xref: /openbsd-src/gnu/gcc/gcc/convert.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Utility routines for data type conversion for GCC.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 
23 /* These routines are somewhat language-independent utility function
24    intended to be called by the language-specific convert () functions.  */
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 
37 /* Convert EXPR to some pointer or reference type TYPE.
38    EXPR must be pointer, reference, integer, enumeral, or literal zero;
39    in other cases error is called.  */
40 
41 tree
convert_to_pointer(tree type,tree expr)42 convert_to_pointer (tree type, tree expr)
43 {
44   if (TREE_TYPE (expr) == type)
45     return expr;
46 
47   if (integer_zerop (expr))
48     {
49       tree t = build_int_cst (type, 0);
50       if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
51 	t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
52 			    TREE_CONSTANT_OVERFLOW (expr));
53       return t;
54     }
55 
56   switch (TREE_CODE (TREE_TYPE (expr)))
57     {
58     case POINTER_TYPE:
59     case REFERENCE_TYPE:
60       return fold_build1 (NOP_EXPR, type, expr);
61 
62     case INTEGER_TYPE:
63     case ENUMERAL_TYPE:
64     case BOOLEAN_TYPE:
65       if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
66 	expr = fold_build1 (NOP_EXPR,
67                             lang_hooks.types.type_for_size (POINTER_SIZE, 0),
68 			    expr);
69       return fold_build1 (CONVERT_EXPR, type, expr);
70 
71 
72     default:
73       error ("cannot convert to a pointer type");
74       return convert_to_pointer (type, integer_zero_node);
75     }
76 }
77 
78 /* Avoid any floating point extensions from EXP.  */
79 tree
strip_float_extensions(tree exp)80 strip_float_extensions (tree exp)
81 {
82   tree sub, expt, subt;
83 
84   /*  For floating point constant look up the narrowest type that can hold
85       it properly and handle it like (type)(narrowest_type)constant.
86       This way we can optimize for instance a=a*2.0 where "a" is float
87       but 2.0 is double constant.  */
88   if (TREE_CODE (exp) == REAL_CST)
89     {
90       REAL_VALUE_TYPE orig;
91       tree type = NULL;
92 
93       orig = TREE_REAL_CST (exp);
94       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
95 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
96 	type = float_type_node;
97       else if (TYPE_PRECISION (TREE_TYPE (exp))
98 	       > TYPE_PRECISION (double_type_node)
99 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
100 	type = double_type_node;
101       if (type)
102 	return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
103     }
104 
105   if (TREE_CODE (exp) != NOP_EXPR
106       && TREE_CODE (exp) != CONVERT_EXPR)
107     return exp;
108 
109   sub = TREE_OPERAND (exp, 0);
110   subt = TREE_TYPE (sub);
111   expt = TREE_TYPE (exp);
112 
113   if (!FLOAT_TYPE_P (subt))
114     return exp;
115 
116   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
117     return exp;
118 
119   return strip_float_extensions (sub);
120 }
121 
122 
123 /* Convert EXPR to some floating-point type TYPE.
