xref: /openbsd-src/lib/libcrypto/rc4/asm/rc4-x86_64.pl (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# July 2004
11#
12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13# "hand-coded assembler"] doesn't stand for the whole improvement
14# coefficient. It turned out that eliminating RC4_CHAR from config
15# line results in ~40% improvement (yes, even for C implementation).
16# Presumably it has everything to do with AMD cache architecture and
17# RAW or whatever penalties. Once again! The module *requires* config
18# line *without* RC4_CHAR! As for coding "secret," I bet on partial
19# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20# I simply 'inc %r8b'. Even though optimization manual discourages
21# to operate on partial registers, it turned out to be the best bet.
22# At least for AMD... How IA32E would perform remains to be seen...
23
24# November 2004
25#
26# As was shown by Marc Bevand reordering of couple of load operations
27# results in even higher performance gain of 3.3x:-) At least on
28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
29# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30# Latter means that if you want to *estimate* what to expect from
31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
32
33# November 2004
34#
35# Intel P4 EM64T core was found to run the AMD64 code really slow...
36# The only way to achieve comparable performance on P4 was to keep
37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38# compose blended code, which would perform even within 30% marginal
39# on either AMD and Intel platforms, I implement both cases. See
40# rc4_skey.c for further details...
41
42# April 2005
43#
44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45# those with add/sub results in 50% performance improvement of folded
46# loop...
47
48# May 2005
49#
50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51# performance by >30% [unlike P4 32-bit case that is]. But this is
52# provided that loads are reordered even more aggressively! Both code
53# pathes, AMD64 and EM64T, reorder loads in essentially same manner
54# as my IA-64 implementation. On Opteron this resulted in modest 5%
55# improvement [I had to test it], while final Intel P4 performance
56# achieves respectful 432MBps on 2.8GHz processor now. For reference.
57# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58# RC4_INT code-path. While if executed on Opteron, it's only 25%
59# slower than the RC4_INT one [meaning that if CPU �-arch detection
60# is not implemented, then this final RC4_CHAR code-path should be
61# preferred, as it provides better *all-round* performance].
62
63# March 2007
64#
65# Intel Core2 was observed to perform poorly on both code paths:-( It
66# apparently suffers from some kind of partial register stall, which
67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
68# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69# cloop1 boosts its performance by 80%! This loop appears to be optimal
70# fit for Core2 and therefore the code was modified to skip cloop8 on
71# this CPU.
72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optmize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron	5.3/+0%(*)
90# P4		6.5
91# Core2		6.2/+15%(**)
92# Westmere	4.2/+60%
93# Sandy Bridge	4.2/+120%
94# Atom		9.3/+80%
95#
96# (*)	But corresponding loop has less instructions, which should have
97#	positive effect on upcoming Bulldozer, which has one less ALU.
98#	For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**)	Note that Core2 result is ~15% lower than corresponding result
100#	for 32-bit code, meaning that it's possible to improve it,
101#	but more than likely at the cost of the others (see rc4-586.pl
102#	to get the idea)...
103
104$flavour = shift;
105$output  = shift;
106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
107
108$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
109( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
110( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
111die "can't locate x86_64-xlate.pl";
112
113open OUT,"| \"$^X\" $xlate $flavour $output";
114*STDOUT=*OUT;
115
116$dat="%rdi";	    # arg1
117$len="%rsi";	    # arg2
118$inp="%rdx";	    # arg3
119$out="%rcx";	    # arg4
120
121{
122$code=<<___;
123.text
124.extern	OPENSSL_ia32cap_P
125
126.globl	RC4
127.type	RC4,\@function,4
128.align	16
129RC4:	or	$len,$len
130	jne	.Lentry
131	ret
132.Lentry:
133	push	%rbx
134	push	%r12
135	push	%r13
136.Lprologue:
137	mov	$len,%r11
138	mov	$inp,%r12
139	mov	$out,%r13
140___
141my $len="%r11";		# reassign input arguments
142my $inp="%r12";
143my $out="%r13";
144
145my @XX=("%r10","%rsi");
146my @TX=("%rax","%rbx");
147my $YY="%rcx";
148my $TY="%rdx";
149
150$code.=<<___;
151	xor	$XX[0],$XX[0]
152	xor	$YY,$YY
153
154	lea	8($dat),$dat
155	mov	-8($dat),$XX[0]#b
156	mov	-4($dat),$YY#b
157	cmpl	\$-1,256($dat)
158	je	.LRC4_CHAR
159	mov	OPENSSL_ia32cap_P(%rip),%r8d
160	xor	$TX[1],$TX[1]
161	inc	$XX[0]#b
162	sub	$XX[0],$TX[1]
163	sub	$inp,$out
164	movl	($dat,$XX[0],4),$TX[0]#d
165	test	\$-16,$len
166	jz	.Lloop1
167	bt	\$30,%r8d	# Intel CPU?
