1 /* $OpenBSD: uvm_vnode.c,v 1.125 2022/07/07 13:52:20 mpi Exp $ */ 2 /* $NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * Copyright (c) 1991, 1993 7 * The Regents of the University of California. 8 * Copyright (c) 1990 University of Utah. 9 * 10 * All rights reserved. 11 * 12 * This code is derived from software contributed to Berkeley by 13 * the Systems Programming Group of the University of Utah Computer 14 * Science Department. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vnode_pager.c 8.8 (Berkeley) 2/13/94 41 * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp 42 */ 43 44 /* 45 * uvm_vnode.c: the vnode pager. 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/malloc.h> 52 #include <sys/vnode.h> 53 #include <sys/lock.h> 54 #include <sys/disklabel.h> 55 #include <sys/fcntl.h> 56 #include <sys/conf.h> 57 #include <sys/rwlock.h> 58 #include <sys/dkio.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm.h> 62 #include <uvm/uvm_vnode.h> 63 64 /* 65 * private global data structure 66 * 67 * we keep a list of writeable active vnode-backed VM objects for sync op. 68 * we keep a simpleq of vnodes that are currently being sync'd. 69 */ 70 71 LIST_HEAD(uvn_list_struct, uvm_vnode); 72 struct uvn_list_struct uvn_wlist; /* writeable uvns */ 73 74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode); 75 struct uvn_sq_struct uvn_sync_q; /* sync'ing uvns */ 76 struct rwlock uvn_sync_lock; /* locks sync operation */ 77 78 extern int rebooting; 79 80 /* 81 * functions 82 */ 83 void uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *); 84 void uvn_detach(struct uvm_object *); 85 boolean_t uvn_flush(struct uvm_object *, voff_t, voff_t, int); 86 int uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int, 87 vm_prot_t, int, int); 88 void uvn_init(void); 89 int uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int); 90 int uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t); 91 void uvn_reference(struct uvm_object *); 92 93 /* 94 * master pager structure 95 */ 96 const struct uvm_pagerops uvm_vnodeops = { 97 .pgo_init = uvn_init, 98 .pgo_reference = uvn_reference, 99 .pgo_detach = uvn_detach, 100 .pgo_flush = uvn_flush, 101 .pgo_get = uvn_get, 102 .pgo_put = uvn_put, 103 .pgo_cluster = uvn_cluster, 104 /* use generic version of this: see uvm_pager.c */ 105 .pgo_mk_pcluster = uvm_mk_pcluster, 106 }; 107 108 /* 109 * the ops! 110 */ 111 /* 112 * uvn_init 113 * 114 * init pager private data structures. 115 */ 116 void 117 uvn_init(void) 118 { 119 120 LIST_INIT(&uvn_wlist); 121 /* note: uvn_sync_q init'd in uvm_vnp_sync() */ 122 rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE); 123 } 124 125 /* 126 * uvn_attach 127 * 128 * attach a vnode structure to a VM object. if the vnode is already 129 * attached, then just bump the reference count by one and return the 130 * VM object. if not already attached, attach and return the new VM obj. 131 * the "accessprot" tells the max access the attaching thread wants to 132 * our pages. 133 * 134 * => in fact, nothing should be locked so that we can sleep here. 135 * => note that uvm_object is first thing in vnode structure, so their 136 * pointers are equiv. 137 */ 138 struct uvm_object * 139 uvn_attach(struct vnode *vp, vm_prot_t accessprot) 140 { 141 struct uvm_vnode *uvn = vp->v_uvm; 142 struct vattr vattr; 143 int oldflags, result; 144 struct partinfo pi; 145 u_quad_t used_vnode_size = 0; 146 147 /* first get a lock on the uvn. */ 148 while (uvn->u_flags & UVM_VNODE_BLOCKED) { 149 uvn->u_flags |= UVM_VNODE_WANTED; 150 tsleep_nsec(uvn, PVM, "uvn_attach", INFSLP); 151 } 152 153 /* if we're mapping a BLK device, make sure it is a disk. */ 154 if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) { 155 return NULL; 156 } 157 158 /* 159 * now uvn must not be in a blocked state. 160 * first check to see if it is already active, in which case 161 * we can bump the reference count, check to see if we need to 162 * add it to the writeable list, and then return. 163 */ 164 if (uvn->u_flags & UVM_VNODE_VALID) { /* already active? */ 165 166 rw_enter(uvn->u_obj.vmobjlock, RW_WRITE); 167 /* regain vref if we were persisting */ 168 if (uvn->u_obj.uo_refs == 0) { 169 vref(vp); 170 } 171 uvn->u_obj.uo_refs++; /* bump uvn ref! */ 172 rw_exit(uvn->u_obj.vmobjlock); 173 174 /* check for new writeable uvn */ 175 if ((accessprot & PROT_WRITE) != 0 && 176 (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) { 177 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 178 /* we are now on wlist! */ 179 uvn->u_flags |= UVM_VNODE_WRITEABLE; 180 } 181 182 return (&uvn->u_obj); 183 } 184 185 /* 186 * need to call VOP_GETATTR() to get the attributes, but that could 187 * block (due to I/O), so we want to unlock the object before calling. 188 * however, we want to keep anyone else from playing with the object 189 * while it is unlocked. to do this we set UVM_VNODE_ALOCK which 190 * prevents anyone from attaching to the vnode until we are done with 191 * it. 192 */ 193 uvn->u_flags = UVM_VNODE_ALOCK; 194 195 if (vp->v_type == VBLK) { 196 /* 197 * We could implement this as a specfs getattr call, but: 198 * 199 * (1) VOP_GETATTR() would get the file system 200 * vnode operation, not the specfs operation. 201 * 202 * (2) All we want is the size, anyhow. 