1 //===- Relocations.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains platform-independent functions to process relocations. 10 // I'll describe the overview of this file here. 11 // 12 // Simple relocations are easy to handle for the linker. For example, 13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations 14 // with the relative offsets to the target symbols. It would just be 15 // reading records from relocation sections and applying them to output. 16 // 17 // But not all relocations are that easy to handle. For example, for 18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for 19 // symbols if they don't exist, and fix up locations with GOT entry 20 // offsets from the beginning of GOT section. So there is more than 21 // fixing addresses in relocation processing. 22 // 23 // ELF defines a large number of complex relocations. 24 // 25 // The functions in this file analyze relocations and do whatever needs 26 // to be done. It includes, but not limited to, the following. 27 // 28 // - create GOT/PLT entries 29 // - create new relocations in .dynsym to let the dynamic linker resolve 30 // them at runtime (since ELF supports dynamic linking, not all 31 // relocations can be resolved at link-time) 32 // - create COPY relocs and reserve space in .bss 33 // - replace expensive relocs (in terms of runtime cost) with cheap ones 34 // - error out infeasible combinations such as PIC and non-relative relocs 35 // 36 // Note that the functions in this file don't actually apply relocations 37 // because it doesn't know about the output file nor the output file buffer. 38 // It instead stores Relocation objects to InputSection's Relocations 39 // vector to let it apply later in InputSection::writeTo. 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "Relocations.h" 44 #include "Config.h" 45 #include "InputFiles.h" 46 #include "LinkerScript.h" 47 #include "OutputSections.h" 48 #include "SymbolTable.h" 49 #include "Symbols.h" 50 #include "SyntheticSections.h" 51 #include "Target.h" 52 #include "Thunks.h" 53 #include "lld/Common/ErrorHandler.h" 54 #include "lld/Common/Memory.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/Demangle/Demangle.h" 57 #include "llvm/Support/Endian.h" 58 #include <algorithm> 59 60 using namespace llvm; 61 using namespace llvm::ELF; 62 using namespace llvm::object; 63 using namespace llvm::support::endian; 64 using namespace lld; 65 using namespace lld::elf; 66 67 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) { 68 for (SectionCommand *cmd : script->sectionCommands) 69 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 70 if (assign->sym == &sym) 71 return assign->location; 72 return std::nullopt; 73 } 74 75 static std::string getDefinedLocation(const Symbol &sym) { 76 const char msg[] = "\n>>> defined in "; 77 if (sym.file) 78 return msg + toString(sym.file); 79 if (std::optional<std::string> loc = getLinkerScriptLocation(sym)) 80 return msg + *loc; 81 return ""; 82 } 83 84 // Construct a message in the following format. 85 // 86 // >>> defined in /home/alice/src/foo.o 87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) 88 // >>> /home/alice/src/bar.o:(.text+0x1) 89 static std::string getLocation(InputSectionBase &s, const Symbol &sym, 90 uint64_t off) { 91 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by "; 92 std::string src = s.getSrcMsg(sym, off); 93 if (!src.empty()) 94 msg += src + "\n>>> "; 95 return msg + s.getObjMsg(off); 96 } 97 98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v, 99 int64_t min, uint64_t max) { 100 ErrorPlace errPlace = getErrorPlace(loc); 101 std::string hint; 102 if (rel.sym && !rel.sym->isSection()) 103 hint = "; references " + lld::toString(*rel.sym); 104 if (!errPlace.srcLoc.empty()) 105 hint += "\n>>> referenced by " + errPlace.srcLoc; 106 if (rel.sym && !rel.sym->isSection()) 107 hint += getDefinedLocation(*rel.sym); 108 109 if (errPlace.isec && errPlace.isec->name.startswith(".debug")) 110 hint += "; consider recompiling with -fdebug-types-section to reduce size " 111 "of debug sections"; 112 113 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) + 114 " out of range: " + v.str() + " is not in [" + Twine(min).str() + 115 ", " + Twine(max).str() + "]" + hint); 116 } 117 118 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym, 119 const Twine &msg) { 120 ErrorPlace errPlace = getErrorPlace(loc); 121 std::string hint; 122 if (!sym.getName().empty()) 123 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym); 124 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) + 125 " is not in [" + Twine(llvm::minIntN(n)) + ", " + 126 Twine(llvm::maxIntN(n)) + "]" + hint); 127 } 128 129 // Build a bitmask with one bit set for each 64 subset of RelExpr. 130 static constexpr uint64_t buildMask() { return 0; } 131 132 template <typename... Tails> 133 static constexpr uint64_t buildMask(int head, Tails... tails) { 134 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) | 135 buildMask(tails...); 136 } 137 138 // Return true if `Expr` is one of `Exprs`. 139 // There are more than 64 but less than 128 RelExprs, so we divide the set of 140 // exprs into [0, 64) and [64, 128) and represent each range as a constant 141 // 64-bit mask. Then we decide which mask to test depending on the value of 142 // expr and use a simple shift and bitwise-and to test for membership. 143 template <RelExpr... Exprs> static bool oneof(RelExpr expr) { 144 assert(0 <= expr && (int)expr < 128 && 145 "RelExpr is too large for 128-bit mask!"); 146 147 if (expr >= 64) 148 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...); 149 return (uint64_t(1) << expr) & buildMask(Exprs...); 150 } 151 152 static RelType getMipsPairType(RelType type, bool isLocal) { 153 switch (type) { 154 case R_MIPS_HI16: 155 return R_MIPS_LO16; 156 case R_MIPS_GOT16: 157 // In case of global symbol, the R_MIPS_GOT16 relocation does not 158 // have a pair. Each global symbol has a unique entry in the GOT 159 // and a corresponding instruction with help of the R_MIPS_GOT16 160 // relocation loads an address of the symbol. In case of local 161 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold 162 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 163 // relocations handle low 16 bits of the address. That allows 164 // to allocate only one GOT entry for every 64 KBytes of local data. 165 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE; 166 case R_MICROMIPS_GOT16: 167 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; 168 case R_MIPS_PCHI16: 169 return R_MIPS_PCLO16; 170 case R_MICROMIPS_HI16: 171 return R_MICROMIPS_LO16; 172 default: 173 return R_MIPS_NONE; 174 } 175 } 176 177 // True if non-preemptable symbol always has the same value regardless of where 178 // the DSO is loaded. 179 static bool isAbsolute(const Symbol &sym) { 180 if (sym.isUndefWeak()) 181 return true; 182 if (const auto *dr = dyn_cast<Defined>(&sym)) 183 return dr->section == nullptr; // Absolute symbol. 184 return false; 185 } 186 187 static bool isAbsoluteValue(const Symbol &sym) { 188 return isAbsolute(sym) || sym.isTls(); 189 } 190 191 // Returns true if Expr refers a PLT entry. 192 static bool needsPlt(RelExpr expr) { 193 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>( 194 expr); 195 } 196 197 // Returns true if Expr refers a GOT entry. Note that this function 198 // returns false for TLS variables even though they need GOT, because 199 // TLS variables uses GOT differently than the regular variables. 200 static bool needsGot(RelExpr expr) { 201 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, 202 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT, 203 R_AARCH64_GOT_PAGE>(expr); 204 } 205 206 // True if this expression is of the form Sym - X, where X is a position in the 207 // file (PC, or GOT for example). 208 static bool isRelExpr(RelExpr expr) { 209 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL, 210 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC, 211 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr); 212 } 213 214 215 static RelExpr toPlt(RelExpr expr) { 216 switch (expr) { 217 case R_PPC64_CALL: 218 return R_PPC64_CALL_PLT; 219 case R_PC: 220 return R_PLT_PC; 221 case R_ABS: 222 return R_PLT; 223 default: 224 return expr; 225 } 226 } 227 228 static RelExpr fromPlt(RelExpr expr) { 229 // We decided not to use a plt. Optimize a reference to the plt to a 230 // reference to the symbol itself. 231 switch (expr) { 232 case R_PLT_PC: 233 case R_PPC32_PLTREL: 234 return R_PC; 235 case R_PPC64_CALL_PLT: 236 return R_PPC64_CALL; 237 case R_PLT: 238 return R_ABS; 239 case R_PLT_GOTPLT: 240 return R_GOTPLTREL; 241 default: 242 return expr; 243 } 244 } 245 246 // Returns true if a given shared symbol is in a read-only segment in a DSO. 247 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) { 248 using Elf_Phdr = typename ELFT::Phdr; 249 250 // Determine if the symbol is read-only by scanning the DSO's program headers. 251 const auto &file = cast<SharedFile>(*ss.file); 252 for (const Elf_Phdr &phdr : 253 check(file.template getObj<ELFT>().program_headers())) 254 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) && 255 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr && 256 ss.value < phdr.p_vaddr + phdr.p_memsz) 257 return true; 258 return false; 259 } 260 261 // Returns symbols at the same offset as a given symbol, including SS itself. 262 // 263 // If two or more symbols are at the same offset, and at least one of 264 // them are copied by a copy relocation, all of them need to be copied. 265 // Otherwise, they would refer to different places at runtime. 266 template <class ELFT> 267 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) { 268 using Elf_Sym = typename ELFT::Sym; 269 270 const auto &file = cast<SharedFile>(*ss.file); 271 272 SmallSet<SharedSymbol *, 4> ret; 273 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) { 274 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS || 275 s.getType() == STT_TLS || s.st_value != ss.value) 276 continue; 277 StringRef name = check(s.getName(file.getStringTable())); 278 Symbol *sym = symtab.find(name); 279 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym)) 280 ret.insert(alias); 281 } 282 283 // The loop does not check SHT_GNU_verneed, so ret does not contain 284 // non-default version symbols. If ss has a non-default version, ret won't 285 // contain ss. Just add ss unconditionally. If a non-default version alias is 286 // separately copy relocated, it and ss will have different addresses. 287 // Fortunately this case is impractical and fails with GNU ld as well. 288 ret.insert(&ss); 289 return ret; 290 } 291 292 // When a symbol is copy relocated or we create a canonical plt entry, it is 293 // effectively a defined symbol. In the case of copy relocation the symbol is 294 // in .bss and in the case of a canonical plt entry it is in .plt. This function 295 // replaces the existing symbol with a Defined pointing to the appropriate 296 // location. 297 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value, 298 uint64_t size) { 299 Symbol old = sym; 300 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value, 301 size, &sec) 302 .overwrite(sym); 303 304 sym.verdefIndex = old.verdefIndex; 305 sym.exportDynamic = true; 306 sym.isUsedInRegularObj = true; 307 // A copy relocated alias may need a GOT entry. 