1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct pool slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline __aligned(8); 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 debug_object_activate(ref, &active_debug_desc); 96 } 97 98 static void debug_active_deactivate(struct i915_active *ref) 99 { 100 lockdep_assert_held(&ref->tree_lock); 101 if (!atomic_read(&ref->count)) /* after the last dec */ 102 debug_object_deactivate(ref, &active_debug_desc); 103 } 104 105 static void debug_active_fini(struct i915_active *ref) 106 { 107 debug_object_free(ref, &active_debug_desc); 108 } 109 110 static void debug_active_assert(struct i915_active *ref) 111 { 112 debug_object_assert_init(ref, &active_debug_desc); 113 } 114 115 #else 116 117 static inline void debug_active_init(struct i915_active *ref) { } 118 static inline void debug_active_activate(struct i915_active *ref) { } 119 static inline void debug_active_deactivate(struct i915_active *ref) { } 120 static inline void debug_active_fini(struct i915_active *ref) { } 121 static inline void debug_active_assert(struct i915_active *ref) { } 122 123 #endif 124 125 static void 126 __active_retire(struct i915_active *ref) 127 { 128 struct rb_root root = RB_ROOT; 129 struct active_node *it, *n; 130 unsigned long flags; 131 132 GEM_BUG_ON(i915_active_is_idle(ref)); 133 134 /* return the unused nodes to our slabcache -- flushing the allocator */ 135 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 136 return; 137 138 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 139 debug_active_deactivate(ref); 140 141 /* Even if we have not used the cache, we may still have a barrier */ 142 if (!ref->cache) 143 ref->cache = fetch_node(ref->tree.rb_node); 144 145 /* Keep the MRU cached node for reuse */ 146 if (ref->cache) { 147 /* Discard all other nodes in the tree */ 148 rb_erase(&ref->cache->node, &ref->tree); 149 root = ref->tree; 150 151 /* Rebuild the tree with only the cached node */ 152 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 153 rb_insert_color(&ref->cache->node, &ref->tree); 154 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 155 156 /* Make the cached node available for reuse with any timeline */ 157 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 158 } 159 160 spin_unlock_irqrestore(&ref->tree_lock, flags); 161 162 /* After the final retire, the entire struct may be freed */ 163 if (ref->retire) 164 ref->retire(ref); 165 166 /* ... except if you wait on it, you must manage your own references! */ 167 wake_up_var(ref); 168 169 /* Finally free the discarded timeline tree */ 170 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 171 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 172 #ifdef __linux__ 173 kmem_cache_free(slab_cache, it); 174 #else 175 pool_put(&slab_cache, it); 176 #endif 177 } 178 } 179 180 static void 181 active_work(struct work_struct *wrk) 182 { 183 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 184 185 GEM_BUG_ON(!atomic_read(&ref->count)); 186 if (atomic_add_unless(&ref->count, -1, 1)) 187 return; 188 189 __active_retire(ref); 190 } 191 192 static void 193 active_retire(struct i915_active *ref) 194 { 195 GEM_BUG_ON(!atomic_read(&ref->count)); 196 if (atomic_add_unless(&ref->count, -1, 1)) 197 return; 198 199 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 200 queue_work(system_unbound_wq, &ref->work); 201 return; 202 } 203 204 __active_retire(ref); 205 } 206 207 static inline struct dma_fence ** 208 __active_fence_slot(struct i915_active_fence *active) 209 { 210 return (struct dma_fence ** __force)&active->fence; 211 } 212 213 static inline bool 214 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 215 { 216 struct i915_active_fence *active = 217 container_of(cb, typeof(*active), cb); 218 219 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 220 } 221 222 static void 223 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 224 { 225 if (active_fence_cb(fence, cb)) 226 active_retire(container_of(cb, struct