1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static int elf64_hppa_additional_program_headers
208 PARAMS ((bfd *));
209
210 static bfd_boolean elf64_hppa_modify_segment_map
211 PARAMS ((bfd *, struct bfd_link_info *));
212
213 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
214 PARAMS ((const Elf_Internal_Rela *));
215
216 static bfd_boolean elf64_hppa_finish_dynamic_sections
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219 static bfd_boolean elf64_hppa_check_relocs
220 PARAMS ((bfd *, struct bfd_link_info *,
221 asection *, const Elf_Internal_Rela *));
222
223 static bfd_boolean elf64_hppa_dynamic_symbol_p
224 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
225
226 static bfd_boolean elf64_hppa_mark_exported_functions
227 PARAMS ((struct elf_link_hash_entry *, PTR));
228
229 static bfd_boolean elf64_hppa_finalize_opd
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean elf64_hppa_finalize_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_plt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_stub
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_opd
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean get_reloc_section
248 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
249
250 static bfd_boolean count_dyn_reloc
251 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
252 int, asection *, int, bfd_vma, bfd_vma));
253
254 static bfd_boolean allocate_dynrel_entries
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static bfd_boolean elf64_hppa_finalize_dynreloc
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean get_opd
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_plt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_dlt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_stub
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym *, int));
274
275 static bfd_boolean
elf64_hppa_dyn_hash_table_init(struct elf64_hppa_dyn_hash_table * ht,bfd * abfd ATTRIBUTE_UNUSED,new_hash_entry_func new,unsigned int entsize)276 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
277 bfd *abfd ATTRIBUTE_UNUSED,
278 new_hash_entry_func new,
279 unsigned int entsize)
280 {
281 memset (ht, 0, sizeof (*ht));
282 return bfd_hash_table_init (&ht->root, new, entsize);
283 }
284
285 static struct bfd_hash_entry*
elf64_hppa_new_dyn_hash_entry(entry,table,string)286 elf64_hppa_new_dyn_hash_entry (entry, table, string)
287 struct bfd_hash_entry *entry;
288 struct bfd_hash_table *table;
289 const char *string;
290 {
291 struct elf64_hppa_dyn_hash_entry *ret;
292 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
293
294 /* Allocate the structure if it has not already been allocated by a
295 subclass. */
296 if (!ret)
297 ret = bfd_hash_allocate (table, sizeof (*ret));
298
299 if (!ret)
300 return 0;
301
302 /* Call the allocation method of the superclass. */
303 ret = ((struct elf64_hppa_dyn_hash_entry *)
304 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
305
306 /* Initialize our local data. All zeros. */
307 memset (&ret->dlt_offset, 0,
308 (sizeof (struct elf64_hppa_dyn_hash_entry)
309 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
310
311 return &ret->root;
312 }
313
314 /* Create the derived linker hash table. The PA64 ELF port uses this
315 derived hash table to keep information specific to the PA ElF
316 linker (without using static variables). */
317
318 static struct bfd_link_hash_table*
elf64_hppa_hash_table_create(abfd)319 elf64_hppa_hash_table_create (abfd)
320 bfd *abfd;
321 {
322 struct elf64_hppa_link_hash_table *ret;
323
324 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
325 if (!ret)
326 return 0;
327 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
328 _bfd_elf_link_hash_newfunc,
329 sizeof (struct elf_link_hash_entry)))
330 {
331 bfd_release (abfd, ret);
332 return 0;
333 }
334
335 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
336 elf64_hppa_new_dyn_hash_entry,
337 sizeof (struct elf64_hppa_dyn_hash_entry)))
338 return 0;
339 return &ret->root.root;
340 }
341
342 /* Look up an entry in a PA64 ELF linker hash table. */
343
344 static struct elf64_hppa_dyn_hash_entry *
elf64_hppa_dyn_hash_lookup(table,string,create,copy)345 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
348 bfd_boolean create, copy;
349 {
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
352 }
353
354 /* Traverse a PA64 ELF linker hash table. */
355
356 static void
elf64_hppa_dyn_hash_traverse(table,func,info)357 elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
359 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360 PTR info;
361 {
362 (bfd_hash_traverse
363 (&table->root,
364 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365 info));
366 }
367
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
370 Additionally we set the default architecture and machine. */
371 static bfd_boolean
elf64_hppa_object_p(abfd)372 elf64_hppa_object_p (abfd)
373 bfd *abfd;
374 {
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
377
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380 {
381 /* GCC on hppa-linux produces binaries with OSABI=Linux,
382 but the kernel produces corefiles with OSABI=SysV. */
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
384 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
385 return FALSE;
386 }
387 else
388 {
389 /* HPUX produces binaries with OSABI=HPUX,
390 but the kernel produces corefiles with OSABI=SysV. */
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
392 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
393 return FALSE;
394 }
395
396 flags = i_ehdrp->e_flags;
397 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
398 {
399 case EFA_PARISC_1_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
401 case EFA_PARISC_1_1:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
403 case EFA_PARISC_2_0:
404 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 else
407 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
408 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
409 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
410 }
411 /* Don't be fussy. */
412 return TRUE;
413 }
414
415 /* Given section type (hdr->sh_type), return a boolean indicating
416 whether or not the section is an elf64-hppa specific section. */
417 static bfd_boolean
elf64_hppa_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)418 elf64_hppa_section_from_shdr (bfd *abfd,
419 Elf_Internal_Shdr *hdr,
420 const char *name,
421 int shindex)
422 {
423 asection *newsect;
424
425 switch (hdr->sh_type)
426 {
427 case SHT_PARISC_EXT:
428 if (strcmp (name, ".PARISC.archext") != 0)
429 return FALSE;
430 break;
431 case SHT_PARISC_UNWIND:
432 if (strcmp (name, ".PARISC.unwind") != 0)
433 return FALSE;
434 break;
435 case SHT_PARISC_DOC:
436 case SHT_PARISC_ANNOT:
437 default:
438 return FALSE;
439 }
440
441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
442 return FALSE;
443 newsect = hdr->bfd_section;
444
445 return TRUE;
446 }
447
448 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
449 name describes what was once potentially anonymous memory. We
450 allocate memory as necessary, possibly reusing PBUF/PLEN. */
451
452 static const char *
get_dyn_name(abfd,h,rel,pbuf,plen)453 get_dyn_name (abfd, h, rel, pbuf, plen)
454 bfd *abfd;
455 struct elf_link_hash_entry *h;
456 const Elf_Internal_Rela *rel;
457 char **pbuf;
458 size_t *plen;
459 {
460 asection *sec = abfd->sections;
461 size_t nlen, tlen;
462 char *buf;
463 size_t len;
464
465 if (h && rel->r_addend == 0)
466 return h->root.root.string;
467
468 if (h)
469 nlen = strlen (h->root.root.string);
470 else
471 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
472 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
473
474 len = *plen;
475 buf = *pbuf;
476 if (len < tlen)
477 {
478 if (buf)
479 free (buf);
480 *pbuf = buf = malloc (tlen);
481 *plen = len = tlen;
482 if (!buf)
483 return NULL;
484 }
485
486 if (h)
487 {
488 memcpy (buf, h->root.root.string, nlen);
489 buf[nlen++] = '+';
490 sprintf_vma (buf + nlen, rel->r_addend);
491 }
492 else
493 {
494 nlen = sprintf (buf, "%x:%lx",
495 sec->id & 0xffffffff,
496 (long) ELF64_R_SYM (rel->r_info));
497 if (rel->r_addend)
498 {
499 buf[nlen++] = '+';
500 sprintf_vma (buf + nlen, rel->r_addend);
501 }
502 }
503
504 return buf;
505 }
506
507 /* SEC is a section containing relocs for an input BFD when linking; return
508 a suitable section for holding relocs in the output BFD for a link. */
509
510 static bfd_boolean
get_reloc_section(abfd,hppa_info,sec)511 get_reloc_section (abfd, hppa_info, sec)
512 bfd *abfd;
513 struct elf64_hppa_link_hash_table *hppa_info;
514 asection *sec;
515 {
516 const char *srel_name;
517 asection *srel;
518 bfd *dynobj;
519
520 srel_name = (bfd_elf_string_from_elf_section
521 (abfd, elf_elfheader(abfd)->e_shstrndx,
522 elf_section_data(sec)->rel_hdr.sh_name));
523 if (srel_name == NULL)
524 return FALSE;
525
526 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+5) == 0)
529 || (strncmp (srel_name, ".rel", 4) == 0
530 && strcmp (bfd_get_section_name (abfd, sec),
531 srel_name+4) == 0));
532
533 dynobj = hppa_info->root.dynobj;
534 if (!dynobj)
535 hppa_info->root.dynobj = dynobj = abfd;
536
537 srel = bfd_get_section_by_name (dynobj, srel_name);
538 if (srel == NULL)
539 {
540 srel = bfd_make_section_with_flags (dynobj, srel_name,
541 (SEC_ALLOC
542 | SEC_LOAD
543 | SEC_HAS_CONTENTS
544 | SEC_IN_MEMORY
545 | SEC_LINKER_CREATED
546 | SEC_READONLY));
547 if (srel == NULL
548 || !bfd_set_section_alignment (dynobj, srel, 3))
549 return FALSE;
550 }
551
552 hppa_info->other_rel_sec = srel;
553 return TRUE;
554 }
555
556 /* Add a new entry to the list of dynamic relocations against DYN_H.
557
558 We use this to keep a record of all the FPTR relocations against a
559 particular symbol so that we can create FPTR relocations in the
560 output file. */
561
562 static bfd_boolean
count_dyn_reloc(abfd,dyn_h,type,sec,sec_symndx,offset,addend)563 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
564 bfd *abfd;
565 struct elf64_hppa_dyn_hash_entry *dyn_h;
566 int type;
567 asection *sec;
568 int sec_symndx;
569 bfd_vma offset;
570 bfd_vma addend;
571 {
572 struct elf64_hppa_dyn_reloc_entry *rent;
573
574 rent = (struct elf64_hppa_dyn_reloc_entry *)
575 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
576 if (!rent)
577 return FALSE;
578
579 rent->next = dyn_h->reloc_entries;
580 rent->type = type;
581 rent->sec = sec;
582 rent->sec_symndx = sec_symndx;
583 rent->offset = offset;
584 rent->addend = addend;
585 dyn_h->reloc_entries = rent;
586
587 return TRUE;
588 }
589
590 /* Scan the RELOCS and record the type of dynamic entries that each
591 referenced symbol needs. */
592
593 static bfd_boolean
elf64_hppa_check_relocs(abfd,info,sec,relocs)594 elf64_hppa_check_relocs (abfd, info, sec, relocs)
595 bfd *abfd;
596 struct bfd_link_info *info;
597 asection *sec;
598 const Elf_Internal_Rela *relocs;
599 {
600 struct elf64_hppa_link_hash_table *hppa_info;
601 const Elf_Internal_Rela *relend;
602 Elf_Internal_Shdr *symtab_hdr;
603 const Elf_Internal_Rela *rel;
604 asection *dlt, *plt, *stubs;
605 char *buf;
606 size_t buf_len;
607 int sec_symndx;
608
609 if (info->relocatable)
610 return TRUE;
611
612 #if 0
613 /* If this is the first dynamic object found in the link, create
614 the special sections required for dynamic linking. */
615 if (! elf_hash_table (info)->dynamic_sections_created)
616 {
617 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
618 return FALSE;
619 }
620 #endif
621
622 hppa_info = elf64_hppa_hash_table (info);
623 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
624
625 /* If necessary, build a new table holding section symbols indices
626 for this BFD. */
627
628 if (info->shared && hppa_info->section_syms_bfd != abfd)
629 {
630 unsigned long i;
631 unsigned int highest_shndx;
632 Elf_Internal_Sym *local_syms = NULL;
633 Elf_Internal_Sym *isym, *isymend;
634 bfd_size_type amt;
635
636 /* We're done with the old cache of section index to section symbol
637 index information. Free it.