308 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT, 309 std::memory_order_relaxed); 310 } 311 312 // Reserve space in .bss or .bss.rel.ro for copy relocation. 313 // 314 // The copy relocation is pretty much a hack. If you use a copy relocation 315 // in your program, not only the symbol name but the symbol's size, RW/RO 316 // bit and alignment become part of the ABI. In addition to that, if the 317 // symbol has aliases, the aliases become part of the ABI. That's subtle, 318 // but if you violate that implicit ABI, that can cause very counter- 319 // intuitive consequences. 320 // 321 // So, what is the copy relocation? It's for linking non-position 322 // independent code to DSOs. In an ideal world, all references to data 323 // exported by DSOs should go indirectly through GOT. But if object files 324 // are compiled as non-PIC, all data references are direct. There is no 325 // way for the linker to transform the code to use GOT, as machine 326 // instructions are already set in stone in object files. This is where 327 // the copy relocation takes a role. 328 // 329 // A copy relocation instructs the dynamic linker to copy data from a DSO 330 // to a specified address (which is usually in .bss) at load-time. If the 331 // static linker (that's us) finds a direct data reference to a DSO 332 // symbol, it creates a copy relocation, so that the symbol can be 333 // resolved as if it were in .bss rather than in a DSO. 334 // 335 // As you can see in this function, we create a copy relocation for the 336 // dynamic linker, and the relocation contains not only symbol name but 337 // various other information about the symbol. So, such attributes become a 338 // part of the ABI. 339 // 340 // Note for application developers: I can give you a piece of advice if 341 // you are writing a shared library. You probably should export only 342 // functions from your library. You shouldn't export variables. 343 // 344 // As an example what can happen when you export variables without knowing 345 // the semantics of copy relocations, assume that you have an exported 346 // variable of type T. It is an ABI-breaking change to add new members at 347 // end of T even though doing that doesn't change the layout of the 348 // existing members. That's because the space for the new members are not 349 // reserved in .bss unless you recompile the main program. That means they 350 // are likely to overlap with other data that happens to be laid out next 351 // to the variable in .bss. This kind of issue is sometimes very hard to 352 // debug. What's a solution? Instead of exporting a variable V from a DSO, 353 // define an accessor getV(). 354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) { 355 // Copy relocation against zero-sized symbol doesn't make sense. 356 uint64_t symSize = ss.getSize(); 357 if (symSize == 0 || ss.alignment == 0) 358 fatal("cannot create a copy relocation for symbol " + toString(ss)); 359 360 // See if this symbol is in a read-only segment. If so, preserve the symbol's 361 // memory protection by reserving space in the .bss.rel.ro section. 362 bool isRO = isReadOnly<ELFT>(ss); 363 BssSection *sec = 364 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment); 365 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent(); 366 367 // At this point, sectionBases has been migrated to sections. Append sec to 368 // sections. 369 if (osec->commands.empty() || 370 !isa<InputSectionDescription>(osec->commands.back())) 371 osec->commands.push_back(make<InputSectionDescription>("")); 372 auto *isd = cast<InputSectionDescription>(osec->commands.back()); 373 isd->sections.push_back(sec); 374 osec->commitSection(sec); 375 376 // Look through the DSO's dynamic symbol table for aliases and create a 377 // dynamic symbol for each one. This causes the copy relocation to correctly 378 // interpose any aliases. 379 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss)) 380 replaceWithDefined(*sym, *sec, 0, sym->size); 381 382 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss); 383 } 384 385 // .eh_frame sections are mergeable input sections, so their input 386 // offsets are not linearly mapped to output section. For each input 387 // offset, we need to find a section piece containing the offset and 388 // add the piece's base address to the input offset to compute the 389 // output offset. That isn't cheap. 390 // 391 // This class is to speed up the offset computation. When we process 392 // relocations, we access offsets in the monotonically increasing 393 // order. So we can optimize for that access pattern. 394 // 395 // For sections other than .eh_frame, this class doesn't do anything. 396 namespace { 397 class OffsetGetter { 398 public: 399 OffsetGetter() = default; 400 explicit OffsetGetter(InputSectionBase &sec) { 401 if (auto *eh = dyn_cast<EhInputSection>(&sec)) { 402 cies = eh->cies; 403 fdes = eh->fdes; 404 i = cies.begin(); 405 j = fdes.begin(); 406 } 407 } 408 409 // Translates offsets in input sections to offsets in output sections. 410 // Given offset must increase monotonically. We assume that Piece is 411 // sorted by inputOff. 412 uint64_t get(uint64_t off) { 413 if (cies.empty()) 414 return off; 415 416 while (j != fdes.end() && j->inputOff <= off) 417 ++j; 418 auto it = j; 419 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) { 420 while (i != cies.end() && i->inputOff <= off) 421 ++i; 422 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off) 423 fatal(".eh_frame: relocation is not in any piece"); 424 it = i; 425 } 426 427 // Offset -1 means that the piece is dead (i.e. garbage collected). 428 if (it[-1].outputOff == -1) 429 return -1; 430 return it[-1].outputOff + (off - it[-1].inputOff); 431 } 432 433 private: 434 ArrayRef<EhSectionPiece> cies, fdes; 435 ArrayRef<EhSectionPiece>::iterator i, j; 436 }; 437 438 // This class encapsulates states needed to scan relocations for one 439 // InputSectionBase. 440 class RelocationScanner { 441 public: 442 template <class ELFT> void scanSection(InputSectionBase &s); 443 444 private: 445 InputSectionBase *sec; 446 OffsetGetter getter; 447 448 // End of relocations, used by Mips/PPC64. 449 const void *end = nullptr; 450 451 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const; 452 template <class ELFT, class RelTy> 453 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const; 454 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym, 455 uint64_t relOff) const; 456 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym, 457 int64_t addend) const; 458 template <class ELFT, class RelTy> void scanOne(RelTy *&i); 459 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels); 460 }; 461 } // namespace 462 463 // MIPS has an odd notion of "paired" relocations to calculate addends. 464 // For example, if a relocation is of R_MIPS_HI16, there must be a 465 // R_MIPS_LO16 relocation after that, and an addend is calculated using 466 // the two relocations. 467 template <class ELFT, class RelTy> 468 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr, 469 bool isLocal) const { 470 if (expr == R_MIPS_GOTREL && isLocal) 471 return sec->getFile<ELFT>()->mipsGp0; 472 473 // The ABI says that the paired relocation is used only for REL. 474 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 475 if (RelTy::IsRela) 476 return 0; 477 478 RelType type = rel.getType(config->isMips64EL); 479 uint32_t pairTy = getMipsPairType(type, isLocal); 480 if (pairTy == R_MIPS_NONE) 481 return 0; 482 483 const uint8_t *buf = sec->content().data(); 484 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 485 486 // To make things worse, paired relocations might not be contiguous in 487 // the relocation table, so we need to do linear search. *sigh* 488 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri) 489 if (ri->getType(config->isMips64EL) == pairTy && 490 ri->getSymbol(config->isMips64EL) == symIndex) 491 return target->getImplicitAddend(buf + ri->r_offset, pairTy); 492 493 warn("can't find matching " + toString(pairTy) + " relocation for " + 494 toString(type)); 495 return 0; 496 } 497 498 // Custom error message if Sym is defined in a discarded section. 499 template <class ELFT> 500 static std::string maybeReportDiscarded(Undefined &sym) { 501 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file); 502 if (!file || !sym.discardedSecIdx || 503 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded) 504 return ""; 505 ArrayRef<typename ELFT::Shdr> objSections = 506 file->template getELFShdrs<ELFT>(); 507 508 std::string msg; 509 if (sym.type == ELF::STT_SECTION) { 510 msg = "relocation refers to a discarded section: "; 511 msg += CHECK( 512 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file); 513 } else { 514 msg = "relocation refers to a symbol in a discarded section: " + 515 toString(sym); 516 } 517 msg += "\n>>> defined in " + toString(file); 518 519 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1]; 520 if (elfSec.sh_type != SHT_GROUP) 521 return msg; 522 523 // If the discarded section is a COMDAT. 524 StringRef signature = file->getShtGroupSignature(objSections, elfSec); 525 if (const InputFile *prevailing = 526 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) { 527 msg += "\n>>> section group signature: " + signature.str() + 528 "\n>>> prevailing definition is in " + toString(prevailing); 529 if (sym.nonPrevailing) { 530 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK " 531 "binding and the symbol in a non-prevailing group had STB_GLOBAL " 532 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding " 533 "signature is not supported"; 534 } 535 } 536 return msg; 537 } 538 539 namespace { 540 // Undefined diagnostics are collected in a vector and emitted once all of 541 // them are known, so that some postprocessing on the list of undefined symbols 542 // can happen before lld emits diagnostics. 543 struct UndefinedDiag { 544 Undefined *sym; 545 struct Loc { 546 InputSectionBase *sec; 547 uint64_t offset; 548 }; 549 std::vector<Loc> locs; 550 bool isWarning; 551 }; 552 553 std::vector<UndefinedDiag> undefs; 554 std::mutex relocMutex; 555 } 556 557 // Check whether the definition name def is a mangled function name that matches 558 // the reference name ref. 559 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) { 560 llvm::ItaniumPartialDemangler d; 561 std::string name = def.str(); 562 if (d.partialDemangle(name.c_str())) 563 return false; 564 char *buf = d.getFunctionName(nullptr, nullptr); 565 if (!buf) 566 return false; 567 bool ret = ref == buf; 568 free(buf); 569 return ret; 570 } 571 572 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns 573 // the suggested symbol, which is either in the symbol table, or in the same 574 // file of sym. 575 static const Symbol *getAlternativeSpelling(const Undefined &sym, 576 std::string &pre_hint, 577 std::string &post_hint) { 578 DenseMap<StringRef, const Symbol *> map; 579 if (sym.file && sym.file->kind() == InputFile::ObjKind) { 580 auto *file = cast<ELFFileBase>(sym.file); 581 // If sym is a symbol defined in a discarded section, maybeReportDiscarded() 582 // will give an error. Don't suggest an alternative spelling. 