1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Utility/DataExtractor.h"
10
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/LEB128.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35
36 #include <cctype>
37 #include <cinttypes>
38 #include <cstring>
39
40 using namespace lldb;
41 using namespace lldb_private;
42
ReadInt16(const unsigned char * ptr,offset_t offset)43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44 uint16_t value;
45 memcpy(&value, ptr + offset, 2);
46 return value;
47 }
48
ReadInt32(const unsigned char * ptr,offset_t offset=0)49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50 offset_t offset = 0) {
51 uint32_t value;
52 memcpy(&value, ptr + offset, 4);
53 return value;
54 }
55
ReadInt64(const unsigned char * ptr,offset_t offset=0)56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57 offset_t offset = 0) {
58 uint64_t value;
59 memcpy(&value, ptr + offset, 8);
60 return value;
61 }
62
ReadInt16(const void * ptr)63 static inline uint16_t ReadInt16(const void *ptr) {
64 uint16_t value;
65 memcpy(&value, ptr, 2);
66 return value;
67 }
68
ReadSwapInt16(const unsigned char * ptr,offset_t offset)69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70 offset_t offset) {
71 uint16_t value;
72 memcpy(&value, ptr + offset, 2);
73 return llvm::ByteSwap_16(value);
74 }
75
ReadSwapInt32(const unsigned char * ptr,offset_t offset)76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77 offset_t offset) {
78 uint32_t value;
79 memcpy(&value, ptr + offset, 4);
80 return llvm::ByteSwap_32(value);
81 }
82
ReadSwapInt64(const unsigned char * ptr,offset_t offset)83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84 offset_t offset) {
85 uint64_t value;
86 memcpy(&value, ptr + offset, 8);
87 return llvm::ByteSwap_64(value);
88 }
89
ReadSwapInt16(const void * ptr)90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91 uint16_t value;
92 memcpy(&value, ptr, 2);
93 return llvm::ByteSwap_16(value);
94 }
95
ReadSwapInt32(const void * ptr)96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97 uint32_t value;
98 memcpy(&value, ptr, 4);
99 return llvm::ByteSwap_32(value);
100 }
101
ReadSwapInt64(const void * ptr)102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103 uint64_t value;
104 memcpy(&value, ptr, 8);
105 return llvm::ByteSwap_64(value);
106 }
107
ReadMaxInt64(const uint8_t * data,size_t byte_size,ByteOrder byte_order)108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109 ByteOrder byte_order) {
110 uint64_t res = 0;
111 if (byte_order == eByteOrderBig)
112 for (size_t i = 0; i < byte_size; ++i)
113 res = (res << 8) | data[i];
114 else {
115 assert(byte_order == eByteOrderLittle);
116 for (size_t i = 0; i < byte_size; ++i)
117 res = (res << 8) | data[byte_size - 1 - i];
118 }
119 return res;
120 }
121
DataExtractor()122 DataExtractor::DataExtractor()
123 : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
124 m_data_sp() {}
125
126 // This constructor allows us to use data that is owned by someone else. The
127 // data must stay around as long as this object is valid.
DataExtractor(const void * data,offset_t length,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)128 DataExtractor::DataExtractor(const void *data, offset_t length,
129 ByteOrder endian, uint32_t addr_size,
130 uint32_t target_byte_size /*=1*/)
131 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
132 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
133 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
134 m_target_byte_size(target_byte_size) {
135 assert(addr_size >= 1 && addr_size <= 8);
136 }
137
138 // Make a shared pointer reference to the shared data in "data_sp" and set the
139 // endian swapping setting to "swap", and the address size to "addr_size". The
140 // shared data reference will ensure the data lives as long as any
141 // DataExtractor objects exist that have a reference to this data.
DataExtractor(const DataBufferSP & data_sp,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)142 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
143 uint32_t addr_size,
144 uint32_t target_byte_size /*=1*/)
145 : m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
146 m_target_byte_size(target_byte_size) {
147 assert(addr_size >= 1 && addr_size <= 8);
148 SetData(data_sp);
149 }
150
151 // Initialize this object with a subset of the data bytes in "data". If "data"
152 // contains shared data, then a reference to this shared data will added and
153 // the shared data will stay around as long as any object contains a reference
154 // to that data. The endian swap and address size settings are copied from
155 // "data".
