1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * VM - Hardware Address Translation management for Spitfire MMU.
27 *
28 * This file implements the machine specific hardware translation
29 * needed by the VM system. The machine independent interface is
30 * described in <vm/hat.h> while the machine dependent interface
31 * and data structures are described in <vm/hat_sfmmu.h>.
32 *
33 * The hat layer manages the address translation hardware as a cache
34 * driven by calls from the higher levels in the VM system.
35 */
36
37 #include <sys/types.h>
38 #include <sys/kstat.h>
39 #include <vm/hat.h>
40 #include <vm/hat_sfmmu.h>
41 #include <vm/page.h>
42 #include <sys/pte.h>
43 #include <sys/systm.h>
44 #include <sys/mman.h>
45 #include <sys/sysmacros.h>
46 #include <sys/machparam.h>
47 #include <sys/vtrace.h>
48 #include <sys/kmem.h>
49 #include <sys/mmu.h>
50 #include <sys/cmn_err.h>
51 #include <sys/cpu.h>
52 #include <sys/cpuvar.h>
53 #include <sys/debug.h>
54 #include <sys/lgrp.h>
55 #include <sys/archsystm.h>
56 #include <sys/machsystm.h>
57 #include <sys/vmsystm.h>
58 #include <vm/as.h>
59 #include <vm/seg.h>
60 #include <vm/seg_kp.h>
61 #include <vm/seg_kmem.h>
62 #include <vm/seg_kpm.h>
63 #include <vm/rm.h>
64 #include <sys/t_lock.h>
65 #include <sys/obpdefs.h>
66 #include <sys/vm_machparam.h>
67 #include <sys/var.h>
68 #include <sys/trap.h>
69 #include <sys/machtrap.h>
70 #include <sys/scb.h>
71 #include <sys/bitmap.h>
72 #include <sys/machlock.h>
73 #include <sys/membar.h>
74 #include <sys/atomic.h>
75 #include <sys/cpu_module.h>
76 #include <sys/prom_debug.h>
77 #include <sys/ksynch.h>
78 #include <sys/mem_config.h>
79 #include <sys/mem_cage.h>
80 #include <vm/vm_dep.h>
81 #include <vm/xhat_sfmmu.h>
82 #include <sys/fpu/fpusystm.h>
83 #include <vm/mach_kpm.h>
84 #include <sys/callb.h>
85
86 #ifdef DEBUG
87 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len) \
88 if (SFMMU_IS_SHMERID_VALID(rid)) { \
89 caddr_t _eaddr = (saddr) + (len); \
90 sf_srd_t *_srdp; \
91 sf_region_t *_rgnp; \
92 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
93 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid)); \
94 ASSERT((hat) != ksfmmup); \
95 _srdp = (hat)->sfmmu_srdp; \
96 ASSERT(_srdp != NULL); \
97 ASSERT(_srdp->srd_refcnt != 0); \
98 _rgnp = _srdp->srd_hmergnp[(rid)]; \
99 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid); \
100 ASSERT(_rgnp->rgn_refcnt != 0); \
101 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \
102 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
103 SFMMU_REGION_HME); \
104 ASSERT((saddr) >= _rgnp->rgn_saddr); \
105 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size); \
106 ASSERT(_eaddr > _rgnp->rgn_saddr); \
107 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size); \
108 }
109
110 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) \
111 { \
112 caddr_t _hsva; \
113 caddr_t _heva; \
114 caddr_t _rsva; \
115 caddr_t _reva; \
116 int _ttesz = get_hblk_ttesz(hmeblkp); \
117 int _flagtte; \
118 ASSERT((srdp)->srd_refcnt != 0); \
119 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
120 ASSERT((rgnp)->rgn_id == rid); \
121 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE)); \
122 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
123 SFMMU_REGION_HME); \
124 ASSERT(_ttesz <= (rgnp)->rgn_pgszc); \
125 _hsva = (caddr_t)get_hblk_base(hmeblkp); \
126 _heva = get_hblk_endaddr(hmeblkp); \
127 _rsva = (caddr_t)P2ALIGN( \
128 (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES); \
129 _reva = (caddr_t)P2ROUNDUP( \
130 (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size), \
131 HBLK_MIN_BYTES); \
132 ASSERT(_hsva >= _rsva); \
133 ASSERT(_hsva < _reva); \
134 ASSERT(_heva > _rsva); \
135 ASSERT(_heva <= _reva); \
136 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \
137 _ttesz; \
138 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte)); \
139 }
140
141 #else /* DEBUG */
142 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
143 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
144 #endif /* DEBUG */
145
146 #if defined(SF_ERRATA_57)
147 extern caddr_t errata57_limit;
148 #endif
149
150 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \
151 (sizeof (int64_t)))
152 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve)
153
154 #define HBLK_RESERVE_CNT 128
155 #define HBLK_RESERVE_MIN 20
156
157 static struct hme_blk *freehblkp;
158 static kmutex_t freehblkp_lock;
159 static int freehblkcnt;
160
161 static int64_t hblk_reserve[HME8BLK_SZ_RND];
162 static kmutex_t hblk_reserve_lock;
163 static kthread_t *hblk_reserve_thread;
164
165 static nucleus_hblk8_info_t nucleus_hblk8;
166 static nucleus_hblk1_info_t nucleus_hblk1;
167
168 /*
169 * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
170 * after the initial phase of removing an hmeblk from the hash chain, see
171 * the detailed comment in sfmmu_hblk_hash_rm() for further details.
172 */
173 static cpu_hme_pend_t *cpu_hme_pend;
174 static uint_t cpu_hme_pend_thresh;
175 /*
176 * SFMMU specific hat functions
177 */
178 void hat_pagecachectl(struct page *, int);
179
180 /* flags for hat_pagecachectl */
181 #define HAT_CACHE 0x1
182 #define HAT_UNCACHE 0x2
183 #define HAT_TMPNC 0x4
184
185 /*
186 * Flag to allow the creation of non-cacheable translations
187 * to system memory. It is off by default. At the moment this
188 * flag is used by the ecache error injector. The error injector
189 * will turn it on when creating such a translation then shut it
190 * off when it's finished.
191 */
192
193 int sfmmu_allow_nc_trans = 0;
194
195 /*
196 * Flag to disable large page support.
197 * value of 1 => disable all large pages.
198 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
199 *
200 * For example, use the value 0x4 to disable 512K pages.
201 *
202 */
203 #define LARGE_PAGES_OFF 0x1
204
205 /*
206 * The disable_large_pages and disable_ism_large_pages variables control
207 * hat_memload_array and the page sizes to be used by ISM and the kernel.
208 *
209 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
210 * are only used to control which OOB pages to use at upper VM segment creation
211 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
212 * Their values may come from platform or CPU specific code to disable page
213 * sizes that should not be used.
214 *
215 * WARNING: 512K pages are currently not supported for ISM/DISM.
216 */
217 uint_t disable_large_pages = 0;
218 uint_t disable_ism_large_pages = (1 << TTE512K);
219 uint_t disable_auto_data_large_pages = 0;
220 uint_t disable_auto_text_large_pages = 0;
221
222 /*
223 * Private sfmmu data structures for hat management
224 */
225 static struct kmem_cache *sfmmuid_cache;
226 static struct kmem_cache *mmuctxdom_cache;
227
228 /*
229 * Private sfmmu data structures for tsb management
230 */
231 static struct kmem_cache *sfmmu_tsbinfo_cache;
232 static struct kmem_cache *sfmmu_tsb8k_cache;
233 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
234 static vmem_t *kmem_bigtsb_arena;
235 static vmem_t *kmem_tsb_arena;
236
237 /*
238 * sfmmu static variables for hmeblk resource management.
239 */
240 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
241 static struct kmem_cache *sfmmu8_cache;
242 static struct kmem_cache *sfmmu1_cache;
243 static struct kmem_cache *pa_hment_cache;
244
245 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */
246 /*
247 * private data for ism
248 */
249 static struct kmem_cache *ism_blk_cache;
250 static struct kmem_cache *ism_ment_cache;
251 #define ISMID_STARTADDR NULL
252
253 /*
254 * Region management data structures and function declarations.