124 
125    EXPR must be float, integer, or enumeral;
126    in other cases error is called.  */
127 
128 tree
convert_to_real(tree type,tree expr)129 convert_to_real (tree type, tree expr)
130 {
131   enum built_in_function fcode = builtin_mathfn_code (expr);
132   tree itype = TREE_TYPE (expr);
133 
134   /* Disable until we figure out how to decide whether the functions are
135      present in runtime.  */
136   /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
137   if (optimize
138       && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
139           || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
140     {
141       switch (fcode)
142         {
143 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
144 	  CASE_MATHFN (ACOS)
145 	  CASE_MATHFN (ACOSH)
146 	  CASE_MATHFN (ASIN)
147 	  CASE_MATHFN (ASINH)
148 	  CASE_MATHFN (ATAN)
149 	  CASE_MATHFN (ATANH)
150 	  CASE_MATHFN (CBRT)
151 	  CASE_MATHFN (COS)
152 	  CASE_MATHFN (COSH)
153 	  CASE_MATHFN (ERF)
154 	  CASE_MATHFN (ERFC)
155 	  CASE_MATHFN (EXP)
156 	  CASE_MATHFN (EXP10)
157 	  CASE_MATHFN (EXP2)
158 	  CASE_MATHFN (EXPM1)
159 	  CASE_MATHFN (FABS)
160 	  CASE_MATHFN (GAMMA)
161 	  CASE_MATHFN (J0)
162 	  CASE_MATHFN (J1)
163 	  CASE_MATHFN (LGAMMA)
164 	  CASE_MATHFN (LOG)
165 	  CASE_MATHFN (LOG10)
166 	  CASE_MATHFN (LOG1P)
167 	  CASE_MATHFN (LOG2)
168 	  CASE_MATHFN (LOGB)
169 	  CASE_MATHFN (POW10)
170 	  CASE_MATHFN (SIN)
171 	  CASE_MATHFN (SINH)
172 	  CASE_MATHFN (SQRT)
173 	  CASE_MATHFN (TAN)
174 	  CASE_MATHFN (TANH)
175 	  CASE_MATHFN (TGAMMA)
176 	  CASE_MATHFN (Y0)
177 	  CASE_MATHFN (Y1)
178 #undef CASE_MATHFN
179 	    {
180 	      tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
181 	      tree newtype = type;
182 
183 	      /* We have (outertype)sqrt((innertype)x).  Choose the wider mode from
184 		 the both as the safe type for operation.  */
185 	      if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
186 		newtype = TREE_TYPE (arg0);
187 
188 	      /* Be careful about integer to fp conversions.
189 		 These may overflow still.  */
190 	      if (FLOAT_TYPE_P (TREE_TYPE (arg0))
191 		  && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
192 		  && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
193 		      || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
194 	        {
195 		  tree arglist;
196 		  tree fn = mathfn_built_in (newtype, fcode);
197 
198 		  if (fn)
199 		  {
200 		    arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
201 		    expr = build_function_call_expr (fn, arglist);
202 		    if (newtype == type)
203 		      return expr;
204 		  }
205 		}
206 	    }
207 	default:
208 	  break;
209 	}
210     }
211   if (optimize
212       && (((fcode == BUILT_IN_FLOORL
213 	   || fcode == BUILT_IN_CEILL
214 	   || fcode == BUILT_IN_ROUNDL
215 	   || fcode == BUILT_IN_RINTL
216 	   || fcode == BUILT_IN_TRUNCL
217 	   || fcode == BUILT_IN_NEARBYINTL)
218 	  && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
219 	      || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
220 	  || ((fcode == BUILT_IN_FLOOR
221 	       || fcode == BUILT_IN_CEIL
222 	       || fcode == BUILT_IN_ROUND
223 	       || fcode == BUILT_IN_RINT
224 	       || fcode == BUILT_IN_TRUNC
225 	       || fcode == BUILT_IN_NEARBYINT)
226 	      && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
227     {
228       tree fn = mathfn_built_in (type, fcode);
229 
230       if (fn)
231 	{
232 	  tree arg
233 	    = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
234 
235 	  /* Make sure (type)arg0 is an extension, otherwise we could end up
236 	     changing (float)floor(double d) into floorf((float)d), which is
237 	     incorrect because (float)d uses round-to-nearest and can round
238 	     up to the next integer.  */
239 	  if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
240 	    return
241 	      build_function_call_expr (fn,
242 					build_tree_list (NULL_TREE,
243 					  fold (convert_to_real (type, arg))));
244 	}
245     }
246 
247   /* Propagate the cast into the operation.  */
248   if (itype != type && FLOAT_TYPE_P (type))
249     switch (TREE_CODE (expr))
250       {
251 	/* Convert (float)-x into -(float)x.  This is safe for
252 	   round-to-nearest rounding mode.  */
253 	case ABS_EXPR:
254 	case NEGATE_EXPR:
255 	  if (!flag_rounding_math