active_node, base.cb)->ref); 227 } 228 229 static void 230 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 231 { 232 if (active_fence_cb(fence, cb)) 233 active_retire(container_of(cb, struct i915_active, excl.cb)); 234 } 235 236 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 237 { 238 struct active_node *it; 239 240 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 241 242 /* 243 * We track the most recently used timeline to skip a rbtree search 244 * for the common case, under typical loads we never need the rbtree 245 * at all. We can reuse the last slot if it is empty, that is 246 * after the previous activity has been retired, or if it matches the 247 * current timeline. 248 */ 249 it = READ_ONCE(ref->cache); 250 if (it) { 251 u64 cached = READ_ONCE(it->timeline); 252 253 /* Once claimed, this slot will only belong to this idx */ 254 if (cached == idx) 255 return it; 256 257 /* 258 * An unclaimed cache [.timeline=0] can only be claimed once. 259 * 260 * If the value is already non-zero, some other thread has 261 * claimed the cache and we know that is does not match our 262 * idx. If, and only if, the timeline is currently zero is it 263 * worth competing to claim it atomically for ourselves (for 264 * only the winner of that race will cmpxchg return the old 265 * value of 0). 266 */ 267 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 268 return it; 269 } 270 271 BUILD_BUG_ON(offsetof(typeof(*it), node)); 272 273 /* While active, the tree can only be built; not destroyed */ 274 GEM_BUG_ON(i915_active_is_idle(ref)); 275 276 it = fetch_node(ref->tree.rb_node); 277 while (it) { 278 if (it->timeline < idx) { 279 it = fetch_node(it->node.rb_right); 280 } else if (it->timeline > idx) { 281 it = fetch_node(it->node.rb_left); 282 } else { 283 WRITE_ONCE(ref->cache, it); 284 break; 285 } 286 } 287 288 /* NB: If the tree rotated beneath us, we may miss our target. */ 289 return it; 290 } 291 292 static struct i915_active_fence * 293 active_instance(struct i915_active *ref, u64 idx) 294 { 295 struct active_node *node; 296 struct rb_node **p, *parent; 297 298 node = __active_lookup(ref, idx); 299 if (likely(node)) 300 return &node->base; 301 302 spin_lock_irq(&ref->tree_lock); 303 GEM_BUG_ON(i915_active_is_idle(ref)); 304 305 parent = NULL; 306 p = &ref->tree.rb_node; 307 while (*p) { 308 parent = *p; 309 310 node = rb_entry(parent, struct active_node, node); 311 if (node->timeline == idx) 312 goto out; 313 314 if (node->timeline < idx) 315 p = &parent->rb_right; 316 else 317 p = &parent->rb_left; 318 } 319 320 /* 321 * XXX: We should preallocate this before i915_active_ref() is ever 322 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 323 */ 324 #ifdef __linux__ 325 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 326 #else 327 node = pool_get(&slab_cache, PR_NOWAIT); 328 #endif 329 if (!node) 330 goto out; 331 332 __i915_active_fence_init(&node->base, NULL, node_retire); 333 node->ref = ref; 334 node->timeline = idx; 335 336 rb_link_node(&node->node, parent, p); 337 rb_insert_color(&node->node, &ref->tree); 338 339 out: 340 WRITE_ONCE(ref->cache, node); 341 spin_unlock_irq(&ref->tree_lock); 342 343 return &node->base; 344 } 345 346 void __i915_active_init(struct i915_active *ref, 347 int (*active)(struct i915_active *ref), 348 void (*retire)(struct i915_active *ref), 349 unsigned long flags, 350 struct lock_class_key *mkey, 351 struct lock_class_key *wkey) 352 { 353 debug_active_init(ref); 354 355 ref->flags = flags; 356 ref->active = active; 357 ref->retire = retire; 358 359 mtx_init(&ref->tree_lock, IPL_TTY); 360 ref->tree = RB_ROOT; 361 ref->cache = NULL; 362 363 init_llist_head(&ref->preallocated_barriers); 364 atomic_set(&ref->count, 0); 365 #ifdef __linux__ 366 __mutex_init(&ref->mutex, "i915_active", mkey); 367 #else 368 rw_init(&ref->mutex, "i915_active"); 369 #endif 370 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 371 INIT_WORK(&ref->work, active_work); 372 #if