DataExtractor(const DataExtractor & data,offset_t offset,offset_t length,uint32_t target_byte_size)156 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
157 offset_t length, uint32_t target_byte_size /*=1*/)
158 : m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size),
159 m_data_sp(), m_target_byte_size(target_byte_size) {
160 assert(m_addr_size >= 1 && m_addr_size <= 8);
161 if (data.ValidOffset(offset)) {
162 offset_t bytes_available = data.GetByteSize() - offset;
163 if (length > bytes_available)
164 length = bytes_available;
165 SetData(data, offset, length);
166 }
167 }
168
DataExtractor(const DataExtractor & rhs)169 DataExtractor::DataExtractor(const DataExtractor &rhs)
170 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
171 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
172 m_target_byte_size(rhs.m_target_byte_size) {
173 assert(m_addr_size >= 1 && m_addr_size <= 8);
174 }
175
176 // Assignment operator
operator =(const DataExtractor & rhs)177 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
178 if (this != &rhs) {
179 m_start = rhs.m_start;
180 m_end = rhs.m_end;
181 m_byte_order = rhs.m_byte_order;
182 m_addr_size = rhs.m_addr_size;
183 m_data_sp = rhs.m_data_sp;
184 }
185 return *this;
186 }
187
188 DataExtractor::~DataExtractor() = default;
189
190 // Clears the object contents back to a default invalid state, and release any
191 // references to shared data that this object may contain.
Clear()192 void DataExtractor::Clear() {
193 m_start = nullptr;
194 m_end = nullptr;
195 m_byte_order = endian::InlHostByteOrder();
196 m_addr_size = sizeof(void *);
197 m_data_sp.reset();
198 }
199
200 // If this object contains shared data, this function returns the offset into
201 // that shared data. Else zero is returned.
GetSharedDataOffset() const202 size_t DataExtractor::GetSharedDataOffset() const {
203 if (m_start != nullptr) {
204 const DataBuffer *data = m_data_sp.get();
205 if (data != nullptr) {
206 const uint8_t *data_bytes = data->GetBytes();
207 if (data_bytes != nullptr) {
208 assert(m_start >= data_bytes);
209 return m_start - data_bytes;
210 }
211 }
212 }
213 return 0;
214 }
215
216 // Set the data with which this object will extract from to data starting at
217 // BYTES and set the length of the data to LENGTH bytes long. The data is
218 // externally owned must be around at least as long as this object points to
219 // the data. No copy of the data is made, this object just refers to this data
220 // and can extract from it. If this object refers to any shared data upon
221 // entry, the reference to that data will be released. Is SWAP is set to true,
222 // any data extracted will be endian swapped.
SetData(const void * bytes,offset_t length,ByteOrder endian)223 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
224 ByteOrder endian) {
225 m_byte_order = endian;
226 m_data_sp.reset();
227 if (bytes == nullptr || length == 0) {
228 m_start = nullptr;
229 m_end = nullptr;
230 } else {
231 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
232 m_end = m_start + length;
233 }
234 return GetByteSize();
235 }
236
237 // Assign the data for this object to be a subrange in "data" starting
238 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
239 // "data_offset" is not a valid offset into "data", then this object will
240 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
241 // large, the length will be capped at the number of bytes remaining in "data".
242 // If "data" contains a shared pointer to other data, then a ref counted
243 // pointer to that data will be made in this object. If "data" doesn't contain
244 // a shared pointer to data, then the bytes referred to in "data" will need to
245 // exist at least as long as this object refers to those bytes. The address
246 // size and endian swap settings are copied from the current values in "data".
SetData(const DataExtractor & data,offset_t data_offset,offset_t data_length)247 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
248 offset_t data_offset,
249 offset_t data_length) {
250 m_addr_size = data.m_addr_size;
251 assert(m_addr_size >= 1 && m_addr_size <= 8);
252 // If "data" contains shared pointer to data, then we can use that
253 if (data.m_data_sp) {
254 m_byte_order = data.m_byte_order;
255 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
256 data_length);
257 }
258
259 // We have a DataExtractor object that just has a pointer to bytes
260 if (data.ValidOffset(data_offset)) {
261 if (data_length > data.GetByteSize() - data_offset)
262 data_length = data.GetByteSize() - data_offset;
263 return SetData(data.GetDataStart() + data_offset, data_length,
264 data.GetByteOrder());
265 }
266 return 0;
267 }
268
269 // Assign the data for this object to be a subrange of the shared data in
270 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
271 // "data_length" bytes later. If "data_offset" is not a valid offset into
272 // "data_sp", then this object will contain no bytes. If "data_offset" is
273 // within "data_sp" yet "data_length" is too large, the length will be capped
274 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
275 // data in "data_sp" will be made in this object IF the number of bytes this
276 // object refers to in greater than zero (if at least one byte was available
277 // starting at "data_offset") to ensure the data stays around as long as it is
278 // needed. The address size and endian swap settings will remain unchanged from
279 // their current settings.
