xref: /openbsd-src/lib/libc/stdlib/radixsort.c (revision 1ed98fdf61d9dd29369f246109081408082ce54d)
1 /*	$OpenBSD: radixsort.c,v 1.9 2007/09/02 15:19:17 deraadt Exp $ */
2 /*-
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Peter McIlroy and by Dan Bernstein at New York University,
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Radixsort routines.
36  *
37  * Program r_sort_a() is unstable but uses O(logN) extra memory for a stack.
38  * Use radixsort(a, n, trace, endchar) for this case.
39  *
40  * For stable sorting (using N extra pointers) use sradixsort(), which calls
41  * r_sort_b().
42  *
43  * For a description of this code, see D. McIlroy, P. McIlroy, K. Bostic,
44  * "Engineering Radix Sort".
45  */
46 
47 #include <sys/types.h>
48 #include <stdlib.h>
49 #include <errno.h>
50 
51 typedef struct {
52 	const u_char **sa;
53 	int sn, si;
54 } stack;
55 
56 static __inline void simplesort
57 (const u_char **, int, int, const u_char *, u_int);
58 static void r_sort_a(const u_char **, int, int, const u_char *, u_int);
59 static void r_sort_b(const u_char **,
60 	    const u_char **, int, int, const u_char *, u_int);
61 
62 #define	THRESHOLD	20		/* Divert to simplesort(). */
63 #define	SIZE		512		/* Default stack size. */
64 
65 #define SETUP {								\
66 	if (tab == NULL) {						\
67 		tr = tr0;						\
68 		for (c = 0; c < endch; c++)				\
69 			tr0[c] = c + 1;					\
70 		tr0[c] = 0;						\
71 		for (c++; c < 256; c++)					\
72 			tr0[c] = c;					\
73 		endch = 0;						\
74 	} else {							\
75 		endch = tab[endch];					\
76 		tr = tab;						\
77 		if (endch != 0 && endch != 255) {			\
78 			errno = EINVAL;					\
79 			return (-1);					\
80 		}							\
81 	}								\
82 }
83 
84 int
radixsort(const u_char ** a,int n,const u_char * tab,u_int endch)85 radixsort(const u_char **a, int n, const u_char *tab, u_int endch)
86 {
87 	const u_char *tr;
88 	int c;
89 	u_char tr0[256];
90 
91 	SETUP;
92 	r_sort_a(a, n, 0, tr, endch);
93 	return (0);
94 }
95 
96 int
sradixsort(const u_char ** a,int n,const u_char * tab,u_int endch)97 sradixsort(const u_char **a, int n, const u_char *tab, u_int endch)
98 {
99 	const u_char *tr, **ta;
100 	int c;
101 	u_char tr0[256];
102 
103 	SETUP;
104 	if (n < THRESHOLD)
105 		simplesort(a, n, 0, tr, endch);
106 	else {
107 		if ((ta = calloc(n, sizeof(a))) == NULL)
108 			return (-1);
109 		r_sort_b(a, ta, n, 0, tr, endch);
110 		free(ta);
111 	}
112 	return (0);
113 }
114 
115 #define empty(s)	(s >= sp)
116 #define pop(a, n, i)	a = (--sp)->sa, n = sp->sn, i = sp->si
117 #define push(a, n, i)	sp->sa = a, sp->sn = n, (sp++)->si = i
118 #define swap(a, b, t)	t = a, a = b, b = t
119 
120 /* Unstable, in-place sort. */
121 void
r_sort_a(const u_char ** a,int n,int i,const u_char * tr,u_int endch)122 r_sort_a(const u_char **a, int n, int i, const u_char *tr, u_int endch)
123 {
124 	static int count[256], nc, bmin;
125 	int c;
126 	const u_char **ak, *r;
127 	stack s[SIZE], *sp, *sp0, *sp1, temp;
128 	int *cp, bigc;
129 	const u_char **an, *t, **aj, **top[256];
130 
131 	/* Set up stack. */
132 	sp = s;
133 	push(a, n, i);
134 	while (!empty(s)) {
135 		pop(a, n, i);
136 		if (n < THRESHOLD) {
137 			simplesort(a, n, i, tr, endch);
138 			continue;
139 		}
140 		an = a + n;
141 
142 		/* Make character histogram. */
143 		if (nc == 0) {
144 			bmin = 255;	/* First occupied bin, excluding eos. */
145 			for (ak = a; ak < an;) {
146 				c = tr[(*ak++)[i]];
147 				if (++count[c] == 1 && c != endch) {
148 					if (c < bmin)
149 						bmin = c;
150 					nc++;
151 				}
152 			}
153 			if (sp + nc > s + SIZE) {	/* Get more stack. */
154 				r_sort_a(a, n, i, tr, endch);
155 				continue;
156 			}
157 		}
158 
159 		/*
160 		 * Set top[]; push incompletely sorted bins onto stack.
161 		 * top[] = pointers to last out-of-place element in bins.
162 		 * count[] = counts of elements in bins.