203 */ 204 result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev, 205 DIOCGPART, (caddr_t)&pi, FREAD, curproc); 206 if (result == 0) { 207 /* XXX should remember blocksize */ 208 used_vnode_size = (u_quad_t)pi.disklab->d_secsize * 209 (u_quad_t)DL_GETPSIZE(pi.part); 210 } 211 } else { 212 result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc); 213 if (result == 0) 214 used_vnode_size = vattr.va_size; 215 } 216 217 if (result != 0) { 218 if (uvn->u_flags & UVM_VNODE_WANTED) 219 wakeup(uvn); 220 uvn->u_flags = 0; 221 return NULL; 222 } 223 224 /* 225 * make sure that the newsize fits within a vaddr_t 226 * XXX: need to revise addressing data types 227 */ 228 #ifdef DEBUG 229 if (vp->v_type == VBLK) 230 printf("used_vnode_size = %llu\n", (long long)used_vnode_size); 231 #endif 232 233 /* now set up the uvn. */ 234 KASSERT(uvn->u_obj.uo_refs == 0); 235 uvn->u_obj.uo_refs++; 236 oldflags = uvn->u_flags; 237 uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST; 238 uvn->u_nio = 0; 239 uvn->u_size = used_vnode_size; 240 241 /* if write access, we need to add it to the wlist */ 242 if (accessprot & PROT_WRITE) { 243 LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist); 244 uvn->u_flags |= UVM_VNODE_WRITEABLE; /* we are on wlist! */ 245 } 246 247 /* 248 * add a reference to the vnode. this reference will stay as long 249 * as there is a valid mapping of the vnode. dropped when the 250 * reference count goes to zero [and we either free or persist]. 251 */ 252 vref(vp); 253 if (oldflags & UVM_VNODE_WANTED) 254 wakeup(uvn); 255 256 return &uvn->u_obj; 257 } 258 259 260 /* 261 * uvn_reference 262 * 263 * duplicate a reference to a VM object. Note that the reference 264 * count must already be at least one (the passed in reference) so 265 * there is no chance of the uvn being killed out here. 266 * 267 * => caller must be using the same accessprot as was used at attach time 268 */ 269 270 271 void 272 uvn_reference(struct uvm_object *uobj) 273 { 274 #ifdef DEBUG 275 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 276 #endif 277 278 #ifdef DEBUG 279 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 280 printf("uvn_reference: ref=%d, flags=0x%x\n", 281 uobj->uo_refs, uvn->u_flags); 282 panic("uvn_reference: invalid state"); 283 } 284 #endif 285 rw_enter(uobj->vmobjlock, RW_WRITE); 286 uobj->uo_refs++; 287 rw_exit(uobj->vmobjlock); 288 } 289 290 /* 291 * uvn_detach 292 * 293 * remove a reference to a VM object. 294 * 295 * => caller must call with map locked. 296 * => this starts the detach process, but doesn't have to finish it 297 * (async i/o could still be pending). 298 */ 299 void 300 uvn_detach(struct uvm_object *uobj) 301 { 302 struct uvm_vnode *uvn; 303 struct vnode *vp; 304 int oldflags; 305 306 rw_enter(uobj->vmobjlock, RW_WRITE); 307 uobj->uo_refs--; /* drop ref! */ 308 if (uobj->uo_refs) { /* still more refs */ 309 rw_exit(uobj->vmobjlock); 310 return; 311 } 312 313 /* get other pointers ... */ 314 uvn = (struct uvm_vnode *) uobj; 315 vp = uvn->u_vnode; 316 317 /* 318 * clear VTEXT flag now that there are no mappings left (VTEXT is used 319 * to keep an active text file from being overwritten). 320 */ 321 vp->v_flag &= ~VTEXT; 322 323 /* 324 * we just dropped the last reference to the uvn. see if we can 325 * let it "stick around". 326 */ 327 if (uvn->u_flags & UVM_VNODE_CANPERSIST) { 328 /* won't block */ 329 uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES); 330 goto out; 331 } 332 333 /* its a goner! */ 334 uvn->u_flags |= UVM_VNODE_DYING; 335 336 /* 337 * even though we may unlock in flush, no one can gain a reference 338 * to us until we clear the "dying" flag [because it blocks 339 * attaches]. we will not do that until after we've disposed of all 340 * the pages with uvn_flush(). note that before the flush the only 341 * pages that could be marked PG_BUSY are ones that are in async 342 * pageout by the daemon. (there can't be any pending "get"'s 343 * because there are no references to the object). 344 */ 345 (void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 346 347 /* 348 * given the structure of this pager, the above flush request will 349 * create the following state: all the pages that were in the object 350 * have either been free'd or they are marked PG_BUSY and in the 351 * middle of an async io. If we still have pages we set the "relkill" 352 * state, so that in the case the vnode gets terminated we know 353 * to leave it alone. Otherwise we'll kill the vnode when it's empty. 354 */ 355 uvn->u_flags |= UVM_VNODE_RELKILL; 356 /* wait on any outstanding io */ 357 while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) { 358 uvn->u_flags |= UVM_VNODE_IOSYNC; 359 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term", 360 INFSLP); 361 } 362 363 if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0) { 364 rw_exit(uobj->vmobjlock); 365 return; 366 } 367 368 /* 369 * kill object now. note that we can't be on the sync q because 370 * all references are gone. 371 */ 372 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 373 LIST_REMOVE(uvn, u_wlist); 374 } 375 KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt)); 376 oldflags = uvn->u_flags; 377 uvn->u_flags = 0; 378 379 /* wake up any sleepers */ 380 if (oldflags & UVM_VNODE_WANTED) 381 wakeup(uvn); 382 out: 383 rw_exit(uobj->vmobjlock); 384 385 /* drop our reference to the vnode. */ 386 vrele(vp); 387 388 return; 389 } 390 391 /* 392 * uvm_vnp_terminate: external hook to clear out a vnode's VM 393 * 394 * called in two cases: 395 * [1] when a persisting vnode vm object (i.e. one with a zero reference 396 * count) needs to be freed so that a vnode can be reused. this 397 * happens under "getnewvnode" in vfs_subr.c. if the vnode from 398 * the free list is still attached (i.e. not VBAD) then vgone is 399 * called. as part of the vgone trace this should get called to 400 * free the vm object. this is the common case. 401 * [2] when a filesystem is being unmounted by force (MNT_FORCE, 402 * "umount -f") the vgone() function is called on active vnodes 403 * on the mounted file systems to kill their data (the vnodes become 404 * "dead" ones [see src/sys/miscfs/deadfs/...]). that results in a 405 * call here (even if the uvn is still in use -- i.e. has a non-zero 406 * reference count). this case happens at "umount -f" and during a 407 * "reboot/halt" operation. 408 * 409 * => the caller must XLOCK and VOP_LOCK the vnode before calling us 410 * [protects us from getting a vnode that is already in the DYING 411 * state...] 