xref: /openbsd-src/lib/libz/inftrees.c (revision d5e7bdb5d2199eaba29067b75c68142b04886c7d)
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2024 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #define MAXBITS 15
10 
11 /*
12   If you use the zlib library in a product, an acknowledgment is welcome
13   in the documentation of your product. If for some reason you cannot
14   include such an acknowledgment, I would appreciate that you keep this
15   copyright string in the executable of your product.
16  */
17 
18 /*
19    Build a set of tables to decode the provided canonical Huffman code.
20    The code lengths are lens[0..codes-1].  The result starts at *table,
21    whose indices are 0..2^bits-1.  work is a writable array of at least
22    lens shorts, which is used as a work area.  type is the type of code
23    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
24    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
25    on return points to the next available entry's address.  bits is the
26    requested root table index bits, and on return it is the actual root
27    table index bits.  It will differ if the request is greater than the
28    longest code or if it is less than the shortest code.
29  */
inflate_table(codetype type,unsigned short FAR * lens,unsigned codes,code FAR * FAR * table,unsigned FAR * bits,unsigned short FAR * work)30 int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
31                                 unsigned codes, code FAR * FAR *table,
32                                 unsigned FAR *bits, unsigned short FAR *work) {
33     unsigned len;               /* a code's length in bits */
34     unsigned sym;               /* index of code symbols */
35     unsigned min, max;          /* minimum and maximum code lengths */
36     unsigned root;              /* number of index bits for root table */
37     unsigned curr;              /* number of index bits for current table */
38     unsigned drop;              /* code bits to drop for sub-table */
39     int left;                   /* number of prefix codes available */
40     unsigned used;              /* code entries in table used */
41     unsigned huff;              /* Huffman code */
42     unsigned incr;              /* for incrementing code, index */
43     unsigned fill;              /* index for replicating entries */
44     unsigned low;               /* low bits for current root entry */
45     unsigned mask;              /* mask for low root bits */
46     code here;                  /* table entry for duplication */
47     code FAR *next;             /* next available space in table */
48     const unsigned short FAR *base;     /* base value table to use */
49     const unsigned short FAR *extra;    /* extra bits table to use */
50     unsigned match;             /* use base and extra for symbol >= match */
51     unsigned short count[MAXBITS+1];    /* number of codes of each length */
52     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
53     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
54         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
55         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
56     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
57         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
58         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 73, 200};
59     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
60         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
61         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
62         8193, 12289, 16385, 24577, 0, 0};
63     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
64         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
65         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
66         28, 28, 29, 29, 64, 64};
67 
68     /*
69        Process a set of code lengths to create a canonical Huffman code.  The
70        code lengths are lens[0..codes-1].  Each length corresponds to the
71        symbols 0..codes-1.  The Huffman code is generated by first sorting the
72        symbols by length from short to long, and retaining the symbol order
73        for codes with equal lengths.  Then the code starts with all zero bits
74        for the first code of the shortest length, and the codes are integer
75        increments for the same length, and zeros are appended as the length
76        increases.  For the deflate format, these bits are stored backwards
77        from their more natural integer increment ordering, and so when the
78        decoding tables are built in the large loop below, the integer codes
79        are incremented backwards.
80 
81        This routine assumes, but does not check, that all of the entries in
82        lens[] are in the range 0..MAXBITS.  The caller must assure this.
83        1..MAXBITS is interpreted as that code length.  zero means that that
84        symbol does not occur in this code.
85 
86        The codes are sorted by computing a count of codes for each length,
87        creating from that a table of starting indices for each length in the
88        sorted table, and then entering the symbols in order in the sorted
89        table.  The sorted table is work[], with that space being provided by
90        the caller.
91 
92        The length counts are used for other purposes as well, i.e. finding
93        the minimum and maximum length codes, determining if there are any
94        codes at all, checking for a valid set of lengths, and looking ahead
95        at length counts to determine sub-table sizes when building the
96        decoding tables.
97      */
98 
99     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
100     for (len = 0; len <= MAXBITS; len++)
101         count[len] = 0;
102     for (sym = 0; sym < codes; sym++)
103         count[lens[sym]]++;
104 
105     /* bound code lengths, force root to be within code lengths */
106     root = *bits;
107     for (max = MAXBITS; max >= 1; max--)
108         if (count[max] != 0) break;
109     if (root > max) root = max;
110     if (max == 0) {                     /* no symbols to code at all */
111         here.op = (unsigned char)64;    /* invalid code marker */
112         here.bits = (unsigned char)1;
113         here.val = (unsigned short)0;
114         *(*table)++ = here;             /* make a table to force an error */
115         *(*table)++ = here;
116         *bits = 1;
117         return 0;     /* no symbols, but wait for decoding to report error */
118     }
119     for (min = 1; min < max; min++)
120         if (count[min] != 0) break;
121     if (root < min) root = min;
122 
123     /* check for an over-subscribed or incomplete set of lengths */
124     left = 1;
125     for (len = 1; len <= MAXBITS; len++) {
126         left <<= 1;
127         left -= count[len];
128         if (left < 0) return -1;        /* over-subscribed */
129     }
130     if (left > 0 && (type == CODES || max != 1))
131         return -1;                      /* incomplete set */
132 
133     /* generate offsets into symbol table for each length for sorting */
134     offs[1] = 0;
135     for (len = 1; len < MAXBITS; len++)
136         offs[len + 1] = offs[len] + count[len];
137 
138     /* sort symbols by length, by symbol order within each length */
139     for (sym = 0; sym < codes; sym++)
140         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
141 
142     /*
143        Create and fill in decoding tables.  In this loop, the table being
144        filled is at next and has curr index bits.  The code being used is huff
145        with length len.  That code is converted to an index by dropping drop
146        bits off of the bottom.  For codes where len is less than drop + curr,
147        those top drop + curr - len bits are incremented through all values to
148        fill the table with replicated entries.