255 */
256
257 static void sfmmu_leave_srd(sfmmu_t *);
258 static int sfmmu_srdcache_constructor(void *, void *, int);
259 static void sfmmu_srdcache_destructor(void *, void *);
260 static int sfmmu_rgncache_constructor(void *, void *, int);
261 static void sfmmu_rgncache_destructor(void *, void *);
262 static int sfrgnmap_isnull(sf_region_map_t *);
263 static int sfhmergnmap_isnull(sf_hmeregion_map_t *);
264 static int sfmmu_scdcache_constructor(void *, void *, int);
265 static void sfmmu_scdcache_destructor(void *, void *);
266 static void sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
267 size_t, void *, u_offset_t);
268
269 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
270 static sf_srd_bucket_t *srd_buckets;
271 static struct kmem_cache *srd_cache;
272 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
273 static struct kmem_cache *region_cache;
274 static struct kmem_cache *scd_cache;
275
276 #ifdef sun4v
277 int use_bigtsb_arena = 1;
278 #else
279 int use_bigtsb_arena = 0;
280 #endif
281
282 /* External /etc/system tunable, for turning on&off the shctx support */
283 int disable_shctx = 0;
284 /* Internal variable, set by MD if the HW supports shctx feature */
285 int shctx_on = 0;
286
287 #ifdef DEBUG
288 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
289 #endif
290 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
291 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
292
293 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
294 static void sfmmu_find_scd(sfmmu_t *);
295 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
296 static void sfmmu_finish_join_scd(sfmmu_t *);
297 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
298 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
299 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
300 static void sfmmu_free_scd_tsbs(sfmmu_t *);
301 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
302 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
303 static void sfmmu_ism_hatflags(sfmmu_t *, int);
304 static int sfmmu_srd_lock_held(sf_srd_t *);
305 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
306 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
307 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
308 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
309 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
310 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
311
312 /*
313 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
314 * HAT flags, synchronizing TLB/TSB coherency, and context management.
315 * The lock is hashed on the sfmmup since the case where we need to lock
316 * all processes is rare but does occur (e.g. we need to unload a shared
317 * mapping from all processes using the mapping). We have a lot of buckets,
318 * and each slab of sfmmu_t's can use about a quarter of them, giving us
319 * a fairly good distribution without wasting too much space and overhead
320 * when we have to grab them all.
321 */
322 #define SFMMU_NUM_LOCK 128 /* must be power of two */
323 hatlock_t hat_lock[SFMMU_NUM_LOCK];
324
325 /*
326 * Hash algorithm optimized for a small number of slabs.
327 * 7 is (highbit((sizeof sfmmu_t)) - 1)
328 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
329 * kmem_cache, and thus they will be sequential within that cache. In
330 * addition, each new slab will have a different "color" up to cache_maxcolor
331 * which will skew the hashing for each successive slab which is allocated.
332 * If the size of sfmmu_t changed to a larger size, this algorithm may need
333 * to be revisited.
334 */
335 #define TSB_HASH_SHIFT_BITS (7)
336 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
337
338 #ifdef DEBUG
339 int tsb_hash_debug = 0;
340 #define TSB_HASH(sfmmup) \
341 (tsb_hash_debug ? &hat_lock[0] : \
342 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
343 #else /* DEBUG */
344 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
345 #endif /* DEBUG */
346
347
348 /* sfmmu_replace_tsb() return codes. */
349 typedef enum tsb_replace_rc {
350 TSB_SUCCESS,
351 TSB_ALLOCFAIL,
352 TSB_LOSTRACE,
353 TSB_ALREADY_SWAPPED,
354 TSB_CANTGROW
355 } tsb_replace_rc_t;
356
357 /*
358 * Flags for TSB allocation routines.
359 */
360 #define TSB_ALLOC 0x01
361 #define TSB_FORCEALLOC 0x02
362 #define TSB_GROW 0x04
363 #define TSB_SHRINK 0x08
364 #define TSB_SWAPIN 0x10
365
366 /*
367 * Support for HAT callbacks.
368 */
369 #define SFMMU_MAX_RELOC_CALLBACKS 10
370 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
371 static id_t sfmmu_cb_nextid = 0;
372 static id_t sfmmu_tsb_cb_id;
373 struct sfmmu_callback *sfmmu_cb_table;
374
375 /*
376 * Kernel page relocation is enabled by default for non-caged
377 * kernel pages. This has little effect unless segkmem_reloc is
378 * set, since by default kernel memory comes from inside the
379 * kernel cage.
380 */
381 int hat_kpr_enabled = 1;
382
383 kmutex_t kpr_mutex;
384 kmutex_t kpr_suspendlock;
385 kthread_t *kreloc_thread;
386
387 /*
388 * Enable VA->PA translation sanity checking on DEBUG kernels.
389 * Disabled by default. This is incompatible with some
390 * drivers (error injector, RSM) so if it breaks you get
391 * to keep both pieces.
392 */
393 int hat_check_vtop = 0;
394
395 /*
396 * Private sfmmu routines (prototypes)
397 */
398 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
399 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
400 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
401 uint_t);
402 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
403 caddr_t, demap_range_t *, uint_t);
404 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
405 caddr_t, int);
406 static void sfmmu_hblk_free(struct hme_blk **);
407 static void sfmmu_hblks_list_purge(struct hme_blk **, int);
408 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t);
409 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t);
410 static struct hme_blk *sfmmu_hblk_steal(int);
411 static int sfmmu_steal_this_hblk(struct hmehash_bucket *,
412 struct hme_blk *, uint64_t, struct hme_blk *);
413 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
414
415 static void hat_do_memload_array(struct hat *, caddr_t, size_t,
416 struct page **, uint_t, uint_t, uint_t);
417 static void hat_do_memload(struct hat *, caddr_t, struct page *,
418 uint_t, uint_t, uint_t);
419 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
420 uint_t, uint_t, pgcnt_t, uint_t);
421 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
422 uint_t);
423 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
424 uint_t, uint_t);
425 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
426 caddr_t, int, uint_t);
427 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
428 struct hmehash_bucket *, caddr_t, uint_t, uint_t,
429 uint_t);
430 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
431 caddr_t, page_t **, uint_t, uint_t);
432 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
433
434 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
435 static pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
436 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
437 #ifdef VAC
438 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
439 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *);
440 int tst_tnc(page_t *pp, pgcnt_t);
441 void conv_tnc(page_t *pp, int);
442 #endif
443
444 static void sfmmu_get_ctx(sfmmu_t *);
445 static void sfmmu_free_sfmmu(sfmmu_t *);
446
447 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
448 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
449
450 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int);
451 static void hat_pagereload(struct page *, struct page *);
452 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
453 #ifdef VAC
454 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
455 static void sfmmu_page_cache(page_t *, int, int, int);
456 #endif
457
458 cpuset_t sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
459 struct hme_blk *, int);
460 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
461 pfn_t, int, int, int, int);
462 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
463 pfn_t, int);
464 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
465 static void sfmmu_tlb_range_demap(demap_range_t *);
466 static void sfmmu_invalidate_ctx(sfmmu_t *);
467 static void sfmmu_sync_mmustate(sfmmu_t *);
468
469 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
470 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
471 sfmmu_t *);
472 static void sfmmu_tsb_free(struct tsb_info *);
473 static void sfmmu_tsbinfo_free(struct tsb_info *);
474 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
475 sfmmu_t *);
476 static void sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
477 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
478 static int sfmmu_select_tsb_szc(pgcnt_t);
479 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
480 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
481 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
482 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \
483 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
484 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
485 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
486 hatlock_t *, uint_t);
487 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
488
489 #ifdef VAC
490 void sfmmu_cache_flush(pfn_t, int);
491 void sfmmu_cache_flushcolor(int, pfn_t);
492 #endif
493 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
494 caddr_t, demap_range_t *, uint_t, int);
495
496 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
497 static uint_t sfmmu_ptov_attr(tte_t *);
498 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
499 caddr_t, demap_range_t *, uint_t);
500 static uint_t sfmmu_vtop_prot(uint_t, uint_t *);
501 static int sfmmu_idcache_constructor(void *, void *, int);
502 static void sfmmu_idcache_destructor(void *, void *);
503 static int sfmmu_hblkcache_constructor(void *, void *, int);
504 static void sfmmu_hblkcache_destructor(void *, void *);
505 static void sfmmu_hblkcache_reclaim(void *);
506 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
507 struct hmehash_bucket *);
508 static void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
509 struct hme_blk *, struct hme_blk **, int);
510 static void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
511 uint64_t);
512 static struct hme_blk *sfmmu_check_pending_hblks(int);
513 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
514 static void sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
515 static void sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
516 int, caddr_t *);
517 static void sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
518
519 static void sfmmu_rm_large_mappings(page_t *, int);
520
521 static void hat_lock_init(void);
522 static void hat_kstat_init(void);
523 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
524 static void sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
525 static int sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
526 static void sfmmu_check_page_sizes(sfmmu_t *, int);
527 int fnd_mapping_sz(page_t *);
528 static void iment_add(struct ism_ment *, struct hat *);
529 static void iment_sub(struct ism_ment *, struct hat *);
530 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc);
531 extern void sfmmu_setup_tsbinfo(sfmmu_t *);
532 extern void sfmmu_clear_utsbinfo(void);
533
534 static void sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
535
536 extern int vpm_enable;
537
538 /* kpm globals */
539 #ifdef DEBUG
540 /*
541 * Enable trap level tsbmiss handling
542 */
543 int kpm_tsbmtl = 1;
544
545 /*
546 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
547 * required TLB shootdowns in this case, so handle w/ care. Off by default.