SetData(const DataBufferSP & data_sp,offset_t data_offset,offset_t data_length)280 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
281 offset_t data_offset,
282 offset_t data_length) {
283 m_start = m_end = nullptr;
284
285 if (data_length > 0) {
286 m_data_sp = data_sp;
287 if (data_sp) {
288 const size_t data_size = data_sp->GetByteSize();
289 if (data_offset < data_size) {
290 m_start = data_sp->GetBytes() + data_offset;
291 const size_t bytes_left = data_size - data_offset;
292 // Cap the length of we asked for too many
293 if (data_length <= bytes_left)
294 m_end = m_start + data_length; // We got all the bytes we wanted
295 else
296 m_end = m_start + bytes_left; // Not all the bytes requested were
297 // available in the shared data
298 }
299 }
300 }
301
302 size_t new_size = GetByteSize();
303
304 // Don't hold a shared pointer to the data buffer if we don't share any valid
305 // bytes in the shared buffer.
306 if (new_size == 0)
307 m_data_sp.reset();
308
309 return new_size;
310 }
311
312 // Extract a single unsigned char from the binary data and update the offset
313 // pointed to by "offset_ptr".
314 //
315 // RETURNS the byte that was extracted, or zero on failure.
GetU8(offset_t * offset_ptr) const316 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
317 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
318 if (data)
319 return *data;
320 return 0;
321 }
322
323 // Extract "count" unsigned chars from the binary data and update the offset
324 // pointed to by "offset_ptr". The extracted data is copied into "dst".
325 //
326 // RETURNS the non-nullptr buffer pointer upon successful extraction of
327 // all the requested bytes, or nullptr when the data is not available in the
328 // buffer due to being out of bounds, or insufficient data.
GetU8(offset_t * offset_ptr,void * dst,uint32_t count) const329 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
330 uint32_t count) const {
331 const uint8_t *data =
332 static_cast<const uint8_t *>(GetData(offset_ptr, count));
333 if (data) {
334 // Copy the data into the buffer
335 memcpy(dst, data, count);
336 // Return a non-nullptr pointer to the converted data as an indicator of
337 // success
338 return dst;
339 }
340 return nullptr;
341 }
342
343 // Extract a single uint16_t from the data and update the offset pointed to by
344 // "offset_ptr".
345 //
346 // RETURNS the uint16_t that was extracted, or zero on failure.
GetU16(offset_t * offset_ptr) const347 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
348 uint16_t val = 0;
349 const uint8_t *data =
350 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
351 if (data) {
352 if (m_byte_order != endian::InlHostByteOrder())
353 val = ReadSwapInt16(data);
354 else
355 val = ReadInt16(data);
356 }
357 return val;
358 }
359
GetU16_unchecked(offset_t * offset_ptr) const360 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
361 uint16_t val;
362 if (m_byte_order == endian::InlHostByteOrder())
363 val = ReadInt16(m_start, *offset_ptr);
364 else
365 val = ReadSwapInt16(m_start, *offset_ptr);
366 *offset_ptr += sizeof(val);
367 return val;
368 }
369
GetU32_unchecked(offset_t * offset_ptr) const370 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
371 uint32_t val;
372 if (m_byte_order == endian::InlHostByteOrder())
373 val = ReadInt32(m_start, *offset_ptr);
374 else
375 val = ReadSwapInt32(m_start, *offset_ptr);
376 *offset_ptr += sizeof(val);
377 return val;
378 }
379
GetU64_unchecked(offset_t * offset_ptr) const380 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
381 uint64_t val;
382 if (m_byte_order == endian::InlHostByteOrder())
383 val = ReadInt64(m_start, *offset_ptr);
384 else
385 val = ReadSwapInt64(m_start, *offset_ptr);
386 *offset_ptr += sizeof(val);
387 return val;
388 }
389
390 // Extract "count" uint16_t values from the binary data and update the offset
391 // pointed to by "offset_ptr". The extracted data is copied into "dst".