256 	      && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
257 	    return build1 (TREE_CODE (expr), type,
258 			   fold (convert_to_real (type,
259 						  TREE_OPERAND (expr, 0))));
260 	  break;
261 	/* Convert (outertype)((innertype0)a+(innertype1)b)
262 	   into ((newtype)a+(newtype)b) where newtype
263 	   is the widest mode from all of these.  */
264 	case PLUS_EXPR:
265 	case MINUS_EXPR:
266 	case MULT_EXPR:
267 	case RDIV_EXPR:
268 	   {
269 	     tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
270 	     tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
271 
272 	     if (FLOAT_TYPE_P (TREE_TYPE (arg0))
273 		 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
274 	       {
275 		  tree newtype = type;
276 
277 		  if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
278 		      || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
279 		    newtype = dfloat32_type_node;
280 		  if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
281 		      || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
282 		    newtype = dfloat64_type_node;
283 		  if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
284 		      || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
285                     newtype = dfloat128_type_node;
286 		  if (newtype == dfloat32_type_node
287 		      || newtype == dfloat64_type_node
288 		      || newtype == dfloat128_type_node)
289 		    {
290 		      expr = build2 (TREE_CODE (expr), newtype,
291 				     fold (convert_to_real (newtype, arg0)),
292 				     fold (convert_to_real (newtype, arg1)));
293 		      if (newtype == type)
294 			return expr;
295 		      break;
296 		    }
297 
298 		  if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
299 		    newtype = TREE_TYPE (arg0);
300 		  if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
301 		    newtype = TREE_TYPE (arg1);
302 		  if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
303 		    {
304 		      expr = build2 (TREE_CODE (expr), newtype,
305 				     fold (convert_to_real (newtype, arg0)),
306 				     fold (convert_to_real (newtype, arg1)));
307 		      if (newtype == type)
308 			return expr;
309 		    }
310 	       }
311 	   }
312 	  break;
313 	default:
314 	  break;
315       }
316 
317   switch (TREE_CODE (TREE_TYPE (expr)))
318     {
319     case REAL_TYPE:
320       /* Ignore the conversion if we don't need to store intermediate
321 	 results and neither type is a decimal float.  */
322       return build1 ((flag_float_store
323 		     || DECIMAL_FLOAT_TYPE_P (type)
324 		     || DECIMAL_FLOAT_TYPE_P (itype))
325 		     ? CONVERT_EXPR : NOP_EXPR, type, expr);
326 
327     case INTEGER_TYPE:
328     case ENUMERAL_TYPE:
329     case BOOLEAN_TYPE:
330       return build1 (FLOAT_EXPR, type, expr);
331 
332     case COMPLEX_TYPE:
333       return convert (type,
334 		      fold_build1 (REALPART_EXPR,
335 				   TREE_TYPE (TREE_TYPE (expr)), expr));
336 
337     case POINTER_TYPE:
338     case REFERENCE_TYPE:
339       error ("pointer value used where a floating point value was expected");
340       return convert_to_real (type, integer_zero_node);
341 
342     default:
343       error ("aggregate value used where a float was expected");
344       return convert_to_real (type, integer_zero_node);
345     }
346 }
347 
348 /* Convert EXPR to some integer (or enum) type TYPE.
349 
350    EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
351    vector; in other cases error is called.
352 
353    The result of this is always supposed to be a newly created tree node
354    not in use in any existing structure.  */
355 
356 tree
convert_to_integer(tree type,tree expr)357 convert_to_integer (tree type, tree expr)
358 {
359   enum tree_code ex_form = TREE_CODE (expr);
360   tree intype = TREE_TYPE (expr);
361   unsigned int inprec = TYPE_PRECISION (intype);
362   unsigned int outprec = TYPE_PRECISION (type);
363 
364   /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
365      be.  Consider `enum E = { a, b = (enum E) 3 };'.  */
366   if (!COMPLETE_TYPE_P (type))
367     {
368       error ("conversion to incomplete type");
369       return error_mark_node;
370     }
371 
372   /* Convert e.g. (long)round(d) -> lround(d).  */
373   /* If we're converting to char, we may encounter differing behavior
374      between converting from double->char vs double->long->char.
