1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "OutputSections.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Support/Endian.h"
16
17 using namespace llvm;
18 using namespace llvm::support::endian;
19 using namespace llvm::ELF;
20 using namespace lld;
21 using namespace lld::elf;
22
23 // Page(Expr) is the page address of the expression Expr, defined
24 // as (Expr & ~0xFFF). (This applies even if the machine page size
25 // supported by the platform has a different value.)
getAArch64Page(uint64_t expr)26 uint64_t elf::getAArch64Page(uint64_t expr) {
27 return expr & ~static_cast<uint64_t>(0xFFF);
28 }
29
30 namespace {
31 class AArch64 : public TargetInfo {
32 public:
33 AArch64();
34 RelExpr getRelExpr(RelType type, const Symbol &s,
35 const uint8_t *loc) const override;
36 RelType getDynRel(RelType type) const override;
37 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
38 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
39 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
40 void writePltHeader(uint8_t *buf) const override;
41 void writePlt(uint8_t *buf, const Symbol &sym,
42 uint64_t pltEntryAddr) const override;
43 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
44 uint64_t branchAddr, const Symbol &s,
45 int64_t a) const override;
46 uint32_t getThunkSectionSpacing() const override;
47 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
48 bool usesOnlyLowPageBits(RelType type) const override;
49 void relocate(uint8_t *loc, const Relocation &rel,
50 uint64_t val) const override;
51 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
52 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
53
54 private:
55 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
56 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58 };
59
60 struct AArch64Relaxer {
61 bool safeToRelaxAdrpLdr = false;
62
63 AArch64Relaxer(ArrayRef<Relocation> relocs);
64 bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
65 uint64_t secAddr, uint8_t *buf) const;
66 bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
67 uint64_t secAddr, uint8_t *buf) const;
68 };
69 } // namespace
70
AArch64()71 AArch64::AArch64() {
72 copyRel = R_AARCH64_COPY;
73 relativeRel = R_AARCH64_RELATIVE;
74 iRelativeRel = R_AARCH64_IRELATIVE;
75 gotRel = R_AARCH64_GLOB_DAT;
76 pltRel = R_AARCH64_JUMP_SLOT;
77 symbolicRel = R_AARCH64_ABS64;
78 tlsDescRel = R_AARCH64_TLSDESC;
79 tlsGotRel = R_AARCH64_TLS_TPREL64;
80 pltHeaderSize = 32;
81 pltEntrySize = 16;
82 ipltEntrySize = 16;
83 defaultMaxPageSize = 65536;
84
85 // Align to the 2 MiB page size (known as a superpage or huge page).
86 // FreeBSD automatically promotes 2 MiB-aligned allocations.
87 defaultImageBase = 0x200000;
88
89 needsThunks = true;
90 }
91
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const92 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
93 const uint8_t *loc) const {
94 switch (type) {
95 case R_AARCH64_ABS16:
96 case R_AARCH64_ABS32:
97 case R_AARCH64_ABS64:
98 case R_AARCH64_ADD_ABS_LO12_NC:
99 case R_AARCH64_LDST128_ABS_LO12_NC:
100 case R_AARCH64_LDST16_ABS_LO12_NC:
101 case R_AARCH64_LDST32_ABS_LO12_NC:
102 case R_AARCH64_LDST64_ABS_LO12_NC:
103 case R_AARCH64_LDST8_ABS_LO12_NC:
104 case R_AARCH64_MOVW_SABS_G0:
105 case R_AARCH64_MOVW_SABS_G1:
106 case R_AARCH64_MOVW_SABS_G2:
107 case R_AARCH64_MOVW_UABS_G0:
108 case R_AARCH64_MOVW_UABS_G0_NC:
109 case R_AARCH64_MOVW_UABS_G1:
110 case R_AARCH64_MOVW_UABS_G1_NC:
111 case R_AARCH64_MOVW_UABS_G2:
112 case R_AARCH64_MOVW_UABS_G2_NC:
113 case R_AARCH64_MOVW_UABS_G3:
114 return R_ABS;
115 case R_AARCH64_TLSDESC_ADR_PAGE21:
116 return R_AARCH64_TLSDESC_PAGE;
117 case R_AARCH64_TLSDESC_LD64_LO12:
118 case R_AARCH64_TLSDESC_ADD_LO12:
119 return R_TLSDESC;
120 case R_AARCH64_TLSDESC_CALL:
121 return R_TLSDESC_CALL;
122 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
123 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
124 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
125 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
126 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
127 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
128 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