548 */
549 int kpm_tlb_flush;
550 #endif /* DEBUG */
551
552 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
553
554 #ifdef DEBUG
555 static void sfmmu_check_hblk_flist();
556 #endif
557
558 /*
559 * Semi-private sfmmu data structures. Some of them are initialize in
560 * startup or in hat_init. Some of them are private but accessed by
561 * assembly code or mach_sfmmu.c
562 */
563 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */
564 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */
565 uint64_t uhme_hash_pa; /* PA of uhme_hash */
566 uint64_t khme_hash_pa; /* PA of khme_hash */
567 int uhmehash_num; /* # of buckets in user hash table */
568 int khmehash_num; /* # of buckets in kernel hash table */
569
570 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */
571 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */
572 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */
573
574 #define DEFAULT_NUM_CTXS_PER_MMU 8192
575 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU;
576
577 int cache; /* describes system cache */
578
579 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */
580 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */
581 int ktsb_szcode; /* kernel 8k-indexed tsb size code */
582 int ktsb_sz; /* kernel 8k-indexed tsb size */
583
584 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */
585 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */
586 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */
587 int ktsb4m_sz; /* kernel 4m-indexed tsb size */
588
589 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */
590 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */
591 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */
592 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */
593
594 #ifndef sun4v
595 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */
596 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
597 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */
598 caddr_t utsb_vabase; /* reserved kernel virtual memory */
599 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */
600 #endif /* sun4v */
601 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */
602 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */
603 vmem_t *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
604
605 /*
606 * Size to use for TSB slabs. Future platforms that support page sizes
607 * larger than 4M may wish to change these values, and provide their own
608 * assembly macros for building and decoding the TSB base register contents.
609 * Note disable_large_pages will override the value set here.
610 */
611 static uint_t tsb_slab_ttesz = TTE4M;
612 size_t tsb_slab_size = MMU_PAGESIZE4M;
613 uint_t tsb_slab_shift = MMU_PAGESHIFT4M;
614 /* PFN mask for TTE */
615 size_t tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
616
617 /*
618 * Size to use for TSB slabs. These are used only when 256M tsb arenas
619 * exist.
620 */
621 static uint_t bigtsb_slab_ttesz = TTE256M;
622 static size_t bigtsb_slab_size = MMU_PAGESIZE256M;
623 static uint_t bigtsb_slab_shift = MMU_PAGESHIFT256M;
624 /* 256M page alignment for 8K pfn */
625 static size_t bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
626
627 /* largest TSB size to grow to, will be smaller on smaller memory systems */
628 static int tsb_max_growsize = 0;
629
630 /*
631 * Tunable parameters dealing with TSB policies.
632 */
633
634 /*
635 * This undocumented tunable forces all 8K TSBs to be allocated from
636 * the kernel heap rather than from the kmem_tsb_default_arena arenas.
637 */
638 #ifdef DEBUG
639 int tsb_forceheap = 0;
640 #endif /* DEBUG */
641
642 /*
643 * Decide whether to use per-lgroup arenas, or one global set of
644 * TSB arenas. The default is not to break up per-lgroup, since
645 * most platforms don't recognize any tangible benefit from it.
646 */
647 int tsb_lgrp_affinity = 0;
648
649 /*
650 * Used for growing the TSB based on the process RSS.
651 * tsb_rss_factor is based on the smallest TSB, and is
652 * shifted by the TSB size to determine if we need to grow.
653 * The default will grow the TSB if the number of TTEs for
654 * this page size exceeds 75% of the number of TSB entries,
655 * which should _almost_ eliminate all conflict misses
656 * (at the expense of using up lots and lots of memory).
657 */
658 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
659 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc)
660 #define SELECT_TSB_SIZECODE(pgcnt) ( \
661 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
662 default_tsb_size)
663 #define TSB_OK_SHRINK() \
664 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
665 #define TSB_OK_GROW() \
666 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
667
668 int enable_tsb_rss_sizing = 1;
669 int tsb_rss_factor = (int)TSB_RSS_FACTOR;
670
671 /* which TSB size code to use for new address spaces or if rss sizing off */
672 int default_tsb_size = TSB_8K_SZCODE;
673
674 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
675 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
676 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32
677
678 #ifdef DEBUG
679 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
680 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
681 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */
682 static int tsb_alloc_fail_mtbf = 0;
683 static int tsb_alloc_count = 0;
684 #endif /* DEBUG */
685
686 /* if set to 1, will remap valid TTEs when growing TSB. */
687 int tsb_remap_ttes = 1;
688
689 /*
690 * If we have more than this many mappings, allocate a second TSB.
691 * This default is chosen because the I/D fully associative TLBs are
692 * assumed to have at least 8 available entries. Platforms with a
693 * larger fully-associative TLB could probably override the default.
694 */
695
696 #ifdef sun4v
697 int tsb_sectsb_threshold = 0;
698 #else
699 int tsb_sectsb_threshold = 8;
700 #endif
701
702 /*
703 * kstat data
704 */
705 struct sfmmu_global_stat sfmmu_global_stat;
706 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
707
708 /*
709 * Global data
710 */
711 sfmmu_t *ksfmmup; /* kernel's hat id */
712
713 #ifdef DEBUG
714 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
715 #endif
716
717 /* sfmmu locking operations */
718 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
719 static int sfmmu_mlspl_held(struct page *, int);
720
721 kmutex_t *sfmmu_page_enter(page_t *);
722 void sfmmu_page_exit(kmutex_t *);
723 int sfmmu_page_spl_held(struct page *);
724
725 /* sfmmu internal locking operations - accessed directly */
726 static void sfmmu_mlist_reloc_enter(page_t *, page_t *,
727 kmutex_t **, kmutex_t **);
728 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
729 static hatlock_t *
730 sfmmu_hat_enter(sfmmu_t *);
731 static hatlock_t *
732 sfmmu_hat_tryenter(sfmmu_t *);
733 static void sfmmu_hat_exit(hatlock_t *);
734 static void sfmmu_hat_lock_all(void);
735 static void sfmmu_hat_unlock_all(void);
736 static void sfmmu_ismhat_enter(sfmmu_t *, int);
737 static void sfmmu_ismhat_exit(sfmmu_t *, int);
738
739 kpm_hlk_t *kpmp_table;
740 uint_t kpmp_table_sz; /* must be a power of 2 */
741 uchar_t kpmp_shift;
742
743 kpm_shlk_t *kpmp_stable;
744 uint_t kpmp_stable_sz; /* must be a power of 2 */
745
746 /*
747 * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
748 * SPL_SHIFT is log2(SPL_TABLE_SIZE).
749 */
750 #if ((2*NCPU_P2) > 128)
751 #define SPL_SHIFT ((unsigned)(NCPU_LOG2 + 1))
752 #else
753 #define SPL_SHIFT 7U
754 #endif
755 #define SPL_TABLE_SIZE (1U << SPL_SHIFT)
756 #define SPL_MASK (SPL_TABLE_SIZE - 1)
757
758 /*
759 * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
760 * and by multiples of SPL_SHIFT to get as many varied bits as we can.
761 */
762 #define SPL_INDEX(pp) \
763 ((((uintptr_t)(pp) >> PP_SHIFT) ^ \
764 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
765 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
766 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
767 SPL_MASK)
768
769 #define SPL_HASH(pp) \
770 (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
771
772 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE];
773
774 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
775
776 #define MML_TABLE_SIZE SPL_TABLE_SIZE
777 #define MLIST_HASH(pp) (&mml_table[SPL_INDEX(pp)].pad_mutex)
778
779 static pad_mutex_t mml_table[MML_TABLE_SIZE];
780
781 /*
782 * hat_unload_callback() will group together callbacks in order
783 * to avoid xt_sync() calls. This is the maximum size of the group.