412 * => in case [2] the uvn is still alive after this call, but all I/O 413 * ops will fail (due to the backing vnode now being "dead"). this 414 * will prob. kill any process using the uvn due to pgo_get failing. 415 */ 416 void 417 uvm_vnp_terminate(struct vnode *vp) 418 { 419 struct uvm_vnode *uvn = vp->v_uvm; 420 struct uvm_object *uobj = &uvn->u_obj; 421 int oldflags; 422 423 /* check if it is valid */ 424 rw_enter(uobj->vmobjlock, RW_WRITE); 425 if ((uvn->u_flags & UVM_VNODE_VALID) == 0) { 426 rw_exit(uobj->vmobjlock); 427 return; 428 } 429 430 /* 431 * must be a valid uvn that is not already dying (because XLOCK 432 * protects us from that). the uvn can't in the ALOCK state 433 * because it is valid, and uvn's that are in the ALOCK state haven't 434 * been marked valid yet. 435 */ 436 #ifdef DEBUG 437 /* 438 * debug check: are we yanking the vnode out from under our uvn? 439 */ 440 if (uvn->u_obj.uo_refs) { 441 printf("uvm_vnp_terminate(%p): terminating active vnode " 442 "(refs=%d)\n", uvn, uvn->u_obj.uo_refs); 443 } 444 #endif 445 446 /* 447 * it is possible that the uvn was detached and is in the relkill 448 * state [i.e. waiting for async i/o to finish]. 449 * we take over the vnode now and cancel the relkill. 450 * we want to know when the i/o is done so we can recycle right 451 * away. note that a uvn can only be in the RELKILL state if it 452 * has a zero reference count. 453 */ 454 if (uvn->u_flags & UVM_VNODE_RELKILL) 455 uvn->u_flags &= ~UVM_VNODE_RELKILL; /* cancel RELKILL */ 456 457 /* 458 * block the uvn by setting the dying flag, and then flush the 459 * pages. 460 * 461 * also, note that we tell I/O that we are already VOP_LOCK'd so 462 * that uvn_io doesn't attempt to VOP_LOCK again. 463 * 464 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated 465 * due to a forceful unmount might not be a good idea. maybe we 466 * need a way to pass in this info to uvn_flush through a 467 * pager-defined PGO_ constant [currently there are none]. 468 */ 469 uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED; 470 471 (void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES); 472 473 /* 474 * as we just did a flush we expect all the pages to be gone or in 475 * the process of going. sleep to wait for the rest to go [via iosync]. 476 */ 477 while (uvn->u_obj.uo_npages) { 478 #ifdef DEBUG 479 struct vm_page *pp; 480 RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) { 481 if ((pp->pg_flags & PG_BUSY) == 0) 482 panic("uvm_vnp_terminate: detected unbusy pg"); 483 } 484 if (uvn->u_nio == 0) 485 panic("uvm_vnp_terminate: no I/O to wait for?"); 486 printf("uvm_vnp_terminate: waiting for I/O to fin.\n"); 487 /* 488 * XXXCDC: this is unlikely to happen without async i/o so we 489 * put a printf in just to keep an eye on it. 490 */ 491 #endif 492 uvn->u_flags |= UVM_VNODE_IOSYNC; 493 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, "uvn_term", 494 INFSLP); 495 } 496 497 /* 498 * done. now we free the uvn if its reference count is zero 499 * (true if we are zapping a persisting uvn). however, if we are 500 * terminating a uvn with active mappings we let it live ... future 501 * calls down to the vnode layer will fail. 502 */ 503 oldflags = uvn->u_flags; 504 if (uvn->u_obj.uo_refs) { 505 /* 506 * uvn must live on it is dead-vnode state until all references 507 * are gone. restore flags. clear CANPERSIST state. 508 */ 509 uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED| 510 UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST); 511 } else { 512 /* 513 * free the uvn now. note that the vref reference is already 514 * gone [it is dropped when we enter the persist state]. 515 */ 516 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 517 panic("uvm_vnp_terminate: io sync wanted bit set"); 518 519 if (uvn->u_flags & UVM_VNODE_WRITEABLE) { 520 LIST_REMOVE(uvn, u_wlist); 521 } 522 uvn->u_flags = 0; /* uvn is history, clear all bits */ 523 } 524 525 if (oldflags & UVM_VNODE_WANTED) 526 wakeup(uvn); 527 528 rw_exit(uobj->vmobjlock); 529 } 530 531 /* 532 * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go 533 * through the buffer cache and allow I/O in any size. These VOPs use 534 * synchronous i/o. [vs. VOP_STRATEGY which can be async, but doesn't 535 * go through the buffer cache or allow I/O sizes larger than a 536 * block]. we will eventually want to change this. 537 * 538 * issues to consider: 539 * uvm provides the uvm_aiodesc structure for async i/o management. 540 * there are two tailq's in the uvm. structure... one for pending async 541 * i/o and one for "done" async i/o. to do an async i/o one puts 542 * an aiodesc on the "pending" list (protected by splbio()), starts the 543 * i/o and returns VM_PAGER_PEND. when the i/o is done, we expect 544 * some sort of "i/o done" function to be called (at splbio(), interrupt 545 * time). this function should remove the aiodesc from the pending list 546 * and place it on the "done" list and wakeup the daemon. the daemon 547 * will run at normal spl() and will remove all items from the "done" 548 * list and call the "aiodone" hook for each done request (see uvm_pager.c). 549 * [in the old vm code, this was done by calling the "put" routine with 550 * null arguments which made the code harder to read and understand because 551 * you had one function ("put") doing two things.] 552 * 553 * so the current pager needs: 554 * int uvn_aiodone(struct uvm_aiodesc *) 555 * 556 * => return 0 (aio finished, free it). otherwise requeue for later collection. 557 * => called with pageq's locked by the daemon. 558 * 559 * general outline: 560 * - drop "u_nio" (this req is done!) 561 * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio } 562 * - get "page" structures (atop?). 563 * - handle "wanted" pages 564 * dont forget to look at "object" wanted flag in all cases. 565 */ 566 567 /* 568 * uvn_flush: flush pages out of a uvm object. 569 * 570 * => if PGO_CLEANIT is set, we may block (due to I/O). thus, a caller 571 * might want to unlock higher level resources (e.g. vm_map) 572 * before calling flush. 