163 		 * Before permuting: top[c-1] + count[c] = top[c];
164 		 * during deal: top[c] counts down to top[c-1].
165 		 */
166 		sp0 = sp1 = sp;		/* Stack position of biggest bin. */
167 		bigc = 2;		/* Size of biggest bin. */
168 		if (endch == 0)		/* Special case: set top[eos]. */
169 			top[0] = ak = a + count[0];
170 		else {
171 			ak = a;
172 			top[255] = an;
173 		}
174 		for (cp = count + bmin; nc > 0; cp++) {
175 			while (*cp == 0)	/* Find next non-empty pile. */
176 				cp++;
177 			if (*cp > 1) {
178 				if (*cp > bigc) {
179 					bigc = *cp;
180 					sp1 = sp;
181 				}
182 				push(ak, *cp, i+1);
183 			}
184 			top[cp-count] = ak += *cp;
185 			nc--;
186 		}
187 		swap(*sp0, *sp1, temp);	/* Play it safe -- biggest bin last. */
188 
189 		/*
190 		 * Permute misplacements home.  Already home: everything
191 		 * before aj, and in bin[c], items from top[c] on.
192 		 * Inner loop:
193 		 *	r = next element to put in place;
194 		 *	ak = top[r[i]] = location to put the next element.
195 		 *	aj = bottom of 1st disordered bin.
196 		 * Outer loop:
197 		 *	Once the 1st disordered bin is done, ie. aj >= ak,
198 		 *	aj<-aj + count[c] connects the bins in a linked list;
199 		 *	reset count[c].
200 		 */
201 		for (aj = a; aj < an;  *aj = r, aj += count[c], count[c] = 0)
202 			for (r = *aj;  aj < (ak = --top[c = tr[r[i]]]);)
203 				swap(*ak, r, t);
204 	}
205 }
206 
207 /* Stable sort, requiring additional memory. */
208 void
r_sort_b(const u_char ** a,const u_char ** ta,int n,int i,const u_char * tr,u_int endch)209 r_sort_b(const u_char **a, const u_char **ta, int n, int i, const u_char *tr,
210     u_int endch)
211 {
212 	static int count[256], nc, bmin;
213 	int c;
214 	const u_char **ak, **ai;
215 	stack s[512], *sp, *sp0, *sp1, temp;
216 	const u_char **top[256];
217 	int *cp, bigc;
218 
219 	sp = s;
220 	push(a, n, i);
221 	while (!empty(s)) {
222 		pop(a, n, i);
223 		if (n < THRESHOLD) {
224 			simplesort(a, n, i, tr, endch);
225 			continue;
226 		}
227 
228 		if (nc == 0) {
229 			bmin = 255;
230 			for (ak = a + n; --ak >= a;) {
231 				c = tr[(*ak)[i]];
232 				if (++count[c] == 1 && c != endch) {
233 					if (c < bmin)
234 						bmin = c;
235 					nc++;
236 				}
237 			}
238 			if (sp + nc > s + SIZE) {
239 				r_sort_b(a, ta, n, i, tr, endch);
240 				continue;
241 			}
242 		}
243 
244 		sp0 = sp1 = sp;
245 		bigc = 2;
246 		if (endch == 0) {
247 			top[0] = ak = a + count[0];
248 			count[0] = 0;
249 		} else {
250 			ak = a;
251 			top[255] = a + n;
252 			count[255] = 0;
253 		}
254 		for (cp = count + bmin; nc > 0; cp++) {
255 			while (*cp == 0)
256 				cp++;
257 			if ((c = *cp) > 1) {
258 				if (c > bigc) {
259 					bigc = c;
260 					sp1 = sp;
261 				}
262 				push(ak, c, i+1);
263 			}
264 			top[cp-count] = ak += c;
265 			*cp = 0;			/* Reset count[]. */
266 			nc--;
267 		}
268 		swap(*sp0, *sp1, temp);
269 
270 		for (ak = ta + n, ai = a+n; ak > ta;)	/* Copy to temp. */
271 			*--ak = *--ai;
272 		for (ak = ta+n; --ak >= ta;)		/* Deal to piles. */
273 			*--top[tr[(*ak)[i]]] = *ak;
274 	}
275 }
276 
277 static __inline void
simplesort(const u_char ** a,int n,int b,const u_char * tr,u_int endch)278 simplesort(const u_char **a, int n, int b, const u_char *tr, u_int endch)
279     /* insertion sort */
280 {
281 	u_char ch;
282 	const u_char  **ak, **ai, *s, *t;
283 
284 	for (ak = a+1; --n >= 1; ak++)
285 		for (ai = ak; ai > a; ai--) {
286 			for (s = ai[0] + b, t = ai[-1] + b;
287 			    (ch = tr[*s]) != endch; s++, t++)
288 				if (ch != tr[*t])
289 					break;
290 			if (ch >= tr[*t])
291 				break;
292 			swap(ai[0], ai[-1], s);
293 		}
294 }
295