583 if (file && sym.discardedSecIdx != 0 && 584 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded) 585 return nullptr; 586 587 // Build a map of local defined symbols. 588 for (const Symbol *s : sym.file->getSymbols()) 589 if (s->isLocal() && s->isDefined() && !s->getName().empty()) 590 map.try_emplace(s->getName(), s); 591 } 592 593 auto suggest = [&](StringRef newName) -> const Symbol * { 594 // If defined locally. 595 if (const Symbol *s = map.lookup(newName)) 596 return s; 597 598 // If in the symbol table and not undefined. 599 if (const Symbol *s = symtab.find(newName)) 600 if (!s->isUndefined()) 601 return s; 602 603 return nullptr; 604 }; 605 606 // This loop enumerates all strings of Levenshtein distance 1 as typo 607 // correction candidates and suggests the one that exists as a non-undefined 608 // symbol. 609 StringRef name = sym.getName(); 610 for (size_t i = 0, e = name.size(); i != e + 1; ++i) { 611 // Insert a character before name[i]. 612 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str(); 613 for (char c = '0'; c <= 'z'; ++c) { 614 newName[i] = c; 615 if (const Symbol *s = suggest(newName)) 616 return s; 617 } 618 if (i == e) 619 break; 620 621 // Substitute name[i]. 622 newName = std::string(name); 623 for (char c = '0'; c <= 'z'; ++c) { 624 newName[i] = c; 625 if (const Symbol *s = suggest(newName)) 626 return s; 627 } 628 629 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is 630 // common. 631 if (i + 1 < e) { 632 newName[i] = name[i + 1]; 633 newName[i + 1] = name[i]; 634 if (const Symbol *s = suggest(newName)) 635 return s; 636 } 637 638 // Delete name[i]. 639 newName = (name.substr(0, i) + name.substr(i + 1)).str(); 640 if (const Symbol *s = suggest(newName)) 641 return s; 642 } 643 644 // Case mismatch, e.g. Foo vs FOO. 645 for (auto &it : map) 646 if (name.equals_insensitive(it.first)) 647 return it.second; 648 for (Symbol *sym : symtab.getSymbols()) 649 if (!sym->isUndefined() && name.equals_insensitive(sym->getName())) 650 return sym; 651 652 // The reference may be a mangled name while the definition is not. Suggest a 653 // missing extern "C". 654 if (name.startswith("_Z")) { 655 std::string buf = name.str(); 656 llvm::ItaniumPartialDemangler d; 657 if (!d.partialDemangle(buf.c_str())) 658 if (char *buf = d.getFunctionName(nullptr, nullptr)) { 659 const Symbol *s = suggest(buf); 660 free(buf); 661 if (s) { 662 pre_hint = ": extern \"C\" "; 663 return s; 664 } 665 } 666 } else { 667 const Symbol *s = nullptr; 668 for (auto &it : map) 669 if (canSuggestExternCForCXX(name, it.first)) { 670 s = it.second; 671 break; 672 } 673 if (!s) 674 for (Symbol *sym : symtab.getSymbols()) 675 if (canSuggestExternCForCXX(name, sym->getName())) { 676 s = sym; 677 break; 678 } 679 if (s) { 680 pre_hint = " to declare "; 681 post_hint = " as extern \"C\"?"; 682 return s; 683 } 684 } 685 686 return nullptr; 687 } 688 689 static void reportUndefinedSymbol(const UndefinedDiag &undef, 690 bool correctSpelling) { 691 Undefined &sym = *undef.sym; 692 693 auto visibility = [&]() -> std::string { 694 switch (sym.visibility()) { 695 case STV_INTERNAL: 696 return "internal "; 697 case STV_HIDDEN: 698 return "hidden "; 699 case STV_PROTECTED: 700 return "protected "; 701 default: 702 return ""; 703 } 704 }; 705 706 std::string msg; 707 switch (config->ekind) { 708 case ELF32LEKind: 709 msg = maybeReportDiscarded<ELF32LE>(sym); 710 break; 711 case ELF32BEKind: 712 msg = maybeReportDiscarded<ELF32BE>(sym); 713 break; 714 case ELF64LEKind: 715 msg = maybeReportDiscarded<ELF64LE>(sym); 716 break; 717 case ELF64BEKind: 718 msg = maybeReportDiscarded<ELF64BE>(sym); 719 break; 720 default: 721 llvm_unreachable(""); 722 } 723 if (msg.empty()) 724 msg = "undefined " + visibility() + "symbol: " + toString(sym); 725 726 const size_t maxUndefReferences = 3; 727 size_t i = 0; 728 for (UndefinedDiag::Loc l : undef.locs) { 729 if (i >= maxUndefReferences) 730 break; 731 InputSectionBase &sec = *l.sec; 732 uint64_t offset = l.offset; 733 734 msg += "\n>>> referenced by "; 735 std::string src = sec.getSrcMsg(sym, offset); 736 if (!src.empty()) 737 msg += src + "\n>>> "; 738 msg += sec.getObjMsg(offset); 739 i++; 740 } 741 742 if (i < undef.locs.size()) 743 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times") 744 .str(); 745 746 if (correctSpelling) { 747 std::string pre_hint = ": ", post_hint; 748 if (const Symbol *corrected = 749 getAlternativeSpelling(sym, pre_hint, post_hint)) { 750 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint; 751 if (corrected->file) 752 msg += "\n>>> defined in: " + toString(corrected->file); 753 } 754 } 755 756 if (sym.getName().startswith("_ZTV")) 757 msg += 758 "\n>>> the vtable symbol may be undefined because the class is missing " 759 "its key function (see https://lld.llvm.org/missingkeyfunction)"; 760 if (config->gcSections && config->zStartStopGC && 761 sym.getName().startswith("__start_")) { 762 msg += "\n>>> the encapsulation symbol needs to be retained under " 763 "--gc-sections properly; consider -z nostart-stop-gc " 764 "(see https://lld.llvm.org/ELF/start-stop-gc)"; 765 } 766 767 if (undef.isWarning) 768 warn(msg); 769 else 770 error(msg, ErrorTag::SymbolNotFound, {sym.getName()}); 771 } 772 773 void elf::reportUndefinedSymbols() { 774 // Find the first "undefined symbol" diagnostic for each diagnostic, and 775 // collect all "referenced from" lines at the first diagnostic. 776 DenseMap<Symbol *, UndefinedDiag *> firstRef; 777 for (UndefinedDiag &undef : undefs) { 778 assert(undef.locs.size() == 1); 779 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) { 780 canon->locs.push_back(undef.locs[0]); 781 undef.locs.clear(); 782 } else 783 firstRef[undef.sym] = &undef; 784 } 785 786 // Enable spell corrector for the first 2 diagnostics. 787 for (const auto &[i, undef] : llvm::enumerate(undefs)) 788 if (!undef.locs.empty()) 789 reportUndefinedSymbol(undef, i < 2); 790 undefs.clear(); 791 } 792 793 static void reportGNUWarning(Symbol &sym, InputSectionBase &sec, 794 uint64_t offset) { 795 std::lock_guard<std::mutex> lock(relocMutex); 796 if (sym.gwarn) { 797 StringRef gnuWarning = gnuWarnings.lookup(sym.getName()); 798 // report first occurance only 799 sym.gwarn = false; 800 if (!gnuWarning.empty()) 801 warn(sec.getSrcMsg(sym, offset) + "(" + sec.getObjMsg(offset) + 802 "): warning: " + gnuWarning); 803 } 804 } 805 806 // Report an undefined symbol if necessary. 807 // Returns true if the undefined symbol will produce an error message. 808 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec, 809 uint64_t offset) { 810 std::lock_guard<std::mutex> lock(relocMutex); 811 // If versioned, issue an error (even if the symbol is weak) because we don't 812 // know the defining filename which is required to construct a Verneed entry. 813 if (sym.hasVersionSuffix) { 814 undefs.push_back({&sym, {{&sec, offset}}, false}); 815 return true; 816 } 817 if (sym.isWeak()) 818 return false; 819 820 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT; 821 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal) 822 return false; 823 824 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc 825 // which references a switch table in a discarded .rodata/.text section. The 826 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF 827 // spec says references from outside the group to a STB_LOCAL symbol are not 828 // allowed. Work around the bug. 829 // 830 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible 831 // because .LC0-.LTOC is not representable if the two labels are in different 832 // .got2 833 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc")) 834 return false; 835 836 #ifdef __OpenBSD__ 837 // GCC (at least 8 and 11) can produce a ".gcc_except_table" with relocations 838 // to discarded sections on riscv64 839 if (sym.discardedSecIdx != 0 && sec.name == ".gcc_except_table") 840 return false; 841 #endif 842 843 bool isWarning = 844 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) || 845 config->noinhibitExec; 846 undefs.push_back({&sym, {{&sec, offset}}, isWarning}); 847 return !isWarning; 848 } 849 850 // MIPS N32 ABI treats series of successive relocations with the same offset 851 // as a single relocation. The similar approach used by N64 ABI, but this ABI 852 // packs all relocations into the single relocation record. Here we emulate 853 // this for the N32 ABI. Iterate over relocation with the same offset and put 854 // theirs types into the single bit-set. 855 template <class RelTy> 856 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const { 857 RelType type = 0; 858 uint64_t offset = rel->r_offset; 859 860 int n = 0; 861 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset) 862 type |= (rel++)->getType(config->isMips64EL) << (8 * n++); 863 return type; 864 } 865 866 template <bool shard = false> 867 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec, 868 Symbol &sym, int64_t addend, RelExpr expr, 869 RelType type) { 870 Partition &part = isec.getPartition(); 871 872 // Add a relative relocation. If relrDyn section is enabled, and the 873 // relocation offset is guaranteed to be even, add the relocation to 874 // the relrDyn section, otherwise add it to the relaDyn section. 875 // relrDyn sections don't support odd offsets. Also, relrDyn sections 876 // don't store the addend values, so we must write it to the relocated 877 // address. 878 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) { 879 isec.addReloc({expr, type, offsetInSec, addend, &sym}); 880 if (shard) 881 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back( 882 {&isec, offsetInSec}); 883 else 884 part.relrDyn->relocs.push_back({&isec, offsetInSec}); 885 return; 886 } 887 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec, 888 sym, addend, type, expr); 889 } 890 891 template <class PltSection, class GotPltSection> 892 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt, 893 RelocationBaseSection &rel, RelType type, Symbol &sym) { 894 plt.addEntry(sym); 895 gotPlt.addEntry(sym); 896 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(), 897 sym.isPreemptible ? DynamicReloc::AgainstSymbol 898 : DynamicReloc::AddendOnlyWithTargetVA, 899 sym, 0, R_ABS}); 900 } 901 902 static void addGotEntry(Symbol &sym) { 903 in.got->addEntry(sym); 904 uint64_t off = sym.getGotOffset(); 905 906 // If preemptible, emit a GLOB_DAT relocation. 907 if (sym.isPreemptible) { 908 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off, 909 DynamicReloc::AgainstSymbol, sym, 0, R_ABS}); 910 return; 911 } 912 913 // Otherwise, the value is either a link-time constant or the load base 914 // plus a constant. 915 if (!config->isPic || isAbsolute(sym)) 916 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym}); 917 else 918 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel); 919 } 920 921 static void addTpOffsetGotEntry(Symbol &sym) { 922 in.got->addEntry(sym); 923 uint64_t off = sym.getGotOffset(); 924 if (!sym.isPreemptible && !config->isPic) { 925 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym}); 926 return; 927 } 928 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 929 target->tlsGotRel, *in.got, off, sym, target->symbolicRel); 930 } 931 932 // Return true if we can define a symbol in the executable that 933 // contains the value/function of a symbol defined in a shared 934 // library. 