither busy nor released, then we busy it
1115 		 * (so we own it) and plug it into pps[lcv].   this breaks the
1116 		 * following while loop and indicates we are ready to move on
1117 		 * to the next page in the "lcv" loop above.
1118 		 *
1119 		 * if we exit the while loop with pps[lcv] still set to NULL,
1120 		 * then it means that we allocated a new busy/fake/clean page
1121 		 * ptmp in the object and we need to do I/O to fill in the data.
1122 		 */
1123 
1124 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
1125 
1126 			/* look for a current page */
1127 			ptmp = uvm_pagelookup(uobj, current_offset);
1128 
1129 			/* nope?   allocate one now (if we can) */
1130 			if (ptmp == NULL) {
1131 
1132 				ptmp = uvm_pagealloc(uobj, current_offset,
1133 				    NULL, 0);
1134 
1135 				/* out of RAM? */
1136 				if (ptmp == NULL) {
1137 					simple_unlock(&uobj->vmobjlock);
1138 					uvm_wait("uvn_getpage");
1139 					simple_lock(&uobj->vmobjlock);
1140 
1141 					/* goto top of pps while loop */
1142 					continue;
1143 				}
1144 
1145 				/*
1146 				 * got new page ready for I/O.  break pps
1147 				 * while loop.  pps[lcv] is still NULL.
1148 				 */
1149 				break;
1150 			}
1151 
1152 			/* page is there, see if we need to wait on it */
1153 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1154 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1155 				UVM_UNLOCK_AND_WAIT(ptmp,
1156 				    &uobj->vmobjlock, FALSE, "uvn_get",0);
1157 				simple_lock(&uobj->vmobjlock);
1158 				continue;	/* goto top of pps while loop */
1159 			}
1160 
1161 			/*
1162 			 * if we get here then the page has become resident
1163 			 * and unbusy between steps 1 and 2.  we busy it
1164 			 * now (so we own it) and set pps[lcv] (so that we
1165 			 * exit the while loop).
1166 			 */
1167 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1168 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1169 			pps[lcv] = ptmp;
1170 		}
1171 
1172 		/*
1173 		 * if we own the a valid page at the correct offset, pps[lcv]
1174 		 * will point to it.   nothing more to do except go to the
1175 		 * next page.
1176 		 */
1177 
1178 		if (pps[lcv])
1179 			continue;			/* next lcv */
1180 
1181 		/*
1182 		 * we have a "fake/busy/clean" page that we just allocated.  do
1183 		 * I/O to fill it with valid data.  note that object must be
1184 		 * locked going into uvn_io, but will be unlocked afterwards.
1185 		 */
1186 
1187 		result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1,
1188 		    PGO_SYNCIO, UIO_READ);
1189 
1190 		/*
1191 		 * I/O done.   object is unlocked (by uvn_io).   because we used
1192 		 * syncio the result can not be PEND or AGAIN.   we must relock
1193 		 * and check for errors.
1194 		 */
1195 
1196 		/* lock object.   check for errors.   */
1197 		simple_lock(&uobj->vmobjlock);
1198 		if (result != VM_PAGER_OK) {
1199 			if (ptmp->pg_flags & PG_WANTED)
1200 				/* object lock still held */
1201 				wakeup(ptmp);
1202 
1203 			atomic_clearbits_int(&ptmp->pg_flags,
1204 			    PG_WANTED|PG_BUSY);
1205 			UVM_PAGE_OWN(ptmp, NULL);
1206 			uvm_lock_pageq();
1207 			uvm_pagefree(ptmp);
1208 			uvm_unlock_pageq();
1209 			simple_unlock(&uobj->vmobjlock);
1210 			return(result);
1211 		}
1212 
1213 		/*
1214 		 * we got the page!   clear the fake flag (indicates valid
1215 		 * data now in page) and plug into our result array.   note
1216 		 * that page is still busy.
1217 		 *
1218 		 * it is the callers job to:
1219 		 * => check if the page is released
1220 		 * => unbusy the page
1221 		 * => activate the page
1222 		 */
1223 
1224 		/* data is valid ... */
1225 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1226 		pmap_clear_modify(ptmp);		/* ... and clean */
1227 		pps[lcv] = ptmp;
1228 
1229 	}	/* lcv loop */
1230 
1231 	/*
1232 	 * finally, unlock object and return.
1233 	 */
1234 
1235 	simple_unlock(&uobj->vmobjlock);
1236 	return (VM_PAGER_OK);
1237 }
1238 
1239 /*
1240  * uvn_io: do I/O to a vnode
1241  *
1242  * => prefer map unlocked (not required)
1243  * => object must be locked!   we will _unlock_ it before starting I/O.