IS_ENABLED(CONFIG_LOCKDEP) 373 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 374 #endif 375 } 376 377 static bool ____active_del_barrier(struct i915_active *ref, 378 struct active_node *node, 379 struct intel_engine_cs *engine) 380 381 { 382 struct llist_node *head = NULL, *tail = NULL; 383 struct llist_node *pos, *next; 384 385 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 386 387 /* 388 * Rebuild the llist excluding our node. We may perform this 389 * outside of the kernel_context timeline mutex and so someone 390 * else may be manipulating the engine->barrier_tasks, in 391 * which case either we or they will be upset :) 392 * 393 * A second __active_del_barrier() will report failure to claim 394 * the active_node and the caller will just shrug and know not to 395 * claim ownership of its node. 396 * 397 * A concurrent i915_request_add_active_barriers() will miss adding 398 * any of the tasks, but we will try again on the next -- and since 399 * we are actively using the barrier, we know that there will be 400 * at least another opportunity when we idle. 401 */ 402 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 403 if (node == barrier_from_ll(pos)) { 404 node = NULL; 405 continue; 406 } 407 408 pos->next = head; 409 head = pos; 410 if (!tail) 411 tail = pos; 412 } 413 if (head) 414 llist_add_batch(head, tail, &engine->barrier_tasks); 415 416 return !node; 417 } 418 419 static bool 420 __active_del_barrier(struct i915_active *ref, struct active_node *node) 421 { 422 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 423 } 424 425 static bool 426 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 427 { 428 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 429 return false; 430 431 /* 432 * This request is on the kernel_context timeline, and so 433 * we can use it to substitute for the pending idle-barrer 434 * request that we want to emit on the kernel_context. 435 */ 436 return __active_del_barrier(ref, node_from_active(active)); 437 } 438 439 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 440 { 441 u64 idx = i915_request_timeline(rq)->fence_context; 442 struct dma_fence *fence = &rq->fence; 443 struct i915_active_fence *active; 444 int err; 445 446 /* Prevent reaping in case we malloc/wait while building the tree */ 447 err = i915_active_acquire(ref); 448 if (err) 449 return err; 450 451 do { 452 active = active_instance(ref, idx); 453 if (!active) { 454 err = -ENOMEM; 455 goto out; 456 } 457 458 if (replace_barrier(ref, active)) { 459 RCU_INIT_POINTER(active->fence, NULL); 460 atomic_dec(&ref->count); 461 } 462 } while (unlikely(is_barrier(active))); 463 464 fence = __i915_active_fence_set(active, fence); 465 if (!fence) 466 __i915_active_acquire(ref); 467 else 468 dma_fence_put(fence); 469 470 out: 471 i915_active_release(ref); 472 return err; 473 } 474 475 static struct dma_fence * 476 __i915_active_set_fence(struct i915_active *ref, 477 struct i915_active_fence *active, 478 struct dma_fence *fence) 479 { 480 struct dma_fence *prev; 481 482 if (replace_barrier(ref, active)) { 483 RCU_INIT_POINTER(active->fence, fence); 484 return NULL; 485 } 486 487 prev = __i915_active_fence_set(active, fence); 488 if (!prev) 489 __i915_active_acquire(ref); 490 491 return prev; 492 } 493 494 struct dma_fence * 495 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 496 { 497 /* We expect the caller to manage the exclusive timeline ordering */ 498 return __i915_active_set_fence(ref, &ref->excl, f); 499 } 500 501 bool i915_active_acquire_if_busy(struct i915_active *ref) 502 { 503 debug_active_assert(ref); 504 return atomic_add_unless(&ref->count, 1, 0); 505 } 506 507 static void __i915_active_activate(struct i915_active *ref) 508 { 509 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 510 if (!atomic_fetch_inc(&ref->count)) 511 debug_active_activate(ref); 512 spin_unlock_irq(&ref->tree_lock); 513 } 514 515 int i915_active_acquire(struct i915_active *ref) 516 { 517 int err; 518 519 if (i915_active_acquire_if_busy(ref)) 520 return 0; 521 522 if (!ref->active) { 523 __i915_active_activate(ref); 524 return 0; 525 } 526 527 err = mutex_lock_interruptible(&ref->mutex); 528 if (err) 529 return err; 530 531 if (likely(!i915_active_acquire_if_busy(ref))) { 532 err = ref->active(ref); 533 if (!err) 534 __i915_active_activate(ref); 535 } 536 537 mutex_unlock(&ref->mutex); 538 539 return err; 540 } 541 542 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 543 { 544 struct i915_active_fence *active; 545 int err; 546 547 err = i915_active_acquire(ref); 548 if (err) 549 return err; 550 551 active = active_instance(ref, idx); 552 if (!active) { 553 i915_active_release(ref); 554 return -ENOMEM; 555 } 556 557 return 0; /* return with active ref */ 558 } 559 560 void i915_active_release(struct i915_active *ref) 561 { 562 debug_active_assert(ref); 563 active_retire(ref); 564 } 565 566 static void enable_signaling(struct i915_active_fence *active) 567 { 568 struct dma_fence *fence; 569 570 if (unlikely(is_barrier(active))) 571 return; 572 573 fence = i915_active_fence_get(active); 574 if (!fence) 575 return; 576 577 dma_fence_enable_sw_signaling(fence); 578 dma_fence_put(fence); 579 } 580 581 static int flush_barrier(struct active_node *it) 582 { 583 struct intel_engine_cs *engine; 584 585 if (likely(!is_barrier(&it->base))) 586 return 0; 587 588 engine = __barrier_to_engine(it); 589 smp_rmb(); /* serialise with add_active_barriers */ 590 if (!is_barrier(&it->base)) 591 return 0; 592 593 return intel_engine_flush_barriers(engine); 594 } 595 596 static int flush_lazy_signals(struct i915_active *ref) 597 { 598 struct active_node *it, *n; 599 int err = 0; 600 601 enable_signaling(&ref->excl); 602 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 603 err = flush_barrier(it); /* unconnected idle barrier? */ 604 if (err) 605 break; 606 607 enable_signaling(&it->base); 608 } 609 610 return err; 611 } 612 613 int __i915_active_wait(struct i915_active *ref, int state) 614 { 615 might_sleep(); 616 617 /* Any fence added after the wait begins will not be auto-signaled */ 618 if (i915_active_acquire_if_busy(ref)) { 619 int err; 620 621 err = flush_lazy_signals(ref); 622 i915_active_release(ref); 623 if (err) 624 return err; 625 626 if (___wait_var_event(ref, i915_active_is_idle(ref), 627 state, 0, 0, schedule())) 628 return -EINTR; 629 } 630 631 /* 632 * After the wait is complete, the caller may free the active. 633 * We have to flush any concurrent retirement before returning. 634 */ 635 flush_work(&ref->work); 636 return 0; 637 } 638 639 static int __await_active(struct i915_active_fence *active, 640 int (*fn)(void *arg, struct dma_fence *fence), 641 void *arg) 642 { 643 struct dma_fence *fence; 644 645 if (is_barrier(active)) /* XXX flush the barrier? */ 646 return 0; 647 648 fence = i915_active_fence_get(active); 649 if (fence) { 650 int err; 651 652 err = fn(arg, fence); 653 dma_fence_put(fence); 654 if (err < 0) 655 return err; 656 } 657 658 return 0; 659 } 660 661 struct wait_barrier { 662 struct wait_queue_entry base; 663 struct i915_active *ref; 664 }; 665 666 static int 667 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 668 { 669 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 670 671 if (i915_active_is_idle(wb->ref)) { 672 list_del(&wq->entry); 673 i915_sw_fence_complete(wq->private); 674 kfree(wq); 675 } 676 677 return 0; 678 } 679 680 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 681 { 682 struct wait_barrier *wb; 683 684 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 685 if (unlikely(!wb)) 686 return -ENOMEM; 687 688 GEM_BUG_ON(i915_active_is_idle(ref)); 689 if (!i915_sw_fence_await(fence)) { 690 kfree(wb); 691 return -EINVAL; 692 } 693 694 wb->base.flags = 0; 695 wb->base.func = barrier_wake; 696 wb->base.private = fence; 697 wb->ref = ref; 698 699 add_wait_queue(__var_waitqueue(ref), &wb->base); 700 return 0; 701 } 702 703 static int await_active(struct i915_active *ref, 704 unsigned int flags, 