392 //
393 // RETURNS the non-nullptr buffer pointer upon successful extraction of
394 // all the requested bytes, or nullptr when the data is not available in the
395 // buffer due to being out of bounds, or insufficient data.
GetU16(offset_t * offset_ptr,void * void_dst,uint32_t count) const396 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
397 uint32_t count) const {
398 const size_t src_size = sizeof(uint16_t) * count;
399 const uint16_t *src =
400 static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
401 if (src) {
402 if (m_byte_order != endian::InlHostByteOrder()) {
403 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
404 uint16_t *dst_end = dst_pos + count;
405 const uint16_t *src_pos = src;
406 while (dst_pos < dst_end) {
407 *dst_pos = ReadSwapInt16(src_pos);
408 ++dst_pos;
409 ++src_pos;
410 }
411 } else {
412 memcpy(void_dst, src, src_size);
413 }
414 // Return a non-nullptr pointer to the converted data as an indicator of
415 // success
416 return void_dst;
417 }
418 return nullptr;
419 }
420
421 // Extract a single uint32_t from the data and update the offset pointed to by
422 // "offset_ptr".
423 //
424 // RETURNS the uint32_t that was extracted, or zero on failure.
GetU32(offset_t * offset_ptr) const425 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
426 uint32_t val = 0;
427 const uint8_t *data =
428 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
429 if (data) {
430 if (m_byte_order != endian::InlHostByteOrder()) {
431 val = ReadSwapInt32(data);
432 } else {
433 memcpy(&val, data, 4);
434 }
435 }
436 return val;
437 }
438
439 // Extract "count" uint32_t values from the binary data and update the offset
440 // pointed to by "offset_ptr". The extracted data is copied into "dst".
441 //
442 // RETURNS the non-nullptr buffer pointer upon successful extraction of
443 // all the requested bytes, or nullptr when the data is not available in the
444 // buffer due to being out of bounds, or insufficient data.
GetU32(offset_t * offset_ptr,void * void_dst,uint32_t count) const445 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
446 uint32_t count) const {
447 const size_t src_size = sizeof(uint32_t) * count;
448 const uint32_t *src =
449 static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
450 if (src) {
451 if (m_byte_order != endian::InlHostByteOrder()) {
452 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
453 uint32_t *dst_end = dst_pos + count;
454 const uint32_t *src_pos = src;
455 while (dst_pos < dst_end) {
456 *dst_pos = ReadSwapInt32(src_pos);
457 ++dst_pos;
458 ++src_pos;
459 }
460 } else {
461 memcpy(void_dst, src, src_size);
462 }
463 // Return a non-nullptr pointer to the converted data as an indicator of
464 // success
465 return void_dst;
466 }
467 return nullptr;
468 }
469
470 // Extract a single uint64_t from the data and update the offset pointed to by
471 // "offset_ptr".
472 //
473 // RETURNS the uint64_t that was extracted, or zero on failure.
GetU64(offset_t * offset_ptr) const474 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
475 uint64_t val = 0;
476 const uint8_t *data =
477 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
478 if (data) {
479 if (m_byte_order != endian::InlHostByteOrder()) {
480 val = ReadSwapInt64(data);
481 } else {
482 memcpy(&val, data, 8);
483 }
484 }
485 return val;
486 }
487
488 // GetU64
489 //
490 // Get multiple consecutive 64 bit values. Return true if the entire read
491 // succeeds and increment the offset pointed to by offset_ptr, else return
492 // false and leave the offset pointed to by offset_ptr unchanged.
GetU64(offset_t * offset_ptr,void * void_dst,uint32_t count) const493 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
494 uint32_t count) const {
495 const size_t src_size = sizeof(uint64_t) * count;
496 const uint64_t *src =
497 static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
498 if (src) {
499 if (m_byte_order != endian::InlHostByteOrder()) {
500 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
501 uint64_t *dst_end = dst_pos + count;
502 const uint64_t *src_pos = src;
503 while (dst_pos < dst_end) {
504 *dst_pos = ReadSwapInt64(src_pos);
505 ++dst_pos;
506 ++src_pos;
507 }
508 } else {
509 memcpy(void_dst, src, src_size);
510 }
511 // Return a non-nullptr pointer to the converted data as an indicator of
512 // success
513 return void_dst;
514 }
515 return nullptr;
516 }
517
GetMaxU32(offset_t * offset_ptr,size_t byte_size) const518 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
519 size_t byte_size) const {
520 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
521 return GetMaxU64(offset_ptr, byte_size);
522 }
523
GetMaxU64(offset_t * offset_ptr,size_t byte_size) const524 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
525 size_t byte_size) const {
526 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
527 switch (byte_size) {
528 case 1:
529 return GetU8(offset_ptr);
530 case 2:
531 return GetU16(offset_ptr);
532 case 4:
533 return GetU32(offset_ptr);
534 case 8:
535 return GetU64(offset_ptr);
536 default: {
537 // General case.