168	jc	.Lintel
169	and	\$7,$TX[1]
170	lea	1($XX[0]),$XX[1]
171	jz	.Loop8
172	sub	$TX[1],$len
173.Loop8_warmup:
174	add	$TX[0]#b,$YY#b
175	movl	($dat,$YY,4),$TY#d
176	movl	$TX[0]#d,($dat,$YY,4)
177	movl	$TY#d,($dat,$XX[0],4)
178	add	$TY#b,$TX[0]#b
179	inc	$XX[0]#b
180	movl	($dat,$TX[0],4),$TY#d
181	movl	($dat,$XX[0],4),$TX[0]#d
182	xorb	($inp),$TY#b
183	movb	$TY#b,($out,$inp)
184	lea	1($inp),$inp
185	dec	$TX[1]
186	jnz	.Loop8_warmup
187
188	lea	1($XX[0]),$XX[1]
189	jmp	.Loop8
190.align	16
191.Loop8:
192___
193for ($i=0;$i<8;$i++) {
194$code.=<<___ if ($i==7);
195	add	\$8,$XX[1]#b
196___
197$code.=<<___;
198	add	$TX[0]#b,$YY#b
199	movl	($dat,$YY,4),$TY#d
200	movl	$TX[0]#d,($dat,$YY,4)
201	movl	`4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
202	ror	\$8,%r8				# ror is redundant when $i=0
203	movl	$TY#d,4*$i($dat,$XX[0],4)
204	add	$TX[0]#b,$TY#b
205	movb	($dat,$TY,4),%r8b
206___
207push(@TX,shift(@TX)); #push(@XX,shift(@XX));	# "rotate" registers
208}
209$code.=<<___;
210	add	\$8,$XX[0]#b
211	ror	\$8,%r8
212	sub	\$8,$len
213
214	xor	($inp),%r8
215	mov	%r8,($out,$inp)
216	lea	8($inp),$inp
217
218	test	\$-8,$len
219	jnz	.Loop8
220	cmp	\$0,$len
221	jne	.Lloop1
222	jmp	.Lexit
223
224.align	16
225.Lintel:
226	test	\$-32,$len
227	jz	.Lloop1
228	and	\$15,$TX[1]
229	jz	.Loop16_is_hot
230	sub	$TX[1],$len
231.Loop16_warmup:
232	add	$TX[0]#b,$YY#b
233	movl	($dat,$YY,4),$TY#d
234	movl	$TX[0]#d,($dat,$YY,4)
235	movl	$TY#d,($dat,$XX[0],4)
236	add	$TY#b,$TX[0]#b
237	inc	$XX[0]#b
238	movl	($dat,$TX[0],4),$TY#d
239	movl	($dat,$XX[0],4),$TX[0]#d
240	xorb	($inp),$TY#b
241	movb	$TY#b,($out,$inp)
242	lea	1($inp),$inp
243	dec	$TX[1]
244	jnz	.Loop16_warmup
245
246	mov	$YY,$TX[1]
247	xor	$YY,$YY
248	mov	$TX[1]#b,$YY#b
249
250.Loop16_is_hot:
251	lea	($dat,$XX[0],4),$XX[1]
252___
253sub RC4_loop {
254  my $i=shift;
255  my $j=$i<0?0:$i;
256  my $xmm="%xmm".($j&1);
257
258    $code.="	add	\$16,$XX[0]#b\n"		if ($i==15);
259    $code.="	movdqu	($inp),%xmm2\n"			if ($i==15);
260    $code.="	add	$TX[0]#b,$YY#b\n"		if ($i<=0);
261    $code.="	movl	($dat,$YY,4),$TY#d\n";
262    $code.="	pxor	%xmm0,%xmm2\n"			if ($i==0);
263    $code.="	psllq	\$8,%xmm1\n"			if ($i==0);
264    $code.="	pxor	$xmm,$xmm\n"			if ($i<=1);
265    $code.="	movl	$TX[0]#d,($dat,$YY,4)\n";
266    $code.="	add	$TY#b,$TX[0]#b\n";
267    $code.="	movl	`4*($j+1)`($XX[1]),$TX[1]#d\n"	if ($i<15);
268    $code.="	movz	$TX[0]#b,$TX[0]#d\n";