705 int (*fn)(void *arg, struct dma_fence *fence), 706 void *arg, struct i915_sw_fence *barrier) 707 { 708 int err = 0; 709 710 if (!i915_active_acquire_if_busy(ref)) 711 return 0; 712 713 if (flags & I915_ACTIVE_AWAIT_EXCL && 714 rcu_access_pointer(ref->excl.fence)) { 715 err = __await_active(&ref->excl, fn, arg); 716 if (err) 717 goto out; 718 } 719 720 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 721 struct active_node *it, *n; 722 723 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 724 err = __await_active(&it->base, fn, arg); 725 if (err) 726 goto out; 727 } 728 } 729 730 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 731 err = flush_lazy_signals(ref); 732 if (err) 733 goto out; 734 735 err = __await_barrier(ref, barrier); 736 if (err) 737 goto out; 738 } 739 740 out: 741 i915_active_release(ref); 742 return err; 743 } 744 745 static int rq_await_fence(void *arg, struct dma_fence *fence) 746 { 747 return i915_request_await_dma_fence(arg, fence); 748 } 749 750 int i915_request_await_active(struct i915_request *rq, 751 struct i915_active *ref, 752 unsigned int flags) 753 { 754 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 755 } 756 757 static int sw_await_fence(void *arg, struct dma_fence *fence) 758 { 759 return i915_sw_fence_await_dma_fence(arg, fence, 0, 760 GFP_NOWAIT | __GFP_NOWARN); 761 } 762 763 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 764 struct i915_active *ref, 765 unsigned int flags) 766 { 767 return await_active(ref, flags, sw_await_fence, fence, fence); 768 } 769 770 void i915_active_fini(struct i915_active *ref) 771 { 772 debug_active_fini(ref); 773 GEM_BUG_ON(atomic_read(&ref->count)); 774 GEM_BUG_ON(work_pending(&ref->work)); 775 mutex_destroy(&ref->mutex); 776 777 if (ref->cache) 778 #ifdef __linux__ 779 kmem_cache_free(slab_cache, ref->cache); 780 #else 781 pool_put(&slab_cache, ref->cache); 782 #endif 783 } 784 785 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 786 { 787 return node->timeline == idx && !i915_active_fence_isset(&node->base); 788 } 789 790 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 791 { 792 struct rb_node *prev, *p; 793 794 if (RB_EMPTY_ROOT(&ref->tree)) 795 return NULL; 796 797 GEM_BUG_ON(i915_active_is_idle(ref)); 798 799 /* 800 * Try to reuse any existing barrier nodes already allocated for this 801 * i915_active, due to overlapping active phases there is likely a 802 * node kept alive (as we reuse before parking). We prefer to reuse 803 * completely idle barriers (less hassle in manipulating the llists), 804 * but otherwise any will do. 805 */ 806 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 807 p = &ref->cache->node; 808 goto match; 809 } 810 811 prev = NULL; 812 p = ref->tree.rb_node; 813 while (p) { 814 struct active_node *node = 815 rb_entry(p, struct active_node, node); 816 817 if (is_idle_barrier(node, idx)) 818 goto match; 819 820 prev = p; 821 if (node->timeline < idx) 822 p = READ_ONCE(p->rb_right); 823 else 824 p = READ_ONCE(p->rb_left); 825 } 826 827 /* 828 * No quick match, but we did find the leftmost rb_node for the 829 * kernel_context. Walk the rb_tree in-order to see if there were 830 * any idle-barriers on this timeline that we missed, or just use 831 * the first pending barrier. 832 */ 833 for (p = prev; p; p = rb_next(p)) { 834 struct active_node *node = 835 rb_entry(p, struct active_node, node); 836 struct intel_engine_cs *engine; 837 838 if (node->timeline > idx) 839 break; 840 841 if (node->timeline < idx) 842 continue; 843 844 if (is_idle_barrier(node, idx)) 845 goto match; 846 847 /* 848 * The list of pending barriers is protected by the 849 * kernel_context timeline, which notably we do not hold 850 * here. i915_request_add_active_barriers() may consume 851 * the barrier before we claim it, so we have to check 852 * for success. 