784 */
785 #define MAX_CB_ADDR 32
786
787 tte_t hw_tte;
788 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
789
790 static char *mmu_ctx_kstat_names[] = {
791 "mmu_ctx_tsb_exceptions",
792 "mmu_ctx_tsb_raise_exception",
793 "mmu_ctx_wrap_around",
794 };
795
796 /*
797 * Wrapper for vmem_xalloc since vmem_create only allows limited
798 * parameters for vm_source_alloc functions. This function allows us
799 * to specify alignment consistent with the size of the object being
800 * allocated.
801 */
802 static void *
sfmmu_vmem_xalloc_aligned_wrapper(vmem_t * vmp,size_t size,int vmflag)803 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
804 {
805 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
806 }
807
808 /* Common code for setting tsb_alloc_hiwater. */
809 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \
810 ptob(pages) / tsb_alloc_hiwater_factor
811
812 /*
813 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
814 * a single TSB. physmem is the number of physical pages so we need physmem 8K
815 * TTEs to represent all those physical pages. We round this up by using
816 * 1<<highbit(). To figure out which size code to use, remember that the size
817 * code is just an amount to shift the smallest TSB size to get the size of
818 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or
819 * highbit() - 1) to get the size code for the smallest TSB that can represent
820 * all of physical memory, while erring on the side of too much.
821 *
822 * Restrict tsb_max_growsize to make sure that:
823 * 1) TSBs can't grow larger than the TSB slab size
824 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE.
825 */
826 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \
827 int _i, _szc, _slabszc, _tsbszc; \
828 \
829 _i = highbit(pages); \
830 if ((1 << (_i - 1)) == (pages)) \
831 _i--; /* 2^n case, round down */ \
832 _szc = _i - TSB_START_SIZE; \
833 _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
834 _tsbszc = MIN(_szc, _slabszc); \
835 tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE); \
836 }
837
838 /*
839 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
840 * tsb_info which handles that TTE size.
841 */
842 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) { \
843 (tsbinfop) = (sfmmup)->sfmmu_tsb; \
844 ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) || \
845 sfmmu_hat_lock_held(sfmmup)); \
846 if ((tte_szc) >= TTE4M) { \
847 ASSERT((tsbinfop) != NULL); \
848 (tsbinfop) = (tsbinfop)->tsb_next; \
849 } \
850 }
851
852 /*
853 * Macro to use to unload entries from the TSB.
854 * It has knowledge of which page sizes get replicated in the TSB
855 * and will call the appropriate unload routine for the appropriate size.
856 */
857 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat) \
858 { \
859 int ttesz = get_hblk_ttesz(hmeblkp); \
860 if (ttesz == TTE8K || ttesz == TTE4M) { \
861 sfmmu_unload_tsb(sfmmup, addr, ttesz); \
862 } else { \
863 caddr_t sva = ismhat ? addr : \
864 (caddr_t)get_hblk_base(hmeblkp); \
865 caddr_t eva = sva + get_hblk_span(hmeblkp); \
866 ASSERT(addr >= sva && addr < eva); \
867 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \
868 } \
869 }
870
871
872 /* Update tsb_alloc_hiwater after memory is configured. */
873 /*ARGSUSED*/
874 static void
sfmmu_update_post_add(void * arg,pgcnt_t delta_pages)875 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
876 {
877 /* Assumes physmem has already been updated. */
878 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
879 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
880 }
881
882 /*
883 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here
884 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
885 * deleted.
886 */
887 /*ARGSUSED*/
888 static int
sfmmu_update_pre_del(void * arg,pgcnt_t delta_pages)889 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
890 {
891 return (0);
892 }
893
894 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
895 /*ARGSUSED*/
896 static void
sfmmu_update_post_del(void * arg,pgcnt_t delta_pages,int cancelled)897 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
898 {
899 /*
900 * Whether the delete was cancelled or not, just go ahead and update
901 * tsb_alloc_hiwater and tsb_max_growsize.
902 */
903 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
904 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
905 }
906
907 static kphysm_setup_vector_t sfmmu_update_vec = {
908 KPHYSM_SETUP_VECTOR_VERSION, /* version */
909 sfmmu_update_post_add, /* post_add */
910 sfmmu_update_pre_del, /* pre_del */
911 sfmmu_update_post_del /* post_del */
912 };
913
914
915 /*
916 * HME_BLK HASH PRIMITIVES
917 */
918
919 /*
920 * Enter a hme on the mapping list for page pp.
921 * When large pages are more prevalent in the system we might want to
922 * keep the mapping list in ascending order by the hment size. For now,
923 * small pages are more frequent, so don't slow it down.
924 */
925 #define HME_ADD(hme, pp) \
926 { \
927 ASSERT(sfmmu_mlist_held(pp)); \
928 \
929 hme->hme_prev = NULL; \
930 hme->hme_next = pp->p_mapping; \
931 hme->hme_page = pp; \
932 if (pp->p_mapping) { \
933 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
934 ASSERT(pp->p_share > 0); \
935 } else { \
936 /* EMPTY */ \
937 ASSERT(pp->p_share == 0); \
938 } \
939 pp->p_mapping = hme; \
940 pp->p_share++; \
941 }
942
943 /*
944 * Enter a hme on the mapping list for page pp.
945 * If we are unmapping a large translation, we need to make sure that the
946 * change is reflect in the corresponding bit of the p_index field.
947 */
948 #define HME_SUB(hme, pp) \
949 { \
950 ASSERT(sfmmu_mlist_held(pp)); \
951 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \
952 \
953 if (pp->p_mapping == NULL) { \
954 panic("hme_remove - no mappings"); \
955 } \
956 \
957 membar_stst(); /* ensure previous stores finish */ \
958 \
959 ASSERT(pp->p_share > 0); \
960 pp->p_share--; \
961 \
962 if (hme->hme_prev) { \
963 ASSERT(pp->p_mapping != hme); \
964 ASSERT(hme->hme_prev->hme_page == pp || \
965 IS_PAHME(hme->hme_prev)); \
966 hme->hme_prev->hme_next = hme->hme_next; \
967 } else { \
968 ASSERT(pp->p_mapping == hme); \
969 pp->p_mapping = hme->hme_next; \
970 ASSERT((pp->p_mapping == NULL) ? \
971 (pp->p_share == 0) : 1); \
972 } \
973 \
974 if (hme->hme_next) { \
975 ASSERT(hme->hme_next->hme_page == pp || \
976 IS_PAHME(hme->hme_next)); \
977 hme->hme_next->hme_prev = hme->hme_prev; \
978 } \
979 \
980 /* zero out the entry */ \
981 hme->hme_next = NULL; \
982 hme->hme_prev = NULL; \
983 hme->hme_page = NULL; \
984 \
985 if (hme_size(hme) > TTE8K) { \
986 /* remove mappings for remainder of large pg */ \
987 sfmmu_rm_large_mappings(pp, hme_size(hme)); \
988 } \
989 }
990
991 /*
992 * This function returns the hment given the hme_blk and a vaddr.
993 * It assumes addr has already been checked to belong to hme_blk's
994 * range.
995 */
996 #define HBLKTOHME(hment, hmeblkp, addr) \
997 { \
998 int index; \
999 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \
1000 }
1001
1002 /*
1003 * Version of HBLKTOHME that also returns the index in hmeblkp
1004 * of the hment.
1005 */
1006 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \
1007 { \
1008 ASSERT(in_hblk_range((hmeblkp), (addr))); \
1009 \
1010 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \
1011 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1012 } else \
1013 idx = 0; \
1014 \
1015 (hment) = &(hmeblkp)->hblk_hme[idx]; \
1016 }
1017
1018 /*
1019 * Disable any page sizes not supported by the CPU
1020 */
1021 void
hat_init_pagesizes()1022 hat_init_pagesizes()
1023 {
1024 int i;
1025
1026 mmu_exported_page_sizes = 0;
1027 for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1028
1029 szc_2_userszc[i] = (uint_t)-1;
1030 userszc_2_szc[i] = (uint_t)-1;
1031
1032 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1033 disable_large_pages |= (1 << i);
1034 } else {
1035 szc_2_userszc[i] = mmu_exported_page_sizes;
1036 userszc_2_szc[mmu_exported_page_sizes] = i;
1037 mmu_exported_page_sizes++;
1038 }
1039 }
1040
1041 disable_ism_large_pages |= disable_large_pages;
1042 disable_auto_data_large_pages = disable_large_pages;
1043 disable_auto_text_large_pages = disable_large_pages;
1044
1045 /*
1046 * Initialize mmu-specific large page sizes.