129 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
130 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
131 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
132 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
133 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
134 return R_TPREL;
135 case R_AARCH64_CALL26:
136 case R_AARCH64_CONDBR19:
137 case R_AARCH64_JUMP26:
138 case R_AARCH64_TSTBR14:
139 case R_AARCH64_PLT32:
140 return R_PLT_PC;
141 case R_AARCH64_PREL16:
142 case R_AARCH64_PREL32:
143 case R_AARCH64_PREL64:
144 case R_AARCH64_ADR_PREL_LO21:
145 case R_AARCH64_LD_PREL_LO19:
146 case R_AARCH64_MOVW_PREL_G0:
147 case R_AARCH64_MOVW_PREL_G0_NC:
148 case R_AARCH64_MOVW_PREL_G1:
149 case R_AARCH64_MOVW_PREL_G1_NC:
150 case R_AARCH64_MOVW_PREL_G2:
151 case R_AARCH64_MOVW_PREL_G2_NC:
152 case R_AARCH64_MOVW_PREL_G3:
153 return R_PC;
154 case R_AARCH64_ADR_PREL_PG_HI21:
155 case R_AARCH64_ADR_PREL_PG_HI21_NC:
156 return R_AARCH64_PAGE_PC;
157 case R_AARCH64_LD64_GOT_LO12_NC:
158 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
159 return R_GOT;
160 case R_AARCH64_LD64_GOTPAGE_LO15:
161 return R_AARCH64_GOT_PAGE;
162 case R_AARCH64_ADR_GOT_PAGE:
163 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
164 return R_AARCH64_GOT_PAGE_PC;
165 case R_AARCH64_NONE:
166 return R_NONE;
167 default:
168 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
169 ") against symbol " + toString(s));
170 return R_NONE;
171 }
172 }
173
adjustTlsExpr(RelType type,RelExpr expr) const174 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
175 if (expr == R_RELAX_TLS_GD_TO_IE) {
176 if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
177 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
178 return R_RELAX_TLS_GD_TO_IE_ABS;
179 }
180 return expr;
181 }
182
usesOnlyLowPageBits(RelType type) const183 bool AArch64::usesOnlyLowPageBits(RelType type) const {
184 switch (type) {
185 default:
186 return false;
187 case R_AARCH64_ADD_ABS_LO12_NC:
188 case R_AARCH64_LD64_GOT_LO12_NC:
189 case R_AARCH64_LDST128_ABS_LO12_NC:
190 case R_AARCH64_LDST16_ABS_LO12_NC:
191 case R_AARCH64_LDST32_ABS_LO12_NC:
192 case R_AARCH64_LDST64_ABS_LO12_NC:
193 case R_AARCH64_LDST8_ABS_LO12_NC:
194 case R_AARCH64_TLSDESC_ADD_LO12:
195 case R_AARCH64_TLSDESC_LD64_LO12:
196 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
197 return true;
198 }
199 }
200
getDynRel(RelType type) const201 RelType AArch64::getDynRel(RelType type) const {
202 if (type == R_AARCH64_ABS64)
203 return type;
204 return R_AARCH64_NONE;
205 }
206
getImplicitAddend(const uint8_t * buf,RelType type) const207 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
208 switch (type) {
209 case R_AARCH64_TLSDESC:
210 return read64(buf + 8);
211 case R_AARCH64_NONE:
212 case R_AARCH64_GLOB_DAT:
213 case R_AARCH64_JUMP_SLOT:
214 return 0;
215 case R_AARCH64_PREL32:
216 return SignExtend64<32>(read32(buf));
217 case R_AARCH64_ABS64:
218 case R_AARCH64_PREL64:
219 case R_AARCH64_RELATIVE:
220 case R_AARCH64_IRELATIVE:
221 case R_AARCH64_TLS_TPREL64:
222 return read64(buf);
223 default:
224 internalLinkerError(getErrorLocation(buf),
225 "cannot read addend for relocation " + toString(type));
226 return 0;
227 }
228 }
229
writeGotPlt(uint8_t * buf,const Symbol &) const230 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
231 write64(buf, in.plt->getVA());
232 }
233
writeIgotPlt(uint8_t * buf,const Symbol & s) const234 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
235 if (config->writeAddends)
236 write64(buf, s.getVA());
237 }
238
writePltHeader(uint8_t * buf) const239 void AArch64::writePltHeader(uint8_t *buf) const {
240 const uint8_t pltData[] = {
241 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
242 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
243 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
244 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
245 0x20, 0x02, 0x1f, 0xd6, // br x17
246 0x1f, 0x20, 0x03, 0xd5, // nop
247 0x1f, 0x20, 0x03, 0xd5, // nop
248 0x1f, 0x20, 0x03, 0xd5 // nop
249 };
250 memcpy(buf, pltData, sizeof(pltData));
251
252 uint64_t got = in.gotPlt->getVA();
253 uint64_t plt = in.plt->getVA();