935 static bool canDefineSymbolInExecutable(Symbol &sym) { 936 // If the symbol has default visibility the symbol defined in the 937 // executable will preempt it. 938 // Note that we want the visibility of the shared symbol itself, not 939 // the visibility of the symbol in the output file we are producing. 940 if (!sym.dsoProtected) 941 return true; 942 943 // If we are allowed to break address equality of functions, defining 944 // a plt entry will allow the program to call the function in the 945 // .so, but the .so and the executable will no agree on the address 946 // of the function. Similar logic for objects. 947 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) || 948 (sym.isObject() && config->ignoreDataAddressEquality)); 949 } 950 951 // Returns true if a given relocation can be computed at link-time. 952 // This only handles relocation types expected in processAux. 953 // 954 // For instance, we know the offset from a relocation to its target at 955 // link-time if the relocation is PC-relative and refers a 956 // non-interposable function in the same executable. This function 957 // will return true for such relocation. 958 // 959 // If this function returns false, that means we need to emit a 960 // dynamic relocation so that the relocation will be fixed at load-time. 961 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type, 962 const Symbol &sym, 963 uint64_t relOff) const { 964 // These expressions always compute a constant 965 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE, 966 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, 967 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC, 968 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT, 969 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e)) 970 return true; 971 972 // These never do, except if the entire file is position dependent or if 973 // only the low bits are used. 974 if (e == R_GOT || e == R_PLT) 975 return target->usesOnlyLowPageBits(type) || !config->isPic; 976 977 if (sym.isPreemptible) 978 return false; 979 if (!config->isPic) 980 return true; 981 982 // The size of a non preemptible symbol is a constant. 983 if (e == R_SIZE) 984 return true; 985 986 // For the target and the relocation, we want to know if they are 987 // absolute or relative. 988 bool absVal = isAbsoluteValue(sym); 989 bool relE = isRelExpr(e); 990 if (absVal && !relE) 991 return true; 992 if (!absVal && relE) 993 return true; 994 if (!absVal && !relE) 995 return target->usesOnlyLowPageBits(type); 996 997 assert(absVal && relE); 998 999 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol 1000 // in PIC mode. This is a little strange, but it allows us to link function 1001 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers). 1002 // Normally such a call will be guarded with a comparison, which will load a 1003 // zero from the GOT. 1004 if (sym.isUndefWeak()) 1005 return true; 1006 1007 // We set the final symbols values for linker script defined symbols later. 1008 // They always can be computed as a link time constant. 1009 if (sym.scriptDefined) 1010 return true; 1011 1012 error("relocation " + toString(type) + " cannot refer to absolute symbol: " + 1013 toString(sym) + getLocation(*sec, sym, relOff)); 1014 return true; 1015 } 1016 1017 // The reason we have to do this early scan is as follows 1018 // * To mmap the output file, we need to know the size 1019 // * For that, we need to know how many dynamic relocs we will have. 1020 // It might be possible to avoid this by outputting the file with write: 1021 // * Write the allocated output sections, computing addresses. 1022 // * Apply relocations, recording which ones require a dynamic reloc. 1023 // * Write the dynamic relocations. 1024 // * Write the rest of the file. 1025 // This would have some drawbacks. For example, we would only know if .rela.dyn 1026 // is needed after applying relocations. If it is, it will go after rw and rx 1027 // sections. Given that it is ro, we will need an extra PT_LOAD. This 1028 // complicates things for the dynamic linker and means we would have to reserve 1029 // space for the extra PT_LOAD even if we end up not using it. 1030 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset, 1031 Symbol &sym, int64_t addend) const { 1032 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT 1033 // indirection. 1034 const bool isIfunc = sym.isGnuIFunc(); 1035 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) { 1036 if (expr != R_GOT_PC) { 1037 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call 1038 // stub type. It should be ignored if optimized to R_PC. 1039 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL) 1040 addend &= ~0x8000; 1041 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into 1042 // call __tls_get_addr even if the symbol is non-preemptible. 1043 if (!(config->emachine == EM_HEXAGON && 1044 (type == R_HEX_GD_PLT_B22_PCREL || 1045 type == R_HEX_GD_PLT_B22_PCREL_X || 1046 type == R_HEX_GD_PLT_B32_PCREL_X))) 1047 expr = fromPlt(expr); 1048 } else if (!isAbsoluteValue(sym)) { 1049 expr = 1050 target->adjustGotPcExpr(type, addend, sec->content().data() + offset); 1051 } 1052 } 1053 1054 // We were asked not to generate PLT entries for ifuncs. Instead, pass the 1055 // direct relocation on through. 1056 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) { 1057 std::lock_guard<std::mutex> lock(relocMutex); 1058 sym.exportDynamic = true; 1059 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type); 1060 return; 1061 } 1062 1063 if (needsGot(expr)) { 1064 if (config->emachine == EM_MIPS) { 1065 // MIPS ABI has special rules to process GOT entries and doesn't 1066 // require relocation entries for them. A special case is TLS 1067 // relocations. In that case dynamic loader applies dynamic 1068 // relocations to initialize TLS GOT entries. 1069 // See "Global Offset Table" in Chapter 5 in the following document 1070 // for detailed description: 1071 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1072 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1073 } else { 1074 sym.setFlags(NEEDS_GOT); 1075 } 1076 } else if (needsPlt(expr)) { 1077 sym.setFlags(NEEDS_PLT); 1078 } else if (LLVM_UNLIKELY(isIfunc)) { 1079 sym.setFlags(HAS_DIRECT_RELOC); 1080 } 1081 1082 // If the relocation is known to be a link-time constant, we know no dynamic 1083 // relocation will be created, pass the control to relocateAlloc() or 1084 // relocateNonAlloc() to resolve it. 1085 // 1086 // The behavior of an undefined weak reference is implementation defined. For 1087 // non-link-time constants, we resolve relocations statically (let 1088 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic 1089 // relocations for -pie and -shared. 1090 // 1091 // The general expectation of -no-pie static linking is that there is no 1092 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for 1093 // -shared matches the spirit of its -z undefs default. -pie has freedom on 1094 // choices, and we choose dynamic relocations to be consistent with the 1095 // handling of GOT-generating relocations. 1096 if (isStaticLinkTimeConstant(expr, type, sym, offset) || 1097 (!config->isPic && sym.isUndefWeak())) { 1098 sec->addReloc({expr, type, offset, addend, &sym}); 1099 return; 1100 } 1101 1102 // Use a simple -z notext rule that treats all sections except .eh_frame as 1103 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our 1104 // SectionBase::getOffset would incorrectly adjust the offset). 1105 // 1106 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel 1107 // conversion. We still emit a dynamic relocation. 1108 bool canWrite = (sec->flags & SHF_WRITE) || 1109 !(config->zText || 1110 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS)); 1111 if (canWrite) { 1112 RelType rel = target->getDynRel(type); 1113 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) { 1114 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type); 1115 return; 1116 } else if (rel != 0) { 1117 if (config->emachine == EM_MIPS && rel == target->symbolicRel) 1118 rel = target->relativeRel; 1119 std::lock_guard<std::mutex> lock(relocMutex); 1120 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym, 1121 addend, type); 1122 1123 // MIPS ABI turns using of GOT and dynamic relocations inside out. 1124 // While regular ABI uses dynamic relocations to fill up GOT entries 1125 // MIPS ABI requires dynamic linker to fills up GOT entries using 1126 // specially sorted dynamic symbol table. This affects even dynamic 1127 // relocations against symbols which do not require GOT entries 1128 // creation explicitly, i.e. do not have any GOT-relocations. So if 1129 // a preemptible symbol has a dynamic relocation we anyway have 1130 // to create a GOT entry for it. 1131 // If a non-preemptible symbol has a dynamic relocation against it, 1132 // dynamic linker takes it st_value, adds offset and writes down 1133 // result of the dynamic relocation. In case of preemptible symbol 1134 // dynamic linker performs symbol resolution, writes the symbol value 1135 // to the GOT entry and reads the GOT entry when it needs to perform 1136 // a dynamic relocation. 1137 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 1138 if (config->emachine == EM_MIPS) 1139 in.mipsGot->addEntry(*sec->file, sym, addend, expr); 1140 return; 1141 } 1142 } 1143 1144 // When producing an executable, we can perform copy relocations (for 1145 // STT_OBJECT) and canonical PLT (for STT_FUNC). 1146 if (!config->shared) { 1147 if (!canDefineSymbolInExecutable(sym)) { 1148 errorOrWarn("cannot preempt symbol: " + toString(sym) + 1149 getLocation(*sec, sym, offset)); 1150 return; 1151 } 1152 1153 if (sym.isObject()) { 1154 // Produce a copy relocation. 1155 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) { 1156 if (!config->zCopyreloc) 1157 error("unresolvable relocation " + toString(type) + 1158 " against symbol '" + toString(*ss) + 1159 "'; recompile with -fPIC or remove '-z nocopyreloc'" + 1160 getLocation(*sec, sym, offset)); 1161 sym.setFlags(NEEDS_COPY); 1162 } 1163 sec->addReloc({expr, type, offset, addend, &sym}); 1164 return; 1165 } 1166 1167 // This handles a non PIC program call to function in a shared library. In 1168 // an ideal world, we could just report an error saying the relocation can 1169 // overflow at runtime. In the real world with glibc, crt1.o has a 1170 // R_X86_64_PC32 pointing to libc.so. 1171 // 1172 // The general idea on how to handle such cases is to create a PLT entry and 1173 // use that as the function value. 1174 // 1175 // For the static linking part, we just return a plt expr and everything 1176 // else will use the PLT entry as the address. 1177 // 1178 // The remaining problem is making sure pointer equality still works. We 1179 // need the help of the dynamic linker for that. We let it know that we have 1180 // a direct reference to a so symbol by creating an undefined symbol with a 1181 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to 1182 // the value of the symbol we created. This is true even for got entries, so 1183 // pointer equality is maintained. To avoid an infinite loop, the only entry 1184 // that points to the real function is a dedicated got entry used by the 1185 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, 1186 // R_386_JMP_SLOT, etc). 