638
639 ?!? Note we leak the last section_syms array. Presumably we
640 could free it in one of the later routines in this file. */
641 if (hppa_info->section_syms)
642 free (hppa_info->section_syms);
643
644 /* Read this BFD's local symbols. */
645 if (symtab_hdr->sh_info != 0)
646 {
647 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
648 if (local_syms == NULL)
649 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
650 symtab_hdr->sh_info, 0,
651 NULL, NULL, NULL);
652 if (local_syms == NULL)
653 return FALSE;
654 }
655
656 /* Record the highest section index referenced by the local symbols. */
657 highest_shndx = 0;
658 isymend = local_syms + symtab_hdr->sh_info;
659 for (isym = local_syms; isym < isymend; isym++)
660 {
661 if (isym->st_shndx > highest_shndx)
662 highest_shndx = isym->st_shndx;
663 }
664
665 /* Allocate an array to hold the section index to section symbol index
666 mapping. Bump by one since we start counting at zero. */
667 highest_shndx++;
668 amt = highest_shndx;
669 amt *= sizeof (int);
670 hppa_info->section_syms = (int *) bfd_malloc (amt);
671
672 /* Now walk the local symbols again. If we find a section symbol,
673 record the index of the symbol into the section_syms array. */
674 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
675 {
676 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
677 hppa_info->section_syms[isym->st_shndx] = i;
678 }
679
680 /* We are finished with the local symbols. */
681 if (local_syms != NULL
682 && symtab_hdr->contents != (unsigned char *) local_syms)
683 {
684 if (! info->keep_memory)
685 free (local_syms);
686 else
687 {
688 /* Cache the symbols for elf_link_input_bfd. */
689 symtab_hdr->contents = (unsigned char *) local_syms;
690 }
691 }
692
693 /* Record which BFD we built the section_syms mapping for. */
694 hppa_info->section_syms_bfd = abfd;
695 }
696
697 /* Record the symbol index for this input section. We may need it for
698 relocations when building shared libraries. When not building shared
699 libraries this value is never really used, but assign it to zero to
700 prevent out of bounds memory accesses in other routines. */
701 if (info->shared)
702 {
703 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
704
705 /* If we did not find a section symbol for this section, then
706 something went terribly wrong above. */
707 if (sec_symndx == -1)
708 return FALSE;
709
710 sec_symndx = hppa_info->section_syms[sec_symndx];
711 }
712 else
713 sec_symndx = 0;
714
715 dlt = plt = stubs = NULL;
716 buf = NULL;
717 buf_len = 0;
718
719 relend = relocs + sec->reloc_count;
720 for (rel = relocs; rel < relend; ++rel)
721 {
722 enum
723 {
724 NEED_DLT = 1,
725 NEED_PLT = 2,
726 NEED_STUB = 4,
727 NEED_OPD = 8,
728 NEED_DYNREL = 16,
729 };
730
731 struct elf_link_hash_entry *h = NULL;
732 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
733 struct elf64_hppa_dyn_hash_entry *dyn_h;
734 int need_entry;
735 const char *addr_name;
736 bfd_boolean maybe_dynamic;
737 int dynrel_type = R_PARISC_NONE;
738 static reloc_howto_type *howto;
739
740 if (r_symndx >= symtab_hdr->sh_info)
741 {
742 /* We're dealing with a global symbol -- find its hash entry
743 and mark it as being referenced. */
744 long indx = r_symndx - symtab_hdr->sh_info;
745 h = elf_sym_hashes (abfd)[indx];
746 while (h->root.type == bfd_link_hash_indirect
747 || h->root.type == bfd_link_hash_warning)
748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749
750 h->ref_regular = 1;
751 }
752
753 /* We can only get preliminary data on whether a symbol is
754 locally or externally defined, as not all of the input files
755 have yet been processed. Do something with what we know, as
756 this may help reduce memory usage and processing time later. */
757 maybe_dynamic = FALSE;
758 if (h && ((info->shared
759 && (!info->symbolic
760 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
761 || !h->def_regular
762 || h->root.type == bfd_link_hash_defweak))
763 maybe_dynamic = TRUE;
764
765 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
766 need_entry = 0;
767 switch (howto->type)
768 {
769 /* These are simple indirect references to symbols through the
770 DLT. We need to create a DLT entry for any symbols which
771 appears in a DLTIND relocation. */
772 case R_PARISC_DLTIND21L:
773 case R_PARISC_DLTIND14R:
774 case R_PARISC_DLTIND14F:
775 case R_PARISC_DLTIND14WR:
776 case R_PARISC_DLTIND14DR:
777 need_entry = NEED_DLT;
778 break;
779
780 /* ?!? These need a DLT entry. But I have no idea what to do with
781 the "link time TP value. */
782 case R_PARISC_LTOFF_TP21L:
783 case R_PARISC_LTOFF_TP14R:
784 case R_PARISC_LTOFF_TP14F:
785 case R_PARISC_LTOFF_TP64:
786 case R_PARISC_LTOFF_TP14WR:
787 case R_PARISC_LTOFF_TP14DR:
788 case R_PARISC_LTOFF_TP16F:
789 case R_PARISC_LTOFF_TP16WF:
790 case R_PARISC_LTOFF_TP16DF:
791 need_entry = NEED_DLT;
792 break;
793
794 /* These are function calls. Depending on their precise target we
795 may need to make a stub for them. The stub uses the PLT, so we
796 need to create PLT entries for these symbols too. */
797 case R_PARISC_PCREL12F:
798 case R_PARISC_PCREL17F:
799 case R_PARISC_PCREL22F:
800 case R_PARISC_PCREL32:
801 case R_PARISC_PCREL64:
802 case R_PARISC_PCREL21L:
803 case R_PARISC_PCREL17R:
804 case R_PARISC_PCREL17C:
805 case R_PARISC_PCREL14R:
806 case R_PARISC_PCREL14F:
807 case R_PARISC_PCREL22C:
808 case R_PARISC_PCREL14WR:
809 case R_PARISC_PCREL14DR:
810 case R_PARISC_PCREL16F:
811 case R_PARISC_PCREL16WF:
812 case R_PARISC_PCREL16DF:
813 need_entry = (NEED_PLT | NEED_STUB);
814 break;
815
816 case R_PARISC_PLTOFF21L:
817 case R_PARISC_PLTOFF14R:
818 case R_PARISC_PLTOFF14F:
819 case R_PARISC_PLTOFF14WR:
820 case R_PARISC_PLTOFF14DR:
821 case R_PARISC_PLTOFF16F:
822 case R_PARISC_PLTOFF16WF:
823 case R_PARISC_PLTOFF16DF:
824 need_entry = (NEED_PLT);
825 break;
826
827 case R_PARISC_DIR64:
828 if (info->shared || maybe_dynamic)
829 need_entry = (NEED_DYNREL);
830 dynrel_type = R_PARISC_DIR64;
831 break;
832
833 /* This is an indirect reference through the DLT to get the address
834 of a OPD descriptor. Thus we need to make a DLT entry that points
835 to an OPD entry. */
836 case R_PARISC_LTOFF_FPTR21L:
837 case R_PARISC_LTOFF_FPTR14R:
838 case R_PARISC_LTOFF_FPTR14WR:
839 case R_PARISC_LTOFF_FPTR14DR:
840 case R_PARISC_LTOFF_FPTR32:
841 case R_PARISC_LTOFF_FPTR64:
842 case R_PARISC_LTOFF_FPTR16F:
843 case R_PARISC_LTOFF_FPTR16WF:
844 case R_PARISC_LTOFF_FPTR16DF:
845 if (info->shared || maybe_dynamic)
846 need_entry = (NEED_DLT | NEED_OPD);
847 else
848 need_entry = (NEED_DLT | NEED_OPD);
849 dynrel_type = R_PARISC_FPTR64;
850 break;
851
852 /* This is a simple OPD entry. */
853 case R_PARISC_FPTR64:
854 if (info->shared || maybe_dynamic)
855 need_entry = (NEED_OPD | NEED_DYNREL);
856 else
857 need_entry = (NEED_OPD);
858 dynrel_type = R_PARISC_FPTR64;
859 break;
860
861 /* Add more cases as needed. */
862 }
863
864 if (!need_entry)
865 continue;
866
867 /* Collect a canonical name for this address. */
868 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
869
870 /* Collect the canonical entry data for this address. */
871 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
872 addr_name, TRUE, TRUE);
873 BFD_ASSERT (dyn_h);
874
875 /* Stash away enough information to be able to find this symbol
876 regardless of whether or not it is local or global. */
877 dyn_h->h = h;
878 dyn_h->owner = abfd;
879 dyn_h->sym_indx = r_symndx;
880
881 /* ?!? We may need to do some error checking in here. */
882 /* Create what's needed. */
883 if (need_entry & NEED_DLT)
884 {
885 if (! hppa_info->dlt_sec
886 && ! get_dlt (abfd, info, hppa_info))
887 goto err_out;
888 dyn_h->want_dlt = 1;
889 }
890
891 if (need_entry & NEED_PLT)
892 {
893 if (! hppa_info->plt_sec
894 && ! get_plt (abfd, info, hppa_info))
895 goto err_out;
896 dyn_h->want_plt = 1;
897 }
898
899 if (need_entry & NEED_STUB)
900 {
901 if (! hppa_info->stub_sec
902 && ! get_stub (abfd, info, hppa_info))
903 goto err_out;
904 dyn_h->want_stub = 1;
905 }
906
907 if (need_entry & NEED_OPD)
908 {
909 if (! hppa_info->opd_sec
910 && ! get_opd (abfd, info, hppa_info))
911 goto err_out;
912
913 dyn_h->want_opd = 1;
914
915 /* FPTRs are not allocated by the dynamic linker for PA64, though
916 it is possible that will change in the future. */
917
918 /* This could be a local function that had its address taken, in
919 which case H will be NULL. */
920 if (h)
921 h->needs_plt = 1;
922 }
923
924 /* Add a new dynamic relocation to the chain of dynamic
925 relocations for this symbol. */
926 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
927 {
928 if (! hppa_info->other_rel_sec
929 && ! get_reloc_section (abfd, hppa_info, sec))
930 goto err_out;
931
932 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
933 sec_symndx, rel->r_offset, rel->r_addend))
934 goto err_out;
935
936 /* If we are building a shared library and we just recorded
937 a dynamic R_PARISC_FPTR64 relocation, then make sure the
938 section symbol for this section ends up in the dynamic
939 symbol table. */
940 if (info->shared && dynrel_type == R_PARISC_FPTR64
941 && ! (bfd_elf_link_record_local_dynamic_symbol