853 */ 854 engine = __barrier_to_engine(node); 855 smp_rmb(); /* serialise with add_active_barriers */ 856 if (is_barrier(&node->base) && 857 ____active_del_barrier(ref, node, engine)) 858 goto match; 859 } 860 861 return NULL; 862 863 match: 864 spin_lock_irq(&ref->tree_lock); 865 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 866 if (p == &ref->cache->node) 867 WRITE_ONCE(ref->cache, NULL); 868 spin_unlock_irq(&ref->tree_lock); 869 870 return rb_entry(p, struct active_node, node); 871 } 872 873 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 874 struct intel_engine_cs *engine) 875 { 876 intel_engine_mask_t tmp, mask = engine->mask; 877 struct llist_node *first = NULL, *last = NULL; 878 struct intel_gt *gt = engine->gt; 879 880 GEM_BUG_ON(i915_active_is_idle(ref)); 881 882 /* Wait until the previous preallocation is completed */ 883 while (!llist_empty(&ref->preallocated_barriers)) 884 cond_resched(); 885 886 /* 887 * Preallocate a node for each physical engine supporting the target 888 * engine (remember virtual engines have more than one sibling). 889 * We can then use the preallocated nodes in 890 * i915_active_acquire_barrier() 891 */ 892 GEM_BUG_ON(!mask); 893 for_each_engine_masked(engine, gt, mask, tmp) { 894 u64 idx = engine->kernel_context->timeline->fence_context; 895 struct llist_node *prev = first; 896 struct active_node *node; 897 898 rcu_read_lock(); 899 node = reuse_idle_barrier(ref, idx); 900 rcu_read_unlock(); 901 if (!node) { 902 #ifdef __linux__ 903 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 904 #else 905 node = pool_get(&slab_cache, PR_WAITOK); 906 #endif 907 if (!node) 908 goto unwind; 909 910 RCU_INIT_POINTER(node->base.fence, NULL); 911 node->base.cb.func = node_retire; 912 node->timeline = idx; 913 node->ref = ref; 914 } 915 916 if (!i915_active_fence_isset(&node->base)) { 917 /* 918 * Mark this as being *our* unconnected proto-node. 919 * 920 * Since this node is not in any list, and we have 921 * decoupled it from the rbtree, we can reuse the 922 * request to indicate this is an idle-barrier node 923 * and then we can use the rb_node and list pointers 924 * for our tracking of the pending barrier. 925 */ 926 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 927 node->base.cb.node.prev = (void *)engine; 928 __i915_active_acquire(ref); 929 } 930 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 931 932 GEM_BUG_ON(barrier_to_engine(node) != engine); 933 first = barrier_to_ll(node); 934 first->next = prev; 935 if (!last) 936 last = first; 937 intel_engine_pm_get(engine); 938 } 939 940 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 941 llist_add_batch(first, last, &ref->preallocated_barriers); 942 943 return 0; 944 945 unwind: 946 while (first) { 947 struct active_node *node = barrier_from_ll(first); 948 949 first = first->next; 950 951 atomic_dec(&ref->count); 952 intel_engine_pm_put(barrier_to_engine(node)); 953 954 #ifdef __linux__ 955 kmem_cache_free(slab_cache, node); 956 #else 957 pool_put(&slab_cache, node); 958 #endif 959 } 960 return -ENOMEM; 961 } 962 963 void i915_active_acquire_barrier(struct i915_active *ref) 964 { 965 struct llist_node *pos, *next; 966 unsigned long flags; 967 968 GEM_BUG_ON(i915_active_is_idle(ref)); 969 970 /* 971 * Transfer the list of preallocated barriers into the 972 * i915_active rbtree, but only as proto-nodes. They will be 973 * populated by i915_request_add_active_barriers() to point to the 974 * request that will eventually release them. 975 */ 976 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 977 struct active_node *node = barrier_from_ll(pos); 978 struct intel_engine_cs *engine = barrier_to_engine(node); 979 struct rb_node **p, *parent; 980 981 spin_lock_irqsave_nested(&ref->tree_lock, flags, 982 SINGLE_DEPTH_NESTING); 983 parent = NULL; 984 p = &ref->tree.rb_node; 985 while (*p) { 986 struct active_node *it; 987 988 parent = *p; 989 990 it = rb_entry(parent, struct active_node, node); 991 if (it->timeline < node->timeline) 992 p = &parent->rb_right; 993 else 994 p = &parent->rb_left; 995 } 996 rb_link_node(&node->node, parent, p); 997 rb_insert_color(&node->node, &ref->tree); 