1244  * => flags: PGO_SYNCIO -- use sync. I/O
1245  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1246  *	[thus we never do async i/o!  see iodone comment]
1247  */
1248 
1249 int
1250 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1251 {
1252 	struct vnode *vn;
1253 	struct uio uio;
1254 	struct iovec iov;
1255 	vaddr_t kva;
1256 	off_t file_offset;
1257 	int waitf, result, mapinflags;
1258 	size_t got, wanted;
1259 
1260 	/*
1261 	 * init values
1262 	 */
1263 
1264 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1265 	vn = (struct vnode *) uvn;
1266 	file_offset = pps[0]->offset;
1267 
1268 	/*
1269 	 * check for sync'ing I/O.
1270 	 */
1271 
1272 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1273 		if (waitf == M_NOWAIT) {
1274 			simple_unlock(&uvn->u_obj.vmobjlock);
1275 			return(VM_PAGER_AGAIN);
1276 		}
1277 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1278 		UVM_UNLOCK_AND_WAIT(&uvn->u_flags, &uvn->u_obj.vmobjlock,
1279 			FALSE, "uvn_iosync",0);
1280 		simple_lock(&uvn->u_obj.vmobjlock);
1281 	}
1282 
1283 	/*
1284 	 * check size
1285 	 */
1286 
1287 	if (file_offset >= uvn->u_size) {
1288 		simple_unlock(&uvn->u_obj.vmobjlock);
1289 		return(VM_PAGER_BAD);
1290 	}
1291 
1292 	/*
1293 	 * first try and map the pages in (without waiting)
1294 	 */
1295 
1296 	mapinflags = (rw == UIO_READ) ?
1297 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1298 
1299 	kva = uvm_pagermapin(pps, npages, mapinflags);
1300 	if (kva == 0 && waitf == M_NOWAIT) {
1301 		simple_unlock(&uvn->u_obj.vmobjlock);
1302 		return(VM_PAGER_AGAIN);
1303 	}
1304 
1305 	/*
1306 	 * ok, now bump u_nio up.   at this point we are done with uvn
1307 	 * and can unlock it.   if we still don't have a kva, try again
1308 	 * (this time with sleep ok).
1309 	 */
1310 
1311 	uvn->u_nio++;			/* we have an I/O in progress! */
1312 	simple_unlock(&uvn->u_obj.vmobjlock);
1313 	/* NOTE: object now unlocked */
1314 	if (kva == 0)
1315 		kva = uvm_pagermapin(pps, npages,
1316 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1317 
1318 	/*
1319 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1320 	 * get touched (so we can look at "offset" without having to lock
1321 	 * the object).  set up for I/O.
1322 	 */
1323 
1324 	/*
1325 	 * fill out uio/iov
1326 	 */
1327 
1328 	iov.iov_base = (caddr_t) kva;
1329 	wanted = npages << PAGE_SHIFT;
1330 	if (file_offset + wanted > uvn->u_size)
1331 		wanted = uvn->u_size - file_offset;	/* XXX: needed? */
1332 	iov.iov_len = wanted;
1333 	uio.uio_iov = &iov;
1334 	uio.uio_iovcnt = 1;
1335 	uio.uio_offset = file_offset;
1336 	uio.uio_segflg = UIO_SYSSPACE;
1337 	uio.uio_rw = rw;
1338 	uio.uio_resid = wanted;
1339 	uio.uio_procp = curproc;
1340 
1341 	/*
1342 	 * do the I/O!  (XXX: curproc?)
1343 	 */
1344 
1345 	/*
1346 	 * This process may already have this vnode locked, if we faulted in
1347 	 * copyin() or copyout() on a region backed by this vnode
1348 	 * while doing I/O to the vnode.  If this is the case, don't
1349 	 * panic.. instead, return the error to the user.
1350 	 *
1351 	 * XXX this is a stopgap to prevent a panic.
1352 	 * Ideally, this kind of operation *should* work.
1353 	 */
1354 	result = 0;
1355 	if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1356 		result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL, curproc);
1357 
1358 	if (result == 0) {
1359 		/* NOTE: vnode now locked! */
1360 
1361 		if (rw == UIO_READ)
1362 			result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1363 		else
1364 			result = VOP_WRITE(vn, &uio, 0, curproc->p_ucred);
1365 
1366 		if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1367 			VOP_UNLOCK(vn, 0, curproc);
1368 	}
1369 
1370 	/* NOTE: vnode now unlocked (unless vnislocked) */
1371 
1372 	/*
1373 	 * result == unix style errno (0 == OK!)