573 * => if PGO_CLEANIT is not set, then we will not block 574 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 575 * for flushing. 576 * => NOTE: we are allowed to lock the page queues, so the caller 577 * must not be holding the lock on them [e.g. pagedaemon had 578 * better not call us with the queues locked] 579 * => we return TRUE unless we encountered some sort of I/O error 580 * 581 * comment on "cleaning" object and PG_BUSY pages: 582 * this routine is holding the lock on the object. the only time 583 * that it can run into a PG_BUSY page that it does not own is if 584 * some other process has started I/O on the page (e.g. either 585 * a pagein, or a pageout). if the PG_BUSY page is being paged 586 * in, then it can not be dirty (!PG_CLEAN) because no one has 587 * had a chance to modify it yet. if the PG_BUSY page is being 588 * paged out then it means that someone else has already started 589 * cleaning the page for us (how nice!). in this case, if we 590 * have syncio specified, then after we make our pass through the 591 * object we need to wait for the other PG_BUSY pages to clear 592 * off (i.e. we need to do an iosync). also note that once a 593 * page is PG_BUSY it must stay in its object until it is un-busyed. 594 */ 595 boolean_t 596 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags) 597 { 598 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 599 struct vm_page *pp, *ptmp; 600 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp; 601 struct pglist dead; 602 int npages, result, lcv; 603 boolean_t retval, need_iosync, needs_clean; 604 voff_t curoff; 605 606 KASSERT(rw_write_held(uobj->vmobjlock)); 607 TAILQ_INIT(&dead); 608 609 /* get init vals and determine how we are going to traverse object */ 610 need_iosync = FALSE; 611 retval = TRUE; /* return value */ 612 if (flags & PGO_ALLPAGES) { 613 start = 0; 614 stop = round_page(uvn->u_size); 615 } else { 616 start = trunc_page(start); 617 stop = MIN(round_page(stop), round_page(uvn->u_size)); 618 } 619 620 /* 621 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as 622 * a _hint_ as to how up to date the PG_CLEAN bit is. if the hint 623 * is wrong it will only prevent us from clustering... it won't break 624 * anything. we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster 625 * will set them as it syncs PG_CLEAN. This is only an issue if we 626 * are looking at non-inactive pages (because inactive page's PG_CLEAN 627 * bit is always up to date since there are no mappings). 628 * [borrowed PG_CLEANCHK idea from FreeBSD VM] 629 */ 630 if ((flags & PGO_CLEANIT) != 0) { 631 KASSERT(uobj->pgops->pgo_mk_pcluster != 0); 632 for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) { 633 if ((pp = uvm_pagelookup(uobj, curoff)) != NULL) 634 atomic_clearbits_int(&pp->pg_flags, 635 PG_CLEANCHK); 636 } 637 } 638 639 ppsp = NULL; /* XXX: shut up gcc */ 640 uvm_lock_pageq(); 641 /* locked: both page queues */ 642 for (curoff = start; curoff < stop; curoff += PAGE_SIZE) { 643 if ((pp = uvm_pagelookup(uobj, curoff)) == NULL) 644 continue; 645 /* 646 * handle case where we do not need to clean page (either 647 * because we are not clean or because page is not dirty or 648 * is busy): 649 * 650 * NOTE: we are allowed to deactivate a non-wired active 651 * PG_BUSY page, but once a PG_BUSY page is on the inactive 652 * queue it must stay put until it is !PG_BUSY (so as not to 653 * confuse pagedaemon). 654 */ 655 if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) { 656 needs_clean = FALSE; 657 if ((pp->pg_flags & PG_BUSY) != 0 && 658 (flags & (PGO_CLEANIT|PGO_SYNCIO)) == 659 (PGO_CLEANIT|PGO_SYNCIO)) 660 need_iosync = TRUE; 661 } else { 662 /* 663 * freeing: nuke all mappings so we can sync 664 * PG_CLEAN bit with no race 665 */ 666 if ((pp->pg_flags & PG_CLEAN) != 0 && 667 (flags & PGO_FREE) != 0 && 668 (pp->pg_flags & PQ_ACTIVE) != 0) 669 pmap_page_protect(pp, PROT_NONE); 670 if ((pp->pg_flags & PG_CLEAN) != 0 && 671 pmap_is_modified(pp)) 672 atomic_clearbits_int(&pp->pg_flags, PG_CLEAN); 673 atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK); 674 675 needs_clean = ((pp->pg_flags & PG_CLEAN) == 0); 676 } 677 678 /* if we don't need a clean, deactivate/free pages then cont. */ 679 if (!needs_clean) { 680 if (flags & PGO_DEACTIVATE) { 681 if (pp->wire_count == 0) { 682 pmap_page_protect(pp, PROT_NONE); 683 uvm_pagedeactivate(pp); 684 } 685 } else if (flags & PGO_FREE) { 686 if (pp->pg_flags & PG_BUSY) { 687 atomic_setbits_int(&pp->pg_flags, 688 PG_WANTED); 689 uvm_unlock_pageq(); 690 rwsleep_nsec(pp, uobj->vmobjlock, PVM, 691 "uvn_flsh", INFSLP); 692 uvm_lock_pageq(); 693 curoff -= PAGE_SIZE; 694 continue; 695 } else { 696 pmap_page_protect(pp, PROT_NONE); 697 /* removed page from object */ 698 uvm_pageclean(pp); 699 TAILQ_INSERT_HEAD(&dead, pp, pageq); 700 } 701 } 702 continue; 703 } 704 705 /* 706 * pp points to a page in the object that we are 707 * working on. if it is !PG_CLEAN,!PG_BUSY and we asked 708 * for cleaning (PGO_CLEANIT). we clean it now. 709 * 710 * let uvm_pager_put attempted a clustered page out. 711 * note: locked: page queues. 712 */ 713 atomic_setbits_int(&pp->pg_flags, PG_BUSY); 714 UVM_PAGE_OWN(pp, "uvn_flush"); 715 pmap_page_protect(pp, PROT_READ); 716 /* if we're async, free the page in aiodoned */ 717 if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE) 718 atomic_setbits_int(&pp->pg_flags, PG_RELEASED); 719 ReTry: 720 ppsp = pps; 721 npages = sizeof(pps) / sizeof(struct vm_page *); 722 723 result = uvm_pager_put(uobj, pp, &ppsp, &npages, 724 flags | PGO_DOACTCLUST, start, stop); 725 726 /* 727 * if we did an async I/O it is remotely possible for the 728 * async i/o to complete and the page "pp" be freed or what 729 * not before we get a chance to relock the object. Therefore, 730 * we only touch it when it won't be freed, RELEASED took care 731 * of the rest. 732 */ 733 uvm_lock_pageq(); 734 735 /* 736 * VM_PAGER_AGAIN: given the structure of this pager, this 737 * can only happen when we are doing async I/O and can't 738 * map the pages into kernel memory (pager_map) due to lack 739 * of vm space. if this happens we drop back to sync I/O. 740 */ 741 if (result == VM_PAGER_AGAIN) { 742 /* 743 * it is unlikely, but page could have been released 744 * we ignore this now and retry the I/O. 745 * we will detect and 746 * handle the released page after the syncio I/O 747 * completes. 