942 (info, abfd, sec_symndx)))
943 return FALSE;
944 }
945 }
946
947 if (buf)
948 free (buf);
949 return TRUE;
950
951 err_out:
952 if (buf)
953 free (buf);
954 return FALSE;
955 }
956
957 struct elf64_hppa_allocate_data
958 {
959 struct bfd_link_info *info;
960 bfd_size_type ofs;
961 };
962
963 /* Should we do dynamic things to this symbol? */
964
965 static bfd_boolean
elf64_hppa_dynamic_symbol_p(h,info)966 elf64_hppa_dynamic_symbol_p (h, info)
967 struct elf_link_hash_entry *h;
968 struct bfd_link_info *info;
969 {
970 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
971 and relocations that retrieve a function descriptor? Assume the
972 worst for now. */
973 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
974 {
975 /* ??? Why is this here and not elsewhere is_local_label_name. */
976 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
977 return FALSE;
978
979 return TRUE;
980 }
981 else
982 return FALSE;
983 }
984
985 /* Mark all functions exported by this file so that we can later allocate
986 entries in .opd for them. */
987
988 static bfd_boolean
elf64_hppa_mark_exported_functions(h,data)989 elf64_hppa_mark_exported_functions (h, data)
990 struct elf_link_hash_entry *h;
991 PTR data;
992 {
993 struct bfd_link_info *info = (struct bfd_link_info *)data;
994 struct elf64_hppa_link_hash_table *hppa_info;
995
996 hppa_info = elf64_hppa_hash_table (info);
997
998 if (h->root.type == bfd_link_hash_warning)
999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1000
1001 if (h
1002 && (h->root.type == bfd_link_hash_defined
1003 || h->root.type == bfd_link_hash_defweak)
1004 && h->root.u.def.section->output_section != NULL
1005 && h->type == STT_FUNC)
1006 {
1007 struct elf64_hppa_dyn_hash_entry *dyn_h;
1008
1009 /* Add this symbol to the PA64 linker hash table. */
1010 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1011 h->root.root.string, TRUE, TRUE);
1012 BFD_ASSERT (dyn_h);
1013 dyn_h->h = h;
1014
1015 if (! hppa_info->opd_sec
1016 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1017 return FALSE;
1018
1019 dyn_h->want_opd = 1;
1020 /* Put a flag here for output_symbol_hook. */
1021 dyn_h->st_shndx = -1;
1022 h->needs_plt = 1;
1023 }
1024
1025 return TRUE;
1026 }
1027
1028 /* Allocate space for a DLT entry. */
1029
1030 static bfd_boolean
allocate_global_data_dlt(dyn_h,data)1031 allocate_global_data_dlt (dyn_h, data)
1032 struct elf64_hppa_dyn_hash_entry *dyn_h;
1033 PTR data;
1034 {
1035 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1036
1037 if (dyn_h->want_dlt)
1038 {
1039 struct elf_link_hash_entry *h = dyn_h->h;
1040
1041 if (x->info->shared)
1042 {
1043 /* Possibly add the symbol to the local dynamic symbol
1044 table since we might need to create a dynamic relocation
1045 against it. */
1046 if (! h
1047 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1048 {
1049 bfd *owner;
1050 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1051
1052 if (! (bfd_elf_link_record_local_dynamic_symbol
1053 (x->info, owner, dyn_h->sym_indx)))
1054 return FALSE;
1055 }
1056 }
1057
1058 dyn_h->dlt_offset = x->ofs;
1059 x->ofs += DLT_ENTRY_SIZE;
1060 }
1061 return TRUE;
1062 }
1063
1064 /* Allocate space for a DLT.PLT entry. */
1065
1066 static bfd_boolean
allocate_global_data_plt(dyn_h,data)1067 allocate_global_data_plt (dyn_h, data)
1068 struct elf64_hppa_dyn_hash_entry *dyn_h;
1069 PTR data;
1070 {
1071 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1072
1073 if (dyn_h->want_plt
1074 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1075 && !((dyn_h->h->root.type == bfd_link_hash_defined
1076 || dyn_h->h->root.type == bfd_link_hash_defweak)
1077 && dyn_h->h->root.u.def.section->output_section != NULL))
1078 {
1079 dyn_h->plt_offset = x->ofs;
1080 x->ofs += PLT_ENTRY_SIZE;
1081 if (dyn_h->plt_offset < 0x2000)
1082 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1083 }
1084 else
1085 dyn_h->want_plt = 0;
1086
1087 return TRUE;
1088 }
1089
1090 /* Allocate space for a STUB entry. */
1091
1092 static bfd_boolean
allocate_global_data_stub(dyn_h,data)1093 allocate_global_data_stub (dyn_h, data)
1094 struct elf64_hppa_dyn_hash_entry *dyn_h;
1095 PTR data;
1096 {
1097 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1098
1099 if (dyn_h->want_stub
1100 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1101 && !((dyn_h->h->root.type == bfd_link_hash_defined
1102 || dyn_h->h->root.type == bfd_link_hash_defweak)
1103 && dyn_h->h->root.u.def.section->output_section != NULL))
1104 {
1105 dyn_h->stub_offset = x->ofs;
1106 x->ofs += sizeof (plt_stub);
1107 }
1108 else
1109 dyn_h->want_stub = 0;
1110 return TRUE;
1111 }
1112
1113 /* Allocate space for a FPTR entry. */
1114
1115 static bfd_boolean
allocate_global_data_opd(dyn_h,data)1116 allocate_global_data_opd (dyn_h, data)
1117 struct elf64_hppa_dyn_hash_entry *dyn_h;
1118 PTR data;
1119 {
1120 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
1122 if (dyn_h->want_opd)
1123 {
1124 struct elf_link_hash_entry *h = dyn_h->h;
1125
1126 if (h)
1127 while (h->root.type == bfd_link_hash_indirect
1128 || h->root.type == bfd_link_hash_warning)
1129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1130
1131 /* We never need an opd entry for a symbol which is not
1132 defined by this output file. */
1133 if (h && (h->root.type == bfd_link_hash_undefined
1134 || h->root.type == bfd_link_hash_undefweak
1135 || h->root.u.def.section->output_section == NULL))
1136 dyn_h->want_opd = 0;
1137
1138 /* If we are creating a shared library, took the address of a local
1139 function or might export this function from this object file, then
1140 we have to create an opd descriptor. */
1141 else if (x->info->shared
1142 || h == NULL
1143 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1144 || (h->root.type == bfd_link_hash_defined
1145 || h->root.type == bfd_link_hash_defweak))
1146 {
1147 /* If we are creating a shared library, then we will have to
1148 create a runtime relocation for the symbol to properly
1149 initialize the .opd entry. Make sure the symbol gets
1150 added to the dynamic symbol table. */
1151 if (x->info->shared
1152 && (h == NULL || (h->dynindx == -1)))
1153 {
1154 bfd *owner;
1155 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1156
1157 if (!bfd_elf_link_record_local_dynamic_symbol
1158 (x->info, owner, dyn_h->sym_indx))
1159 return FALSE;
1160 }
1161
1162 /* This may not be necessary or desirable anymore now that
1163 we have some support for dealing with section symbols
1164 in dynamic relocs. But name munging does make the result
1165 much easier to debug. ie, the EPLT reloc will reference
1166 a symbol like .foobar, instead of .text + offset. */
1167 if (x->info->shared && h)
1168 {
1169 char *new_name;
1170 struct elf_link_hash_entry *nh;
1171
1172 new_name = alloca (strlen (h->root.root.string) + 2);
1173 new_name[0] = '.';
1174 strcpy (new_name + 1, h->root.root.string);
1175
1176 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1177 new_name, TRUE, TRUE, TRUE);
1178
1179 nh->root.type = h->root.type;
1180 nh->root.u.def.value = h->root.u.def.value;
1181 nh->root.u.def.section = h->root.u.def.section;
1182
1183 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1184 return FALSE;
1185
1186 }
1187 dyn_h->opd_offset = x->ofs;
1188 x->ofs += OPD_ENTRY_SIZE;
1189 }
1190
1191 /* Otherwise we do not need an opd entry. */
1192 else
1193 dyn_h->want_opd = 0;
1194 }
1195 return TRUE;
1196 }
1197
1198 /* HP requires the EI_OSABI field to be filled in. The assignment to
1199 EI_ABIVERSION may not be strictly necessary. */
1200
1201 static void
elf64_hppa_post_process_headers(abfd,link_info)1202 elf64_hppa_post_process_headers (abfd, link_info)
1203 bfd * abfd;
1204 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1205 {
1206 Elf_Internal_Ehdr * i_ehdrp;
1207
1208 i_ehdrp = elf_elfheader (abfd);
1209
1210 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1211 {
1212 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1213 }
1214 else
1215 {
1216 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1217 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1218 }
1219 }
1220
1221 /* Create function descriptor section (.opd). This section is called .opd
1222 because it contains "official procedure descriptors". The "official"
1223 refers to the fact that these descriptors are used when taking the address
1224 of a procedure, thus ensuring a unique address for each procedure. */
1225
1226 static bfd_boolean
get_opd(abfd,info,hppa_info)1227 get_opd (abfd, info, hppa_info)
1228 bfd *abfd;
1229 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1230 struct elf64_hppa_link_hash_table *hppa_info;
1231 {
1232 asection *opd;
1233 bfd *dynobj;
1234
1235 opd = hppa_info->opd_sec;
1236 if (!opd)
1237 {
1238 dynobj = hppa_info->root.dynobj;
1239 if (!dynobj)
1240 hppa_info->root.dynobj = dynobj = abfd;
1241
1242 opd = bfd_make_section_with_flags (dynobj, ".opd",
1243 (SEC_ALLOC
1244 | SEC_LOAD
1245 | SEC_HAS_CONTENTS
1246 | SEC_IN_MEMORY
1247 | SEC_LINKER_CREATED));
1248 if (!opd
1249 || !bfd_set_section_alignment (abfd, opd, 3))
1250 {
1251 BFD_ASSERT (0);
1252 return FALSE;
1253 }
1254