998 spin_unlock_irqrestore(&ref->tree_lock, flags); 999 1000 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1001 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1002 intel_engine_pm_put_delay(engine, 2); 1003 } 1004 } 1005 1006 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1007 { 1008 return __active_fence_slot(&barrier_from_ll(node)->base); 1009 } 1010 1011 void i915_request_add_active_barriers(struct i915_request *rq) 1012 { 1013 struct intel_engine_cs *engine = rq->engine; 1014 struct llist_node *node, *next; 1015 unsigned long flags; 1016 1017 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1018 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1019 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1020 1021 node = llist_del_all(&engine->barrier_tasks); 1022 if (!node) 1023 return; 1024 /* 1025 * Attach the list of proto-fences to the in-flight request such 1026 * that the parent i915_active will be released when this request 1027 * is retired. 1028 */ 1029 spin_lock_irqsave(&rq->lock, flags); 1030 llist_for_each_safe(node, next, node) { 1031 /* serialise with reuse_idle_barrier */ 1032 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1033 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1034 } 1035 spin_unlock_irqrestore(&rq->lock, flags); 1036 } 1037 1038 /* 1039 * __i915_active_fence_set: Update the last active fence along its timeline 1040 * @active: the active tracker 1041 * @fence: the new fence (under construction) 1042 * 1043 * Records the new @fence as the last active fence along its timeline in 1044 * this active tracker, moving the tracking callbacks from the previous 1045 * fence onto this one. Gets and returns a reference to the previous fence 1046 * (if not already completed), which the caller must put after making sure 1047 * that it is executed before the new fence. To ensure that the order of 1048 * fences within the timeline of the i915_active_fence is understood, it 1049 * should be locked by the caller. 1050 */ 1051 struct dma_fence * 1052 __i915_active_fence_set(struct i915_active_fence *active, 1053 struct dma_fence *fence) 1054 { 1055 struct dma_fence *prev; 1056 unsigned long flags; 1057 1058 /* 1059 * In case of fences embedded in i915_requests, their memory is 1060 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release 1061 * by new requests. Then, there is a risk of passing back a pointer 1062 * to a new, completely unrelated fence that reuses the same memory 1063 * while tracked under a different active tracker. Combined with i915 1064 * perf open/close operations that build await dependencies between 1065 * engine kernel context requests and user requests from different 1066 * timelines, this can lead to dependency loops and infinite waits. 1067 * 1068 * As a countermeasure, we try to get a reference to the active->fence 1069 * first, so if we succeed and pass it back to our user then it is not 1070 * released and potentially reused by an unrelated request before the 1071 * user has a chance to set up an await dependency on it. 1072 */ 1073 prev = i915_active_fence_get(active); 1074 if (fence == prev) 1075 return fence; 1076 1077 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1078 1079 /* 1080 * Consider that we have two threads arriving (A and B), with 1081 * C already resident as the active->fence. 1082 * 1083 * Both A and B have got a reference to C or NULL, depending on the 1084 * timing of the interrupt handler. Let's assume that if A has got C 1085 * then it has locked C first (before B). 1086 * 1087 * Note the strong ordering of the timeline also provides consistent 1088 * nesting rules for the fence->lock; the inner lock is always the 1089 * older lock. 1090 */ 1091 spin_lock_irqsave(fence->lock, flags); 1092 if (prev) 1093 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1094 1095 /* 1096 * A does the cmpxchg first, and so it sees C or NULL, as before, or 1097 * something else, depending on the timing of other threads and/or 1098 * interrupt handler. If not the same as before then A unlocks C if 1099 * applicable and retries, starting from an attempt to get a new 1100 * active->fence. Meanwhile, B follows the same path as A. 1101 * Once A succeeds with cmpxch, B fails again, retires, gets A from 1102 * active->fence, locks it as soon as A completes, and possibly 1103 * succeeds with cmpxchg. 