375      We're in "undefined" territory but we prefer to be conservative,
376      so only proceed in "unsafe" math mode.  */
377   if (optimize
378       && (flag_unsafe_math_optimizations
379 	  || (long_integer_type_node
380 	      && outprec >= TYPE_PRECISION (long_integer_type_node))))
381     {
382       tree s_expr = strip_float_extensions (expr);
383       tree s_intype = TREE_TYPE (s_expr);
384       const enum built_in_function fcode = builtin_mathfn_code (s_expr);
385       tree fn = 0;
386 
387       switch (fcode)
388         {
389 	CASE_FLT_FN (BUILT_IN_CEIL):
390 	  /* Only convert in ISO C99 mode.  */
391 	  if (!TARGET_C99_FUNCTIONS)
392 	    break;
393 	  if (outprec < TYPE_PRECISION (long_integer_type_node)
394 	      || (outprec == TYPE_PRECISION (long_integer_type_node)
395 		  && !TYPE_UNSIGNED (type)))
396 	    fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
397 	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
398 		   && !TYPE_UNSIGNED (type))
399 	    fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
400 	  break;
401 
402 	CASE_FLT_FN (BUILT_IN_FLOOR):
403 	  /* Only convert in ISO C99 mode.  */
404 	  if (!TARGET_C99_FUNCTIONS)
405 	    break;
406 	  if (outprec < TYPE_PRECISION (long_integer_type_node)
407 	      || (outprec == TYPE_PRECISION (long_integer_type_node)
408 		  && !TYPE_UNSIGNED (type)))
409 	    fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
410 	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
411 		   && !TYPE_UNSIGNED (type))
412 	    fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
413 	  break;
414 
415 	CASE_FLT_FN (BUILT_IN_ROUND):
416 	  if (outprec < TYPE_PRECISION (long_integer_type_node)
417 	      || (outprec == TYPE_PRECISION (long_integer_type_node)
418 		  && !TYPE_UNSIGNED (type)))
419 	    fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
420 	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
421 		   && !TYPE_UNSIGNED (type))
422 	    fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
423 	  break;
424 
425 	CASE_FLT_FN (BUILT_IN_NEARBYINT):
426 	  /* Only convert nearbyint* if we can ignore math exceptions.  */
427 	  if (flag_trapping_math)
428 	    break;
429 	  /* ... Fall through ...  */
430 	CASE_FLT_FN (BUILT_IN_RINT):
431 	  if (outprec < TYPE_PRECISION (long_integer_type_node)
432 	      || (outprec == TYPE_PRECISION (long_integer_type_node)
433 		  && !TYPE_UNSIGNED (type)))
434 	    fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
435 	  else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
436 		   && !TYPE_UNSIGNED (type))
437 	    fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
438 	  break;
439 
440 	CASE_FLT_FN (BUILT_IN_TRUNC):
441 	  {
442 	    tree arglist = TREE_OPERAND (s_expr, 1);
443 	    return convert_to_integer (type, TREE_VALUE (arglist));
444 	  }
445 
446 	default:
447 	  break;
448 	}
449 
450       if (fn)
451         {
452 	  tree arglist = TREE_OPERAND (s_expr, 1);
453 	  tree newexpr = build_function_call_expr (fn, arglist);
454 	  return convert_to_integer (type, newexpr);
455 	}
456     }
457 
458   switch (TREE_CODE (intype))
459     {
460     case POINTER_TYPE:
461     case REFERENCE_TYPE:
462       if (integer_zerop (expr))
463 	return build_int_cst (type, 0);
464 
465       /* Convert to an unsigned integer of the correct width first,
466 	 and from there widen/truncate to the required type.  */
467       expr = fold_build1 (CONVERT_EXPR,
468 			  lang_hooks.types.type_for_size (POINTER_SIZE, 0),
469 			  expr);
470       return fold_convert (type, expr);
471 
472     case INTEGER_TYPE:
473     case ENUMERAL_TYPE:
474     case BOOLEAN_TYPE:
475       /* If this is a logical operation, which just returns 0 or 1, we can
476 	 change the type of the expression.  */
477 
478       if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
479 	{
480 	  expr = copy_node (expr);
481 	  TREE_TYPE (expr) = type;
482 	  return expr;
483 	}
484 
485       /* If we are widening the type, put in an explicit conversion.