254 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
255 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
256 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
257 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
258 }
259
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const260 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
261 uint64_t pltEntryAddr) const {
262 const uint8_t inst[] = {
263 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
264 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
265 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n]))
266 0x20, 0x02, 0x1f, 0xd6 // br x17
267 };
268 memcpy(buf, inst, sizeof(inst));
269
270 uint64_t gotPltEntryAddr = sym.getGotPltVA();
271 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
272 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
273 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
274 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
275 }
276
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const277 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
278 uint64_t branchAddr, const Symbol &s,
279 int64_t a) const {
280 // If s is an undefined weak symbol and does not have a PLT entry then it will
281 // be resolved as a branch to the next instruction. If it is hidden, its
282 // binding has been converted to local, so we just check isUndefined() here. A
283 // undefined non-weak symbol will have been errored.
284 if (s.isUndefined() && !s.isInPlt())
285 return false;
286 // ELF for the ARM 64-bit architecture, section Call and Jump relocations
287 // only permits range extension thunks for R_AARCH64_CALL26 and
288 // R_AARCH64_JUMP26 relocation types.
289 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
290 type != R_AARCH64_PLT32)
291 return false;
292 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
293 return !inBranchRange(type, branchAddr, dst);
294 }
295
getThunkSectionSpacing() const296 uint32_t AArch64::getThunkSectionSpacing() const {
297 // See comment in Arch/ARM.cpp for a more detailed explanation of
298 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
299 // Thunk have a range of +/- 128 MiB
300 return (128 * 1024 * 1024) - 0x30000;
301 }
302
inBranchRange(RelType type,uint64_t src,uint64_t dst) const303 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
304 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
305 type != R_AARCH64_PLT32)
306 return true;
307 // The AArch64 call and unconditional branch instructions have a range of
308 // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
309 uint64_t range =
310 type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
311 if (dst > src) {
312 // Immediate of branch is signed.
313 range -= 4;
314 return dst - src <= range;
315 }
316 return src - dst <= range;
317 }
318
write32AArch64Addr(uint8_t * l,uint64_t imm)319 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
320 uint32_t immLo = (imm & 0x3) << 29;
321 uint32_t immHi = (imm & 0x1FFFFC) << 3;
322 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
323 write32le(l, (read32le(l) & ~mask) | immLo | immHi);
324 }
325
326 // Return the bits [Start, End] from Val shifted Start bits.
327 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t val,int start,int end)328 static uint64_t getBits(uint64_t val, int start, int end) {
329 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
330 return (val >> start) & mask;
331 }
332
or32le(uint8_t * p,int32_t v)333 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
334
335 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
or32AArch64Imm(uint8_t * l,uint64_t imm)336 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
337 or32le(l, (imm & 0xFFF) << 10);
338 }
339
340 // Update the immediate field in an AArch64 movk, movn or movz instruction
341 // for a signed relocation, and update the opcode of a movn or movz instruction
342 // to match the sign of the operand.
writeSMovWImm(uint8_t * loc,uint32_t imm)343 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
344 uint32_t inst = read32le(loc);
345 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
346 if (!(inst & (1 << 29))) {
347 // movn or movz.