1104 */ 1105 while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { 1106 if (prev) { 1107 spin_unlock(prev->lock); 1108 dma_fence_put(prev); 1109 } 1110 spin_unlock_irqrestore(fence->lock, flags); 1111 1112 prev = i915_active_fence_get(active); 1113 GEM_BUG_ON(prev == fence); 1114 1115 spin_lock_irqsave(fence->lock, flags); 1116 if (prev) 1117 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1118 } 1119 1120 /* 1121 * If prev is NULL then the previous fence must have been signaled 1122 * and we know that we are first on the timeline. If it is still 1123 * present then, having the lock on that fence already acquired, we 1124 * serialise with the interrupt handler, in the process of removing it 1125 * from any future interrupt callback. A will then wait on C before 1126 * executing (if present). 1127 * 1128 * As B is second, it sees A as the previous fence and so waits for 1129 * it to complete its transition and takes over the occupancy for 1130 * itself -- remembering that it needs to wait on A before executing. 1131 */ 1132 if (prev) { 1133 __list_del_entry(&active->cb.node); 1134 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1135 } 1136 list_add_tail(&active->cb.node, &fence->cb_list); 1137 spin_unlock_irqrestore(fence->lock, flags); 1138 1139 return prev; 1140 } 1141 1142 int i915_active_fence_set(struct i915_active_fence *active, 1143 struct i915_request *rq) 1144 { 1145 struct dma_fence *fence; 1146 int err = 0; 1147 1148 /* Must maintain timeline ordering wrt previous active requests */ 1149 fence = __i915_active_fence_set(active, &rq->fence); 1150 if (fence) { 1151 err = i915_request_await_dma_fence(rq, fence); 1152 dma_fence_put(fence); 1153 } 1154 1155 return err; 1156 } 1157 1158 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1159 { 1160 active_fence_cb(fence, cb); 1161 } 1162 1163 struct auto_active { 1164 struct i915_active base; 1165 struct kref ref; 1166 }; 1167 1168 struct i915_active *i915_active_get(struct i915_active *ref) 1169 { 1170 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1171 1172 kref_get(&aa->ref); 1173 return &aa->base; 1174 } 1175 1176 static void auto_release(struct kref *ref) 1177 { 1178 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1179 1180 i915_active_fini(&aa->base); 1181 kfree(aa); 1182 } 1183 1184 void i915_active_put(struct i915_active *ref) 1185 { 1186 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1187 1188 kref_put(&aa->ref, auto_release); 1189 } 1190 1191 static int auto_active(struct i915_active *ref) 1192 { 1193 i915_active_get(ref); 1194 return 0; 1195 } 1196 1197 static void auto_retire(struct i915_active *ref) 1198 { 1199 i915_active_put(ref); 1200 } 1201 1202 struct i915_active *i915_active_create(void) 1203 { 1204 struct auto_active *aa; 1205 1206 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1207 if (!aa) 1208 return NULL; 1209 1210 kref_init(&aa->ref); 1211 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1212 1213 return &aa->base; 1214 } 1215 1216 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1217 #include "selftests/i915_active.c" 1218 #endif 1219 1220 void i915_active_module_exit(void) 1221 { 1222 #ifdef __linux__ 1223 kmem_cache_destroy(slab_cache); 1224 #else 1225 pool_destroy(&slab_cache); 1226 #endif 1227 } 1228 1229 int __init i915_active_module_init(void) 1230 { 1231 #ifdef __linux__ 1232 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1233 if (!slab_cache) 1234 return -ENOMEM; 1235 #else 1236 pool_init(&slab_cache, sizeof(struct active_node), 1237 CACHELINESIZE, IPL_TTY, 0, "drmsc", NULL); 1238 #endif 1239 1240 return 0; 1241 } 1242