538 const uint8_t *data =
539 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
540 if (data == nullptr)
541 return 0;
542 return ReadMaxInt64(data, byte_size, m_byte_order);
543 }
544 }
545 return 0;
546 }
547
GetMaxU64_unchecked(offset_t * offset_ptr,size_t byte_size) const548 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
549 size_t byte_size) const {
550 switch (byte_size) {
551 case 1:
552 return GetU8_unchecked(offset_ptr);
553 case 2:
554 return GetU16_unchecked(offset_ptr);
555 case 4:
556 return GetU32_unchecked(offset_ptr);
557 case 8:
558 return GetU64_unchecked(offset_ptr);
559 default: {
560 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
561 *offset_ptr += byte_size;
562 return res;
563 }
564 }
565 return 0;
566 }
567
GetMaxS64(offset_t * offset_ptr,size_t byte_size) const568 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
569 uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
570 return llvm::SignExtend64(u64, 8 * byte_size);
571 }
572
GetMaxU64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const573 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
574 uint32_t bitfield_bit_size,
575 uint32_t bitfield_bit_offset) const {
576 assert(bitfield_bit_size <= 64);
577 uint64_t uval64 = GetMaxU64(offset_ptr, size);
578
579 if (bitfield_bit_size == 0)
580 return uval64;
581
582 int32_t lsbcount = bitfield_bit_offset;
583 if (m_byte_order == eByteOrderBig)
584 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
585
586 if (lsbcount > 0)
587 uval64 >>= lsbcount;
588
589 uint64_t bitfield_mask =
590 (bitfield_bit_size == 64
591 ? std::numeric_limits<uint64_t>::max()
592 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
593 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
594 return uval64;
595
596 uval64 &= bitfield_mask;
597
598 return uval64;
599 }
600
GetMaxS64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const601 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
602 uint32_t bitfield_bit_size,
603 uint32_t bitfield_bit_offset) const {
604 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
605 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
606 int64_t sval64 = GetMaxS64(offset_ptr, size);
607 if (bitfield_bit_size == 0)
608 return sval64;
609 int32_t lsbcount = bitfield_bit_offset;
610 if (m_byte_order == eByteOrderBig)
611 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
612 if (lsbcount > 0)
613 sval64 >>= lsbcount;
614 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
615 sval64 &= bitfield_mask;
616 // sign extend if needed
617 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
618 sval64 |= ~bitfield_mask;
619 return sval64;
620 }
621
GetFloat(offset_t * offset_ptr) const622 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
623 return Get<float>(offset_ptr, 0.0f);
624 }
625
GetDouble(offset_t * offset_ptr) const626 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
627 return Get<double>(offset_ptr, 0.0);
628 }
629
GetLongDouble(offset_t * offset_ptr) const630 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
631 long double val = 0.0;
632 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
633 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
634 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
635 endian::InlHostByteOrder());
636 #else
637 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
638 sizeof(val), endian::InlHostByteOrder());
639 #endif
640 return val;
641 }
642
643 // Extract a single address from the data and update the offset pointed to by
644 // "offset_ptr". The size of the extracted address comes from the
645 // "this->m_addr_size" member variable and should be set correctly prior to
646 // extracting any address values.
647 //
648 // RETURNS the address that was extracted, or zero on failure.