348 if (imm & 0x10000) {
349 // Change opcode to movn, which takes an inverted operand.
350 imm ^= 0xFFFF;
351 inst &= ~(1 << 30);
352 } else {
353 // Change opcode to movz.
354 inst |= 1 << 30;
355 }
356 }
357 write32le(loc, inst | ((imm & 0xFFFF) << 5));
358 }
359
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const360 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
361 uint64_t val) const {
362 switch (rel.type) {
363 case R_AARCH64_ABS16:
364 case R_AARCH64_PREL16:
365 checkIntUInt(loc, val, 16, rel);
366 write16(loc, val);
367 break;
368 case R_AARCH64_ABS32:
369 case R_AARCH64_PREL32:
370 checkIntUInt(loc, val, 32, rel);
371 write32(loc, val);
372 break;
373 case R_AARCH64_PLT32:
374 checkInt(loc, val, 32, rel);
375 write32(loc, val);
376 break;
377 case R_AARCH64_ABS64:
378 case R_AARCH64_PREL64:
379 write64(loc, val);
380 break;
381 case R_AARCH64_ADD_ABS_LO12_NC:
382 or32AArch64Imm(loc, val);
383 break;
384 case R_AARCH64_ADR_GOT_PAGE:
385 case R_AARCH64_ADR_PREL_PG_HI21:
386 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
387 case R_AARCH64_TLSDESC_ADR_PAGE21:
388 checkInt(loc, val, 33, rel);
389 [[fallthrough]];
390 case R_AARCH64_ADR_PREL_PG_HI21_NC:
391 write32AArch64Addr(loc, val >> 12);
392 break;
393 case R_AARCH64_ADR_PREL_LO21:
394 checkInt(loc, val, 21, rel);
395 write32AArch64Addr(loc, val);
396 break;
397 case R_AARCH64_JUMP26:
398 // Normally we would just write the bits of the immediate field, however
399 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
400 // we want to replace a non-branch instruction with a branch immediate
401 // instruction. By writing all the bits of the instruction including the
402 // opcode and the immediate (0 001 | 01 imm26) we can do this
403 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
404 // the instruction we want to patch.
405 write32le(loc, 0x14000000);
406 [[fallthrough]];
407 case R_AARCH64_CALL26:
408 checkInt(loc, val, 28, rel);
409 or32le(loc, (val & 0x0FFFFFFC) >> 2);
410 break;
411 case R_AARCH64_CONDBR19:
412 case R_AARCH64_LD_PREL_LO19:
413 checkAlignment(loc, val, 4, rel);
414 checkInt(loc, val, 21, rel);
415 or32le(loc, (val & 0x1FFFFC) << 3);
416 break;
417 case R_AARCH64_LDST8_ABS_LO12_NC:
418 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
419 or32AArch64Imm(loc, getBits(val, 0, 11));
420 break;
421 case R_AARCH64_LDST16_ABS_LO12_NC:
422 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
423 checkAlignment(loc, val, 2, rel);
424 or32AArch64Imm(loc, getBits(val, 1, 11));
425 break;
426 case R_AARCH64_LDST32_ABS_LO12_NC:
427 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
428 checkAlignment(loc, val, 4, rel);
429 or32AArch64Imm(loc, getBits(val, 2, 11));
430 break;
431 case R_AARCH64_LDST64_ABS_LO12_NC:
432 case R_AARCH64_LD64_GOT_LO12_NC:
433 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
434 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
435 case R_AARCH64_TLSDESC_LD64_LO12:
436 checkAlignment(loc, val, 8, rel);
437 or32AArch64Imm(loc, getBits(val, 3, 11));
438 break;
439 case R_AARCH64_LDST128_ABS_LO12_NC:
440 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
441 checkAlignment(loc, val, 16, rel);
442 or32AArch64Imm(loc, getBits(val, 4, 11));
443 break;
444 case R_AARCH64_LD64_GOTPAGE_LO15:
445 checkAlignment(loc, val, 8, rel);
446 or32AArch64Imm(loc, getBits(val, 3, 14));
447 break;
448 case R_AARCH64_MOVW_UABS_G0:
449 checkUInt(loc, val, 16, rel);
450 [[fallthrough]];
451 case R_AARCH64_MOVW_UABS_G0_NC:
452 or32le(loc, (val & 0xFFFF) << 5);
453 break;
454 case R_AARCH64_MOVW_UABS_G1:
455 checkUInt(loc, val, 32, rel);
456 [[fallthrough]];
457 case R_AARCH64_MOVW_UABS_G1_NC:
458 or32le(loc, (val & 0xFFFF0000) >> 11);
459 break;
460 case R_AARCH64_MOVW_UABS_G2:
461 checkUInt(loc, val, 48, rel);
462 [[fallthrough]];
463 case R_AARCH64_MOVW_UABS_G2_NC:
464 or32le(loc, (val & 0xFFFF00000000) >> 27);
465 break;
466 case R_AARCH64_MOVW_UABS_G3:
467 or32le(loc, (val & 0xFFFF000000000000) >> 43);