1255 hppa_info->opd_sec = opd;
1256 }
1257
1258 return TRUE;
1259 }
1260
1261 /* Create the PLT section. */
1262
1263 static bfd_boolean
get_plt(abfd,info,hppa_info)1264 get_plt (abfd, info, hppa_info)
1265 bfd *abfd;
1266 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1267 struct elf64_hppa_link_hash_table *hppa_info;
1268 {
1269 asection *plt;
1270 bfd *dynobj;
1271
1272 plt = hppa_info->plt_sec;
1273 if (!plt)
1274 {
1275 dynobj = hppa_info->root.dynobj;
1276 if (!dynobj)
1277 hppa_info->root.dynobj = dynobj = abfd;
1278
1279 plt = bfd_make_section_with_flags (dynobj, ".plt",
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED));
1285 if (!plt
1286 || !bfd_set_section_alignment (abfd, plt, 3))
1287 {
1288 BFD_ASSERT (0);
1289 return FALSE;
1290 }
1291
1292 hppa_info->plt_sec = plt;
1293 }
1294
1295 return TRUE;
1296 }
1297
1298 /* Create the DLT section. */
1299
1300 static bfd_boolean
get_dlt(abfd,info,hppa_info)1301 get_dlt (abfd, info, hppa_info)
1302 bfd *abfd;
1303 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1304 struct elf64_hppa_link_hash_table *hppa_info;
1305 {
1306 asection *dlt;
1307 bfd *dynobj;
1308
1309 dlt = hppa_info->dlt_sec;
1310 if (!dlt)
1311 {
1312 dynobj = hppa_info->root.dynobj;
1313 if (!dynobj)
1314 hppa_info->root.dynobj = dynobj = abfd;
1315
1316 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1317 (SEC_ALLOC
1318 | SEC_LOAD
1319 | SEC_HAS_CONTENTS
1320 | SEC_IN_MEMORY
1321 | SEC_LINKER_CREATED));
1322 if (!dlt
1323 || !bfd_set_section_alignment (abfd, dlt, 3))
1324 {
1325 BFD_ASSERT (0);
1326 return FALSE;
1327 }
1328
1329 hppa_info->dlt_sec = dlt;
1330 }
1331
1332 return TRUE;
1333 }
1334
1335 /* Create the stubs section. */
1336
1337 static bfd_boolean
get_stub(abfd,info,hppa_info)1338 get_stub (abfd, info, hppa_info)
1339 bfd *abfd;
1340 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1341 struct elf64_hppa_link_hash_table *hppa_info;
1342 {
1343 asection *stub;
1344 bfd *dynobj;
1345
1346 stub = hppa_info->stub_sec;
1347 if (!stub)
1348 {
1349 dynobj = hppa_info->root.dynobj;
1350 if (!dynobj)
1351 hppa_info->root.dynobj = dynobj = abfd;
1352
1353 stub = bfd_make_section_with_flags (dynobj, ".stub",
1354 (SEC_ALLOC | SEC_LOAD
1355 | SEC_HAS_CONTENTS
1356 | SEC_IN_MEMORY
1357 | SEC_READONLY
1358 | SEC_LINKER_CREATED));
1359 if (!stub
1360 || !bfd_set_section_alignment (abfd, stub, 3))
1361 {
1362 BFD_ASSERT (0);
1363 return FALSE;
1364 }
1365
1366 hppa_info->stub_sec = stub;
1367 }
1368
1369 return TRUE;
1370 }
1371
1372 /* Create sections necessary for dynamic linking. This is only a rough
1373 cut and will likely change as we learn more about the somewhat
1374 unusual dynamic linking scheme HP uses.
1375
1376 .stub:
1377 Contains code to implement cross-space calls. The first time one
1378 of the stubs is used it will call into the dynamic linker, later
1379 calls will go straight to the target.
1380
1381 The only stub we support right now looks like
1382
1383 ldd OFFSET(%dp),%r1
1384 bve %r0(%r1)
1385 ldd OFFSET+8(%dp),%dp
1386
1387 Other stubs may be needed in the future. We may want the remove
1388 the break/nop instruction. It is only used right now to keep the
1389 offset of a .plt entry and a .stub entry in sync.
1390
1391 .dlt:
1392 This is what most people call the .got. HP used a different name.
1393 Losers.
1394
1395 .rela.dlt:
1396 Relocations for the DLT.
1397
1398 .plt:
1399 Function pointers as address,gp pairs.
1400
1401 .rela.plt:
1402 Should contain dynamic IPLT (and EPLT?) relocations.
1403
1404 .opd:
1405 FPTRS
1406
1407 .rela.opd:
1408 EPLT relocations for symbols exported from shared libraries. */
1409
1410 static bfd_boolean
elf64_hppa_create_dynamic_sections(abfd,info)1411 elf64_hppa_create_dynamic_sections (abfd, info)
1412 bfd *abfd;
1413 struct bfd_link_info *info;
1414 {
1415 asection *s;
1416
1417 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1418 return FALSE;
1419
1420 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1421 return FALSE;
1422
1423 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1424 return FALSE;
1425
1426 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1427 return FALSE;
1428
1429 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1430 (SEC_ALLOC | SEC_LOAD
1431 | SEC_HAS_CONTENTS
1432 | SEC_IN_MEMORY
1433 | SEC_READONLY
1434 | SEC_LINKER_CREATED));
1435 if (s == NULL
1436 || !bfd_set_section_alignment (abfd, s, 3))
1437 return FALSE;
1438 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1439
1440 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1441 (SEC_ALLOC | SEC_LOAD
1442 | SEC_HAS_CONTENTS
1443 | SEC_IN_MEMORY
1444 | SEC_READONLY
1445 | SEC_LINKER_CREATED));
1446 if (s == NULL
1447 || !bfd_set_section_alignment (abfd, s, 3))
1448 return FALSE;
1449 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1450
1451 s = bfd_make_section_with_flags (abfd, ".rela.data",
1452 (SEC_ALLOC | SEC_LOAD
1453 | SEC_HAS_CONTENTS
1454 | SEC_IN_MEMORY
1455 | SEC_READONLY
1456 | SEC_LINKER_CREATED));
1457 if (s == NULL
1458 || !bfd_set_section_alignment (abfd, s, 3))
1459 return FALSE;
1460 elf64_hppa_hash_table (info)->other_rel_sec = s;
1461
1462 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1463 (SEC_ALLOC | SEC_LOAD
1464 | SEC_HAS_CONTENTS
1465 | SEC_IN_MEMORY
1466 | SEC_READONLY
1467 | SEC_LINKER_CREATED));
1468 if (s == NULL
1469 || !bfd_set_section_alignment (abfd, s, 3))
1470 return FALSE;
1471 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1472
1473 return TRUE;
1474 }
1475
1476 /* Allocate dynamic relocations for those symbols that turned out
1477 to be dynamic. */
1478
1479 static bfd_boolean
allocate_dynrel_entries(dyn_h,data)1480 allocate_dynrel_entries (dyn_h, data)
1481 struct elf64_hppa_dyn_hash_entry *dyn_h;
1482 PTR data;
1483 {
1484 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1485 struct elf64_hppa_link_hash_table *hppa_info;
1486 struct elf64_hppa_dyn_reloc_entry *rent;
1487 bfd_boolean dynamic_symbol, shared;
1488
1489 hppa_info = elf64_hppa_hash_table (x->info);
1490 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1491 shared = x->info->shared;
1492
1493 /* We may need to allocate relocations for a non-dynamic symbol
1494 when creating a shared library. */
1495 if (!dynamic_symbol && !shared)
1496 return TRUE;
1497
1498 /* Take care of the normal data relocations. */
1499
1500 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1501 {
1502 /* Allocate one iff we are building a shared library, the relocation
1503 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1504 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1505 continue;
1506
1507 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1508
1509 /* Make sure this symbol gets into the dynamic symbol table if it is
1510 not already recorded. ?!? This should not be in the loop since
1511 the symbol need only be added once. */
1512 if (dyn_h->h == 0
1513 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1514 if (!bfd_elf_link_record_local_dynamic_symbol
1515 (x->info, rent->sec->owner, dyn_h->sym_indx))
1516 return FALSE;
1517 }
1518
1519 /* Take care of the GOT and PLT relocations. */
1520
1521 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1522 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1523
1524 /* If we are building a shared library, then every symbol that has an
1525 opd entry will need an EPLT relocation to relocate the symbol's address
1526 and __gp value based on the runtime load address. */
1527 if (shared && dyn_h->want_opd)
1528 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1529
1530 if (dyn_h->want_plt && dynamic_symbol)
1531 {
1532 bfd_size_type t = 0;
1533
1534 /* Dynamic symbols get one IPLT relocation. Local symbols in
1535 shared libraries get two REL relocations. Local symbols in
1536 main applications get nothing. */
1537 if (dynamic_symbol)
1538 t = sizeof (Elf64_External_Rela);
1539 else if (shared)
1540 t = 2 * sizeof (Elf64_External_Rela);
1541
1542 hppa_info->plt_rel_sec->size += t;
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Adjust a symbol defined by a dynamic object and referenced by a
1549 regular object. */
1550
1551 static bfd_boolean
elf64_hppa_adjust_dynamic_symbol(info,h)1552 elf64_hppa_adjust_dynamic_symbol (info, h)
1553 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1554 struct elf_link_hash_entry *h;
1555 {
1556 /* ??? Undefined symbols with PLT entries should be re-defined
1557 to be the PLT entry. */
1558
1559 /* If this is a weak symbol, and there is a real definition, the
1560 processor independent code will have arranged for us to see the
1561 real definition first, and we can just use the same value. */
1562 if (h->u.weakdef != NULL)
1563 {
1564 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1565 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1566 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1567 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1568 return TRUE;
1569 }
1570
1571 /* If this is a reference to a symbol defined by a dynamic object which
1572 is not a function, we might allocate the symbol in our .dynbss section
1573 and allocate a COPY dynamic relocation.