1374 	 *
1375 	 * zero out rest of buffer (if needed)
1376 	 */
1377 
1378 	if (result == 0) {
1379 		got = wanted - uio.uio_resid;
1380 
1381 		if (wanted && got == 0) {
1382 			result = EIO;		/* XXX: error? */
1383 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1384 			memset((void *) (kva + got), 0,
1385 			       (npages << PAGE_SHIFT) - got);
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * now remove pager mapping
1391 	 */
1392 	uvm_pagermapout(kva, npages);
1393 
1394 	/*
1395 	 * now clean up the object (i.e. drop I/O count)
1396 	 */
1397 
1398 	simple_lock(&uvn->u_obj.vmobjlock);
1399 	/* NOTE: object now locked! */
1400 
1401 	uvn->u_nio--;			/* I/O DONE! */
1402 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1403 		wakeup(&uvn->u_nio);
1404 	}
1405 	simple_unlock(&uvn->u_obj.vmobjlock);
1406 	/* NOTE: object now unlocked! */
1407 
1408 	/*
1409 	 * done!
1410 	 */
1411 
1412 	if (result == 0)
1413 		return(VM_PAGER_OK);
1414 	else
1415 		return(VM_PAGER_ERROR);
1416 }
1417 
1418 /*
1419  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1420  * is gone we will kill the object (flushing dirty pages back to the vnode
1421  * if needed).
1422  *
1423  * => returns TRUE if there was no uvm_object attached or if there was
1424  *	one and we killed it [i.e. if there is no active uvn]
1425  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1426  *	needed]
1427  *
1428  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1429  *	having to hold a reference on the vnode) and given a working
1430  *	uvm_vnp_sync(), how does that effect the need for this function?
1431  *      [XXXCDC: seems like it can die?]
1432  *
1433  * => XXX: this function should DIE once we merge the VM and buffer
1434  *	cache.
1435  *
1436  * research shows that this is called in the following places:
1437  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1438  *	changes sizes
1439  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1440  *	are written to
1441  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1442  *	is off
1443  * ffs_realloccg: when we can't extend the current block and have
1444  *	to allocate a new one we call this [XXX: why?]
1445  * nfsrv_rename, rename_files: called when the target filename is there
1446  *	and we want to remove it
1447  * nfsrv_remove, sys_unlink: called on file we are removing
1448  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1449  *	then return "text busy"
1450  * nfs_open: seems to uncache any file opened with nfs
1451  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1452  */
1453 
1454 boolean_t
1455 uvm_vnp_uncache(struct vnode *vp)
1456 {
1457 	struct uvm_vnode *uvn = &vp->v_uvm;
1458 
1459 	/*
1460 	 * lock uvn part of the vnode and check to see if we need to do anything
1461 	 */
1462 
1463 	simple_lock(&uvn->u_obj.vmobjlock);
1464 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1465 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1466 		simple_unlock(&uvn->u_obj.vmobjlock);
1467 		return(TRUE);
1468 	}
1469 
1470 	/*
1471 	 * we have a valid, non-blocked uvn.   clear persist flag.
1472 	 * if uvn is currently active we can return now.
1473 	 */
1474 
1475 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1476 	if (uvn->u_obj.uo_refs) {
1477 		simple_unlock(&uvn->u_obj.vmobjlock);
1478 		return(FALSE);
1479 	}
1480 
1481 	/*
1482 	 * uvn is currently persisting!   we have to gain a reference to
1483 	 * it so that we can call uvn_detach to kill the uvn.
1484 	 */
1485 
1486 	vref(vp);			/* seems ok, even with VOP_LOCK */
1487 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1488 	simple_unlock(&uvn->u_obj.vmobjlock);
1489 
1490 #ifdef VFSLCKDEBUG
1491 	/*
1492 	 * carry over sanity check from old vnode pager: the vnode should
1493 	 * be VOP_LOCK'd, and we confirm it here.
1494 	 */
1495 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1496 		panic("uvm_vnp_uncache: vnode not locked!");
1497 #endif
1498 
1499 	/*
1500 	 * now drop our reference to the vnode.   if we have the sole
1501 	 * reference to the vnode then this will cause it to die [as we
1502 	 * just cleared the persist flag].   we have to unlock the vnode
1503 	 * while we are doing this as it may trigger I/O.
1504 	 *
1505 	 * XXX: it might be possible for uvn to get reclaimed while we are
1506 	 * unlocked causing us to return TRUE when we should not.   we ignore
1507 	 * this as a false-positive return value doesn't hurt us.