486 	 Similarly if we are not changing the width.  After this, we know
487 	 we are truncating EXPR.  */
488 
489       else if (outprec >= inprec)
490 	{
491 	  enum tree_code code;
492 	  tree tem;
493 
494 	  /* If the precision of the EXPR's type is K bits and the
495 	     destination mode has more bits, and the sign is changing,
496 	     it is not safe to use a NOP_EXPR.  For example, suppose
497 	     that EXPR's type is a 3-bit unsigned integer type, the
498 	     TYPE is a 3-bit signed integer type, and the machine mode
499 	     for the types is 8-bit QImode.  In that case, the
500 	     conversion necessitates an explicit sign-extension.  In
501 	     the signed-to-unsigned case the high-order bits have to
502 	     be cleared.  */
503 	  if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
504 	      && (TYPE_PRECISION (TREE_TYPE (expr))
505 		  != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
506 	    code = CONVERT_EXPR;
507 	  else
508 	    code = NOP_EXPR;
509 
510 	  tem = fold_unary (code, type, expr);
511 	  if (tem)
512 	    return tem;
513 
514 	  tem = build1 (code, type, expr);
515 	  TREE_NO_WARNING (tem) = 1;
516 	  return tem;
517 	}
518 
519       /* If TYPE is an enumeral type or a type with a precision less
520 	 than the number of bits in its mode, do the conversion to the
521 	 type corresponding to its mode, then do a nop conversion
522 	 to TYPE.  */
523       else if (TREE_CODE (type) == ENUMERAL_TYPE
524 	       || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
525 	return build1 (NOP_EXPR, type,
526 		       convert (lang_hooks.types.type_for_mode
527 				(TYPE_MODE (type), TYPE_UNSIGNED (type)),
528 				expr));
529 
530       /* Here detect when we can distribute the truncation down past some
531 	 arithmetic.  For example, if adding two longs and converting to an
532 	 int, we can equally well convert both to ints and then add.
533 	 For the operations handled here, such truncation distribution
534 	 is always safe.
535 	 It is desirable in these cases:
536 	 1) when truncating down to full-word from a larger size
537 	 2) when truncating takes no work.
538 	 3) when at least one operand of the arithmetic has been extended
539 	 (as by C's default conversions).  In this case we need two conversions
540 	 if we do the arithmetic as already requested, so we might as well
541 	 truncate both and then combine.  Perhaps that way we need only one.
542 
543 	 Note that in general we cannot do the arithmetic in a type
544 	 shorter than the desired result of conversion, even if the operands
545 	 are both extended from a shorter type, because they might overflow
546 	 if combined in that type.  The exceptions to this--the times when
547 	 two narrow values can be combined in their narrow type even to
548 	 make a wider result--are handled by "shorten" in build_binary_op.  */
549 
550       switch (ex_form)
551 	{
552 	case RSHIFT_EXPR:
553 	  /* We can pass truncation down through right shifting
554 	     when the shift count is a nonpositive constant.  */
555 	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
556 	      && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
557 	    goto trunc1;
558 	  break;
559 
560 	case LSHIFT_EXPR:
561 	  /* We can pass truncation down through left shifting
562 	     when the shift count is a nonnegative constant and
563 	     the target type is unsigned.  */
564 	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
565 	      && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
566 	      && TYPE_UNSIGNED (type)
567 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
568 	    {
569 	      /* If shift count is less than the width of the truncated type,
570 		 really shift.  */
571 	      if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
572 		/* In this case, shifting is like multiplication.  */
573 		goto trunc1;
574 	      else
575 		{
576 		  /* If it is >= that width, result is zero.