1574
1575 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1576 of hackery. */
1577
1578 return TRUE;
1579 }
1580
1581 /* This function is called via elf_link_hash_traverse to mark millicode
1582 symbols with a dynindx of -1 and to remove the string table reference
1583 from the dynamic symbol table. If the symbol is not a millicode symbol,
1584 elf64_hppa_mark_exported_functions is called. */
1585
1586 static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions(h,data)1587 elf64_hppa_mark_milli_and_exported_functions (h, data)
1588 struct elf_link_hash_entry *h;
1589 PTR data;
1590 {
1591 struct bfd_link_info *info = (struct bfd_link_info *)data;
1592 struct elf_link_hash_entry *elf = h;
1593
1594 if (elf->root.type == bfd_link_hash_warning)
1595 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1596
1597 if (elf->type == STT_PARISC_MILLI)
1598 {
1599 if (elf->dynindx != -1)
1600 {
1601 elf->dynindx = -1;
1602 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1603 elf->dynstr_index);
1604 }
1605 return TRUE;
1606 }
1607
1608 return elf64_hppa_mark_exported_functions (h, data);
1609 }
1610
1611 /* Set the final sizes of the dynamic sections and allocate memory for
1612 the contents of our special sections. */
1613
1614 static bfd_boolean
elf64_hppa_size_dynamic_sections(output_bfd,info)1615 elf64_hppa_size_dynamic_sections (output_bfd, info)
1616 bfd *output_bfd;
1617 struct bfd_link_info *info;
1618 {
1619 bfd *dynobj;
1620 asection *s;
1621 bfd_boolean plt;
1622 bfd_boolean relocs;
1623 bfd_boolean reltext;
1624 struct elf64_hppa_allocate_data data;
1625 struct elf64_hppa_link_hash_table *hppa_info;
1626
1627 hppa_info = elf64_hppa_hash_table (info);
1628
1629 dynobj = elf_hash_table (info)->dynobj;
1630 BFD_ASSERT (dynobj != NULL);
1631
1632 /* Mark each function this program exports so that we will allocate
1633 space in the .opd section for each function's FPTR. If we are
1634 creating dynamic sections, change the dynamic index of millicode
1635 symbols to -1 and remove them from the string table for .dynstr.
1636
1637 We have to traverse the main linker hash table since we have to
1638 find functions which may not have been mentioned in any relocs. */
1639 elf_link_hash_traverse (elf_hash_table (info),
1640 (elf_hash_table (info)->dynamic_sections_created
1641 ? elf64_hppa_mark_milli_and_exported_functions
1642 : elf64_hppa_mark_exported_functions),
1643 info);
1644
1645 if (elf_hash_table (info)->dynamic_sections_created)
1646 {
1647 /* Set the contents of the .interp section to the interpreter. */
1648 if (info->executable && !info->static_link)
1649 {
1650 s = bfd_get_section_by_name (dynobj, ".interp");
1651 BFD_ASSERT (s != NULL);
1652 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1653 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1654 }
1655 }
1656 else
1657 {
1658 /* We may have created entries in the .rela.got section.
1659 However, if we are not creating the dynamic sections, we will
1660 not actually use these entries. Reset the size of .rela.dlt,
1661 which will cause it to get stripped from the output file
1662 below. */
1663 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1664 if (s != NULL)
1665 s->size = 0;
1666 }
1667
1668 /* Allocate the GOT entries. */
1669
1670 data.info = info;
1671 if (elf64_hppa_hash_table (info)->dlt_sec)
1672 {
1673 data.ofs = 0x0;
1674 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1675 allocate_global_data_dlt, &data);
1676 hppa_info->dlt_sec->size = data.ofs;
1677
1678 data.ofs = 0x0;
1679 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1680 allocate_global_data_plt, &data);
1681 hppa_info->plt_sec->size = data.ofs;
1682
1683 data.ofs = 0x0;
1684 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1685 allocate_global_data_stub, &data);
1686 hppa_info->stub_sec->size = data.ofs;
1687 }
1688
1689 /* Allocate space for entries in the .opd section. */
1690 if (elf64_hppa_hash_table (info)->opd_sec)
1691 {
1692 data.ofs = 0;
1693 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1694 allocate_global_data_opd, &data);
1695 hppa_info->opd_sec->size = data.ofs;
1696 }
1697
1698 /* Now allocate space for dynamic relocations, if necessary. */
1699 if (hppa_info->root.dynamic_sections_created)
1700 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1701 allocate_dynrel_entries, &data);
1702
1703 /* The sizes of all the sections are set. Allocate memory for them. */
1704 plt = FALSE;
1705 relocs = FALSE;
1706 reltext = FALSE;
1707 for (s = dynobj->sections; s != NULL; s = s->next)
1708 {
1709 const char *name;
1710
1711 if ((s->flags & SEC_LINKER_CREATED) == 0)
1712 continue;
1713
1714 /* It's OK to base decisions on the section name, because none
1715 of the dynobj section names depend upon the input files. */
1716 name = bfd_get_section_name (dynobj, s);
1717
1718 if (strcmp (name, ".plt") == 0)
1719 {
1720 /* Remember whether there is a PLT. */
1721 plt = s->size != 0;
1722 }
1723 else if (strcmp (name, ".opd") == 0
1724 || strncmp (name, ".dlt", 4) == 0
1725 || strcmp (name, ".stub") == 0
1726 || strcmp (name, ".got") == 0)
1727 {
1728 /* Strip this section if we don't need it; see the comment below. */
1729 }
1730 else if (strncmp (name, ".rela", 5) == 0)
1731 {
1732 if (s->size != 0)
1733 {
1734 asection *target;
1735
1736 /* Remember whether there are any reloc sections other
1737 than .rela.plt. */
1738 if (strcmp (name, ".rela.plt") != 0)
1739 {
1740 const char *outname;
1741
1742 relocs = TRUE;
1743
1744 /* If this relocation section applies to a read only
1745 section, then we probably need a DT_TEXTREL
1746 entry. The entries in the .rela.plt section
1747 really apply to the .got section, which we
1748 created ourselves and so know is not readonly. */
1749 outname = bfd_get_section_name (output_bfd,
1750 s->output_section);
1751 target = bfd_get_section_by_name (output_bfd, outname + 4);
1752 if (target != NULL
1753 && (target->flags & SEC_READONLY) != 0
1754 && (target->flags & SEC_ALLOC) != 0)
1755 reltext = TRUE;
1756 }
1757
1758 /* We use the reloc_count field as a counter if we need
1759 to copy relocs into the output file. */
1760 s->reloc_count = 0;
1761 }
1762 }
1763 else
1764 {
1765 /* It's not one of our sections, so don't allocate space. */
1766 continue;
1767 }
1768
1769 if (s->size == 0)
1770 {
1771 /* If we don't need this section, strip it from the
1772 output file. This is mostly to handle .rela.bss and
1773 .rela.plt. We must create both sections in
1774 create_dynamic_sections, because they must be created
1775 before the linker maps input sections to output
1776 sections. The linker does that before
1777 adjust_dynamic_symbol is called, and it is that
1778 function which decides whether anything needs to go
1779 into these sections. */
1780 s->flags |= SEC_EXCLUDE;
1781 continue;
1782 }
1783
1784 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1785 continue;
1786
1787 /* Allocate memory for the section contents if it has not
1788 been allocated already. We use bfd_zalloc here in case
1789 unused entries are not reclaimed before the section's
1790 contents are written out. This should not happen, but this
1791 way if it does, we get a R_PARISC_NONE reloc instead of
1792 garbage. */
1793 if (s->contents == NULL)
1794 {
1795 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1796 if (s->contents == NULL)
1797 return FALSE;
1798 }
1799 }
1800
1801 if (elf_hash_table (info)->dynamic_sections_created)
1802 {
1803 /* Always create a DT_PLTGOT. It actually has nothing to do with
1804 the PLT, it is how we communicate the __gp value of a load
1805 module to the dynamic linker. */
1806 #define add_dynamic_entry(TAG, VAL) \
1807 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1808
1809 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1810 || !add_dynamic_entry (DT_PLTGOT, 0))
1811 return FALSE;
1812
1813 /* Add some entries to the .dynamic section. We fill in the
1814 values later, in elf64_hppa_finish_dynamic_sections, but we
1815 must add the entries now so that we get the correct size for
1816 the .dynamic section. The DT_DEBUG entry is filled in by the
1817 dynamic linker and used by the debugger. */
1818 if (! info->shared)
1819 {
1820 if (!add_dynamic_entry (DT_DEBUG, 0)
1821 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1822 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1823 return FALSE;
1824 }
1825
1826 /* Force DT_FLAGS to always be set.
1827 Required by HPUX 11.00 patch PHSS_26559. */
1828 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1829 return FALSE;
1830
1831 if (plt)
1832 {
1833 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1834 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1835 || !add_dynamic_entry (DT_JMPREL, 0))
1836 return FALSE;
1837 }
1838
1839 if (relocs)
1840 {
1841 if (!add_dynamic_entry (DT_RELA, 0)
1842 || !add_dynamic_entry (DT_RELASZ, 0)
1843 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1844 return FALSE;
1845 }
1846
1847 if (reltext)
1848 {
1849 if (!add_dynamic_entry (DT_TEXTREL, 0))
1850 return FALSE;
1851 info->flags |= DF_TEXTREL;
1852 }
1853 }
1854 #undef add_dynamic_entry
1855
1856 return TRUE;
1857 }
1858
1859 /* Called after we have output the symbol into the dynamic symbol
1860 table, but before we output the symbol into the normal symbol
1861 table.
1862
1863 For some symbols we had to change their address when outputting
1864 the dynamic symbol table. We undo that change here so that
1865 the symbols have their expected value in the normal symbol
1866 table. Ick. */
1867
1868 static bfd_boolean
elf64_hppa_link_output_symbol_hook(info,name,sym,input_sec,h)1869 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1870 struct bfd_link_info *info;
1871 const char *name;
1872 Elf_Internal_Sym *sym;
1873 asection *input_sec ATTRIBUTE_UNUSED;
1874 struct elf_link_hash_entry *h;
1875 {
1876 struct elf64_hppa_link_hash_table *hppa_info;
1877 struct elf64_hppa_dyn_hash_entry *dyn_h;
1878
1879 /* We may be called with the file symbol or section symbols.
1880 They never need munging, so it is safe to ignore them. */
1881 if (!name)
1882 return TRUE;
1883
1884 /* Get the PA dyn_symbol (if any) associated with NAME. */
1885 hppa_info = elf64_hppa_hash_table (info);
1886 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1887 name, FALSE, FALSE);
1888 if (!dyn_h || dyn_h->h != h)
1889 return TRUE;
1890
1891 /* Function symbols for which we created .opd entries *may* have been
1892 munged by finish_dynamic_symbol and have to be un-munged here.