1047 */
1048 if (&mmu_large_pages_disabled) {
1049 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1050 disable_ism_large_pages |=
1051 mmu_large_pages_disabled(HAT_LOAD_SHARE);
1052 disable_auto_data_large_pages |=
1053 mmu_large_pages_disabled(HAT_AUTO_DATA);
1054 disable_auto_text_large_pages |=
1055 mmu_large_pages_disabled(HAT_AUTO_TEXT);
1056 }
1057 }
1058
1059 /*
1060 * Initialize the hardware address translation structures.
1061 */
1062 void
hat_init(void)1063 hat_init(void)
1064 {
1065 int i;
1066 uint_t sz;
1067 size_t size;
1068
1069 hat_lock_init();
1070 hat_kstat_init();
1071
1072 /*
1073 * Hardware-only bits in a TTE
1074 */
1075 MAKE_TTE_MASK(&hw_tte);
1076
1077 hat_init_pagesizes();
1078
1079 /* Initialize the hash locks */
1080 for (i = 0; i < khmehash_num; i++) {
1081 mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1082 MUTEX_DEFAULT, NULL);
1083 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1084 }
1085 for (i = 0; i < uhmehash_num; i++) {
1086 mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1087 MUTEX_DEFAULT, NULL);
1088 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1089 }
1090 khmehash_num--; /* make sure counter starts from 0 */
1091 uhmehash_num--; /* make sure counter starts from 0 */
1092
1093 /*
1094 * Allocate context domain structures.
1095 *
1096 * A platform may choose to modify max_mmu_ctxdoms in
1097 * set_platform_defaults(). If a platform does not define
1098 * a set_platform_defaults() or does not choose to modify
1099 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1100 *
1101 * For all platforms that have CPUs sharing MMUs, this
1102 * value must be defined.
1103 */
1104 if (max_mmu_ctxdoms == 0)
1105 max_mmu_ctxdoms = max_ncpus;
1106
1107 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1108 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1109
1110 /* mmu_ctx_t is 64 bytes aligned */
1111 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1112 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1113 /*
1114 * MMU context domain initialization for the Boot CPU.
1115 * This needs the context domains array allocated above.
1116 */
1117 mutex_enter(&cpu_lock);
1118 sfmmu_cpu_init(CPU);
1119 mutex_exit(&cpu_lock);
1120
1121 /*
1122 * Intialize ism mapping list lock.
1123 */
1124
1125 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1126
1127 /*
1128 * Each sfmmu structure carries an array of MMU context info
1129 * structures, one per context domain. The size of this array depends
1130 * on the maximum number of context domains. So, the size of the
1131 * sfmmu structure varies per platform.
1132 *
1133 * sfmmu is allocated from static arena, because trap
1134 * handler at TL > 0 is not allowed to touch kernel relocatable
1135 * memory. sfmmu's alignment is changed to 64 bytes from
1136 * default 8 bytes, as the lower 6 bits will be used to pass
1137 * pgcnt to vtag_flush_pgcnt_tl1.
1138 */
1139 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1140
1141 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1142 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1143 NULL, NULL, static_arena, 0);
1144
1145 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1146 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1147
1148 /*
1149 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1150 * from the heap when low on memory or when TSB_FORCEALLOC is
1151 * specified, don't use magazines to cache them--we want to return
1152 * them to the system as quickly as possible.
1153 */
1154 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1155 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1156 static_arena, KMC_NOMAGAZINE);
1157
1158 /*
1159 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1160 * memory, which corresponds to the old static reserve for TSBs.
1161 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of
1162 * memory we'll allocate for TSB slabs; beyond this point TSB
1163 * allocations will be taken from the kernel heap (via
1164 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1165 * consumer.
1166 */
1167 if (tsb_alloc_hiwater_factor == 0) {
1168 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1169 }
1170 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1171
1172 for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1173 if (!(disable_large_pages & (1 << sz)))
1174 break;
1175 }
1176
1177 if (sz < tsb_slab_ttesz) {
1178 tsb_slab_ttesz = sz;
1179 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1180 tsb_slab_size = 1 << tsb_slab_shift;
1181 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1182 use_bigtsb_arena = 0;
1183 } else if (use_bigtsb_arena &&
1184 (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1185 use_bigtsb_arena = 0;
1186 }
1187
1188 if (!use_bigtsb_arena) {
1189 bigtsb_slab_shift = tsb_slab_shift;
1190 }
1191 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1192
1193 /*
1194 * On smaller memory systems, allocate TSB memory in smaller chunks
1195 * than the default 4M slab size. We also honor disable_large_pages
1196 * here.
1197 *
1198 * The trap handlers need to be patched with the final slab shift,
1199 * since they need to be able to construct the TSB pointer at runtime.
1200 */
1201 if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1202 !(disable_large_pages & (1 << TTE512K))) {
1203 tsb_slab_ttesz = TTE512K;
1204 tsb_slab_shift = MMU_PAGESHIFT512K;
1205 tsb_slab_size = MMU_PAGESIZE512K;
1206 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1207 use_bigtsb_arena = 0;
1208 }
1209
1210 if (!use_bigtsb_arena) {
1211 bigtsb_slab_ttesz = tsb_slab_ttesz;
1212 bigtsb_slab_shift = tsb_slab_shift;
1213 bigtsb_slab_size = tsb_slab_size;
1214 bigtsb_slab_mask = tsb_slab_mask;
1215 }
1216
1217
1218 /*
1219 * Set up memory callback to update tsb_alloc_hiwater and
1220 * tsb_max_growsize.
1221 */
1222 i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1223 ASSERT(i == 0);
1224
1225 /*
1226 * kmem_tsb_arena is the source from which large TSB slabs are
1227 * drawn. The quantum of this arena corresponds to the largest
1228 * TSB size we can dynamically allocate for user processes.
1229 * Currently it must also be a supported page size since we
1230 * use exactly one translation entry to map each slab page.
1231 *
1232 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1233 * which most TSBs are allocated. Since most TSB allocations are
1234 * typically 8K we have a kmem cache we stack on top of each
1235 * kmem_tsb_default_arena to speed up those allocations.
1236 *
1237 * Note the two-level scheme of arenas is required only
1238 * because vmem_create doesn't allow us to specify alignment
1239 * requirements. If this ever changes the code could be
1240 * simplified to use only one level of arenas.
1241 *
1242 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1243 * will be provided in addition to the 4M kmem_tsb_arena.
1244 */
1245 if (use_bigtsb_arena) {
1246 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1247 bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1248 vmem_xfree, heap_arena, 0, VM_SLEEP);
1249 }
1250
1251 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1252 sfmmu_vmem_xalloc_aligned_wrapper,
1253 vmem_xfree, heap_arena, 0, VM_SLEEP);
1254
1255 if (tsb_lgrp_affinity) {
1256 char s[50];
1257 for (i = 0; i < NLGRPS_MAX; i++) {
1258 if (use_bigtsb_arena) {
1259 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1260 kmem_bigtsb_default_arena[i] = vmem_create(s,
1261 NULL, 0, 2 * tsb_slab_size,
1262 sfmmu_tsb_segkmem_alloc,
1263 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1264 0, VM_SLEEP | VM_BESTFIT);
1265 }
1266
1267 (void) sprintf(s, "kmem_tsb_lgrp%d", i);
1268 kmem_tsb_default_arena[i] = vmem_create(s,
1269 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1270 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1271 VM_SLEEP | VM_BESTFIT);
1272
1273 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1274 sfmmu_tsb_cache[i] = kmem_cache_create(s,
1275 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1276 kmem_tsb_default_arena[i], 0);
1277 }
1278 } else {
1279 if (use_bigtsb_arena) {
1280 kmem_bigtsb_default_arena[0] =
1281 vmem_create("kmem_bigtsb_default", NULL, 0,
1282 2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1283 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1284 VM_SLEEP | VM_BESTFIT);
1285 }
1286
1287 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1288 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1289 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1290 VM_SLEEP | VM_BESTFIT);
1291 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1292 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1293 kmem_tsb_default_arena[0], 0);
1294 }
1295
1296 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1297 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1298 sfmmu_hblkcache_destructor,
1299 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1300 hat_memload_arena, KMC_NOHASH);
1301
1302 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1303 segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1304 VMC_DUMPSAFE | VM_SLEEP);
1305
1306 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1307 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1308 sfmmu_hblkcache_destructor,
1309 NULL, (void *)HME1BLK_SZ,
1310 hat_memload1_arena, KMC_NOHASH);
1311
1312 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1313 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1314
1315 ism_blk_cache = kmem_cache_create("ism_blk_cache",
1316 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1317 NULL, NULL, static_arena, KMC_NOHASH);
1318
1319 ism_ment_cache = kmem_cache_create("ism_ment_cache",
1320 sizeof (ism_ment_t), 0, NULL, NULL,
1321 NULL, NULL, NULL, 0);
1322
1323 /*
1324 * We grab the first hat for the kernel,
1325 */
1326 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1327 kas.a_hat = hat_alloc(&kas);
1328 AS_LOCK_EXIT(&kas, &kas.a_lock);
1329
1330 /*
1331 * Initialize hblk_reserve.