1187 1188 // For position independent executable on i386, the plt entry requires ebx 1189 // to be set. This causes two problems: 1190 // * If some code has a direct reference to a function, it was probably 1191 // compiled without -fPIE/-fPIC and doesn't maintain ebx. 1192 // * If a library definition gets preempted to the executable, it will have 1193 // the wrong ebx value. 1194 if (sym.isFunc()) { 1195 if (config->pie && config->emachine == EM_386) 1196 errorOrWarn("symbol '" + toString(sym) + 1197 "' cannot be preempted; recompile with -fPIE" + 1198 getLocation(*sec, sym, offset)); 1199 sym.setFlags(NEEDS_COPY | NEEDS_PLT); 1200 sec->addReloc({expr, type, offset, addend, &sym}); 1201 return; 1202 } 1203 } 1204 1205 errorOrWarn("relocation " + toString(type) + " cannot be used against " + 1206 (sym.getName().empty() ? "local symbol" 1207 : "symbol '" + toString(sym) + "'") + 1208 "; recompile with -fPIC" + getLocation(*sec, sym, offset)); 1209 } 1210 1211 // This function is similar to the `handleTlsRelocation`. MIPS does not 1212 // support any relaxations for TLS relocations so by factoring out MIPS 1213 // handling in to the separate function we can simplify the code and do not 1214 // pollute other `handleTlsRelocation` by MIPS `ifs` statements. 1215 // Mips has a custom MipsGotSection that handles the writing of GOT entries 1216 // without dynamic relocations. 1217 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym, 1218 InputSectionBase &c, uint64_t offset, 1219 int64_t addend, RelExpr expr) { 1220 if (expr == R_MIPS_TLSLD) { 1221 in.mipsGot->addTlsIndex(*c.file); 1222 c.addReloc({expr, type, offset, addend, &sym}); 1223 return 1; 1224 } 1225 if (expr == R_MIPS_TLSGD) { 1226 in.mipsGot->addDynTlsEntry(*c.file, sym); 1227 c.addReloc({expr, type, offset, addend, &sym}); 1228 return 1; 1229 } 1230 return 0; 1231 } 1232 1233 // Notes about General Dynamic and Local Dynamic TLS models below. They may 1234 // require the generation of a pair of GOT entries that have associated dynamic 1235 // relocations. The pair of GOT entries created are of the form GOT[e0] Module 1236 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of 1237 // symbol in TLS block. 1238 // 1239 // Returns the number of relocations processed. 1240 static unsigned handleTlsRelocation(RelType type, Symbol &sym, 1241 InputSectionBase &c, uint64_t offset, 1242 int64_t addend, RelExpr expr) { 1243 if (expr == R_TPREL || expr == R_TPREL_NEG) { 1244 if (config->shared) { 1245 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) + 1246 " cannot be used with -shared" + getLocation(c, sym, offset)); 1247 return 1; 1248 } 1249 return 0; 1250 } 1251 1252 if (config->emachine == EM_MIPS) 1253 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr); 1254 1255 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1256 R_TLSDESC_GOTPLT>(expr) && 1257 config->shared) { 1258 if (expr != R_TLSDESC_CALL) { 1259 sym.setFlags(NEEDS_TLSDESC); 1260 c.addReloc({expr, type, offset, addend, &sym}); 1261 } 1262 return 1; 1263 } 1264 1265 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For 1266 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable 1267 // relaxation as well. 1268 bool toExecRelax = !config->shared && config->emachine != EM_ARM && 1269 config->emachine != EM_HEXAGON && 1270 config->emachine != EM_RISCV && 1271 !c.file->ppc64DisableTLSRelax; 1272 1273 // If we are producing an executable and the symbol is non-preemptable, it 1274 // must be defined and the code sequence can be relaxed to use Local-Exec. 1275 // 1276 // ARM and RISC-V do not support any relaxations for TLS relocations, however, 1277 // we can omit the DTPMOD dynamic relocations and resolve them at link time 1278 // because them are always 1. This may be necessary for static linking as 1279 // DTPMOD may not be expected at load time. 1280 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1281 1282 // Local Dynamic is for access to module local TLS variables, while still 1283 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the 1284 // module index, with a special value of 0 for the current module. GOT[e1] is 1285 // unused. There only needs to be one module index entry. 1286 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>( 1287 expr)) { 1288 // Local-Dynamic relocs can be relaxed to Local-Exec. 1289 if (toExecRelax) { 1290 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, 1291 offset, addend, &sym}); 1292 return target->getTlsGdRelaxSkip(type); 1293 } 1294 if (expr == R_TLSLD_HINT) 1295 return 1; 1296 ctx.needsTlsLd.store(true, std::memory_order_relaxed); 1297 c.addReloc({expr, type, offset, addend, &sym}); 1298 return 1; 1299 } 1300 1301 // Local-Dynamic relocs can be relaxed to Local-Exec. 1302 if (expr == R_DTPREL) { 1303 if (toExecRelax) 1304 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE); 1305 c.addReloc({expr, type, offset, addend, &sym}); 1306 return 1; 1307 } 1308 1309 // Local-Dynamic sequence where offset of tls variable relative to dynamic 1310 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec. 1311 if (expr == R_TLSLD_GOT_OFF) { 1312 sym.setFlags(NEEDS_GOT_DTPREL); 1313 c.addReloc({expr, type, offset, addend, &sym}); 1314 return 1; 1315 } 1316 1317 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC, 1318 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) { 1319 if (!toExecRelax) { 1320 sym.setFlags(NEEDS_TLSGD); 1321 c.addReloc({expr, type, offset, addend, &sym}); 1322 return 1; 1323 } 1324 1325 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec 1326 // depending on the symbol being locally defined or not. 1327 if (sym.isPreemptible) { 1328 sym.setFlags(NEEDS_TLSGD_TO_IE); 1329 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, 1330 offset, addend, &sym}); 1331 } else { 1332 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, 1333 offset, addend, &sym}); 1334 } 1335 return target->getTlsGdRelaxSkip(type); 1336 } 1337 1338 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF, 1339 R_TLSIE_HINT>(expr)) { 1340 ctx.hasTlsIe.store(true, std::memory_order_relaxed); 1341 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally 1342 // defined. 1343 if (toExecRelax && isLocalInExecutable) { 1344 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym}); 1345 } else if (expr != R_TLSIE_HINT) { 1346 sym.setFlags(NEEDS_TLSIE); 1347 // R_GOT needs a relative relocation for PIC on i386 and Hexagon. 1348 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type)) 1349 addRelativeReloc<true>(c, offset, sym, addend, expr, type); 1350 else 1351 c.addReloc({expr, type, offset, addend, &sym}); 1352 } 1353 return 1; 1354 } 1355 1356 return 0; 1357 } 1358 1359 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) { 1360 const RelTy &rel = *i; 1361 uint32_t symIndex = rel.getSymbol(config->isMips64EL); 1362 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex); 1363 RelType type; 1364 if (config->mipsN32Abi) { 1365 type = getMipsN32RelType(i); 1366 } else { 1367 type = rel.getType(config->isMips64EL); 1368 ++i; 1369 } 1370 // Get an offset in an output section this relocation is applied to. 1371 uint64_t offset = getter.get(rel.r_offset); 1372 if (offset == uint64_t(-1)) 1373 return; 1374 1375 reportGNUWarning(sym, *sec, rel.r_offset); 1376 1377 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset); 1378 int64_t addend = RelTy::IsRela 1379 ? getAddend<ELFT>(rel) 1380 : target->getImplicitAddend( 1381 sec->content().data() + rel.r_offset, type); 1382 if (LLVM_UNLIKELY(config->emachine == EM_MIPS)) 1383 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal()); 1384 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC) 1385 addend += getPPC64TocBase(); 1386 1387 // Ignore R_*_NONE and other marker relocations. 1388 if (expr == R_NONE) 1389 return; 1390 1391 // Error if the target symbol is undefined. Symbol index 0 may be used by 1392 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them. 1393 if (sym.isUndefined() && symIndex != 0 && 1394 maybeReportUndefined(cast<Undefined>(sym), *sec, offset)) 1395 return; 1396 1397 if (config->emachine == EM_PPC64) { 1398 // We can separate the small code model relocations into 2 categories: 1399 // 1) Those that access the compiler generated .toc sections. 1400 // 2) Those that access the linker allocated got entries. 1401 // lld allocates got entries to symbols on demand. Since we don't try to 1402 // sort the got entries in any way, we don't have to track which objects 1403 // have got-based small code model relocs. The .toc sections get placed 1404 // after the end of the linker allocated .got section and we do sort those 1405 // so sections addressed with small code model relocations come first. 1406 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS) 1407 sec->file->ppc64SmallCodeModelTocRelocs = true; 1408 1409 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in 1410 // InputSectionBase::relocateAlloc(). 1411 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) && 1412 cast<Defined>(sym).section->name == ".toc") 1413 ppc64noTocRelax.insert({&sym, addend}); 1414 1415 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) || 1416 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) { 1417 if (i == end) { 1418 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last " 1419 "relocation" + 1420 getLocation(*sec, sym, offset)); 1421 return; 1422 } 1423 1424 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case, 1425 // so we can discern it later from the toc-case. 1426 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC) 1427 ++offset; 1428 } 1429 } 1430 1431 // If the relocation does not emit a GOT or GOTPLT entry but its computation 1432 // uses their addresses, we need GOT or GOTPLT to be created. 1433 // 1434 // The 5 types that relative GOTPLT are all x86 and x86-64 specific. 1435 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT, 1436 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) { 1437 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed); 1438 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE, 1439 R_PPC64_RELAX_TOC>(expr)) { 1440 in.got->hasGotOffRel.store(true, std::memory_order_relaxed); 1441 } 1442 1443 // Process TLS relocations, including relaxing TLS relocations. Note that 1444 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux. 1445 if (sym.isTls()) { 1446 if (unsigned processed = 1447 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) { 1448 i += processed - 1; 1449 return; 1450 } 1451 } 1452 1453 processAux(expr, type, offset, sym, addend); 1454 } 1455 1456 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for 1457 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is 1458 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the 1459 // instructions are generated by very old IBM XL compilers. Work around the 1460 // issue by disabling GD/LD to IE/LE relaxation. 1461 template <class RelTy> 1462 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) { 1463 // Skip if sec is synthetic (sec.file is null) or if sec has been marked. 