748 */ 749 #ifdef DIAGNOSTIC 750 if (flags & PGO_SYNCIO) 751 panic("%s: PGO_SYNCIO return 'try again' error (impossible)", __func__); 752 #endif 753 flags |= PGO_SYNCIO; 754 if (flags & PGO_FREE) 755 atomic_clearbits_int(&pp->pg_flags, 756 PG_RELEASED); 757 758 goto ReTry; 759 } 760 761 /* 762 * the cleaning operation is now done. finish up. note that 763 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us. 764 * if success (OK, PEND) then uvm_pager_put returns the cluster 765 * to us in ppsp/npages. 766 */ 767 /* 768 * for pending async i/o if we are not deactivating 769 * we can move on to the next page. aiodoned deals with 770 * the freeing case for us. 771 */ 772 if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0) 773 continue; 774 775 /* 776 * need to look at each page of the I/O operation, and do what 777 * we gotta do. 778 */ 779 for (lcv = 0 ; lcv < npages; lcv++) { 780 ptmp = ppsp[lcv]; 781 /* 782 * verify the page didn't get moved 783 */ 784 if (result == VM_PAGER_PEND && ptmp->uobject != uobj) 785 continue; 786 787 /* 788 * unbusy the page if I/O is done. note that for 789 * pending I/O it is possible that the I/O op 790 * finished 791 * (in which case the page is no longer busy). 792 */ 793 if (result != VM_PAGER_PEND) { 794 if (ptmp->pg_flags & PG_WANTED) 795 wakeup(ptmp); 796 797 atomic_clearbits_int(&ptmp->pg_flags, 798 PG_WANTED|PG_BUSY); 799 UVM_PAGE_OWN(ptmp, NULL); 800 atomic_setbits_int(&ptmp->pg_flags, 801 PG_CLEAN|PG_CLEANCHK); 802 if ((flags & PGO_FREE) == 0) 803 pmap_clear_modify(ptmp); 804 } 805 806 /* dispose of page */ 807 if (flags & PGO_DEACTIVATE) { 808 if (ptmp->wire_count == 0) { 809 pmap_page_protect(ptmp, PROT_NONE); 810 uvm_pagedeactivate(ptmp); 811 } 812 } else if (flags & PGO_FREE && 813 result != VM_PAGER_PEND) { 814 if (result != VM_PAGER_OK) { 815 static struct timeval lasttime; 816 static const struct timeval interval = 817 { 5, 0 }; 818 819 if (ratecheck(&lasttime, &interval)) { 820 printf("%s: obj=%p, " 821 "offset=0x%llx. error " 822 "during pageout.\n", 823 __func__, pp->uobject, 824 (long long)pp->offset); 825 printf("%s: WARNING: " 826 "changes to page may be " 827 "lost!\n", __func__); 828 } 829 retval = FALSE; 830 } 831 pmap_page_protect(ptmp, PROT_NONE); 832 uvm_pageclean(ptmp); 833 TAILQ_INSERT_TAIL(&dead, ptmp, pageq); 834 } 835 836 } /* end of "lcv" for loop */ 837 838 } /* end of "pp" for loop */ 839 840 /* done with pagequeues: unlock */ 841 uvm_unlock_pageq(); 842 843 /* now wait for all I/O if required. */ 844 if (need_iosync) { 845 while (uvn->u_nio != 0) { 846 uvn->u_flags |= UVM_VNODE_IOSYNC; 847 rwsleep_nsec(&uvn->u_nio, uobj->vmobjlock, PVM, 848 "uvn_flush", INFSLP); 849 } 850 if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED) 851 wakeup(&uvn->u_flags); 852 uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED); 853 } 854 855 uvm_pglistfree(&dead); 856 857 return retval; 858 } 859 860 /* 861 * uvn_cluster 862 * 863 * we are about to do I/O in an object at offset. this function is called 864 * to establish a range of offsets around "offset" in which we can cluster 865 * I/O. 866 */ 867 868 void 869 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset, 870 voff_t *hoffset) 871 { 872 struct uvm_vnode *uvn = (struct uvm_vnode *) uobj; 873 *loffset = offset; 874 875 if (*loffset >= uvn->u_size) 876 panic("uvn_cluster: offset out of range"); 877 878 /* 879 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value. 880 */ 881 *hoffset = *loffset + MAXBSIZE; 882 if (*hoffset > round_page(uvn->u_size)) /* past end? */ 883 *hoffset = round_page(uvn->u_size); 884 885 return; 886 } 887 888 /* 889 * uvn_put: flush page data to backing store. 890 * 891 * => prefer map unlocked (not required) 892 * => flags: PGO_SYNCIO -- use sync. I/O 893 * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed) 894 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 895 * [thus we never do async i/o! see iodone comment] 896 */ 897 int 898 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags) 899 { 900 int retval; 901 902 KASSERT(rw_write_held(uobj->vmobjlock)); 903 904 retval = uvn_io((struct uvm_vnode*)uobj, pps, npages, flags, UIO_WRITE); 905 906 return retval; 907 } 908 909 /* 910 * uvn_get: get pages (synchronously) from backing store 911 * 912 * => prefer map unlocked (not required) 913 * => flags: PGO_ALLPAGES: get all of the pages 914 * PGO_LOCKED: fault data structures are locked 915 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 916 * => NOTE: caller must check for released pages!! 917 */ 918 int 919 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps, 920 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags) 921 { 922 voff_t current_offset; 923 struct vm_page *ptmp; 924 int lcv, result, gotpages; 925 boolean_t done; 926 927 KASSERT(((flags & PGO_LOCKED) != 0 && rw_lock_held(uobj->vmobjlock)) || 928 (flags & PGO_LOCKED) == 0); 929 930 /* step 1: handled the case where fault data structures are locked. */ 931 if (flags & PGO_LOCKED) { 932 /* 933 * gotpages is the current number of pages we've gotten (which 934 * we pass back up to caller via *npagesp. 935 */ 936 gotpages = 0; 937 938 /* 939 * step 1a: get pages that are already resident. only do this 940 * if the data structures are locked (i.e. the first time 941 * through). 