577 		     Handling this with trunc1 would give the wrong result:
578 		     (int) ((long long) a << 32) is well defined (as 0)
579 		     but (int) a << 32 is undefined and would get a
580 		     warning.  */
581 
582 		  tree t = build_int_cst (type, 0);
583 
584 		  /* If the original expression had side-effects, we must
585 		     preserve it.  */
586 		  if (TREE_SIDE_EFFECTS (expr))
587 		    return build2 (COMPOUND_EXPR, type, expr, t);
588 		  else
589 		    return t;
590 		}
591 	    }
592 	  break;
593 
594 	case MAX_EXPR:
595 	case MIN_EXPR:
596 	case MULT_EXPR:
597 	  {
598 	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
599 	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
600 
601 	    /* Don't distribute unless the output precision is at least as big
602 	       as the actual inputs.  Otherwise, the comparison of the
603 	       truncated values will be wrong.  */
604 	    if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
605 		&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
606 		/* If signedness of arg0 and arg1 don't match,
607 		   we can't necessarily find a type to compare them in.  */
608 		&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
609 		    == TYPE_UNSIGNED (TREE_TYPE (arg1))))
610 	      goto trunc1;
611 	    break;
612 	  }
613 
614 	case PLUS_EXPR:
615 	case MINUS_EXPR:
616 	case BIT_AND_EXPR:
617 	case BIT_IOR_EXPR:
618 	case BIT_XOR_EXPR:
619 	trunc1:
620 	  {
621 	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
622 	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
623 
624 	    if (outprec >= BITS_PER_WORD
625 		|| TRULY_NOOP_TRUNCATION (outprec, inprec)
626 		|| inprec > TYPE_PRECISION (TREE_TYPE (arg0))
627 		|| inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
628 	      {
629 		/* Do the arithmetic in type TYPEX,
630 		   then convert result to TYPE.  */
631 		tree typex = type;
632 
633 		/* Can't do arithmetic in enumeral types
634 		   so use an integer type that will hold the values.  */
635 		if (TREE_CODE (typex) == ENUMERAL_TYPE)
636 		  typex = lang_hooks.types.type_for_size
637 		    (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
638 
639 		/* But now perhaps TYPEX is as wide as INPREC.
640 		   In that case, do nothing special here.
641 		   (Otherwise would recurse infinitely in convert.  */
642 		if (TYPE_PRECISION (typex) != inprec)
643 		  {
644 		    /* Don't do unsigned arithmetic where signed was wanted,
645 		       or vice versa.
646 		       Exception: if both of the original operands were
647 		       unsigned then we can safely do the work as unsigned.
648 		       Exception: shift operations take their type solely
649 		       from the first argument.
650 		       Exception: the LSHIFT_EXPR case above requires that
651 		       we perform this operation unsigned lest we produce
652 		       signed-overflow undefinedness.
653 		       And we may need to do it as unsigned
654 		       if we truncate to the original size.  */
655 		    if (TYPE_UNSIGNED (TREE_TYPE (expr))
656 			|| (TYPE_UNSIGNED (TREE_TYPE (arg0))
657 			    && (TYPE_UNSIGNED (TREE_TYPE (arg1))
658 				|| ex_form == LSHIFT_EXPR
659 				|| ex_form == RSHIFT_EXPR
660 				|| ex_form == LROTATE_EXPR
661 				|| ex_form == RROTATE_EXPR))
662 			|| ex_form == LSHIFT_EXPR
663 			/* If we have !flag_wrapv, and either ARG0 or
664 			   ARG1 is of a signed type, we have to do
665 			   PLUS_EXPR or MINUS_EXPR in an unsigned
666 			   type.  Otherwise, we would introduce
667 			   signed-overflow undefinedness.  */
668 			|| ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
669 			     || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
670 			    && (ex_form == PLUS_EXPR
671 				|| ex_form == MINUS_EXPR)))
672 		      typex = lang_hooks.types.unsigned_type (typex);
673 		    else
674 		      typex = lang_hooks.types.signed_type (typex);
675 		    return convert (type,
676 				    fold_build2 (ex_form, typex,
677 						 convert (typex, arg0),
678 						 convert (typex, arg1)));
679 		  }
680 	      }
681 	  }
682 	  break;
683 
684 	case NEGATE_EXPR:
685 	case BIT_NOT_EXPR:
686 	  /* This is not correct for ABS_EXPR,
687 	     since we must test the sign before truncation.  */
688 	  {
689 	    tree typex;
690 
691 	    /* Don't do unsigned arithmetic where signed was wanted,
692 	       or vice versa.  */
693 	    if (TYPE_UNSIGNED (TREE_TYPE (expr)))
694 	      typex = lang_hooks.types.unsigned_type (type);
695 	    else
696 	      typex = lang_hooks.types.signed_type (type);
697 	    return convert (type,
698 			    fold_build1 (ex_form, typex,
699 					 convert (typex,
700 						  TREE_OPERAND (expr, 0))));
701 	  }
702 
703 	case NOP_EXPR:
704 	  /* Don't introduce a
705 	     "can't convert between vector values of different size" error.  */
706 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
707 	      && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
708 		  != GET_MODE_SIZE (TYPE_MODE (type))))
709 	    break;
710 	  /* If truncating after truncating, might as well do all at once.