1508 	 */
1509 	VOP_UNLOCK(vp, 0, curproc);
1510 	uvn_detach(&uvn->u_obj);
1511 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curproc);
1512 
1513 	/*
1514 	 * and return...
1515 	 */
1516 
1517 	return(TRUE);
1518 }
1519 
1520 /*
1521  * uvm_vnp_setsize: grow or shrink a vnode uvn
1522  *
1523  * grow   => just update size value
1524  * shrink => toss un-needed pages
1525  *
1526  * => we assume that the caller has a reference of some sort to the
1527  *	vnode in question so that it will not be yanked out from under
1528  *	us.
1529  *
1530  * called from:
1531  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos])
1532  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write)
1533  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1534  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1535  *  => union fs: union_newsize
1536  */
1537 
1538 void
1539 uvm_vnp_setsize(struct vnode *vp, voff_t newsize)
1540 {
1541 	struct uvm_vnode *uvn = &vp->v_uvm;
1542 
1543 	/*
1544 	 * lock uvn and check for valid object, and if valid: do it!
1545 	 */
1546 	simple_lock(&uvn->u_obj.vmobjlock);
1547 	if (uvn->u_flags & UVM_VNODE_VALID) {
1548 
1549 		/*
1550 		 * now check if the size has changed: if we shrink we had better
1551 		 * toss some pages...
1552 		 */
1553 
1554 		if (uvn->u_size > newsize) {
1555 			(void)uvn_flush(&uvn->u_obj, newsize,
1556 			    uvn->u_size, PGO_FREE);
1557 		}
1558 		uvn->u_size = newsize;
1559 	}
1560 	simple_unlock(&uvn->u_obj.vmobjlock);
1561 
1562 	/*
1563 	 * done
1564 	 */
1565 	return;
1566 }
1567 
1568 /*
1569  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1570  *
1571  * => called from sys_sync with no VM structures locked
1572  * => only one process can do a sync at a time (because the uvn
1573  *    structure only has one queue for sync'ing).  we ensure this
1574  *    by holding the uvn_sync_lock while the sync is in progress.
1575  *    other processes attempting a sync will sleep on this lock
1576  *    until we are done.
1577  */
1578 void
1579 uvm_vnp_sync(struct mount *mp)
1580 {
1581 	struct uvm_vnode *uvn;
1582 	struct vnode *vp;
1583 
1584 	/*
1585 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1586 	 * our lock...
1587 	 */
1588 	rw_enter_write(&uvn_sync_lock);
1589 
1590 	/*
1591 	 * step 2: build up a simpleq of uvns of interest based on the
1592 	 * write list.   we gain a reference to uvns of interest.
1593 	 */
1594 	SIMPLEQ_INIT(&uvn_sync_q);
1595 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1596 
1597 		vp = (struct vnode *)uvn;
1598 		if (mp && vp->v_mount != mp)
1599 			continue;
1600 
1601 		/*
1602 		 * If the vnode is "blocked" it means it must be dying, which
1603 		 * in turn means its in the process of being flushed out so
1604 		 * we can safely skip it.
1605 		 *
1606 		 * note that uvn must already be valid because we found it on
1607 		 * the wlist (this also means it can't be ALOCK'd).
1608 		 */
1609 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1610 			continue;
1611 
1612 
1613 		/*
1614 		 * gain reference.   watch out for persisting uvns (need to
1615 		 * regain vnode REF).
1616 		 */
1617 		if (uvn->u_obj.uo_refs == 0)
1618 			vref(vp);
1619 		uvn->u_obj.uo_refs++;
1620 
1621 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1622 	}
1623 
1624 	/* step 3: we now have a list of uvn's that may need cleaning. */
1625 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1626 #ifdef DEBUG
1627 		if (uvn->u_flags & UVM_VNODE_DYING) {
1628 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1629 		}
1630 #endif
1631 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1632 
1633 		/*
1634 		 * if we have the only reference and we just cleaned the uvn,
1635 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1636 		 * thus allowing us to avoid thinking about flushing it again
1637 		 * on later sync ops.
1638 		 */
1639 		if (uvn->u_obj.uo_refs == 1 &&
1640 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1641 			LIST_REMOVE(uvn, u_wlist);
1642 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1643 		}
1644 
1645 		/* now drop our reference to the uvn */
1646 		uvn_detach(&uvn->u_obj);
1647 	}
1648 
1649 	rw_exit_write(&uvn_sync_lock);
1650 }
1651