942 */ 943 done = TRUE; /* be optimistic */ 944 945 for (lcv = 0, current_offset = offset ; lcv < *npagesp ; 946 lcv++, current_offset += PAGE_SIZE) { 947 948 /* do we care about this page? if not, skip it */ 949 if (pps[lcv] == PGO_DONTCARE) 950 continue; 951 952 /* lookup page */ 953 ptmp = uvm_pagelookup(uobj, current_offset); 954 955 /* to be useful must get a non-busy, non-released pg */ 956 if (ptmp == NULL || 957 (ptmp->pg_flags & PG_BUSY) != 0) { 958 if (lcv == centeridx || (flags & PGO_ALLPAGES) 959 != 0) 960 done = FALSE; /* need to do a wait or I/O! */ 961 continue; 962 } 963 964 /* 965 * useful page: busy it and plug it in our 966 * result array 967 */ 968 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 969 UVM_PAGE_OWN(ptmp, "uvn_get1"); 970 pps[lcv] = ptmp; 971 gotpages++; 972 973 } 974 975 /* 976 * XXX: given the "advice", should we consider async read-ahead? 977 * XXX: fault current does deactivate of pages behind us. is 978 * this good (other callers might now). 979 */ 980 /* 981 * XXX: read-ahead currently handled by buffer cache (bread) 982 * level. 983 * XXX: no async i/o available. 984 * XXX: so we don't do anything now. 985 */ 986 987 /* 988 * step 1c: now we've either done everything needed or we to 989 * unlock and do some waiting or I/O. 990 */ 991 992 *npagesp = gotpages; /* let caller know */ 993 if (done) 994 return VM_PAGER_OK; /* bingo! */ 995 else 996 return VM_PAGER_UNLOCK; 997 } 998 999 /* 1000 * step 2: get non-resident or busy pages. 1001 * data structures are unlocked. 1002 * 1003 * XXX: because we can't do async I/O at this level we get things 1004 * page at a time (otherwise we'd chunk). the VOP_READ() will do 1005 * async-read-ahead for us at a lower level. 1006 */ 1007 for (lcv = 0, current_offset = offset; 1008 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) { 1009 1010 /* skip over pages we've already gotten or don't want */ 1011 /* skip over pages we don't _have_ to get */ 1012 if (pps[lcv] != NULL || (lcv != centeridx && 1013 (flags & PGO_ALLPAGES) == 0)) 1014 continue; 1015 1016 /* 1017 * we have yet to locate the current page (pps[lcv]). we first 1018 * look for a page that is already at the current offset. if 1019 * we fine a page, we check to see if it is busy or released. 1020 * if that is the case, then we sleep on the page until it is 1021 * no longer busy or released and repeat the lookup. if the 1022 * page we found is neither busy nor released, then we busy it 1023 * (so we own it) and plug it into pps[lcv]. this breaks the 1024 * following while loop and indicates we are ready to move on 1025 * to the next page in the "lcv" loop above. 1026 * 1027 * if we exit the while loop with pps[lcv] still set to NULL, 1028 * then it means that we allocated a new busy/fake/clean page 1029 * ptmp in the object and we need to do I/O to fill in the data. 1030 */ 1031 while (pps[lcv] == NULL) { /* top of "pps" while loop */ 1032 /* look for a current page */ 1033 ptmp = uvm_pagelookup(uobj, current_offset); 1034 1035 /* nope? allocate one now (if we can) */ 1036 if (ptmp == NULL) { 1037 ptmp = uvm_pagealloc(uobj, current_offset, 1038 NULL, 0); 1039 1040 /* out of RAM? */ 1041 if (ptmp == NULL) { 1042 uvm_wait("uvn_getpage"); 1043 1044 /* goto top of pps while loop */ 1045 continue; 1046 } 1047 1048 /* 1049 * got new page ready for I/O. break pps 1050 * while loop. pps[lcv] is still NULL. 1051 */ 1052 break; 1053 } 1054 1055 /* page is there, see if we need to wait on it */ 1056 if ((ptmp->pg_flags & PG_BUSY) != 0) { 1057 atomic_setbits_int(&ptmp->pg_flags, PG_WANTED); 1058 rwsleep_nsec(ptmp, uobj->vmobjlock, PVM, 1059 "uvn_get", INFSLP); 1060 continue; /* goto top of pps while loop */ 1061 } 1062 1063 /* 1064 * if we get here then the page has become resident 1065 * and unbusy between steps 1 and 2. we busy it 1066 * now (so we own it) and set pps[lcv] (so that we 1067 * exit the while loop). 1068 */ 1069 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1070 UVM_PAGE_OWN(ptmp, "uvn_get2"); 1071 pps[lcv] = ptmp; 1072 } 1073 1074 /* 1075 * if we own the a valid page at the correct offset, pps[lcv] 1076 * will point to it. nothing more to do except go to the 1077 * next page. 1078 */ 1079 if (pps[lcv]) 1080 continue; /* next lcv */ 1081 1082 /* 1083 * we have a "fake/busy/clean" page that we just allocated. do 1084 * I/O to fill it with valid data. 1085 */ 1086 result = uvn_io((struct uvm_vnode *) uobj, &ptmp, 1, 1087 PGO_SYNCIO|PGO_NOWAIT, UIO_READ); 1088 1089 /* 1090 * I/O done. because we used syncio the result can not be 1091 * PEND or AGAIN. 1092 */ 1093 if (result != VM_PAGER_OK) { 1094 if (ptmp->pg_flags & PG_WANTED) 1095 wakeup(ptmp); 1096 1097 atomic_clearbits_int(&ptmp->pg_flags, 1098 PG_WANTED|PG_BUSY); 1099 UVM_PAGE_OWN(ptmp, NULL); 1100 uvm_lock_pageq(); 1101 uvm_pagefree(ptmp); 1102 uvm_unlock_pageq(); 1103 rw_exit(uobj->vmobjlock); 1104 return result; 1105 } 1106 1107 /* 1108 * we got the page! clear the fake flag (indicates valid 1109 * data now in page) and plug into our result array. note 1110 * that page is still busy. 1111 * 1112 * it is the callers job to: 1113 * => check if the page is released 1114 * => unbusy the page 1115 * => activate the page 1116 */ 1117 1118 /* data is valid ... */ 1119 atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE); 1120 pmap_clear_modify(ptmp); /* ... and clean */ 1121 pps[lcv] = ptmp; 1122 1123 } 1124 1125 1126 rw_exit(uobj->vmobjlock); 1127 return (VM_PAGER_OK); 1128 } 1129 1130 /* 1131 * uvn_io: do I/O to a vnode 1132 * 1133 * => prefer map unlocked (not required) 1134 * => flags: PGO_SYNCIO -- use sync. I/O 1135 * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync. 1136 * [thus we never do async i/o! see iodone comment] 1137 */ 1138 1139 int 1140 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw) 1141 { 1142 struct uvm_object *uobj = &uvn->u_obj; 1143 struct vnode *vn; 1144 struct uio uio; 1145 struct iovec iov; 1146 vaddr_t kva; 1147 off_t file_offset; 1148 int waitf, result, mapinflags; 1149 size_t got, wanted; 1150 int netunlocked = 0; 1151 int lkflags = (flags & PGO_NOWAIT) ? LK_NOWAIT : 0; 1152 1153 KASSERT(rw_write_held(uobj->vmobjlock)); 1154 1155 /* init values */ 1156 waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT; 1157 vn = uvn->u_vnode; 1158 file_offset = pps[0]->offset; 1159 1160 /* check for sync'ing I/O. */ 1161 while (uvn->u_flags & UVM_VNODE_IOSYNC) { 1162 if (waitf == M_NOWAIT) { 1163 return VM_PAGER_AGAIN; 1164 } 1165 uvn->u_flags |= UVM_VNODE_IOSYNCWANTED; 1166 rwsleep_nsec(&uvn->u_flags, uobj->vmobjlock, PVM, "uvn_iosync", 1167 INFSLP); 1168 } 1169 1170 /* check size */ 1171 if (file_offset >= uvn->u_size) { 1172 return VM_PAGER_BAD; 1173 } 1174 1175 /* first try and map the pages in (without waiting) */ 1176 mapinflags = (rw == UIO_READ) ? 