149 
150        root is the number of index bits for the root table.  When len exceeds
151        root, sub-tables are created pointed to by the root entry with an index
152        of the low root bits of huff.  This is saved in low to check for when a
153        new sub-table should be started.  drop is zero when the root table is
154        being filled, and drop is root when sub-tables are being filled.
155 
156        When a new sub-table is needed, it is necessary to look ahead in the
157        code lengths to determine what size sub-table is needed.  The length
158        counts are used for this, and so count[] is decremented as codes are
159        entered in the tables.
160 
161        used keeps track of how many table entries have been allocated from the
162        provided *table space.  It is checked for LENS and DIST tables against
163        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
164        the initial root table size constants.  See the comments in inftrees.h
165        for more information.
166 
167        sym increments through all symbols, and the loop terminates when
168        all codes of length max, i.e. all codes, have been processed.  This
169        routine permits incomplete codes, so another loop after this one fills
170        in the rest of the decoding tables with invalid code markers.
171      */
172 
173     /* set up for code type */
174     switch (type) {
175     case CODES:
176         base = extra = work;    /* dummy value--not used */
177         match = 20;
178         break;
179     case LENS:
180         base = lbase;
181         extra = lext;
182         match = 257;
183         break;
184     default:    /* DISTS */
185         base = dbase;
186         extra = dext;
187         match = 0;
188     }
189 
190     /* initialize state for loop */
191     huff = 0;                   /* starting code */
192     sym = 0;                    /* starting code symbol */
193     len = min;                  /* starting code length */
194     next = *table;              /* current table to fill in */
195     curr = root;                /* current table index bits */
196     drop = 0;                   /* current bits to drop from code for index */
197     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
198     used = 1U << root;          /* use root table entries */
199     mask = used - 1;            /* mask for comparing low */
200 
201     /* check available table space */
202     if ((type == LENS && used > ENOUGH_LENS) ||
203         (type == DISTS && used > ENOUGH_DISTS))
204         return 1;
205 
206     /* process all codes and make table entries */
207     for (;;) {
208         /* create table entry */
209         here.bits = (unsigned char)(len - drop);
210         if (work[sym] + 1U < match) {
211             here.op = (unsigned char)0;
212             here.val = work[sym];
213         }
214         else if (work[sym] >= match) {
215             here.op = (unsigned char)(extra[work[sym] - match]);
216             here.val = base[work[sym] - match];
217         }
218         else {
219             here.op = (unsigned char)(32 + 64);         /* end of block */
220             here.val = 0;
221         }
222 
223         /* replicate for those indices with low len bits equal to huff */
224         incr = 1U << (len - drop);
225         fill = 1U << curr;
226         min = fill;                 /* save offset to next table */
227         do {
228             fill -= incr;
229             next[(huff >> drop) + fill] = here;
230         } while (fill != 0);
231 
232         /* backwards increment the len-bit code huff */
233         incr = 1U << (len - 1);
234         while (huff & incr)
235             incr >>= 1;
236         if (incr != 0) {
237             huff &= incr - 1;
238             huff += incr;
239         }
240         else
241             huff = 0;
242 
243         /* go to next symbol, update count, len */
244         sym++;
245         if (--(count[len]) == 0) {
246             if (len == max) break;
247             len = lens[work[sym]];
248         }
249 
250         /* create new sub-table if needed */
251         if (len > root && (huff & mask) != low) {
252             /* if first time, transition to sub-tables */
253             if (drop == 0)
254                 drop = root;
255 
256             /* increment past last table */
257             next += min;            /* here min is 1 << curr */
258 
259             /* determine length of next table */
260             curr = len - drop;
261             left = (int)(1 << curr);
262             while (curr + drop < max) {
263                 left -= count[curr + drop];
264                 if (left <= 0) break;
265                 curr++;
266                 left <<= 1;
267             }
268 
269             /* check for enough space */
270             used += 1U << curr;
271             if ((type == LENS && used > ENOUGH_LENS) ||
272                 (type == DISTS && used > ENOUGH_DISTS))
273                 return 1;
274 
275             /* point entry in root table to sub-table */
276             low = huff & mask;
277             (*table)[low].op = (unsigned char)curr;
278             (*table)[low].bits = (unsigned char)root;
279             (*table)[low].val = (unsigned short)(next - *table);
280         }
281     }
282 
283     /* fill in remaining table entry if code is incomplete (guaranteed to have
284        at most one remaining entry, since if the code is incomplete, the
285        maximum code length that was allowed to get this far is one bit) */
286     if (huff != 0) {
287         here.op = (unsigned char)64;            /* invalid code marker */
288         here.bits = (unsigned char)(len - drop);
289         here.val = (unsigned short)0;
290         next[huff] = here;
291     }
292 
293     /* set return parameters */
294     *table += used;
295     *bits = root;
296     return 0;
297 }
298