269    $code.="	movl	$TY#d,4*$j($XX[1])\n";
270    $code.="	pxor	%xmm1,%xmm2\n"			if ($i==0);
271    $code.="	lea	($dat,$XX[0],4),$XX[1]\n"	if ($i==15);
272    $code.="	add	$TX[1]#b,$YY#b\n"		if ($i<15);
273    $code.="	pinsrw	\$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
274    $code.="	movdqu	%xmm2,($out,$inp)\n"		if ($i==0);
275    $code.="	lea	16($inp),$inp\n"		if ($i==0);
276    $code.="	movl	($XX[1]),$TX[1]#d\n"		if ($i==15);
277}
278	RC4_loop(-1);
279$code.=<<___;
280	jmp	.Loop16_enter
281.align	16
282.Loop16:
283___
284
285for ($i=0;$i<16;$i++) {
286    $code.=".Loop16_enter:\n"		if ($i==1);
287	RC4_loop($i);
288	push(@TX,shift(@TX)); 		# "rotate" registers
289}
290$code.=<<___;
291	mov	$YY,$TX[1]
292	xor	$YY,$YY			# keyword to partial register
293	sub	\$16,$len
294	mov	$TX[1]#b,$YY#b
295	test	\$-16,$len
296	jnz	.Loop16
297
298	psllq	\$8,%xmm1
299	pxor	%xmm0,%xmm2
300	pxor	%xmm1,%xmm2
301	movdqu	%xmm2,($out,$inp)
302	lea	16($inp),$inp
303
304	cmp	\$0,$len
305	jne	.Lloop1
306	jmp	.Lexit
307
308.align	16
309.Lloop1:
310	add	$TX[0]#b,$YY#b
311	movl	($dat,$YY,4),$TY#d
312	movl	$TX[0]#d,($dat,$YY,4)
313	movl	$TY#d,($dat,$XX[0],4)
314	add	$TY#b,$TX[0]#b
315	inc	$XX[0]#b
316	movl	($dat,$TX[0],4),$TY#d
317	movl	($dat,$XX[0],4),$TX[0]#d
318	xorb	($inp),$TY#b
319	movb	$TY#b,($out,$inp)
320	lea	1($inp),$inp
321	dec	$len
322	jnz	.Lloop1
323	jmp	.Lexit
324
325.align	16
326.LRC4_CHAR:
327	add	\$1,$XX[0]#b
328	movzb	($dat,$XX[0]),$TX[0]#d
329	test	\$-8,$len
330	jz	.Lcloop1
331	jmp	.Lcloop8
332.align	16
333.Lcloop8:
334	mov	($inp),%r8d
335	mov	4($inp),%r9d
336___
337# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
338for ($i=0;$i<4;$i++) {
339$code.=<<___;
340	add	$TX[0]#b,$YY#b
341	lea	1($XX[0]),$XX[1]
342	movzb	($dat,$YY),$TY#d
343	movzb	$XX[1]#b,$XX[1]#d
344	movzb	($dat,$XX[1]),$TX[1]#d
345	movb	$TX[0]#b,($dat,$YY)
346	cmp	$XX[1],$YY
347	movb	$TY#b,($dat,$XX[0])
348	jne	.Lcmov$i			# Intel cmov is sloooow...
349	mov	$TX[0],$TX[1]
350.Lcmov$i:
351	add	$TX[0]#b,$TY#b
352	xor	($dat,$TY),%r8b
353	ror	\$8,%r8d
354___
355push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
356}
357for ($i=4;$i<8;$i++) {
358$code.=<<___;
359	add	$TX[0]#b,$YY#b
360	lea	1($XX[0]),$XX[1]
361	movzb	($dat,$YY),$TY#d
362	movzb	$XX[1]#b,$XX[1]#d
363	movzb	($dat,$XX[1]),$TX[1]#d
364	movb	$TX[0]#b,($dat,$YY)
365	cmp	$XX[1],$YY
366	movb	$TY#b,($dat,$XX[0])
367	jne	.Lcmov$i			# Intel cmov is sloooow...