468 break;
469 case R_AARCH64_MOVW_PREL_G0:
470 case R_AARCH64_MOVW_SABS_G0:
471 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
472 checkInt(loc, val, 17, rel);
473 [[fallthrough]];
474 case R_AARCH64_MOVW_PREL_G0_NC:
475 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
476 writeSMovWImm(loc, val);
477 break;
478 case R_AARCH64_MOVW_PREL_G1:
479 case R_AARCH64_MOVW_SABS_G1:
480 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
481 checkInt(loc, val, 33, rel);
482 [[fallthrough]];
483 case R_AARCH64_MOVW_PREL_G1_NC:
484 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
485 writeSMovWImm(loc, val >> 16);
486 break;
487 case R_AARCH64_MOVW_PREL_G2:
488 case R_AARCH64_MOVW_SABS_G2:
489 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
490 checkInt(loc, val, 49, rel);
491 [[fallthrough]];
492 case R_AARCH64_MOVW_PREL_G2_NC:
493 writeSMovWImm(loc, val >> 32);
494 break;
495 case R_AARCH64_MOVW_PREL_G3:
496 writeSMovWImm(loc, val >> 48);
497 break;
498 case R_AARCH64_TSTBR14:
499 checkInt(loc, val, 16, rel);
500 or32le(loc, (val & 0xFFFC) << 3);
501 break;
502 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
503 checkUInt(loc, val, 24, rel);
504 or32AArch64Imm(loc, val >> 12);
505 break;
506 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
507 case R_AARCH64_TLSDESC_ADD_LO12:
508 or32AArch64Imm(loc, val);
509 break;
510 case R_AARCH64_TLSDESC:
511 // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
512 write64(loc + 8, val);
513 break;
514 default:
515 llvm_unreachable("unknown relocation");
516 }
517 }
518
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const519 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
520 uint64_t val) const {
521 // TLSDESC Global-Dynamic relocation are in the form:
522 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
523 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
524 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
525 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
526 // blr x1
527 // And it can optimized to:
528 // movz x0, #0x0, lsl #16
529 // movk x0, #0x10
530 // nop
531 // nop
532 checkUInt(loc, val, 32, rel);
533
534 switch (rel.type) {
535 case R_AARCH64_TLSDESC_ADD_LO12:
536 case R_AARCH64_TLSDESC_CALL:
537 write32le(loc, 0xd503201f); // nop
538 return;
539 case R_AARCH64_TLSDESC_ADR_PAGE21:
540 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
541 return;
542 case R_AARCH64_TLSDESC_LD64_LO12:
543 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
544 return;
545 default:
546 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
547 }
548 }
549
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const550 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
551 uint64_t val) const {
552 // TLSDESC Global-Dynamic relocation are in the form:
553 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
554 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
555 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
556 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
557 // blr x1
558 // And it can optimized to:
559 // adrp x0, :gottprel:v
560 // ldr x0, [x0, :gottprel_lo12:v]
561 // nop
562 // nop
563
564 switch (rel.type) {
565 case R_AARCH64_TLSDESC_ADD_LO12:
566 case R_AARCH64_TLSDESC_CALL:
567 write32le(loc, 0xd503201f); // nop
568 break;
569 case R_AARCH64_TLSDESC_ADR_PAGE21:
570 write32le(loc, 0x90000000); // adrp
571 relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
572 break;
573 case R_AARCH64_TLSDESC_LD64_LO12:
574 write32le(loc, 0xf9400000); // ldr
575 relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
576 break;
577 default:
578 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
579 }
580 }
581
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const582 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
583 uint64_t val) const {
584 checkUInt(loc, val, 32, rel);
585
586 if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
587 // Generate MOVZ.