1332 */
1333 ((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1334 va_to_pa((caddr_t)hblk_reserve);
1335
1336 #ifndef UTSB_PHYS
1337 /*
1338 * Reserve some kernel virtual address space for the locked TTEs
1339 * that allow us to probe the TSB from TL>0.
1340 */
1341 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1342 0, 0, NULL, NULL, VM_SLEEP);
1343 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1344 0, 0, NULL, NULL, VM_SLEEP);
1345 #endif
1346
1347 #ifdef VAC
1348 /*
1349 * The big page VAC handling code assumes VAC
1350 * will not be bigger than the smallest big
1351 * page- which is 64K.
1352 */
1353 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1354 cmn_err(CE_PANIC, "VAC too big!");
1355 }
1356 #endif
1357
1358 (void) xhat_init();
1359
1360 uhme_hash_pa = va_to_pa(uhme_hash);
1361 khme_hash_pa = va_to_pa(khme_hash);
1362
1363 /*
1364 * Initialize relocation locks. kpr_suspendlock is held
1365 * at PIL_MAX to prevent interrupts from pinning the holder
1366 * of a suspended TTE which may access it leading to a
1367 * deadlock condition.
1368 */
1369 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1370 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1371
1372 /*
1373 * If Shared context support is disabled via /etc/system
1374 * set shctx_on to 0 here if it was set to 1 earlier in boot
1375 * sequence by cpu module initialization code.
1376 */
1377 if (shctx_on && disable_shctx) {
1378 shctx_on = 0;
1379 }
1380
1381 if (shctx_on) {
1382 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1383 sizeof (srd_buckets[0]), KM_SLEEP);
1384 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1385 mutex_init(&srd_buckets[i].srdb_lock, NULL,
1386 MUTEX_DEFAULT, NULL);
1387 }
1388
1389 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1390 0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1391 NULL, NULL, NULL, 0);
1392 region_cache = kmem_cache_create("region_cache",
1393 sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1394 sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1395 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1396 0, sfmmu_scdcache_constructor, sfmmu_scdcache_destructor,
1397 NULL, NULL, NULL, 0);
1398 }
1399
1400 /*
1401 * Pre-allocate hrm_hashtab before enabling the collection of
1402 * refmod statistics. Allocating on the fly would mean us
1403 * running the risk of suffering recursive mutex enters or
1404 * deadlocks.
1405 */
1406 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1407 KM_SLEEP);
1408
1409 /* Allocate per-cpu pending freelist of hmeblks */
1410 cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1411 KM_SLEEP);
1412 cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1413 (uintptr_t)cpu_hme_pend, 64);
1414
1415 for (i = 0; i < NCPU; i++) {
1416 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1417 NULL);
1418 }
1419
1420 if (cpu_hme_pend_thresh == 0) {
1421 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1422 }
1423 }
1424
1425 /*
1426 * Initialize locking for the hat layer, called early during boot.
1427 */
1428 static void
hat_lock_init()1429 hat_lock_init()
1430 {
1431 int i;
1432
1433 /*
1434 * initialize the array of mutexes protecting a page's mapping
1435 * list and p_nrm field.
1436 */
1437 for (i = 0; i < MML_TABLE_SIZE; i++)
1438 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1439
1440 if (kpm_enable) {
1441 for (i = 0; i < kpmp_table_sz; i++) {
1442 mutex_init(&kpmp_table[i].khl_mutex, NULL,
1443 MUTEX_DEFAULT, NULL);
1444 }
1445 }
1446
1447 /*
1448 * Initialize array of mutex locks that protects sfmmu fields and
1449 * TSB lists.
1450 */
1451 for (i = 0; i < SFMMU_NUM_LOCK; i++)
1452 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1453 NULL);
1454 }
1455
1456 #define SFMMU_KERNEL_MAXVA \
1457 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1458
1459 /*
1460 * Allocate a hat structure.
1461 * Called when an address space first uses a hat.
1462 */
1463 struct hat *
hat_alloc(struct as * as)1464 hat_alloc(struct as *as)
1465 {
1466 sfmmu_t *sfmmup;
1467 int i;
1468 uint64_t cnum;
1469 extern uint_t get_color_start(struct as *);
1470
1471 ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1472 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1473 sfmmup->sfmmu_as = as;
1474 sfmmup->sfmmu_flags = 0;
1475 sfmmup->sfmmu_tteflags = 0;
1476 sfmmup->sfmmu_rtteflags = 0;
1477 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1478
1479 if (as == &kas) {
1480 ksfmmup = sfmmup;
1481 sfmmup->sfmmu_cext = 0;
1482 cnum = KCONTEXT;
1483
1484 sfmmup->sfmmu_clrstart = 0;
1485 sfmmup->sfmmu_tsb = NULL;
1486 /*
1487 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1488 * to setup tsb_info for ksfmmup.
1489 */
1490 } else {
1491
1492 /*
1493 * Just set to invalid ctx. When it faults, it will
1494 * get a valid ctx. This would avoid the situation
1495 * where we get a ctx, but it gets stolen and then
1496 * we fault when we try to run and so have to get
1497 * another ctx.
1498 */
1499 sfmmup->sfmmu_cext = 0;
1500 cnum = INVALID_CONTEXT;
1501
1502 /* initialize original physical page coloring bin */
1503 sfmmup->sfmmu_clrstart = get_color_start(as);
1504 #ifdef DEBUG
1505 if (tsb_random_size) {
1506 uint32_t randval = (uint32_t)gettick() >> 4;
1507 int size = randval % (tsb_max_growsize + 1);
1508
1509 /* chose a random tsb size for stress testing */
1510 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1511 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1512 } else
1513 #endif /* DEBUG */
1514 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1515 default_tsb_size,
1516 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1517 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1518 ASSERT(sfmmup->sfmmu_tsb != NULL);
1519 }
1520
1521 ASSERT(max_mmu_ctxdoms > 0);
1522 for (i = 0; i < max_mmu_ctxdoms; i++) {
1523 sfmmup->sfmmu_ctxs[i].cnum = cnum;
1524 sfmmup->sfmmu_ctxs[i].gnum = 0;
1525 }
1526
1527 for (i = 0; i < max_mmu_page_sizes; i++) {
1528 sfmmup->sfmmu_ttecnt[i] = 0;
1529 sfmmup->sfmmu_scdrttecnt[i] = 0;
1530 sfmmup->sfmmu_ismttecnt[i] = 0;
1531 sfmmup->sfmmu_scdismttecnt[i] = 0;
1532 sfmmup->sfmmu_pgsz[i] = TTE8K;
1533 }
1534 sfmmup->sfmmu_tsb0_4minflcnt = 0;
1535 sfmmup->sfmmu_iblk = NULL;
1536 sfmmup->sfmmu_ismhat = 0;
1537 sfmmup->sfmmu_scdhat = 0;
1538 sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1539 if (sfmmup == ksfmmup) {
1540 CPUSET_ALL(sfmmup->sfmmu_cpusran);
1541 } else {
1542 CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1543 }
1544 sfmmup->sfmmu_free = 0;
1545 sfmmup->sfmmu_rmstat = 0;
1546 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1547 sfmmup->sfmmu_xhat_provider = NULL;
1548 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1549 sfmmup->sfmmu_srdp = NULL;
1550 SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1551 bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1552 sfmmup->sfmmu_scdp = NULL;
1553 sfmmup->sfmmu_scd_link.next = NULL;
1554 sfmmup->sfmmu_scd_link.prev = NULL;
1555 return (sfmmup);
1556 }
1557
1558 /*
1559 * Create per-MMU context domain kstats for a given MMU ctx.