1464 if (!sec.file || sec.file->ppc64DisableTLSRelax) 1465 return; 1466 bool hasGDLD = false; 1467 for (const RelTy &rel : rels) { 1468 RelType type = rel.getType(false); 1469 switch (type) { 1470 case R_PPC64_TLSGD: 1471 case R_PPC64_TLSLD: 1472 return; // Found a marker 1473 case R_PPC64_GOT_TLSGD16: 1474 case R_PPC64_GOT_TLSGD16_HA: 1475 case R_PPC64_GOT_TLSGD16_HI: 1476 case R_PPC64_GOT_TLSGD16_LO: 1477 case R_PPC64_GOT_TLSLD16: 1478 case R_PPC64_GOT_TLSLD16_HA: 1479 case R_PPC64_GOT_TLSLD16_HI: 1480 case R_PPC64_GOT_TLSLD16_LO: 1481 hasGDLD = true; 1482 break; 1483 } 1484 } 1485 if (hasGDLD) { 1486 sec.file->ppc64DisableTLSRelax = true; 1487 warn(toString(sec.file) + 1488 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without " 1489 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations"); 1490 } 1491 } 1492 1493 template <class ELFT, class RelTy> 1494 void RelocationScanner::scan(ArrayRef<RelTy> rels) { 1495 // Not all relocations end up in Sec->Relocations, but a lot do. 1496 sec->relocations.reserve(rels.size()); 1497 1498 if (config->emachine == EM_PPC64) 1499 checkPPC64TLSRelax<RelTy>(*sec, rels); 1500 1501 // For EhInputSection, OffsetGetter expects the relocations to be sorted by 1502 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker 1503 // script), the relocations may be unordered. 1504 SmallVector<RelTy, 0> storage; 1505 if (isa<EhInputSection>(sec)) 1506 rels = sortRels(rels, storage); 1507 1508 end = static_cast<const void *>(rels.end()); 1509 for (auto i = rels.begin(); i != end;) 1510 scanOne<ELFT>(i); 1511 1512 // Sort relocations by offset for more efficient searching for 1513 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64. 1514 if (config->emachine == EM_RISCV || 1515 (config->emachine == EM_PPC64 && sec->name == ".toc")) 1516 llvm::stable_sort(sec->relocs(), 1517 [](const Relocation &lhs, const Relocation &rhs) { 1518 return lhs.offset < rhs.offset; 1519 }); 1520 } 1521 1522 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) { 1523 sec = &s; 1524 getter = OffsetGetter(s); 1525 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(); 1526 if (rels.areRelocsRel()) 1527 scan<ELFT>(rels.rels); 1528 else 1529 scan<ELFT>(rels.relas); 1530 } 1531 1532 template <class ELFT> void elf::scanRelocations() { 1533 // Scan all relocations. Each relocation goes through a series of tests to 1534 // determine if it needs special treatment, such as creating GOT, PLT, 1535 // copy relocations, etc. Note that relocations for non-alloc sections are 1536 // directly processed by InputSection::relocateNonAlloc. 1537 1538 // Deterministic parallellism needs sorting relocations which is unsuitable 1539 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable 1540 // for parallelism. 1541 bool serial = !config->zCombreloc || config->emachine == EM_MIPS || 1542 config->emachine == EM_PPC64; 1543 parallel::TaskGroup tg; 1544 for (ELFFileBase *f : ctx.objectFiles) { 1545 auto fn = [f]() { 1546 RelocationScanner scanner; 1547 for (InputSectionBase *s : f->getSections()) { 1548 if (s && s->kind() == SectionBase::Regular && s->isLive() && 1549 (s->flags & SHF_ALLOC) && 1550 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM)) 1551 scanner.template scanSection<ELFT>(*s); 1552 } 1553 }; 1554 if (serial) 1555 fn(); 1556 else 1557 tg.execute(fn); 1558 } 1559 1560 // Both the main thread and thread pool index 0 use getThreadIndex()==0. Be 1561 // careful that they don't concurrently run scanSections. When serial is 1562 // true, fn() has finished at this point, so running execute is safe. 1563 tg.execute([] { 1564 RelocationScanner scanner; 1565 for (Partition &part : partitions) { 1566 for (EhInputSection *sec : part.ehFrame->sections) 1567 scanner.template scanSection<ELFT>(*sec); 1568 if (part.armExidx && part.armExidx->isLive()) 1569 for (InputSection *sec : part.armExidx->exidxSections) 1570 scanner.template scanSection<ELFT>(*sec); 1571 } 1572 }); 1573 } 1574 1575 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) { 1576 // Handle a reference to a non-preemptible ifunc. These are special in a 1577 // few ways: 1578 // 1579 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have 1580 // a fixed value. But assuming that all references to the ifunc are 1581 // GOT-generating or PLT-generating, the handling of an ifunc is 1582 // relatively straightforward. We create a PLT entry in Iplt, which is 1583 // usually at the end of .plt, which makes an indirect call using a 1584 // matching GOT entry in igotPlt, which is usually at the end of .got.plt. 1585 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt, 1586 // which is usually at the end of .rela.plt. Unlike most relocations in 1587 // .rela.plt, which may be evaluated lazily without -z now, dynamic 1588 // loaders evaluate IRELATIVE relocs eagerly, which means that for 1589 // IRELATIVE relocs only, GOT-generating relocations can point directly to 1590 // .got.plt without requiring a separate GOT entry. 1591 // 1592 // - Despite the fact that an ifunc does not have a fixed value, compilers 1593 // that are not passed -fPIC will assume that they do, and will emit 1594 // direct (non-GOT-generating, non-PLT-generating) relocations to the 1595 // symbol. This means that if a direct relocation to the symbol is 1596 // seen, the linker must set a value for the symbol, and this value must 1597 // be consistent no matter what type of reference is made to the symbol. 1598 // This can be done by creating a PLT entry for the symbol in the way 1599 // described above and making it canonical, that is, making all references 1600 // point to the PLT entry instead of the resolver. In lld we also store 1601 // the address of the PLT entry in the dynamic symbol table, which means 1602 // that the symbol will also have the same value in other modules. 1603 // Because the value loaded from the GOT needs to be consistent with 1604 // the value computed using a direct relocation, a non-preemptible ifunc 1605 // may end up with two GOT entries, one in .got.plt that points to the 1606 // address returned by the resolver and is used only by the PLT entry, 1607 // and another in .got that points to the PLT entry and is used by 1608 // GOT-generating relocations. 1609 // 1610 // - The fact that these symbols do not have a fixed value makes them an 1611 // exception to the general rule that a statically linked executable does 1612 // not require any form of dynamic relocation. To handle these relocations 1613 // correctly, the IRELATIVE relocations are stored in an array which a 1614 // statically linked executable's startup code must enumerate using the 1615 // linker-defined symbols __rela?_iplt_{start,end}. 1616 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt) 1617 return false; 1618 // Skip unreferenced non-preemptible ifunc. 1619 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC))) 1620 return true; 1621 1622 sym.isInIplt = true; 1623 1624 // Create an Iplt and the associated IRELATIVE relocation pointing to the 1625 // original section/value pairs. For non-GOT non-PLT relocation case below, we 1626 // may alter section/value, so create a copy of the symbol to make 1627 // section/value fixed. 1628 auto *directSym = makeDefined(cast<Defined>(sym)); 1629 directSym->allocateAux(); 1630 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel, 1631 *directSym); 1632 sym.allocateAux(); 1633 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx; 1634 1635 if (flags & HAS_DIRECT_RELOC) { 1636 // Change the value to the IPLT and redirect all references to it. 1637 auto &d = cast<Defined>(sym); 1638 d.section = in.iplt.get(); 1639 d.value = d.getPltIdx() * target->ipltEntrySize; 1640 d.size = 0; 1641 // It's important to set the symbol type here so that dynamic loaders 1642 // don't try to call the PLT as if it were an ifunc resolver. 1643 d.type = STT_FUNC; 1644 1645 if (flags & NEEDS_GOT) 1646 addGotEntry(sym); 1647 } else if (flags & NEEDS_GOT) { 1648 // Redirect GOT accesses to point to the Igot. 1649 sym.gotInIgot = true; 1650 } 1651 return true; 1652 } 1653 1654 void elf::postScanRelocations() { 1655 auto fn = [](Symbol &sym) { 1656 auto flags = sym.flags.load(std::memory_order_relaxed); 1657 if (handleNonPreemptibleIfunc(sym, flags)) 1658 return; 1659 if (!sym.needsDynReloc()) 1660 return; 1661 sym.allocateAux(); 1662 1663 if (flags & NEEDS_GOT) 1664 addGotEntry(sym); 1665 if (flags & NEEDS_PLT) 1666 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym); 1667 if (flags & NEEDS_COPY) { 1668 if (sym.isObject()) { 1669 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym)); 1670 // NEEDS_COPY is cleared for sym and its aliases so that in 1671 // later iterations aliases won't cause redundant copies. 1672 assert(!sym.hasFlag(NEEDS_COPY)); 1673 } else { 1674 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT)); 1675 if (!sym.isDefined()) { 1676 replaceWithDefined(sym, *in.plt, 1677 target->pltHeaderSize + 1678 target->pltEntrySize * sym.getPltIdx(), 1679 0); 1680 sym.setFlags(NEEDS_COPY); 1681 if (config->emachine == EM_PPC) { 1682 // PPC32 canonical PLT entries are at the beginning of .glink 1683 cast<Defined>(sym).value = in.plt->headerSize; 1684 in.plt->headerSize += 16; 1685 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym); 1686 } 1687 } 1688 } 1689 } 1690 1691 if (!sym.isTls()) 1692 return; 1693 bool isLocalInExecutable = !sym.isPreemptible && !config->shared; 1694 GotSection *got = in.got.get(); 1695 1696 if (flags & NEEDS_TLSDESC) { 1697 got->addTlsDescEntry(sym); 1698 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible( 1699 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym, 1700 target->tlsDescRel); 1701 } 1702 if (flags & NEEDS_TLSGD) { 1703 got->addDynTlsEntry(sym); 1704 uint64_t off = got->getGlobalDynOffset(sym); 1705 if (isLocalInExecutable) 1706 // Write one to the GOT slot. 1707 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym}); 1708 else 1709 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off, 1710 sym); 1711 1712 // If the symbol is preemptible we need the dynamic linker to write 1713 // the offset too. 1714 uint64_t offsetOff = off + config->wordsize; 1715 if (sym.isPreemptible) 1716 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff, 1717 sym); 1718 else 1719 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym}); 1720 } 1721 if (flags & NEEDS_TLSGD_TO_IE) { 1722 got->addEntry(sym); 1723 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got, 1724 sym.getGotOffset(), sym); 1725 } 1726 if (flags & NEEDS_GOT_DTPREL) { 1727 got->addEntry(sym); 1728 got->addConstant( 1729 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym}); 1730 } 1731 1732 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE)) 1733 addTpOffsetGotEntry(sym); 1734 }; 1735 1736 GotSection *got = in.got.get(); 1737 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) { 1738 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0); 1739 if (config->shared) 1740 mainPart->relaDyn->addReloc( 1741 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()}); 1742 else 1743 got->addConstant( 1744 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy}); 1745 } 1746 1747 assert(symAux.size() == 1); 1748 for (Symbol *sym : symtab.getSymbols()) 1749 fn(*sym); 1750 1751 // Local symbols may need the aforementioned non-preemptible ifunc and GOT 1752 // handling. They don't need regular PLT. 1753 for (ELFFileBase *file : ctx.objectFiles) 1754 for (Symbol *sym : file->getLocalSymbols()) 1755 fn(*sym); 1756 } 1757 1758 static bool mergeCmp(const InputSection *a, const InputSection *b) { 1759 // std::merge requires a strict weak ordering. 