588 uint32_t regNo = read32le(loc) & 0x1f;
589 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
590 return;
591 }
592 if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
593 // Generate MOVK.
594 uint32_t regNo = read32le(loc) & 0x1f;
595 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
596 return;
597 }
598 llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
599 }
600
AArch64Relaxer(ArrayRef<Relocation> relocs)601 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
602 if (!config->relax)
603 return;
604 // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
605 // always appear in pairs.
606 size_t i = 0;
607 const size_t size = relocs.size();
608 for (; i != size; ++i) {
609 if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
610 if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
611 ++i;
612 continue;
613 }
614 break;
615 } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
616 break;
617 }
618 }
619 safeToRelaxAdrpLdr = i == size;
620 }
621
tryRelaxAdrpAdd(const Relocation & adrpRel,const Relocation & addRel,uint64_t secAddr,uint8_t * buf) const622 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
623 const Relocation &addRel, uint64_t secAddr,
624 uint8_t *buf) const {
625 // When the address of sym is within the range of ADR then
626 // we may relax
627 // ADRP xn, sym
628 // ADD xn, xn, :lo12: sym
629 // to
630 // NOP
631 // ADR xn, sym
632 if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
633 addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
634 return false;
635 // Check if the relocations apply to consecutive instructions.
636 if (adrpRel.offset + 4 != addRel.offset)
637 return false;
638 if (adrpRel.sym != addRel.sym)
639 return false;
640 if (adrpRel.addend != 0 || addRel.addend != 0)
641 return false;
642
643 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
644 uint32_t addInstr = read32le(buf + addRel.offset);
645 // Check if the first instruction is ADRP and the second instruction is ADD.
646 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
647 (addInstr & 0xffc00000) != 0x91000000)
648 return false;
649 uint32_t adrpDestReg = adrpInstr & 0x1f;
650 uint32_t addDestReg = addInstr & 0x1f;
651 uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
652 if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
653 return false;
654
655 Symbol &sym = *adrpRel.sym;
656 // Check if the address difference is within 1MiB range.
657 int64_t val = sym.getVA() - (secAddr + addRel.offset);
658 if (val < -1024 * 1024 || val >= 1024 * 1024)
659 return false;
660
661 Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
662 /*addend=*/0, &sym};
663 // nop
664 write32le(buf + adrpRel.offset, 0xd503201f);
665 // adr x_<dest_reg>
666 write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
667 target->relocate(buf + adrRel.offset, adrRel, val);
668 return true;
669 }
670
tryRelaxAdrpLdr(const Relocation & adrpRel,const Relocation & ldrRel,uint64_t secAddr,uint8_t * buf) const671 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
672 const Relocation &ldrRel, uint64_t secAddr,
673 uint8_t *buf) const {
674 if (!safeToRelaxAdrpLdr)
675 return false;
676
677 // When the definition of sym is not preemptible then we may
678 // be able to relax
679 // ADRP xn, :got: sym
680 // LDR xn, [ xn :got_lo12: sym]
681 // to
682 // ADRP xn, sym
683 // ADD xn, xn, :lo_12: sym
684
685 if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
686 ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
687 return false;
688 // Check if the relocations apply to consecutive instructions.
689 if (adrpRel.offset + 4 != ldrRel.offset)
690 return false;
691 // Check if the relocations reference the same symbol and
692 // skip undefined, preemptible and STT_GNU_IFUNC symbols.
693 if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
694 adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
695 return false;
696 // Check if the addends of the both relocations are zero.
697 if (adrpRel.addend != 0 || ldrRel.addend != 0)
698 return false;
699 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
700 uint32_t ldrInstr = read32le(buf + ldrRel.offset);
701 // Check if the first instruction is ADRP and the second instruction is LDR.
702 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
703 (ldrInstr & 0x3b000000) != 0x39000000)
704 return false;
705 // Check the value of the sf bit.