1893
1894 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1895 into non-dynamic ones, so we initialize st_shndx to -1 in
1896 mark_exported_functions and check to see if it was overwritten
1897 here instead of just checking dyn_h->h->dynindx. */
1898 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1899 {
1900 /* Restore the saved value and section index. */
1901 sym->st_value = dyn_h->st_value;
1902 sym->st_shndx = dyn_h->st_shndx;
1903 }
1904
1905 return TRUE;
1906 }
1907
1908 /* Finish up dynamic symbol handling. We set the contents of various
1909 dynamic sections here. */
1910
1911 static bfd_boolean
elf64_hppa_finish_dynamic_symbol(output_bfd,info,h,sym)1912 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1913 bfd *output_bfd;
1914 struct bfd_link_info *info;
1915 struct elf_link_hash_entry *h;
1916 Elf_Internal_Sym *sym;
1917 {
1918 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1919 struct elf64_hppa_link_hash_table *hppa_info;
1920 struct elf64_hppa_dyn_hash_entry *dyn_h;
1921
1922 hppa_info = elf64_hppa_hash_table (info);
1923 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1924 h->root.root.string, FALSE, FALSE);
1925
1926 stub = hppa_info->stub_sec;
1927 splt = hppa_info->plt_sec;
1928 sdlt = hppa_info->dlt_sec;
1929 sopd = hppa_info->opd_sec;
1930 spltrel = hppa_info->plt_rel_sec;
1931 sdltrel = hppa_info->dlt_rel_sec;
1932
1933 /* Incredible. It is actually necessary to NOT use the symbol's real
1934 value when building the dynamic symbol table for a shared library.
1935 At least for symbols that refer to functions.
1936
1937 We will store a new value and section index into the symbol long
1938 enough to output it into the dynamic symbol table, then we restore
1939 the original values (in elf64_hppa_link_output_symbol_hook). */
1940 if (dyn_h && dyn_h->want_opd)
1941 {
1942 BFD_ASSERT (sopd != NULL);
1943
1944 /* Save away the original value and section index so that we
1945 can restore them later. */
1946 dyn_h->st_value = sym->st_value;
1947 dyn_h->st_shndx = sym->st_shndx;
1948
1949 /* For the dynamic symbol table entry, we want the value to be
1950 address of this symbol's entry within the .opd section. */
1951 sym->st_value = (dyn_h->opd_offset
1952 + sopd->output_offset
1953 + sopd->output_section->vma);
1954 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1955 sopd->output_section);
1956 }
1957
1958 /* Initialize a .plt entry if requested. */
1959 if (dyn_h && dyn_h->want_plt
1960 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1961 {
1962 bfd_vma value;
1963 Elf_Internal_Rela rel;
1964 bfd_byte *loc;
1965
1966 BFD_ASSERT (splt != NULL && spltrel != NULL);
1967
1968 /* We do not actually care about the value in the PLT entry
1969 if we are creating a shared library and the symbol is
1970 still undefined, we create a dynamic relocation to fill
1971 in the correct value. */
1972 if (info->shared && h->root.type == bfd_link_hash_undefined)
1973 value = 0;
1974 else
1975 value = (h->root.u.def.value + h->root.u.def.section->vma);
1976
1977 /* Fill in the entry in the procedure linkage table.
1978
1979 The format of a plt entry is
1980 <funcaddr> <__gp>.
1981
1982 plt_offset is the offset within the PLT section at which to
1983 install the PLT entry.
1984
1985 We are modifying the in-memory PLT contents here, so we do not add
1986 in the output_offset of the PLT section. */
1987
1988 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1989 value = _bfd_get_gp_value (splt->output_section->owner);
1990 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1991
1992 /* Create a dynamic IPLT relocation for this entry.
1993
1994 We are creating a relocation in the output file's PLT section,
1995 which is included within the DLT secton. So we do need to include
1996 the PLT's output_offset in the computation of the relocation's
1997 address. */
1998 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1999 + splt->output_section->vma);
2000 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2001 rel.r_addend = 0;
2002
2003 loc = spltrel->contents;
2004 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2005 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2006 }
2007
2008 /* Initialize an external call stub entry if requested. */
2009 if (dyn_h && dyn_h->want_stub
2010 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2011 {
2012 bfd_vma value;
2013 int insn;
2014 unsigned int max_offset;
2015
2016 BFD_ASSERT (stub != NULL);
2017
2018 /* Install the generic stub template.
2019
2020 We are modifying the contents of the stub section, so we do not
2021 need to include the stub section's output_offset here. */
2022 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2023
2024 /* Fix up the first ldd instruction.
2025
2026 We are modifying the contents of the STUB section in memory,
2027 so we do not need to include its output offset in this computation.
2028
2029 Note the plt_offset value is the value of the PLT entry relative to
2030 the start of the PLT section. These instructions will reference
2031 data relative to the value of __gp, which may not necessarily have
2032 the same address as the start of the PLT section.
2033
2034 gp_offset contains the offset of __gp within the PLT section. */
2035 value = dyn_h->plt_offset - hppa_info->gp_offset;
2036
2037 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2038 if (output_bfd->arch_info->mach >= 25)
2039 {
2040 /* Wide mode allows 16 bit offsets. */
2041 max_offset = 32768;
2042 insn &= ~ 0xfff1;
2043 insn |= re_assemble_16 ((int) value);
2044 }
2045 else
2046 {
2047 max_offset = 8192;
2048 insn &= ~ 0x3ff1;
2049 insn |= re_assemble_14 ((int) value);
2050 }
2051
2052 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2053 {
2054 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2055 dyn_h->root.string,
2056 (long) value);
2057 return FALSE;
2058 }
2059
2060 bfd_put_32 (stub->owner, (bfd_vma) insn,
2061 stub->contents + dyn_h->stub_offset);
2062
2063 /* Fix up the second ldd instruction. */
2064 value += 8;
2065 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2066 if (output_bfd->arch_info->mach >= 25)
2067 {
2068 insn &= ~ 0xfff1;
2069 insn |= re_assemble_16 ((int) value);
2070 }
2071 else
2072 {
2073 insn &= ~ 0x3ff1;
2074 insn |= re_assemble_14 ((int) value);
2075 }
2076 bfd_put_32 (stub->owner, (bfd_vma) insn,
2077 stub->contents + dyn_h->stub_offset + 8);
2078 }
2079
2080 return TRUE;
2081 }
2082
2083 /* The .opd section contains FPTRs for each function this file
2084 exports. Initialize the FPTR entries. */
2085
2086 static bfd_boolean
elf64_hppa_finalize_opd(dyn_h,data)2087 elf64_hppa_finalize_opd (dyn_h, data)
2088 struct elf64_hppa_dyn_hash_entry *dyn_h;
2089 PTR data;
2090 {
2091 struct bfd_link_info *info = (struct bfd_link_info *)data;
2092 struct elf64_hppa_link_hash_table *hppa_info;
2093 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2094 asection *sopd;
2095 asection *sopdrel;
2096
2097 hppa_info = elf64_hppa_hash_table (info);
2098 sopd = hppa_info->opd_sec;
2099 sopdrel = hppa_info->opd_rel_sec;
2100
2101 if (h && dyn_h->want_opd)
2102 {
2103 bfd_vma value;
2104
2105 /* The first two words of an .opd entry are zero.
2106
2107 We are modifying the contents of the OPD section in memory, so we
2108 do not need to include its output offset in this computation. */
2109 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2110
2111 value = (h->root.u.def.value
2112 + h->root.u.def.section->output_section->vma
2113 + h->root.u.def.section->output_offset);
2114
2115 /* The next word is the address of the function. */
2116 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2117
2118 /* The last word is our local __gp value. */
2119 value = _bfd_get_gp_value (sopd->output_section->owner);
2120 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2121 }
2122
2123 /* If we are generating a shared library, we must generate EPLT relocations
2124 for each entry in the .opd, even for static functions (they may have
2125 had their address taken). */
2126 if (info->shared && dyn_h && dyn_h->want_opd)
2127 {
2128 Elf_Internal_Rela rel;
2129 bfd_byte *loc;
2130 int dynindx;
2131
2132 /* We may need to do a relocation against a local symbol, in
2133 which case we have to look up it's dynamic symbol index off
2134 the local symbol hash table. */
2135 if (h && h->dynindx != -1)
2136 dynindx = h->dynindx;
2137 else
2138 dynindx
2139 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2140 dyn_h->sym_indx);
2141
2142 /* The offset of this relocation is the absolute address of the
2143 .opd entry for this symbol. */
2144 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2145 + sopd->output_section->vma);
2146
2147 /* If H is non-null, then we have an external symbol.
2148
2149 It is imperative that we use a different dynamic symbol for the
2150 EPLT relocation if the symbol has global scope.
2151
2152 In the dynamic symbol table, the function symbol will have a value
2153 which is address of the function's .opd entry.
2154
2155 Thus, we can not use that dynamic symbol for the EPLT relocation
2156 (if we did, the data in the .opd would reference itself rather
2157 than the actual address of the function). Instead we have to use
2158 a new dynamic symbol which has the same value as the original global
2159 function symbol.
2160
2161 We prefix the original symbol with a "." and use the new symbol in
2162 the EPLT relocation. This new symbol has already been recorded in
2163 the symbol table, we just have to look it up and use it.
2164
2165 We do not have such problems with static functions because we do
2166 not make their addresses in the dynamic symbol table point to
2167 the .opd entry. Ultimately this should be safe since a static
2168 function can not be directly referenced outside of its shared
2169 library.
2170
2171 We do have to play similar games for FPTR relocations in shared
2172 libraries, including those for static symbols. See the FPTR
2173 handling in elf64_hppa_finalize_dynreloc. */
2174 if (h)
2175 {
2176 char *new_name;
2177 struct elf_link_hash_entry *nh;
2178
2179 new_name = alloca (strlen (h->root.root.string) + 2);
2180 new_name[0] = '.';
2181 strcpy (new_name + 1, h->root.root.string);
2182
2183 nh = elf_link_hash_lookup (elf_hash_table (info),
2184 new_name, FALSE, FALSE, FALSE);
2185
2186 /* All we really want from the new symbol is its dynamic
2187 symbol index. */
2188 dynindx = nh->dynindx;
2189 }
2190
2191 rel.r_addend = 0;
2192 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2193
2194 loc = sopdrel->contents;
2195 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2196 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2197 }
2198 return TRUE;
2199 }
2200
2201 /* The .dlt section contains addresses for items referenced through the
2202 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2203 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2204
2205 static bfd_boolean
elf64_hppa_finalize_dlt(dyn_h,data)2206 elf64_hppa_finalize_dlt (dyn_h, data)
2207 struct elf64_hppa_dyn_hash_entry *dyn_h;
2208 PTR data;
2209 {
2210 struct bfd_link_info *info = (struct bfd_link_info *)data;
2211 struct elf64_hppa_link_hash_table *hppa_info;
2212 asection *sdlt, *sdltrel;
2213 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2214
2215 hppa_info = elf64_hppa_hash_table (info);
2216
2217 sdlt = hppa_info->dlt_sec;
2218 sdltrel = hppa_info->dlt_rel_sec;
2219
2220 /* H/DYN_H may refer to a local variable and we know it's
2221 address, so there is no need to create a relocation. Just install
2222 the proper value into the DLT, note this shortcut can not be
2223 skipped when building a shared library. */
2224 if (! info->shared && h && dyn_h->want_dlt)
2225 {
2226 bfd_vma value;
2227
2228 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2229 to point to the FPTR entry in the .opd section.