GetAddress(offset_t * offset_ptr) const649 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
650 assert(m_addr_size >= 1 && m_addr_size <= 8);
651 return GetMaxU64(offset_ptr, m_addr_size);
652 }
653
GetAddress_unchecked(offset_t * offset_ptr) const654 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
655 assert(m_addr_size >= 1 && m_addr_size <= 8);
656 return GetMaxU64_unchecked(offset_ptr, m_addr_size);
657 }
658
ExtractBytes(offset_t offset,offset_t length,ByteOrder dst_byte_order,void * dst) const659 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
660 ByteOrder dst_byte_order, void *dst) const {
661 const uint8_t *src = PeekData(offset, length);
662 if (src) {
663 if (dst_byte_order != GetByteOrder()) {
664 // Validate that only a word- or register-sized dst is byte swapped
665 assert(length == 1 || length == 2 || length == 4 || length == 8 ||
666 length == 10 || length == 16 || length == 32);
667
668 for (uint32_t i = 0; i < length; ++i)
669 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
670 } else
671 ::memcpy(dst, src, length);
672 return length;
673 }
674 return 0;
675 }
676
677 // Extract data as it exists in target memory
CopyData(offset_t offset,offset_t length,void * dst) const678 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
679 void *dst) const {
680 const uint8_t *src = PeekData(offset, length);
681 if (src) {
682 ::memcpy(dst, src, length);
683 return length;
684 }
685 return 0;
686 }
687
688 // Extract data and swap if needed when doing the copy
689 lldb::offset_t
CopyByteOrderedData(offset_t src_offset,offset_t src_len,void * dst_void_ptr,offset_t dst_len,ByteOrder dst_byte_order) const690 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
691 void *dst_void_ptr, offset_t dst_len,
692 ByteOrder dst_byte_order) const {
693 // Validate the source info
694 if (!ValidOffsetForDataOfSize(src_offset, src_len))
695 assert(ValidOffsetForDataOfSize(src_offset, src_len));
696 assert(src_len > 0);
697 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
698
699 // Validate the destination info
700 assert(dst_void_ptr != nullptr);
701 assert(dst_len > 0);
702 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
703
704 // Validate that only a word- or register-sized dst is byte swapped
705 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
706 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
707 dst_len == 32);
708
709 // Must have valid byte orders set in this object and for destination
710 if (!(dst_byte_order == eByteOrderBig ||
711 dst_byte_order == eByteOrderLittle) ||
712 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
713 return 0;
714
715 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
716 const uint8_t *src = PeekData(src_offset, src_len);
717 if (src) {
718 if (dst_len >= src_len) {
719 // We are copying the entire value from src into dst. Calculate how many,
720 // if any, zeroes we need for the most significant bytes if "dst_len" is
721 // greater than "src_len"...
722 const size_t num_zeroes = dst_len - src_len;
723 if (dst_byte_order == eByteOrderBig) {
724 // Big endian, so we lead with zeroes...
725 if (num_zeroes > 0)
726 ::memset(dst, 0, num_zeroes);
727 // Then either copy or swap the rest
728 if (m_byte_order == eByteOrderBig) {
729 ::memcpy(dst + num_zeroes, src, src_len);
730 } else {
731 for (uint32_t i = 0; i < src_len; ++i)
732 dst[i + num_zeroes] = src[src_len - 1 - i];
733 }
734 } else {
735 // Little endian destination, so we lead the value bytes
736 if (m_byte_order == eByteOrderBig) {
737 for (uint32_t i = 0; i < src_len; ++i)
738 dst[i] = src[src_len - 1 - i];
739 } else {
740 ::memcpy(dst, src, src_len);
741 }
742 // And zero the rest...
743 if (num_zeroes > 0)
744 ::memset(dst + src_len, 0, num_zeroes);
745 }
746 return src_len;
747 } else {
748 // We are only copying some of the value from src into dst..
749
750 if (dst_byte_order == eByteOrderBig) {
751 // Big endian dst
752 if (m_byte_order == eByteOrderBig) {
753 // Big endian dst, with big endian src
754 ::memcpy(dst, src + (src_len - dst_len), dst_len);
755 } else {
756 // Big endian dst, with little endian src
757 for (uint32_t i = 0; i < dst_len; ++i)
758 dst[i] = src[dst_len - 1 - i];
759 }
760 } else {
761 // Little endian dst
762 if (m_byte_order == eByteOrderBig) {
763 // Little endian dst, with big endian src
764 for (uint32_t i = 0; i < dst_len; ++i)
765 dst[i] = src[src_len - 1 - i];
766 } else {
767 // Little endian dst, with big endian src
768 ::memcpy(dst, src, dst_len);
769 }
770 }
771 return dst_len;
772 }
773 }
774 return 0;
775 }
776
777 // Extracts a variable length NULL terminated C string from the data at the
778 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
779 // the offset of the byte that follows the NULL terminator byte.