1177 UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE; 1178 1179 kva = uvm_pagermapin(pps, npages, mapinflags); 1180 if (kva == 0 && waitf == M_NOWAIT) { 1181 return VM_PAGER_AGAIN; 1182 } 1183 1184 /* 1185 * ok, now bump u_nio up. at this point we are done with uvn 1186 * and can unlock it. if we still don't have a kva, try again 1187 * (this time with sleep ok). 1188 */ 1189 uvn->u_nio++; /* we have an I/O in progress! */ 1190 rw_exit(uobj->vmobjlock); 1191 if (kva == 0) 1192 kva = uvm_pagermapin(pps, npages, 1193 mapinflags | UVMPAGER_MAPIN_WAITOK); 1194 1195 /* 1196 * ok, mapped in. our pages are PG_BUSY so they are not going to 1197 * get touched (so we can look at "offset" without having to lock 1198 * the object). set up for I/O. 1199 */ 1200 /* fill out uio/iov */ 1201 iov.iov_base = (caddr_t) kva; 1202 wanted = (size_t)npages << PAGE_SHIFT; 1203 if (file_offset + wanted > uvn->u_size) 1204 wanted = uvn->u_size - file_offset; /* XXX: needed? */ 1205 iov.iov_len = wanted; 1206 uio.uio_iov = &iov; 1207 uio.uio_iovcnt = 1; 1208 uio.uio_offset = file_offset; 1209 uio.uio_segflg = UIO_SYSSPACE; 1210 uio.uio_rw = rw; 1211 uio.uio_resid = wanted; 1212 uio.uio_procp = curproc; 1213 1214 /* 1215 * This process may already have the NET_LOCK(), if we 1216 * faulted in copyin() or copyout() in the network stack. 1217 */ 1218 if (rw_status(&netlock) == RW_WRITE) { 1219 NET_UNLOCK(); 1220 netunlocked = 1; 1221 } 1222 1223 /* do the I/O! (XXX: curproc?) */ 1224 /* 1225 * This process may already have this vnode locked, if we faulted in 1226 * copyin() or copyout() on a region backed by this vnode 1227 * while doing I/O to the vnode. If this is the case, don't 1228 * panic.. instead, return the error to the user. 1229 * 1230 * XXX this is a stopgap to prevent a panic. 1231 * Ideally, this kind of operation *should* work. 1232 */ 1233 result = 0; 1234 KERNEL_LOCK(); 1235 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1236 result = vn_lock(vn, LK_EXCLUSIVE | LK_RECURSEFAIL | lkflags); 1237 if (result == 0) { 1238 /* NOTE: vnode now locked! */ 1239 if (rw == UIO_READ) 1240 result = VOP_READ(vn, &uio, 0, curproc->p_ucred); 1241 else 1242 result = VOP_WRITE(vn, &uio, 1243 (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0, 1244 curproc->p_ucred); 1245 1246 if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0) 1247 VOP_UNLOCK(vn); 1248 1249 } 1250 KERNEL_UNLOCK(); 1251 1252 if (netunlocked) 1253 NET_LOCK(); 1254 1255 1256 /* NOTE: vnode now unlocked (unless vnislocked) */ 1257 /* 1258 * result == unix style errno (0 == OK!) 1259 * 1260 * zero out rest of buffer (if needed) 1261 */ 1262 if (result == 0) { 1263 got = wanted - uio.uio_resid; 1264 1265 if (wanted && got == 0) { 1266 result = EIO; /* XXX: error? */ 1267 } else if (got < PAGE_SIZE * npages && rw == UIO_READ) { 1268 memset((void *) (kva + got), 0, 1269 ((size_t)npages << PAGE_SHIFT) - got); 1270 } 1271 } 1272 1273 /* now remove pager mapping */ 1274 uvm_pagermapout(kva, npages); 1275 1276 /* now clean up the object (i.e. drop I/O count) */ 1277 rw_enter(uobj->vmobjlock, RW_WRITE); 1278 uvn->u_nio--; /* I/O DONE! */ 1279 if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) { 1280 wakeup(&uvn->u_nio); 1281 } 1282 1283 if (result == 0) { 1284 return VM_PAGER_OK; 1285 } else if (result == EBUSY) { 1286 KASSERT(flags & PGO_NOWAIT); 1287 return VM_PAGER_AGAIN; 1288 } else { 1289 if (rebooting) { 1290 KERNEL_LOCK(); 1291 while (rebooting) 1292 tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP); 1293 KERNEL_UNLOCK(); 1294 } 1295 return VM_PAGER_ERROR; 1296 } 1297 } 1298 1299 /* 1300 * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference 1301 * is gone we will kill the object (flushing dirty pages back to the vnode 1302 * if needed). 1303 * 1304 * => returns TRUE if there was no uvm_object attached or if there was 1305 * one and we killed it [i.e. if there is no active uvn] 1306 * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if 1307 * needed] 1308 * 1309 * => XXX: given that we now kill uvn's when a vnode is recycled (without 1310 * having to hold a reference on the vnode) and given a working 1311 * uvm_vnp_sync(), how does that effect the need for this function? 1312 * [XXXCDC: seems like it can die?] 1313 * 1314 * => XXX: this function should DIE once we merge the VM and buffer 1315 * cache. 