2230
2231 We include the OPD's output offset in this computation as
2232 we are referring to an absolute address in the resulting
2233 object file. */
2234 if (dyn_h->want_opd)
2235 {
2236 value = (dyn_h->opd_offset
2237 + hppa_info->opd_sec->output_offset
2238 + hppa_info->opd_sec->output_section->vma);
2239 }
2240 else if ((h->root.type == bfd_link_hash_defined
2241 || h->root.type == bfd_link_hash_defweak)
2242 && h->root.u.def.section)
2243 {
2244 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2245 if (h->root.u.def.section->output_section)
2246 value += h->root.u.def.section->output_section->vma;
2247 else
2248 value += h->root.u.def.section->vma;
2249 }
2250 else
2251 /* We have an undefined function reference. */
2252 value = 0;
2253
2254 /* We do not need to include the output offset of the DLT section
2255 here because we are modifying the in-memory contents. */
2256 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2257 }
2258
2259 /* Create a relocation for the DLT entry associated with this symbol.
2260 When building a shared library the symbol does not have to be dynamic. */
2261 if (dyn_h->want_dlt
2262 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2263 {
2264 Elf_Internal_Rela rel;
2265 bfd_byte *loc;
2266 int dynindx;
2267
2268 /* We may need to do a relocation against a local symbol, in
2269 which case we have to look up it's dynamic symbol index off
2270 the local symbol hash table. */
2271 if (h && h->dynindx != -1)
2272 dynindx = h->dynindx;
2273 else
2274 dynindx
2275 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2276 dyn_h->sym_indx);
2277
2278 /* Create a dynamic relocation for this entry. Do include the output
2279 offset of the DLT entry since we need an absolute address in the
2280 resulting object file. */
2281 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2282 + sdlt->output_section->vma);
2283 if (h && h->type == STT_FUNC)
2284 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2285 else
2286 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2287 rel.r_addend = 0;
2288
2289 loc = sdltrel->contents;
2290 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2291 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2292 }
2293 return TRUE;
2294 }
2295
2296 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2297 for dynamic functions used to initialize static data. */
2298
2299 static bfd_boolean
elf64_hppa_finalize_dynreloc(dyn_h,data)2300 elf64_hppa_finalize_dynreloc (dyn_h, data)
2301 struct elf64_hppa_dyn_hash_entry *dyn_h;
2302 PTR data;
2303 {
2304 struct bfd_link_info *info = (struct bfd_link_info *)data;
2305 struct elf64_hppa_link_hash_table *hppa_info;
2306 struct elf_link_hash_entry *h;
2307 int dynamic_symbol;
2308
2309 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2310
2311 if (!dynamic_symbol && !info->shared)
2312 return TRUE;
2313
2314 if (dyn_h->reloc_entries)
2315 {
2316 struct elf64_hppa_dyn_reloc_entry *rent;
2317 int dynindx;
2318
2319 hppa_info = elf64_hppa_hash_table (info);
2320 h = dyn_h->h;
2321
2322 /* We may need to do a relocation against a local symbol, in
2323 which case we have to look up it's dynamic symbol index off
2324 the local symbol hash table. */
2325 if (h && h->dynindx != -1)
2326 dynindx = h->dynindx;
2327 else
2328 dynindx
2329 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2330 dyn_h->sym_indx);
2331
2332 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2333 {
2334 Elf_Internal_Rela rel;
2335 bfd_byte *loc;
2336
2337 /* Allocate one iff we are building a shared library, the relocation
2338 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2339 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2340 continue;
2341
2342 /* Create a dynamic relocation for this entry.
2343
2344 We need the output offset for the reloc's section because
2345 we are creating an absolute address in the resulting object
2346 file. */
2347 rel.r_offset = (rent->offset + rent->sec->output_offset
2348 + rent->sec->output_section->vma);
2349
2350 /* An FPTR64 relocation implies that we took the address of
2351 a function and that the function has an entry in the .opd
2352 section. We want the FPTR64 relocation to reference the
2353 entry in .opd.
2354
2355 We could munge the symbol value in the dynamic symbol table
2356 (in fact we already do for functions with global scope) to point
2357 to the .opd entry. Then we could use that dynamic symbol in
2358 this relocation.
2359
2360 Or we could do something sensible, not munge the symbol's
2361 address and instead just use a different symbol to reference
2362 the .opd entry. At least that seems sensible until you
2363 realize there's no local dynamic symbols we can use for that
2364 purpose. Thus the hair in the check_relocs routine.
2365
2366 We use a section symbol recorded by check_relocs as the
2367 base symbol for the relocation. The addend is the difference
2368 between the section symbol and the address of the .opd entry. */
2369 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2370 {
2371 bfd_vma value, value2;
2372
2373 /* First compute the address of the opd entry for this symbol. */
2374 value = (dyn_h->opd_offset
2375 + hppa_info->opd_sec->output_section->vma
2376 + hppa_info->opd_sec->output_offset);
2377
2378 /* Compute the value of the start of the section with
2379 the relocation. */
2380 value2 = (rent->sec->output_section->vma
2381 + rent->sec->output_offset);
2382
2383 /* Compute the difference between the start of the section
2384 with the relocation and the opd entry. */
2385 value -= value2;
2386
2387 /* The result becomes the addend of the relocation. */
2388 rel.r_addend = value;
2389
2390 /* The section symbol becomes the symbol for the dynamic
2391 relocation. */
2392 dynindx
2393 = _bfd_elf_link_lookup_local_dynindx (info,
2394 rent->sec->owner,
2395 rent->sec_symndx);
2396 }
2397 else
2398 rel.r_addend = rent->addend;
2399
2400 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2401
2402 loc = hppa_info->other_rel_sec->contents;
2403 loc += (hppa_info->other_rel_sec->reloc_count++
2404 * sizeof (Elf64_External_Rela));
2405 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2406 &rel, loc);
2407 }
2408 }
2409
2410 return TRUE;
2411 }
2412
2413 /* Used to decide how to sort relocs in an optimal manner for the
2414 dynamic linker, before writing them out. */
2415
2416 static enum elf_reloc_type_class
elf64_hppa_reloc_type_class(rela)2417 elf64_hppa_reloc_type_class (rela)
2418 const Elf_Internal_Rela *rela;
2419 {
2420 if (ELF64_R_SYM (rela->r_info) == 0)
2421 return reloc_class_relative;
2422
2423 switch ((int) ELF64_R_TYPE (rela->r_info))
2424 {
2425 case R_PARISC_IPLT:
2426 return reloc_class_plt;
2427 case R_PARISC_COPY:
2428 return reloc_class_copy;
2429 default:
2430 return reloc_class_normal;
2431 }
2432 }
2433
2434 /* Finish up the dynamic sections. */
2435
2436 static bfd_boolean
elf64_hppa_finish_dynamic_sections(output_bfd,info)2437 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2438 bfd *output_bfd;
2439 struct bfd_link_info *info;
2440 {
2441 bfd *dynobj;
2442 asection *sdyn;
2443 struct elf64_hppa_link_hash_table *hppa_info;
2444
2445 hppa_info = elf64_hppa_hash_table (info);
2446
2447 /* Finalize the contents of the .opd section. */
2448 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2449 elf64_hppa_finalize_opd,
2450 info);
2451
2452 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2453 elf64_hppa_finalize_dynreloc,
2454 info);
2455
2456 /* Finalize the contents of the .dlt section. */
2457 dynobj = elf_hash_table (info)->dynobj;
2458 /* Finalize the contents of the .dlt section. */
2459 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2460 elf64_hppa_finalize_dlt,
2461 info);
2462
2463 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2464
2465 if (elf_hash_table (info)->dynamic_sections_created)
2466 {
2467 Elf64_External_Dyn *dyncon, *dynconend;
2468
2469 BFD_ASSERT (sdyn != NULL);
2470
2471 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2472 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2473 for (; dyncon < dynconend; dyncon++)
2474 {
2475 Elf_Internal_Dyn dyn;
2476 asection *s;
2477
2478 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2479
2480 switch (dyn.d_tag)
2481 {
2482 default:
2483 break;
2484
2485 case DT_HP_LOAD_MAP:
2486 /* Compute the absolute address of 16byte scratchpad area
2487 for the dynamic linker.
2488
2489 By convention the linker script will allocate the scratchpad
2490 area at the start of the .data section. So all we have to
2491 to is find the start of the .data section. */
2492 s = bfd_get_section_by_name (output_bfd, ".data");
2493 dyn.d_un.d_ptr = s->vma;
2494 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2495 break;
2496
2497 case DT_PLTGOT:
2498 /* HP's use PLTGOT to set the GOT register. */
2499 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2500 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2501 break;
2502
2503 case DT_JMPREL:
2504 s = hppa_info->plt_rel_sec;
2505 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2506 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2507 break;
2508
2509 case DT_PLTRELSZ:
2510 s = hppa_info->plt_rel_sec;
2511 dyn.d_un.d_val = s->size;
2512 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2513 break;
2514
2515 case DT_RELA:
2516 s = hppa_info->other_rel_sec;
2517 if (! s || ! s->size)
2518 s = hppa_info->dlt_rel_sec;
2519 if (! s || ! s->size)
2520 s = hppa_info->opd_rel_sec;
2521 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 case DT_RELASZ:
2526 s = hppa_info->other_rel_sec;
2527 dyn.d_un.d_val = s->size;
2528 s = hppa_info->dlt_rel_sec;
2529 dyn.d_un.d_val += s->size;
2530 s = hppa_info->opd_rel_sec;
2531 dyn.d_un.d_val += s->size;
2532 /* There is some question about whether or not the size of
2533 the PLT relocs should be included here. HP's tools do
2534 it, so we'll emulate them. */
2535 s = hppa_info->plt_rel_sec;
2536 dyn.d_un.d_val += s->size;
2537 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2538 break;
2539
2540 }
2541 }
2542 }
2543
2544 return TRUE;
2545 }
2546
2547 /* Support for core dump NOTE sections. */
2548
2549 static bfd_boolean
elf64_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)2550 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2551 {
2552 int offset;
2553 size_t size;
2554
2555 switch (note->descsz)
2556 {
2557 default:
2558 return FALSE;
2559
2560 case 760: /* Linux/hppa */
2561 /* pr_cursig */
2562 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2563
2564 /* pr_pid */
2565 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2566
2567 /* pr_reg */
2568 offset = 112;
2569 size = 640;
2570
2571 break;
2572 }
2573
2574 /* Make a ".reg/999" section. */
2575 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2576 size, note->descpos + offset);
2577 }
2578
2579 static bfd_boolean
elf64_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)2580 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2581 {
2582 char * command;
2583 int n;
2584
2585 switch (note->descsz)
2586 {
2587 default:
2588 return FALSE;
2589
2590 case 136: /* Linux/hppa elf_prpsinfo. */
2591 elf_tdata (abfd)->core_program
2592 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2593 elf_tdata (abfd)->core_command
2594 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2595 }
2596
2597 /* Note that for some reason, a spurious space is tacked
2598 onto the end of the args in some (at least one anyway)
2599 implementations, so strip it off if it exists. */
2600 command = elf_tdata (abfd)->core_command;
2601 n = strlen (command);
2602
2603 if (0 < n && command[n - 1] == ' ')
2604 command[n - 1] = '\0';
2605
2606 return TRUE;
2607 }
2608
2609 /* Return the number of additional phdrs we will need.