780 //
781 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
782 // non-zero and there aren't enough available bytes, nullptr will be returned
783 // and "offset_ptr" will not be updated.
GetCStr(offset_t * offset_ptr) const784 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
785 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
786 // Already at the end of the data.
787 if (!start)
788 return nullptr;
789
790 const char *end = reinterpret_cast<const char *>(m_end);
791
792 // Check all bytes for a null terminator that terminates a C string.
793 const char *terminator_or_end = std::find(start, end, '\0');
794
795 // We didn't find a null terminator, so return nullptr to indicate that there
796 // is no valid C string at that offset.
797 if (terminator_or_end == end)
798 return nullptr;
799
800 // Update offset_ptr for the caller to point to the data behind the
801 // terminator (which is 1 byte long).
802 *offset_ptr += (terminator_or_end - start + 1UL);
803 return start;
804 }
805
806 // Extracts a NULL terminated C string from the fixed length field of length
807 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
808 // updated with the offset of the byte that follows the fixed length field.
809 //
810 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
811 // plus the length of the field is out of bounds, or if the field does not
812 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
813 // will not be updated.
GetCStr(offset_t * offset_ptr,offset_t len) const814 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
815 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
816 if (cstr != nullptr) {
817 if (memchr(cstr, '\0', len) == nullptr) {
818 return nullptr;
819 }
820 *offset_ptr += len;
821 return cstr;
822 }
823 return nullptr;
824 }
825
826 // Peeks at a string in the contained data. No verification is done to make
827 // sure the entire string lies within the bounds of this object's data, only
828 // "offset" is verified to be a valid offset.
829 //
830 // Returns a valid C string pointer if "offset" is a valid offset in this
831 // object's data, else nullptr is returned.
PeekCStr(offset_t offset) const832 const char *DataExtractor::PeekCStr(offset_t offset) const {
833 return reinterpret_cast<const char *>(PeekData(offset, 1));
834 }
835
836 // Extracts an unsigned LEB128 number from this object's data starting at the
837 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
838 // will be updated with the offset of the byte following the last extracted
839 // byte.
840 //
841 // Returned the extracted integer value.
GetULEB128(offset_t * offset_ptr) const842 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
843 const uint8_t *src = PeekData(*offset_ptr, 1);
844 if (src == nullptr)
845 return 0;
846
847 unsigned byte_count = 0;
848 uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
849 *offset_ptr += byte_count;
850 return result;
851 }
852
853 // Extracts an signed LEB128 number from this object's data starting at the
854 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
855 // will be updated with the offset of the byte following the last extracted
856 // byte.
857 //
858 // Returned the extracted integer value.
GetSLEB128(offset_t * offset_ptr) const859 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
860 const uint8_t *src = PeekData(*offset_ptr, 1);
861 if (src == nullptr)
862 return 0;
863
864 unsigned byte_count = 0;
865 int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
866 *offset_ptr += byte_count;
867 return result;
868 }
869
870 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
871 // at the offset pointed to by "offset_ptr". The offset pointed to by
872 // "offset_ptr" will be updated with the offset of the byte following the last
873 // extracted byte.
874 //
875 // Returns the number of bytes consumed during the extraction.
Skip_LEB128(offset_t * offset_ptr) const876 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
877 uint32_t bytes_consumed = 0;
878 const uint8_t *src = PeekData(*offset_ptr, 1);
879 if (src == nullptr)
880 return 0;
881
882 const uint8_t *end = m_end;
883
884 if (src < end) {
885 const uint8_t *src_pos = src;
886 while ((src_pos < end) && (*src_pos++ & 0x80))
887 ++bytes_consumed;
888 *offset_ptr += src_pos - src;
889 }
890 return bytes_consumed;
891 }
892
893 // Dumps bytes from this object's data to the stream "s" starting
894 // "start_offset" bytes into this data, and ending with the byte before
895 // "end_offset". "base_addr" will be added to the offset into the dumped data
896 // when showing the offset into the data in the output information.
897 // "num_per_line" objects of type "type" will be dumped with the option to
898 // override the format for each object with "type_format". "type_format" is a
899 // printf style formatting string. If "type_format" is nullptr, then an
900 // appropriate format string will be used for the supplied "type". If the
901 // stream "s" is nullptr, then the output will be send to Log().