1760 if (a->outSecOff < b->outSecOff) 1761 return true; 1762 1763 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection. 1764 if (a->outSecOff == b->outSecOff && a != b) { 1765 auto *ta = dyn_cast<ThunkSection>(a); 1766 auto *tb = dyn_cast<ThunkSection>(b); 1767 1768 // Check if Thunk is immediately before any specific Target 1769 // InputSection for example Mips LA25 Thunks. 1770 if (ta && ta->getTargetInputSection() == b) 1771 return true; 1772 1773 // Place Thunk Sections without specific targets before 1774 // non-Thunk Sections. 1775 if (ta && !tb && !ta->getTargetInputSection()) 1776 return true; 1777 } 1778 1779 return false; 1780 } 1781 1782 // Call Fn on every executable InputSection accessed via the linker script 1783 // InputSectionDescription::Sections. 1784 static void forEachInputSectionDescription( 1785 ArrayRef<OutputSection *> outputSections, 1786 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) { 1787 for (OutputSection *os : outputSections) { 1788 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) 1789 continue; 1790 for (SectionCommand *bc : os->commands) 1791 if (auto *isd = dyn_cast<InputSectionDescription>(bc)) 1792 fn(os, isd); 1793 } 1794 } 1795 1796 // Thunk Implementation 1797 // 1798 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces 1799 // of code that the linker inserts inbetween a caller and a callee. The thunks 1800 // are added at link time rather than compile time as the decision on whether 1801 // a thunk is needed, such as the caller and callee being out of range, can only 1802 // be made at link time. 1803 // 1804 // It is straightforward to tell given the current state of the program when a 1805 // thunk is needed for a particular call. The more difficult part is that 1806 // the thunk needs to be placed in the program such that the caller can reach 1807 // the thunk and the thunk can reach the callee; furthermore, adding thunks to 1808 // the program alters addresses, which can mean more thunks etc. 1809 // 1810 // In lld we have a synthetic ThunkSection that can hold many Thunks. 1811 // The decision to have a ThunkSection act as a container means that we can 1812 // more easily handle the most common case of a single block of contiguous 1813 // Thunks by inserting just a single ThunkSection. 1814 // 1815 // The implementation of Thunks in lld is split across these areas 1816 // Relocations.cpp : Framework for creating and placing thunks 1817 // Thunks.cpp : The code generated for each supported thunk 1818 // Target.cpp : Target specific hooks that the framework uses to decide when 1819 // a thunk is used 1820 // Synthetic.cpp : Implementation of ThunkSection 1821 // Writer.cpp : Iteratively call framework until no more Thunks added 1822 // 1823 // Thunk placement requirements: 1824 // Mips LA25 thunks. These must be placed immediately before the callee section 1825 // We can assume that the caller is in range of the Thunk. These are modelled 1826 // by Thunks that return the section they must precede with 1827 // getTargetInputSection(). 1828 // 1829 // ARM interworking and range extension thunks. These thunks must be placed 1830 // within range of the caller. All implemented ARM thunks can always reach the 1831 // callee as they use an indirect jump via a register that has no range 1832 // restrictions. 1833 // 1834 // Thunk placement algorithm: 1835 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before 1836 // getTargetInputSection(). 1837 // 1838 // For thunks that must be placed within range of the caller there are many 1839 // possible choices given that the maximum range from the caller is usually 1840 // much larger than the average InputSection size. Desirable properties include: 1841 // - Maximize reuse of thunks by multiple callers 1842 // - Minimize number of ThunkSections to simplify insertion 1843 // - Handle impact of already added Thunks on addresses 1844 // - Simple to understand and implement 1845 // 1846 // In lld for the first pass, we pre-create one or more ThunkSections per 1847 // InputSectionDescription at Target specific intervals. A ThunkSection is 1848 // placed so that the estimated end of the ThunkSection is within range of the 1849 // start of the InputSectionDescription or the previous ThunkSection. For 1850 // example: 1851 // InputSectionDescription 1852 // Section 0 1853 // ... 1854 // Section N 1855 // ThunkSection 0 1856 // Section N + 1 1857 // ... 1858 // Section N + K 1859 // Thunk Section 1 1860 // 1861 // The intention is that we can add a Thunk to a ThunkSection that is well 1862 // spaced enough to service a number of callers without having to do a lot 1863 // of work. An important principle is that it is not an error if a Thunk cannot 1864 // be placed in a pre-created ThunkSection; when this happens we create a new 1865 // ThunkSection placed next to the caller. This allows us to handle the vast 1866 // majority of thunks simply, but also handle rare cases where the branch range 1867 // is smaller than the target specific spacing. 1868 // 1869 // The algorithm is expected to create all the thunks that are needed in a 1870 // single pass, with a small number of programs needing a second pass due to 1871 // the insertion of thunks in the first pass increasing the offset between 1872 // callers and callees that were only just in range. 1873 // 1874 // A consequence of allowing new ThunkSections to be created outside of the 1875 // pre-created ThunkSections is that in rare cases calls to Thunks that were in 1876 // range in pass K, are out of range in some pass > K due to the insertion of 1877 // more Thunks in between the caller and callee. When this happens we retarget 1878 // the relocation back to the original target and create another Thunk. 1879 1880 // Remove ThunkSections that are empty, this should only be the initial set 1881 // precreated on pass 0. 1882 1883 // Insert the Thunks for OutputSection OS into their designated place 1884 // in the Sections vector, and recalculate the InputSection output section 1885 // offsets. 1886 // This may invalidate any output section offsets stored outside of InputSection 1887 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) { 1888 forEachInputSectionDescription( 1889 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 1890 if (isd->thunkSections.empty()) 1891 return; 1892 1893 // Remove any zero sized precreated Thunks. 1894 llvm::erase_if(isd->thunkSections, 1895 [](const std::pair<ThunkSection *, uint32_t> &ts) { 1896 return ts.first->getSize() == 0; 1897 }); 1898 1899 // ISD->ThunkSections contains all created ThunkSections, including 1900 // those inserted in previous passes. Extract the Thunks created this 1901 // pass and order them in ascending outSecOff. 1902 std::vector<ThunkSection *> newThunks; 1903 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections) 1904 if (ts.second == pass) 1905 newThunks.push_back(ts.first); 1906 llvm::stable_sort(newThunks, 1907 [](const ThunkSection *a, const ThunkSection *b) { 1908 return a->outSecOff < b->outSecOff; 1909 }); 1910 1911 // Merge sorted vectors of Thunks and InputSections by outSecOff 1912 SmallVector<InputSection *, 0> tmp; 1913 tmp.reserve(isd->sections.size() + newThunks.size()); 1914 1915 std::merge(isd->sections.begin(), isd->sections.end(), 1916 newThunks.begin(), newThunks.end(), std::back_inserter(tmp), 1917 mergeCmp); 1918 1919 isd->sections = std::move(tmp); 1920 }); 1921 } 1922 1923 static int64_t getPCBias(RelType type) { 1924 if (config->emachine != EM_ARM) 1925 return 0; 1926 switch (type) { 1927 case R_ARM_THM_JUMP19: 1928 case R_ARM_THM_JUMP24: 1929 case R_ARM_THM_CALL: 1930 return 4; 1931 default: 1932 return 8; 1933 } 1934 } 1935 1936 // Find or create a ThunkSection within the InputSectionDescription (ISD) that 1937 // is in range of Src. An ISD maps to a range of InputSections described by a 1938 // linker script section pattern such as { .text .text.* }. 1939 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, 1940 InputSection *isec, 1941 InputSectionDescription *isd, 1942 const Relocation &rel, 1943 uint64_t src) { 1944 // See the comment in getThunk for -pcBias below. 1945 const int64_t pcBias = getPCBias(rel.type); 1946 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) { 1947 ThunkSection *ts = tp.first; 1948 uint64_t tsBase = os->addr + ts->outSecOff - pcBias; 1949 uint64_t tsLimit = tsBase + ts->getSize(); 1950 if (target->inBranchRange(rel.type, src, 1951 (src > tsLimit) ? tsBase : tsLimit)) 1952 return ts; 1953 } 1954 1955 // No suitable ThunkSection exists. This can happen when there is a branch 1956 // with lower range than the ThunkSection spacing or when there are too 1957 // many Thunks. Create a new ThunkSection as close to the InputSection as 1958 // possible. Error if InputSection is so large we cannot place ThunkSection 1959 // anywhere in Range. 1960 uint64_t thunkSecOff = isec->outSecOff; 1961 if (!target->inBranchRange(rel.type, src, 1962 os->addr + thunkSecOff + rel.addend)) { 1963 thunkSecOff = isec->outSecOff + isec->getSize(); 1964 if (!target->inBranchRange(rel.type, src, 1965 os->addr + thunkSecOff + rel.addend)) 1966 fatal("InputSection too large for range extension thunk " + 1967 isec->getObjMsg(src - (os->addr + isec->outSecOff))); 1968 } 1969 return addThunkSection(os, isd, thunkSecOff); 1970 } 1971 1972 // Add a Thunk that needs to be placed in a ThunkSection that immediately 1973 // precedes its Target. 1974 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) { 1975 ThunkSection *ts = thunkedSections.lookup(isec); 1976 if (ts) 1977 return ts; 1978 1979 // Find InputSectionRange within Target Output Section (TOS) that the 1980 // InputSection (IS) that we need to precede is in. 1981 OutputSection *tos = isec->getParent(); 1982 for (SectionCommand *bc : tos->commands) { 1983 auto *isd = dyn_cast<InputSectionDescription>(bc); 1984 if (!isd || isd->sections.empty()) 1985 continue; 1986 1987 InputSection *first = isd->sections.front(); 1988 InputSection *last = isd->sections.back(); 1989 1990 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff) 1991 continue; 1992 1993 ts = addThunkSection(tos, isd, isec->outSecOff); 1994 thunkedSections[isec] = ts; 1995 return ts; 1996 } 1997 1998 return nullptr; 1999 } 2000 2001 // Create one or more ThunkSections per OS that can be used to place Thunks. 2002 // We attempt to place the ThunkSections using the following desirable 2003 // properties: 2004 // - Within range of the maximum number of callers 2005 // - Minimise the number of ThunkSections 2006 // 2007 // We follow a simple but conservative heuristic to place ThunkSections at 2008 // offsets that are multiples of a Target specific branch range. 2009 // For an InputSectionDescription that is smaller than the range, a single 2010 // ThunkSection at the end of the range will do. 2011 // 2012 // For an InputSectionDescription that is more than twice the size of the range, 2013 // we place the last ThunkSection at range bytes from the end of the 2014 // InputSectionDescription in order to increase the likelihood that the 2015 // distance from a thunk to its target will be sufficiently small to 2016 // allow for the creation of a short thunk. 