368	mov	$TX[0],$TX[1]
369.Lcmov$i:
370	add	$TX[0]#b,$TY#b
371	xor	($dat,$TY),%r9b
372	ror	\$8,%r9d
373___
374push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
375}
376$code.=<<___;
377	lea	-8($len),$len
378	mov	%r8d,($out)
379	lea	8($inp),$inp
380	mov	%r9d,4($out)
381	lea	8($out),$out
382
383	test	\$-8,$len
384	jnz	.Lcloop8
385	cmp	\$0,$len
386	jne	.Lcloop1
387	jmp	.Lexit
388___
389$code.=<<___;
390.align	16
391.Lcloop1:
392	add	$TX[0]#b,$YY#b
393	movzb	$YY#b,$YY#d
394	movzb	($dat,$YY),$TY#d
395	movb	$TX[0]#b,($dat,$YY)
396	movb	$TY#b,($dat,$XX[0])
397	add	$TX[0]#b,$TY#b
398	add	\$1,$XX[0]#b
399	movzb	$TY#b,$TY#d
400	movzb	$XX[0]#b,$XX[0]#d
401	movzb	($dat,$TY),$TY#d
402	movzb	($dat,$XX[0]),$TX[0]#d
403	xorb	($inp),$TY#b
404	lea	1($inp),$inp
405	movb	$TY#b,($out)
406	lea	1($out),$out
407	sub	\$1,$len
408	jnz	.Lcloop1
409	jmp	.Lexit
410
411.align	16
412.Lexit:
413	sub	\$1,$XX[0]#b
414	movl	$XX[0]#d,-8($dat)
415	movl	$YY#d,-4($dat)
416
417	mov	(%rsp),%r13
418	mov	8(%rsp),%r12
419	mov	16(%rsp),%rbx
420	add	\$24,%rsp
421.Lepilogue:
422	ret
423.size	RC4,.-RC4
424___
425}
426
427$idx="%r8";
428$ido="%r9";
429
430$code.=<<___;
431.globl	RC4_set_key
432.type	RC4_set_key,\@function,3
433.align	16
434RC4_set_key:
435	lea	8($dat),$dat
436	lea	($inp,$len),$inp
437	neg	$len
438	mov	$len,%rcx
439	xor	%eax,%eax
440	xor	$ido,$ido
441	xor	%r10,%r10
442	xor	%r11,%r11
443
444	mov	OPENSSL_ia32cap_P(%rip),$idx#d
445	bt	\$20,$idx#d	# RC4_CHAR?
446	jc	.Lc1stloop
447	jmp	.Lw1stloop
448
449.align	16
450.Lw1stloop:
451	mov	%eax,($dat,%rax,4)
452	add	\$1,%al
453	jnc	.Lw1stloop
454
455	xor	$ido,$ido
456	xor	$idx,$idx
457.align	16
458.Lw2ndloop:
459	mov	($dat,$ido,4),%r10d
460	add	($inp,$len,1),$idx#b
461	add	%r10b,$idx#b
462	add	\$1,$len
463	mov	($dat,$idx,4),%r11d
464	cmovz	%rcx,$len
465	mov	%r10d,($dat,$idx,4)
466	mov	%r11d,($dat,$ido,4)
467	add	\$1,$ido#b
468	jnc	.Lw2ndloop
469	jmp	.Lexit_key
470
471.align	16
472.Lc1stloop:
473	mov	%al,($dat,%rax)
474	add	\$1,%al
475	jnc	.Lc1stloop
476
477	xor	$ido,$ido
478	xor	$idx,$idx
479.align	16
480.Lc2ndloop:
481	mov	($dat,$ido),%r10b
482	add	($inp,$len),$idx#b
483	add	%r10b,$idx#b
484	add	\$1,$len
485	mov	($dat,$idx),%r11b
486	jnz	.Lcnowrap
487	mov	%rcx,$len
488.Lcnowrap:
489	mov	%r10b,($dat,$idx)
490	mov	%r11b,($dat,$ido)
491	add	\$1,$ido#b
492	jnc	.Lc2ndloop
493	movl	\$-1,256($dat)
494
495.align	16
496.Lexit_key:
497	xor	%eax,%eax
498	mov	%eax,-8($dat)
499	mov	%eax,-4($dat)
500	ret
501.size	RC4_set_key,.-RC4_set_key
502
503.globl	RC4_options
504.type	RC4_options,\@abi-omnipotent
505.align	16
506RC4_options:
507	lea	.Lopts(%rip),%rax
508	mov	OPENSSL_ia32cap_P(%rip),%edx
509	bt	\$20,%edx
510	jc	.L8xchar
511	bt	\$30,%edx
512	jnc	.Ldone
513	add	\$25,%rax
514	ret
515.L8xchar:
516	add	\$12,%rax
517.Ldone:
518	ret
519.align	64
520.Lopts:
521.asciz	"rc4(8x,int)"
522.asciz	"rc4(8x,char)"
523.asciz	"rc4(16x,int)"
524.asciz	"RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
525.align	64
526.size	RC4_options,.-RC4_options
527___
528
529sub reg_part {
530my ($reg,$conv)=@_;
531    if ($reg =~ /%r[0-9]+/)	{ $reg .= $conv; }
532    elsif ($conv eq "b")	{ $reg =~ s/%[er]([^x]+)x?/%$1l/;	}
533    elsif ($conv eq "w")	{ $reg =~ s/%[er](.+)/%$1/;		}
534    elsif ($conv eq "d")	{ $reg =~ s/%[er](.+)/%e$1/;		}
535    return $reg;
536}
537
538$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
539$code =~ s/\`([^\`]*)\`/eval $1/gem;
540
541print $code;
542
543close STDOUT;
544