1316 * 1317 * research shows that this is called in the following places: 1318 * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode 1319 * changes sizes 1320 * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we 1321 * are written to 1322 * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit 1323 * is off 1324 * ffs_realloccg: when we can't extend the current block and have 1325 * to allocate a new one we call this [XXX: why?] 1326 * nfsrv_rename, rename_files: called when the target filename is there 1327 * and we want to remove it 1328 * nfsrv_remove, sys_unlink: called on file we are removing 1329 * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache 1330 * then return "text busy" 1331 * nfs_open: seems to uncache any file opened with nfs 1332 * vn_writechk: if VTEXT vnode and can't uncache return "text busy" 1333 * fusefs_open: uncaches any file that is opened 1334 * fusefs_write: uncaches on every write 1335 */ 1336 1337 int 1338 uvm_vnp_uncache(struct vnode *vp) 1339 { 1340 struct uvm_vnode *uvn = vp->v_uvm; 1341 struct uvm_object *uobj = &uvn->u_obj; 1342 1343 /* lock uvn part of the vnode and check if we need to do anything */ 1344 1345 rw_enter(uobj->vmobjlock, RW_WRITE); 1346 if ((uvn->u_flags & UVM_VNODE_VALID) == 0 || 1347 (uvn->u_flags & UVM_VNODE_BLOCKED) != 0) { 1348 rw_exit(uobj->vmobjlock); 1349 return TRUE; 1350 } 1351 1352 /* 1353 * we have a valid, non-blocked uvn. clear persist flag. 1354 * if uvn is currently active we can return now. 1355 */ 1356 uvn->u_flags &= ~UVM_VNODE_CANPERSIST; 1357 if (uvn->u_obj.uo_refs) { 1358 rw_exit(uobj->vmobjlock); 1359 return FALSE; 1360 } 1361 1362 /* 1363 * uvn is currently persisting! we have to gain a reference to 1364 * it so that we can call uvn_detach to kill the uvn. 1365 */ 1366 vref(vp); /* seems ok, even with VOP_LOCK */ 1367 uvn->u_obj.uo_refs++; /* value is now 1 */ 1368 rw_exit(uobj->vmobjlock); 1369 1370 #ifdef VFSLCKDEBUG 1371 /* 1372 * carry over sanity check from old vnode pager: the vnode should 1373 * be VOP_LOCK'd, and we confirm it here. 1374 */ 1375 if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp)) 1376 panic("uvm_vnp_uncache: vnode not locked!"); 1377 #endif 1378 1379 /* 1380 * now drop our reference to the vnode. if we have the sole 1381 * reference to the vnode then this will cause it to die [as we 1382 * just cleared the persist flag]. we have to unlock the vnode 1383 * while we are doing this as it may trigger I/O. 1384 * 1385 * XXX: it might be possible for uvn to get reclaimed while we are 1386 * unlocked causing us to return TRUE when we should not. we ignore 1387 * this as a false-positive return value doesn't hurt us. 1388 */ 1389 VOP_UNLOCK(vp); 1390 uvn_detach(&uvn->u_obj); 1391 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1392 1393 return TRUE; 1394 } 1395 1396 /* 1397 * uvm_vnp_setsize: grow or shrink a vnode uvn 1398 * 1399 * grow => just update size value 1400 * shrink => toss un-needed pages 1401 * 1402 * => we assume that the caller has a reference of some sort to the 1403 * vnode in question so that it will not be yanked out from under 1404 * us. 1405 * 1406 * called from: 1407 * => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos], 1408 * fusefs_setattr) 1409 * => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write 1410 * fusefs_write) 1411 * => ffs_balloc [XXX: why? doesn't WRITE handle?] 1412 * => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr 1413 * => union fs: union_newsize 1414 */ 1415 1416 void 1417 uvm_vnp_setsize(struct vnode *vp, off_t newsize) 1418 { 1419 struct uvm_vnode *uvn = vp->v_uvm; 1420 struct uvm_object *uobj = &uvn->u_obj; 1421 1422 KERNEL_ASSERT_LOCKED(); 1423 1424 rw_enter(uobj->vmobjlock, RW_WRITE); 1425 1426 /* lock uvn and check for valid object, and if valid: do it! */ 1427 if (uvn->u_flags & UVM_VNODE_VALID) { 1428 1429 /* 1430 * now check if the size has changed: if we shrink we had better 1431 * toss some pages... 1432 */ 1433 1434 if (uvn->u_size > newsize) { 1435 (void)uvn_flush(&uvn->u_obj, newsize, 1436 uvn->u_size, PGO_FREE); 1437 } 1438 uvn->u_size = newsize; 1439 } 1440 rw_exit(uobj->vmobjlock); 1441 } 1442 1443 /* 1444 * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes. 1445 * 1446 * => called from sys_sync with no VM structures locked 1447 * => only one process can do a sync at a time (because the uvn 1448 * structure only has one queue for sync'ing). we ensure this 1449 * by holding the uvn_sync_lock while the sync is in progress. 1450 * other processes attempting a sync will sleep on this lock 1451 * until we are done. 1452 */ 1453 void 1454 uvm_vnp_sync(struct mount *mp) 1455 { 1456 struct uvm_vnode *uvn; 1457 struct vnode *vp; 1458 1459 /* 1460 * step 1: ensure we are only ones using the uvn_sync_q by locking 1461 * our lock... 1462 */ 1463 rw_enter_write(&uvn_sync_lock); 1464 1465 /* 1466 * step 2: build up a simpleq of uvns of interest based on the 1467 * write list. we gain a reference to uvns of interest. 1468 */ 1469 SIMPLEQ_INIT(&uvn_sync_q); 1470 LIST_FOREACH(uvn, &uvn_wlist, u_wlist) { 1471 vp = uvn->u_vnode; 1472 if (mp && vp->v_mount != mp) 1473 continue; 1474 1475 /* 1476 * If the vnode is "blocked" it means it must be dying, which 1477 * in turn means its in the process of being flushed out so 1478 * we can safely skip it. 1479 * 1480 * note that uvn must already be valid because we found it on 1481 * the wlist (this also means it can't be ALOCK'd). 1482 */ 1483 if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0) 1484 continue; 1485 1486 /* 1487 * gain reference. watch out for persisting uvns (need to 1488 * regain vnode REF). 1489 */ 1490 if (uvn->u_obj.uo_refs == 0) 1491 vref(vp); 1492 uvn->u_obj.uo_refs++; 1493 1494 SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq); 1495 } 1496 1497 /* step 3: we now have a list of uvn's that may need cleaning. */ 1498 SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) { 1499 rw_enter(uvn->u_obj.vmobjlock, RW_WRITE); 1500 #ifdef DEBUG 1501 if (uvn->u_flags & UVM_VNODE_DYING) { 1502 printf("uvm_vnp_sync: dying vnode on sync list\n"); 1503 } 1504 #endif 1505 uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST); 1506 1507 /* 1508 * if we have the only reference and we just cleaned the uvn, 1509 * then we can pull it out of the UVM_VNODE_WRITEABLE state 1510 * thus allowing us to avoid thinking about flushing it again 1511 * on later sync ops. 1512 */ 1513 if (uvn->u_obj.uo_refs == 1 && 1514 (uvn->u_flags & UVM_VNODE_WRITEABLE)) { 1515 LIST_REMOVE(uvn, u_wlist); 1516 uvn->u_flags &= ~UVM_VNODE_WRITEABLE; 1517 } 1518 rw_exit(uvn->u_obj.vmobjlock); 1519 1520 /* now drop our reference to the uvn */ 1521 uvn_detach(&uvn->u_obj); 1522 } 1523 1524 rw_exit_write(&uvn_sync_lock); 1525 } 1526