1560 */
1561 static void
sfmmu_mmu_kstat_create(mmu_ctx_t * mmu_ctxp)1562 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1563 {
1564 mmu_ctx_stat_t stat;
1565 kstat_t *mmu_kstat;
1566
1567 ASSERT(MUTEX_HELD(&cpu_lock));
1568 ASSERT(mmu_ctxp->mmu_kstat == NULL);
1569
1570 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1571 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1572
1573 if (mmu_kstat == NULL) {
1574 cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1575 mmu_ctxp->mmu_idx);
1576 } else {
1577 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1578 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1579 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1580 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1581 mmu_ctxp->mmu_kstat = mmu_kstat;
1582 kstat_install(mmu_kstat);
1583 }
1584 }
1585
1586 /*
1587 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1588 * context domain information for a given CPU. If a platform does not
1589 * specify that interface, then the function below is used instead to return
1590 * default information. The defaults are as follows:
1591 *
1592 * - The number of MMU context IDs supported on any CPU in the
1593 * system is 8K.
1594 * - There is one MMU context domain per CPU.
1595 */
1596 /*ARGSUSED*/
1597 static void
sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid,mmu_ctx_info_t * infop)1598 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1599 {
1600 infop->mmu_nctxs = nctxs;
1601 infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1602 }
1603
1604 /*
1605 * Called during CPU initialization to set the MMU context-related information
1606 * for a CPU.
1607 *
1608 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1609 */
1610 void
sfmmu_cpu_init(cpu_t * cp)1611 sfmmu_cpu_init(cpu_t *cp)
1612 {
1613 mmu_ctx_info_t info;
1614 mmu_ctx_t *mmu_ctxp;
1615
1616 ASSERT(MUTEX_HELD(&cpu_lock));
1617
1618 if (&plat_cpuid_to_mmu_ctx_info == NULL)
1619 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1620 else
1621 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1622
1623 ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1624
1625 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1626 /* Each mmu_ctx is cacheline aligned. */
1627 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1628 bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1629
1630 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1631 (void *)ipltospl(DISP_LEVEL));
1632 mmu_ctxp->mmu_idx = info.mmu_idx;
1633 mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1634 /*
1635 * Globally for lifetime of a system,
1636 * gnum must always increase.
1637 * mmu_saved_gnum is protected by the cpu_lock.
1638 */
1639 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1640 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1641
1642 sfmmu_mmu_kstat_create(mmu_ctxp);
1643
1644 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1645 } else {
1646 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1647 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1648 }
1649
1650 /*
1651 * The mmu_lock is acquired here to prevent races with
1652 * the wrap-around code.
1653 */
1654 mutex_enter(&mmu_ctxp->mmu_lock);
1655
1656
1657 mmu_ctxp->mmu_ncpus++;
1658 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1659 CPU_MMU_IDX(cp) = info.mmu_idx;
1660 CPU_MMU_CTXP(cp) = mmu_ctxp;
1661
1662 mutex_exit(&mmu_ctxp->mmu_lock);
1663 }
1664
1665 static void
sfmmu_ctxdom_free(mmu_ctx_t * mmu_ctxp)1666 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1667 {
1668 ASSERT(MUTEX_HELD(&cpu_lock));
1669 ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1670
1671 mutex_destroy(&mmu_ctxp->mmu_lock);
1672
1673 if (mmu_ctxp->mmu_kstat)
1674 kstat_delete(mmu_ctxp->mmu_kstat);
1675
1676 /* mmu_saved_gnum is protected by the cpu_lock. */
1677 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1678 mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1679
1680 kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1681 }
1682
1683 /*
1684 * Called to perform MMU context-related cleanup for a CPU.
1685 */
1686 void
sfmmu_cpu_cleanup(cpu_t * cp)1687 sfmmu_cpu_cleanup(cpu_t *cp)
1688 {
1689 mmu_ctx_t *mmu_ctxp;
1690
1691 ASSERT(MUTEX_HELD(&cpu_lock));
1692
1693 mmu_ctxp = CPU_MMU_CTXP(cp);
1694 ASSERT(mmu_ctxp != NULL);
1695
1696 /*
1697 * The mmu_lock is acquired here to prevent races with
1698 * the wrap-around code.
1699 */
1700 mutex_enter(&mmu_ctxp->mmu_lock);
1701
1702 CPU_MMU_CTXP(cp) = NULL;
1703
1704 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1705 if (--mmu_ctxp->mmu_ncpus == 0) {
1706 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1707 mutex_exit(&mmu_ctxp->mmu_lock);
1708 sfmmu_ctxdom_free(mmu_ctxp);
1709 return;
1710 }
1711
1712 mutex_exit(&mmu_ctxp->mmu_lock);
1713 }
1714
1715 uint_t
sfmmu_ctxdom_nctxs(int idx)1716 sfmmu_ctxdom_nctxs(int idx)
1717 {
1718 return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1719 }
1720
1721 #ifdef sun4v
1722 /*
1723 * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1724 * consistant after suspend/resume on system that can resume on a different
1725 * hardware than it was suspended.
1726 *
1727 * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1728 * from being allocated. It acquires all hat_locks, which blocks most access to
1729 * context data, except for a few cases that are handled separately or are
1730 * harmless. It wraps each domain to increment gnum and invalidate on-CPU
1731 * contexts, and forces cnum to its max. As a result of this call all user
1732 * threads that are running on CPUs trap and try to perform wrap around but
1733 * can't because hat_locks are taken. Threads that were not on CPUs but started
1734 * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1735 * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1736 * on hat_lock trying to wrap. sfmmu_ctxdom_lock() must be called before CPUs
1737 * are paused, else it could deadlock acquiring locks held by paused CPUs.
1738 *
1739 * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1740 * the CPUs that had them. It must be called after CPUs have been paused. This
1741 * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1742 * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1743 * runs with interrupts disabled. When CPUs are later resumed, they may enter
1744 * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1745 * return failure. Or, they will be blocked trying to acquire hat_lock. Thus
1746 * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1747 * accessing the old context domains.
1748 *
1749 * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1750 * allocates new context domains based on hardware layout. It initializes
1751 * every CPU that had context domain before migration to have one again.
1752 * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1753 * could deadlock acquiring locks held by paused CPUs.
1754 *
1755 * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1756 * acquire new context ids and continue execution.
1757 *
1758 * Therefore functions should be called in the following order:
1759 * suspend_routine()
1760 * sfmmu_ctxdom_lock()
1761 * pause_cpus()
1762 * suspend()
1763 * if (suspend failed)
1764 * sfmmu_ctxdom_unlock()
1765 * ...
1766 * sfmmu_ctxdom_remove()
1767 * resume_cpus()
1768 * sfmmu_ctxdom_update()
1769 * sfmmu_ctxdom_unlock()
1770 */
1771 static cpuset_t sfmmu_ctxdoms_pset;
1772
1773 void
sfmmu_ctxdoms_remove()1774 sfmmu_ctxdoms_remove()
1775 {
1776 processorid_t id;
1777 cpu_t *cp;
1778
1779 /*
1780 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1781 * be restored post-migration. A CPU may be powered off and not have a
1782 * domain, for example.
1783 */
1784 CPUSET_ZERO(sfmmu_ctxdoms_pset);
1785
1786 for (id = 0; id < NCPU; id++) {
1787 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1788 CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1789 CPU_MMU_CTXP(cp) = NULL;
1790 }
1791 }
1792 }
1793
1794 void
sfmmu_ctxdoms_lock(void)1795 sfmmu_ctxdoms_lock(void)
1796 {
1797 int idx;
1798 mmu_ctx_t *mmu_ctxp;
1799
1800 sfmmu_hat_lock_all();
1801
1802 /*
1803 * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1804 * hat_lock is always taken before calling it.
1805 *
1806 * For each domain, set mmu_cnum to max so no more contexts can be
1807 * allocated, and wrap to flush on-CPU contexts and force threads to
1808 * acquire a new context when we later drop hat_lock after migration.