711 	     If truncating after extending, we may get rid of wasted work.  */
712 	  return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
713 
714 	case COND_EXPR:
715 	  /* It is sometimes worthwhile to push the narrowing down through
716 	     the conditional and never loses.  */
717 	  return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
718 			      convert (type, TREE_OPERAND (expr, 1)),
719 			      convert (type, TREE_OPERAND (expr, 2)));
720 
721 	default:
722 	  break;
723 	}
724 
725       return build1 (CONVERT_EXPR, type, expr);
726 
727     case REAL_TYPE:
728       return build1 (FIX_TRUNC_EXPR, type, expr);
729 
730     case COMPLEX_TYPE:
731       return convert (type,
732 		      fold_build1 (REALPART_EXPR,
733 				   TREE_TYPE (TREE_TYPE (expr)), expr));
734 
735     case VECTOR_TYPE:
736       if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
737 	{
738 	  error ("can't convert between vector values of different size");
739 	  return error_mark_node;
740 	}
741       return build1 (VIEW_CONVERT_EXPR, type, expr);
742 
743     default:
744       error ("aggregate value used where an integer was expected");
745       return convert (type, integer_zero_node);
746     }
747 }
748 
749 /* Convert EXPR to the complex type TYPE in the usual ways.  */
750 
751 tree
convert_to_complex(tree type,tree expr)752 convert_to_complex (tree type, tree expr)
753 {
754   tree subtype = TREE_TYPE (type);
755 
756   switch (TREE_CODE (TREE_TYPE (expr)))
757     {
758     case REAL_TYPE:
759     case INTEGER_TYPE:
760     case ENUMERAL_TYPE:
761     case BOOLEAN_TYPE:
762       return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
763 		     convert (subtype, integer_zero_node));
764 
765     case COMPLEX_TYPE:
766       {
767 	tree elt_type = TREE_TYPE (TREE_TYPE (expr));
768 
769 	if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
770 	  return expr;
771 	else if (TREE_CODE (expr) == COMPLEX_EXPR)
772 	  return fold_build2 (COMPLEX_EXPR, type,
773 			      convert (subtype, TREE_OPERAND (expr, 0)),
774 			      convert (subtype, TREE_OPERAND (expr, 1)));
775 	else
776 	  {
777 	    expr = save_expr (expr);
778 	    return
779 	      fold_build2 (COMPLEX_EXPR, type,
780 			   convert (subtype,
781 				    fold_build1 (REALPART_EXPR,
782 						 TREE_TYPE (TREE_TYPE (expr)),
783 						 expr)),
784 			   convert (subtype,
785 				    fold_build1 (IMAGPART_EXPR,
786 						 TREE_TYPE (TREE_TYPE (expr)),
787 						 expr)));
788 	  }
789       }
790 
791     case POINTER_TYPE:
792     case REFERENCE_TYPE:
793       error ("pointer value used where a complex was expected");
794       return convert_to_complex (type, integer_zero_node);
795 
796     default:
797       error ("aggregate value used where a complex was expected");
798       return convert_to_complex (type, integer_zero_node);
799     }
800 }
801 
802 /* Convert EXPR to the vector type TYPE in the usual ways.  */
803 
804 tree
convert_to_vector(tree type,tree expr)805 convert_to_vector (tree type, tree expr)
806 {
807   switch (TREE_CODE (TREE_TYPE (expr)))
808     {
809     case INTEGER_TYPE:
810     case VECTOR_TYPE:
811       if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
812 	{
813 	  error ("can't convert between vector values of different size");
814 	  return error_mark_node;
815 	}
816       return build1 (VIEW_CONVERT_EXPR, type, expr);
817 
818     default:
819       error ("can't convert value to a vector");
820       return error_mark_node;
821     }
822 }
823