706 if (!(ldrInstr >> 31))
707 return false;
708 uint32_t adrpDestReg = adrpInstr & 0x1f;
709 uint32_t ldrDestReg = ldrInstr & 0x1f;
710 uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
711 // Check if ADPR and LDR use the same register.
712 if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
713 return false;
714
715 Symbol &sym = *adrpRel.sym;
716 // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
717 // position-independent code because these instructions produce a relative
718 // address.
719 if (config->isPic && !cast<Defined>(sym).section)
720 return false;
721 // Check if the address difference is within 4GB range.
722 int64_t val =
723 getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
724 if (val != llvm::SignExtend64(val, 33))
725 return false;
726
727 Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
728 adrpRel.offset, /*addend=*/0, &sym};
729 Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
730 /*addend=*/0, &sym};
731
732 // adrp x_<dest_reg>
733 write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
734 // add x_<dest reg>, x_<dest reg>
735 write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
736
737 target->relocate(buf + adrpSymRel.offset, adrpSymRel,
738 SignExtend64(getAArch64Page(sym.getVA()) -
739 getAArch64Page(secAddr + adrpSymRel.offset),
740 64));
741 target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
742 tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
743 return true;
744 }
745
relocateAlloc(InputSectionBase & sec,uint8_t * buf) const746 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
747 uint64_t secAddr = sec.getOutputSection()->addr;
748 if (auto *s = dyn_cast<InputSection>(&sec))
749 secAddr += s->outSecOff;
750 AArch64Relaxer relaxer(sec.relocs());
751 for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
752 const Relocation &rel = sec.relocs()[i];
753 uint8_t *loc = buf + rel.offset;
754 const uint64_t val =
755 sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
756 secAddr + rel.offset, *rel.sym, rel.expr);
757 switch (rel.expr) {
758 case R_AARCH64_GOT_PAGE_PC:
759 if (i + 1 < size &&
760 relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
761 ++i;
762 continue;
763 }
764 break;
765 case R_AARCH64_PAGE_PC:
766 if (i + 1 < size &&
767 relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
768 ++i;
769 continue;
770 }
771 break;
772 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
773 case R_RELAX_TLS_GD_TO_IE_ABS:
774 relaxTlsGdToIe(loc, rel, val);
775 continue;
776 case R_RELAX_TLS_GD_TO_LE:
777 relaxTlsGdToLe(loc, rel, val);
778 continue;
779 case R_RELAX_TLS_IE_TO_LE:
780 relaxTlsIeToLe(loc, rel, val);
781 continue;
782 default:
783 break;
784 }
785 relocate(loc, rel, val);
786 }
787 }
788
789 // AArch64 may use security features in variant PLT sequences. These are:
790 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
791 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
792 // in the variant Plt sequences are encoded in the Hint space so they can be
793 // deployed on older architectures, which treat the instructions as a nop.
794 // PAC and BTI can be combined leading to the following combinations:
795 // writePltHeader
796 // writePltHeaderBti (no PAC Header needed)
797 // writePlt
798 // writePltBti (BTI only)
799 // writePltPac (PAC only)
800 // writePltBtiPac (BTI and PAC)
801 //
802 // When PAC is enabled the dynamic loader encrypts the address that it places
803 // in the .got.plt using the pacia1716 instruction which encrypts the value in
804 // x17 using the modifier in x16. The static linker places autia1716 before the
805 // indirect branch to x17 to authenticate the address in x17 with the modifier
806 // in x16. This makes it more difficult for an attacker to modify the value in
807 // the .got.plt.
808 //
809 // When BTI is enabled all indirect branches must land on a bti instruction.
810 // The static linker must place a bti instruction at the start of any PLT entry
811 // that may be the target of an indirect branch. As the PLT entries call the
812 // lazy resolver indirectly this must have a bti instruction at start. In
813 // general a bti instruction is not needed for a PLT entry as indirect calls
814 // are resolved to the function address and not the PLT entry for the function.
815 // There are a small number of cases where the PLT address can escape, such as
816 // taking the address of a function or ifunc via a non got-generating
817 // relocation, and a shared library refers to that symbol.