2017 void ThunkCreator::createInitialThunkSections( 2018 ArrayRef<OutputSection *> outputSections) { 2019 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing(); 2020 2021 forEachInputSectionDescription( 2022 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2023 if (isd->sections.empty()) 2024 return; 2025 2026 uint32_t isdBegin = isd->sections.front()->outSecOff; 2027 uint32_t isdEnd = 2028 isd->sections.back()->outSecOff + isd->sections.back()->getSize(); 2029 uint32_t lastThunkLowerBound = -1; 2030 if (isdEnd - isdBegin > thunkSectionSpacing * 2) 2031 lastThunkLowerBound = isdEnd - thunkSectionSpacing; 2032 2033 uint32_t isecLimit; 2034 uint32_t prevIsecLimit = isdBegin; 2035 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing; 2036 2037 for (const InputSection *isec : isd->sections) { 2038 isecLimit = isec->outSecOff + isec->getSize(); 2039 if (isecLimit > thunkUpperBound) { 2040 addThunkSection(os, isd, prevIsecLimit); 2041 thunkUpperBound = prevIsecLimit + thunkSectionSpacing; 2042 } 2043 if (isecLimit > lastThunkLowerBound) 2044 break; 2045 prevIsecLimit = isecLimit; 2046 } 2047 addThunkSection(os, isd, isecLimit); 2048 }); 2049 } 2050 2051 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os, 2052 InputSectionDescription *isd, 2053 uint64_t off) { 2054 auto *ts = make<ThunkSection>(os, off); 2055 ts->partition = os->partition; 2056 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) && 2057 !isd->sections.empty()) { 2058 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add 2059 // thunks we disturb the base addresses of sections placed after the thunks 2060 // this makes patches we have generated redundant, and may cause us to 2061 // generate more patches as different instructions are now in sensitive 2062 // locations. When we generate more patches we may force more branches to 2063 // go out of range, causing more thunks to be generated. In pathological 2064 // cases this can cause the address dependent content pass not to converge. 2065 // We fix this by rounding up the size of the ThunkSection to 4KiB, this 2066 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB, 2067 // which means that adding Thunks to the section does not invalidate 2068 // errata patches for following code. 2069 // Rounding up the size to 4KiB has consequences for code-size and can 2070 // trip up linker script defined assertions. For example the linux kernel 2071 // has an assertion that what LLD represents as an InputSectionDescription 2072 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib. 2073 // We use the heuristic of rounding up the size when both of the following 2074 // conditions are true: 2075 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This 2076 // accounts for the case where no single InputSectionDescription is 2077 // larger than the OutputSection size. This is conservative but simple. 2078 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent 2079 // any assertion failures that an InputSectionDescription is < 4 KiB 2080 // in size. 2081 uint64_t isdSize = isd->sections.back()->outSecOff + 2082 isd->sections.back()->getSize() - 2083 isd->sections.front()->outSecOff; 2084 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096) 2085 ts->roundUpSizeForErrata = true; 2086 } 2087 isd->thunkSections.push_back({ts, pass}); 2088 return ts; 2089 } 2090 2091 static bool isThunkSectionCompatible(InputSection *source, 2092 SectionBase *target) { 2093 // We can't reuse thunks in different loadable partitions because they might 2094 // not be loaded. But partition 1 (the main partition) will always be loaded. 2095 if (source->partition != target->partition) 2096 return target->partition == 1; 2097 return true; 2098 } 2099 2100 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec, 2101 Relocation &rel, uint64_t src) { 2102 std::vector<Thunk *> *thunkVec = nullptr; 2103 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled 2104 // out in the relocation addend. We compensate for the PC bias so that 2105 // an Arm and Thumb relocation to the same destination get the same keyAddend, 2106 // which is usually 0. 2107 const int64_t pcBias = getPCBias(rel.type); 2108 const int64_t keyAddend = rel.addend + pcBias; 2109 2110 // We use a ((section, offset), addend) pair to find the thunk position if 2111 // possible so that we create only one thunk for aliased symbols or ICFed 2112 // sections. There may be multiple relocations sharing the same (section, 2113 // offset + addend) pair. We may revert the relocation back to its original 2114 // non-Thunk target, so we cannot fold offset + addend. 2115 if (auto *d = dyn_cast<Defined>(rel.sym)) 2116 if (!d->isInPlt() && d->section) 2117 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value}, 2118 keyAddend}]; 2119 if (!thunkVec) 2120 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}]; 2121 2122 // Check existing Thunks for Sym to see if they can be reused 2123 for (Thunk *t : *thunkVec) 2124 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) && 2125 t->isCompatibleWith(*isec, rel) && 2126 target->inBranchRange(rel.type, src, 2127 t->getThunkTargetSym()->getVA(-pcBias))) 2128 return std::make_pair(t, false); 2129 2130 // No existing compatible Thunk in range, create a new one 2131 Thunk *t = addThunk(*isec, rel); 2132 thunkVec->push_back(t); 2133 return std::make_pair(t, true); 2134 } 2135 2136 // Return true if the relocation target is an in range Thunk. 2137 // Return false if the relocation is not to a Thunk. If the relocation target 2138 // was originally to a Thunk, but is no longer in range we revert the 2139 // relocation back to its original non-Thunk target. 2140 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) { 2141 if (Thunk *t = thunks.lookup(rel.sym)) { 2142 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend))) 2143 return true; 2144 rel.sym = &t->destination; 2145 rel.addend = t->addend; 2146 if (rel.sym->isInPlt()) 2147 rel.expr = toPlt(rel.expr); 2148 } 2149 return false; 2150 } 2151 2152 // Process all relocations from the InputSections that have been assigned 2153 // to InputSectionDescriptions and redirect through Thunks if needed. The 2154 // function should be called iteratively until it returns false. 2155 // 2156 // PreConditions: 2157 // All InputSections that may need a Thunk are reachable from 2158 // OutputSectionCommands. 2159 // 2160 // All OutputSections have an address and all InputSections have an offset 2161 // within the OutputSection. 2162 // 2163 // The offsets between caller (relocation place) and callee 2164 // (relocation target) will not be modified outside of createThunks(). 2165 // 2166 // PostConditions: 2167 // If return value is true then ThunkSections have been inserted into 2168 // OutputSections. All relocations that needed a Thunk based on the information 2169 // available to createThunks() on entry have been redirected to a Thunk. Note 2170 // that adding Thunks changes offsets between caller and callee so more Thunks 2171 // may be required. 2172 // 2173 // If return value is false then no more Thunks are needed, and createThunks has 2174 // made no changes. If the target requires range extension thunks, currently 2175 // ARM, then any future change in offset between caller and callee risks a 2176 // relocation out of range error. 2177 bool ThunkCreator::createThunks(uint32_t pass, 2178 ArrayRef<OutputSection *> outputSections) { 2179 this->pass = pass; 2180 bool addressesChanged = false; 2181 2182 if (pass == 0 && target->getThunkSectionSpacing()) 2183 createInitialThunkSections(outputSections); 2184 2185 // Create all the Thunks and insert them into synthetic ThunkSections. The 2186 // ThunkSections are later inserted back into InputSectionDescriptions. 2187 // We separate the creation of ThunkSections from the insertion of the 2188 // ThunkSections as ThunkSections are not always inserted into the same 2189 // InputSectionDescription as the caller. 2190 forEachInputSectionDescription( 2191 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2192 for (InputSection *isec : isd->sections) 2193 for (Relocation &rel : isec->relocs()) { 2194 uint64_t src = isec->getVA(rel.offset); 2195 2196 // If we are a relocation to an existing Thunk, check if it is 2197 // still in range. If not then Rel will be altered to point to its 2198 // original target so another Thunk can be generated. 2199 if (pass > 0 && normalizeExistingThunk(rel, src)) 2200 continue; 2201 2202 if (!target->needsThunk(rel.expr, rel.type, isec->file, src, 2203 *rel.sym, rel.addend)) 2204 continue; 2205 2206 Thunk *t; 2207 bool isNew; 2208 std::tie(t, isNew) = getThunk(isec, rel, src); 2209 2210 if (isNew) { 2211 // Find or create a ThunkSection for the new Thunk 2212 ThunkSection *ts; 2213 if (auto *tis = t->getTargetInputSection()) 2214 ts = getISThunkSec(tis); 2215 else 2216 ts = getISDThunkSec(os, isec, isd, rel, src); 2217 ts->addThunk(t); 2218 thunks[t->getThunkTargetSym()] = t; 2219 } 2220 2221 // Redirect relocation to Thunk, we never go via the PLT to a Thunk 2222 rel.sym = t->getThunkTargetSym(); 2223 rel.expr = fromPlt(rel.expr); 2224 2225 // On AArch64 and PPC, a jump/call relocation may be encoded as 2226 // STT_SECTION + non-zero addend, clear the addend after 2227 // redirection. 2228 if (config->emachine != EM_MIPS) 2229 rel.addend = -getPCBias(rel.type); 2230 } 2231 2232 for (auto &p : isd->thunkSections) 2233 addressesChanged |= p.first->assignOffsets(); 2234 }); 2235 2236 for (auto &p : thunkedSections) 2237 addressesChanged |= p.second->assignOffsets(); 2238 2239 // Merge all created synthetic ThunkSections back into OutputSection 2240 mergeThunks(outputSections); 2241 return addressesChanged; 2242 } 2243 2244 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr 2245 // hexagonNeedsTLSSymbol scans for relocations would require a call to 2246 // __tls_get_addr. 2247 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr. 2248 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) { 2249 bool needTlsSymbol = false; 2250 forEachInputSectionDescription( 2251 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2252 for (InputSection *isec : isd->sections) 2253 for (Relocation &rel : isec->relocs()) 2254 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2255 needTlsSymbol = true; 2256 return; 2257 } 2258 }); 2259 return needTlsSymbol; 2260 } 2261 2262 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) { 2263 Symbol *sym = symtab.find("__tls_get_addr"); 2264 if (!sym) 2265 return; 2266 bool needEntry = true; 2267 forEachInputSectionDescription( 2268 outputSections, [&](OutputSection *os, InputSectionDescription *isd) { 2269 for (InputSection *isec : isd->sections) 2270 for (Relocation &rel : isec->relocs()) 2271 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) { 2272 if (needEntry) { 2273 sym->allocateAux(); 2274 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, 2275 *sym); 2276 needEntry = false; 2277 } 2278 rel.sym = sym; 2279 } 2280 }); 2281 } 2282 2283 template void elf::scanRelocations<ELF32LE>(); 2284 template void elf::scanRelocations<ELF32BE>(); 2285 template void elf::scanRelocations<ELF64LE>(); 2286 template void elf::scanRelocations<ELF64BE>(); 2287