2610
2611 The generic ELF code only creates PT_PHDRs for executables. The HP
2612 dynamic linker requires PT_PHDRs for dynamic libraries too.
2613
2614 This routine indicates that the backend needs one additional program
2615 header for that case.
2616
2617 Note we do not have access to the link info structure here, so we have
2618 to guess whether or not we are building a shared library based on the
2619 existence of a .interp section. */
2620
2621 static int
elf64_hppa_additional_program_headers(abfd)2622 elf64_hppa_additional_program_headers (abfd)
2623 bfd *abfd;
2624 {
2625 asection *s;
2626
2627 /* If we are creating a shared library, then we have to create a
2628 PT_PHDR segment. HP's dynamic linker chokes without it. */
2629 s = bfd_get_section_by_name (abfd, ".interp");
2630 if (! s)
2631 return 1;
2632 return 0;
2633 }
2634
2635 /* Allocate and initialize any program headers required by this
2636 specific backend.
2637
2638 The generic ELF code only creates PT_PHDRs for executables. The HP
2639 dynamic linker requires PT_PHDRs for dynamic libraries too.
2640
2641 This allocates the PT_PHDR and initializes it in a manner suitable
2642 for the HP linker.
2643
2644 Note we do not have access to the link info structure here, so we have
2645 to guess whether or not we are building a shared library based on the
2646 existence of a .interp section. */
2647
2648 static bfd_boolean
elf64_hppa_modify_segment_map(abfd,info)2649 elf64_hppa_modify_segment_map (abfd, info)
2650 bfd *abfd;
2651 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2652 {
2653 struct elf_segment_map *m;
2654 asection *s;
2655
2656 s = bfd_get_section_by_name (abfd, ".interp");
2657 if (! s)
2658 {
2659 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2660 if (m->p_type == PT_PHDR)
2661 break;
2662 if (m == NULL)
2663 {
2664 m = ((struct elf_segment_map *)
2665 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2666 if (m == NULL)
2667 return FALSE;
2668
2669 m->p_type = PT_PHDR;
2670 m->p_flags = PF_R | PF_X;
2671 m->p_flags_valid = 1;
2672 m->p_paddr_valid = 1;
2673 m->includes_phdrs = 1;
2674
2675 m->next = elf_tdata (abfd)->segment_map;
2676 elf_tdata (abfd)->segment_map = m;
2677 }
2678 }
2679
2680 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2681 if (m->p_type == PT_LOAD)
2682 {
2683 unsigned int i;
2684
2685 for (i = 0; i < m->count; i++)
2686 {
2687 /* The code "hint" is not really a hint. It is a requirement
2688 for certain versions of the HP dynamic linker. Worse yet,
2689 it must be set even if the shared library does not have
2690 any code in its "text" segment (thus the check for .hash
2691 to catch this situation). */
2692 if (m->sections[i]->flags & SEC_CODE
2693 || (strcmp (m->sections[i]->name, ".hash") == 0))
2694 m->p_flags |= (PF_X | PF_HP_CODE);
2695 }
2696 }
2697
2698 return TRUE;
2699 }
2700
2701 /* Called when writing out an object file to decide the type of a
2702 symbol. */
2703 static int
elf64_hppa_elf_get_symbol_type(elf_sym,type)2704 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2705 Elf_Internal_Sym *elf_sym;
2706 int type;
2707 {
2708 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2709 return STT_PARISC_MILLI;
2710 else
2711 return type;
2712 }
2713
2714 /* Support HP specific sections for core files. */
2715 static bfd_boolean
elf64_hppa_section_from_phdr(bfd * abfd,Elf_Internal_Phdr * hdr,int index,const char * typename)2716 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2717 const char *typename)
2718 {
2719 if (hdr->p_type == PT_HP_CORE_KERNEL)
2720 {
2721 asection *sect;
2722
2723 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2724 return FALSE;
2725
2726 sect = bfd_make_section_anyway (abfd, ".kernel");
2727 if (sect == NULL)
2728 return FALSE;
2729 sect->size = hdr->p_filesz;
2730 sect->filepos = hdr->p_offset;
2731 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2732 return TRUE;
2733 }
2734
2735 if (hdr->p_type == PT_HP_CORE_PROC)
2736 {
2737 int sig;
2738
2739 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2740 return FALSE;
2741 if (bfd_bread (&sig, 4, abfd) != 4)
2742 return FALSE;
2743
2744 elf_tdata (abfd)->core_signal = sig;
2745
2746 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2747 return FALSE;
2748
2749 /* GDB uses the ".reg" section to read register contents. */
2750 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2751 hdr->p_offset);
2752 }
2753
2754 if (hdr->p_type == PT_HP_CORE_LOADABLE
2755 || hdr->p_type == PT_HP_CORE_STACK
2756 || hdr->p_type == PT_HP_CORE_MMF)
2757 hdr->p_type = PT_LOAD;
2758
2759 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2760 }
2761
2762 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2763 {
2764 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2767 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2768 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2769 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2770 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2771 { NULL, 0, 0, 0, 0 }
2772 };
2773
2774 /* The hash bucket size is the standard one, namely 4. */
2775
2776 const struct elf_size_info hppa64_elf_size_info =
2777 {
2778 sizeof (Elf64_External_Ehdr),
2779 sizeof (Elf64_External_Phdr),
2780 sizeof (Elf64_External_Shdr),
2781 sizeof (Elf64_External_Rel),
2782 sizeof (Elf64_External_Rela),
2783 sizeof (Elf64_External_Sym),
2784 sizeof (Elf64_External_Dyn),
2785 sizeof (Elf_External_Note),
2786 4,
2787 1,
2788 64, 3,
2789 ELFCLASS64, EV_CURRENT,
2790 bfd_elf64_write_out_phdrs,
2791 bfd_elf64_write_shdrs_and_ehdr,
2792 bfd_elf64_write_relocs,
2793 bfd_elf64_swap_symbol_in,
2794 bfd_elf64_swap_symbol_out,
2795 bfd_elf64_slurp_reloc_table,
2796 bfd_elf64_slurp_symbol_table,
2797 bfd_elf64_swap_dyn_in,
2798 bfd_elf64_swap_dyn_out,
2799 bfd_elf64_swap_reloc_in,
2800 bfd_elf64_swap_reloc_out,
2801 bfd_elf64_swap_reloca_in,
2802 bfd_elf64_swap_reloca_out
2803 };
2804
2805 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2806 #define TARGET_BIG_NAME "elf64-hppa"
2807 #define ELF_ARCH bfd_arch_hppa
2808 #define ELF_MACHINE_CODE EM_PARISC
2809 /* This is not strictly correct. The maximum page size for PA2.0 is
2810 64M. But everything still uses 4k. */
2811 #define ELF_MAXPAGESIZE 0x1000
2812 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2813 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2814 #define elf_info_to_howto elf_hppa_info_to_howto
2815 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2816
2817 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2818 #define elf_backend_object_p elf64_hppa_object_p
2819 #define elf_backend_final_write_processing \
2820 elf_hppa_final_write_processing
2821 #define elf_backend_fake_sections elf_hppa_fake_sections
2822 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2823
2824 #define elf_backend_relocate_section elf_hppa_relocate_section
2825
2826 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2827
2828 #define elf_backend_create_dynamic_sections \
2829 elf64_hppa_create_dynamic_sections
2830 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2831
2832 #define elf_backend_adjust_dynamic_symbol \
2833 elf64_hppa_adjust_dynamic_symbol
2834
2835 #define elf_backend_size_dynamic_sections \
2836 elf64_hppa_size_dynamic_sections
2837
2838 #define elf_backend_finish_dynamic_symbol \
2839 elf64_hppa_finish_dynamic_symbol
2840 #define elf_backend_finish_dynamic_sections \
2841 elf64_hppa_finish_dynamic_sections
2842 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2843 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2844
2845 /* Stuff for the BFD linker: */
2846 #define bfd_elf64_bfd_link_hash_table_create \
2847 elf64_hppa_hash_table_create
2848
2849 #define elf_backend_check_relocs \
2850 elf64_hppa_check_relocs
2851
2852 #define elf_backend_size_info \
2853 hppa64_elf_size_info
2854
2855 #define elf_backend_additional_program_headers \
2856 elf64_hppa_additional_program_headers
2857
2858 #define elf_backend_modify_segment_map \
2859 elf64_hppa_modify_segment_map
2860
2861 #define elf_backend_link_output_symbol_hook \
2862 elf64_hppa_link_output_symbol_hook
2863
2864 #define elf_backend_want_got_plt 0
2865 #define elf_backend_plt_readonly 0
2866 #define elf_backend_want_plt_sym 0
2867 #define elf_backend_got_header_size 0
2868 #define elf_backend_type_change_ok TRUE
2869 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2870 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2871 #define elf_backend_rela_normal 1
2872 #define elf_backend_special_sections elf64_hppa_special_sections
2873 #define elf_backend_action_discarded elf_hppa_action_discarded
2874 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2875
2876 #include "elf64-target.h"
2877
2878 #undef TARGET_BIG_SYM
2879 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2880 #undef TARGET_BIG_NAME
2881 #define TARGET_BIG_NAME "elf64-hppa-linux"
2882
2883 #define INCLUDED_TARGET_FILE 1
2884 #include "elf64-target.h"
2885