PutToLog(Log * log,offset_t start_offset,offset_t length,uint64_t base_addr,uint32_t num_per_line,DataExtractor::Type type) const902 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
903 offset_t length, uint64_t base_addr,
904 uint32_t num_per_line,
905 DataExtractor::Type type) const {
906 if (log == nullptr)
907 return start_offset;
908
909 offset_t offset;
910 offset_t end_offset;
911 uint32_t count;
912 StreamString sstr;
913 for (offset = start_offset, end_offset = offset + length, count = 0;
914 ValidOffset(offset) && offset < end_offset; ++count) {
915 if ((count % num_per_line) == 0) {
916 // Print out any previous string
917 if (sstr.GetSize() > 0) {
918 log->PutString(sstr.GetString());
919 sstr.Clear();
920 }
921 // Reset string offset and fill the current line string with address:
922 if (base_addr != LLDB_INVALID_ADDRESS)
923 sstr.Printf("0x%8.8" PRIx64 ":",
924 static_cast<uint64_t>(base_addr + (offset - start_offset)));
925 }
926
927 switch (type) {
928 case TypeUInt8:
929 sstr.Printf(" %2.2x", GetU8(&offset));
930 break;
931 case TypeChar: {
932 char ch = GetU8(&offset);
933 sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
934 } break;
935 case TypeUInt16:
936 sstr.Printf(" %4.4x", GetU16(&offset));
937 break;
938 case TypeUInt32:
939 sstr.Printf(" %8.8x", GetU32(&offset));
940 break;
941 case TypeUInt64:
942 sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
943 break;
944 case TypePointer:
945 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
946 break;
947 case TypeULEB128:
948 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
949 break;
950 case TypeSLEB128:
951 sstr.Printf(" %" PRId64, GetSLEB128(&offset));
952 break;
953 }
954 }
955
956 if (!sstr.Empty())
957 log->PutString(sstr.GetString());
958
959 return offset; // Return the offset at which we ended up
960 }
961
Copy(DataExtractor & dest_data) const962 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
963 if (m_data_sp) {
964 // we can pass along the SP to the data
965 dest_data.SetData(m_data_sp);
966 } else {
967 const uint8_t *base_ptr = m_start;
968 size_t data_size = GetByteSize();
969 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
970 }
971 return GetByteSize();
972 }
973
Append(DataExtractor & rhs)974 bool DataExtractor::Append(DataExtractor &rhs) {
975 if (rhs.GetByteOrder() != GetByteOrder())
976 return false;
977
978 if (rhs.GetByteSize() == 0)
979 return true;
980
981 if (GetByteSize() == 0)
982 return (rhs.Copy(*this) > 0);
983
984 size_t bytes = GetByteSize() + rhs.GetByteSize();
985
986 DataBufferHeap *buffer_heap_ptr = nullptr;
987 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
988
989 if (!buffer_sp || buffer_heap_ptr == nullptr)
990 return false;
991
992 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
993
994 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
995 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
996
997 SetData(buffer_sp);
998
999 return true;
1000 }
1001
Append(void * buf,offset_t length)1002 bool DataExtractor::Append(void *buf, offset_t length) {
1003 if (buf == nullptr)
1004 return false;
1005
1006 if (length == 0)
1007 return true;
1008
1009 size_t bytes = GetByteSize() + length;
1010
1011 DataBufferHeap *buffer_heap_ptr = nullptr;
1012 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1013
1014 if (!buffer_sp || buffer_heap_ptr == nullptr)
1015 return false;
1016
1017 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1018
1019 if (GetByteSize() > 0)
1020 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1021
1022 memcpy(bytes_ptr + GetByteSize(), buf, length);
1023
1024 SetData(buffer_sp);
1025
1026 return true;
1027 }
1028
Checksum(llvm::SmallVectorImpl<uint8_t> & dest,uint64_t max_data)1029 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1030 uint64_t max_data) {
1031 if (max_data == 0)
1032 max_data = GetByteSize();
1033 else
1034 max_data = std::min(max_data, GetByteSize());
1035
1036 llvm::MD5 md5;
1037
1038 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1039 md5.update(data);
1040
1041 llvm::MD5::MD5Result result;
1042 md5.final(result);
1043
1044 dest.clear();
1045 dest.append(result.begin(), result.end());
1046 }
1047