818 //
819 // We use the bti c variant of the instruction which permits indirect branches
820 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
821 // guarantees that all indirect branches from code requiring BTI protection
822 // will go via x16/x17
823
824 namespace {
825 class AArch64BtiPac final : public AArch64 {
826 public:
827 AArch64BtiPac();
828 void writePltHeader(uint8_t *buf) const override;
829 void writePlt(uint8_t *buf, const Symbol &sym,
830 uint64_t pltEntryAddr) const override;
831
832 private:
833 bool btiHeader; // bti instruction needed in PLT Header and Entry
834 bool pacEntry; // autia1716 instruction needed in PLT Entry
835 };
836 } // namespace
837
AArch64BtiPac()838 AArch64BtiPac::AArch64BtiPac() {
839 #ifdef __OpenBSD__
840 btiHeader = true;
841 #else
842 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
843 #endif
844 // A BTI (Branch Target Indicator) Plt Entry is only required if the
845 // address of the PLT entry can be taken by the program, which permits an
846 // indirect jump to the PLT entry. This can happen when the address
847 // of the PLT entry for a function is canonicalised due to the address of
848 // the function in an executable being taken by a shared library, or
849 // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
850 // relocations.
851 // The PAC PLT entries require dynamic loader support and this isn't known
852 // from properties in the objects, so we use the command line flag.
853 pacEntry = config->zPacPlt;
854
855 if (btiHeader || pacEntry) {
856 pltEntrySize = 24;
857 ipltEntrySize = 24;
858 }
859 }
860
writePltHeader(uint8_t * buf) const861 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
862 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
863 const uint8_t pltData[] = {
864 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
865 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
866 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
867 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
868 0x20, 0x02, 0x1f, 0xd6, // br x17
869 0x1f, 0x20, 0x03, 0xd5, // nop
870 0x1f, 0x20, 0x03, 0xd5 // nop
871 };
872 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
873
874 uint64_t got = in.gotPlt->getVA();
875 uint64_t plt = in.plt->getVA();
876
877 if (btiHeader) {
878 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
879 // instruction.
880 memcpy(buf, btiData, sizeof(btiData));
881 buf += sizeof(btiData);
882 plt += sizeof(btiData);
883 }
884 memcpy(buf, pltData, sizeof(pltData));
885
886 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
887 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
888 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
889 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
890 if (!btiHeader)
891 // We didn't add the BTI c instruction so round out size with NOP.
892 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
893 }
894
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const895 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
896 uint64_t pltEntryAddr) const {
897 // The PLT entry is of the form:
898 // [btiData] addrInst (pacBr | stdBr) [nopData]
899 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
900 const uint8_t addrInst[] = {
901 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
902 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
903 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n]))
904 };
905 const uint8_t pacBr[] = {
906 0x9f, 0x21, 0x03, 0xd5, // autia1716
907 0x20, 0x02, 0x1f, 0xd6 // br x17
908 };
909 const uint8_t stdBr[] = {
910 0x20, 0x02, 0x1f, 0xd6, // br x17
911 0x1f, 0x20, 0x03, 0xd5 // nop
912 };
913 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
914
915 // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
916 // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
917 // address may escape if referenced by a direct relocation. The condition is
918 // conservative.
919 bool hasBti = btiHeader &&
920 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
921 if (hasBti) {
922 memcpy(buf, btiData, sizeof(btiData));
923 buf += sizeof(btiData);
924 pltEntryAddr += sizeof(btiData);
925 }
926
927 uint64_t gotPltEntryAddr = sym.getGotPltVA();
928 memcpy(buf, addrInst, sizeof(addrInst));
929 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
930 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
931 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
932 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
933
934 if (pacEntry)
935 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
936 else
937 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
938 if (!hasBti)
939 // We didn't add the BTI c instruction so round out size with NOP.
940 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
941 }
942
getTargetInfo()943 static TargetInfo *getTargetInfo() {
944 #ifdef __OpenBSD__
945 static AArch64BtiPac t;
946 return &t;
947 #else
948 if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
949 config->zPacPlt) {
950 static AArch64BtiPac t;
951 return &t;
952 }
953 static AArch64 t;
954 return &t;
955 #endif
956 }
957
getAArch64TargetInfo()958 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
959