1809 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1810 * but the latter uses CAS and will miscompare and not overwrite it.
1811 */
1812 kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1813 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1814 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1815 mutex_enter(&mmu_ctxp->mmu_lock);
1816 mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1817 /* make sure updated cnum visible */
1818 membar_enter();
1819 mutex_exit(&mmu_ctxp->mmu_lock);
1820 sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1821 }
1822 }
1823 kpreempt_enable();
1824 }
1825
1826 void
sfmmu_ctxdoms_unlock(void)1827 sfmmu_ctxdoms_unlock(void)
1828 {
1829 sfmmu_hat_unlock_all();
1830 }
1831
1832 void
sfmmu_ctxdoms_update(void)1833 sfmmu_ctxdoms_update(void)
1834 {
1835 processorid_t id;
1836 cpu_t *cp;
1837 uint_t idx;
1838 mmu_ctx_t *mmu_ctxp;
1839
1840 /*
1841 * Free all context domains. As side effect, this increases
1842 * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1843 * init gnum in the new domains, which therefore will be larger than the
1844 * sfmmu gnum for any process, guaranteeing that every process will see
1845 * a new generation and allocate a new context regardless of what new
1846 * domain it runs in.
1847 */
1848 mutex_enter(&cpu_lock);
1849
1850 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1851 if (mmu_ctxs_tbl[idx] != NULL) {
1852 mmu_ctxp = mmu_ctxs_tbl[idx];
1853 mmu_ctxs_tbl[idx] = NULL;
1854 sfmmu_ctxdom_free(mmu_ctxp);
1855 }
1856 }
1857
1858 for (id = 0; id < NCPU; id++) {
1859 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1860 (cp = cpu[id]) != NULL)
1861 sfmmu_cpu_init(cp);
1862 }
1863 mutex_exit(&cpu_lock);
1864 }
1865 #endif
1866
1867 /*
1868 * Hat_setup, makes an address space context the current active one.
1869 * In sfmmu this translates to setting the secondary context with the
1870 * corresponding context.
1871 */
1872 void
hat_setup(struct hat * sfmmup,int allocflag)1873 hat_setup(struct hat *sfmmup, int allocflag)
1874 {
1875 hatlock_t *hatlockp;
1876
1877 /* Init needs some special treatment. */
1878 if (allocflag == HAT_INIT) {
1879 /*
1880 * Make sure that we have
1881 * 1. a TSB
1882 * 2. a valid ctx that doesn't get stolen after this point.
1883 */
1884 hatlockp = sfmmu_hat_enter(sfmmup);
1885
1886 /*
1887 * Swap in the TSB. hat_init() allocates tsbinfos without
1888 * TSBs, but we need one for init, since the kernel does some
1889 * special things to set up its stack and needs the TSB to
1890 * resolve page faults.
1891 */
1892 sfmmu_tsb_swapin(sfmmup, hatlockp);
1893
1894 sfmmu_get_ctx(sfmmup);
1895
1896 sfmmu_hat_exit(hatlockp);
1897 } else {
1898 ASSERT(allocflag == HAT_ALLOC);
1899
1900 hatlockp = sfmmu_hat_enter(sfmmup);
1901 kpreempt_disable();
1902
1903 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1904 /*
1905 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1906 * pagesize bits don't matter in this case since we are passing
1907 * INVALID_CONTEXT to it.
1908 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1909 */
1910 sfmmu_setctx_sec(INVALID_CONTEXT);
1911 sfmmu_clear_utsbinfo();
1912
1913 kpreempt_enable();
1914 sfmmu_hat_exit(hatlockp);
1915 }
1916 }
1917
1918 /*
1919 * Free all the translation resources for the specified address space.
1920 * Called from as_free when an address space is being destroyed.
1921 */
1922 void
hat_free_start(struct hat * sfmmup)1923 hat_free_start(struct hat *sfmmup)
1924 {
1925 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1926 ASSERT(sfmmup != ksfmmup);
1927 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1928
1929 sfmmup->sfmmu_free = 1;
1930 if (sfmmup->sfmmu_scdp != NULL) {
1931 sfmmu_leave_scd(sfmmup, 0);
1932 }
1933
1934 ASSERT(sfmmup->sfmmu_scdp == NULL);
1935 }
1936
1937 void
hat_free_end(struct hat * sfmmup)1938 hat_free_end(struct hat *sfmmup)
1939 {
1940 int i;
1941
1942 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1943 ASSERT(sfmmup->sfmmu_free == 1);
1944 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1945 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1946 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1947 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1948 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1949 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1950
1951 if (sfmmup->sfmmu_rmstat) {
1952 hat_freestat(sfmmup->sfmmu_as, NULL);
1953 }
1954
1955 while (sfmmup->sfmmu_tsb != NULL) {
1956 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1957 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1958 sfmmup->sfmmu_tsb = next;
1959 }
1960
1961 if (sfmmup->sfmmu_srdp != NULL) {
1962 sfmmu_leave_srd(sfmmup);
1963 ASSERT(sfmmup->sfmmu_srdp == NULL);
1964 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1965 if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1966 kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1967 SFMMU_L2_HMERLINKS_SIZE);
1968 sfmmup->sfmmu_hmeregion_links[i] = NULL;
1969 }
1970 }
1971 }
1972 sfmmu_free_sfmmu(sfmmup);
1973
1974 #ifdef DEBUG
1975 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1976 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1977 }
1978 #endif
1979
1980 kmem_cache_free(sfmmuid_cache, sfmmup);
1981 }
1982
1983 /*
1984 * Set up any translation structures, for the specified address space,
1985 * that are needed or preferred when the process is being swapped in.
1986 */
1987 /* ARGSUSED */
1988 void
hat_swapin(struct hat * hat)1989 hat_swapin(struct hat *hat)
1990 {
1991 ASSERT(hat->sfmmu_xhat_provider == NULL);
1992 }
1993
1994 /*
1995 * Free all of the translation resources, for the specified address space,
1996 * that can be freed while the process is swapped out. Called from as_swapout.
1997 * Also, free up the ctx that this process was using.
1998 */
1999 void
hat_swapout(struct hat * sfmmup)2000 hat_swapout(struct hat *sfmmup)
2001 {
2002 struct hmehash_bucket *hmebp;
2003 struct hme_blk *hmeblkp;
2004 struct hme_blk *pr_hblk = NULL;
2005 struct hme_blk *nx_hblk;
2006 int i;
2007 struct hme_blk *list = NULL;
2008 hatlock_t *hatlockp;
2009 struct tsb_info *tsbinfop;
2010 struct free_tsb {
2011 struct free_tsb *next;
2012 struct tsb_info *tsbinfop;
2013 }; /* free list of TSBs */
2014 struct free_tsb *freelist, *last, *next;
2015
2016 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
2017 SFMMU_STAT(sf_swapout);
2018
2019 /*
2020 * There is no way to go from an as to all its translations in sfmmu.
2021 * Here is one of the times when we take the big hit and traverse
2022 * the hash looking for hme_blks to free up. Not only do we free up
2023 * this as hme_blks but all those that are free. We are obviously
2024 * swapping because we need memory so let's free up as much
2025 * as we can.
2026 *
2027 * Note that we don't flush TLB/TSB here -- it's not necessary
2028 * because:
2029 * 1) we free the ctx we're using and throw away the TSB(s);
2030 * 2) processes aren't runnable while being swapped out.
2031 */
2032 ASSERT(sfmmup != KHATID);
2033 for (i = 0; i <= UHMEHASH_SZ; i++) {
2034 hmebp = &uhme_hash[i];
2035 SFMMU_HASH_LOCK(hmebp);
2036 hmeblkp = hmebp->hmeblkp;
2037 pr_hblk = NULL;
2038 while (hmeblkp) {
2039
2040 ASSERT(!hmeblkp->hblk_xhat_bit);
2041
2042 if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2043 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2044 ASSERT(!hmeblkp->hblk_shared);
2045 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2046 (caddr_t)get_hblk_base(hmeblkp),
2047 get_hblk_endaddr(hmeblkp),
2048 NULL, HAT_UNLOAD);
2049 }
2050 nx_hblk = hmeblkp->hblk_next;
2051 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2052 ASSERT(!hmeblkp->hblk_lckcnt);
2053 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2054 &list, 0);
2055 } else {
2056 pr_hblk = hmeblkp;
2057 }
2058 hmeblkp = nx_hblk;
2059 }
2060 SFMMU_HASH_UNLOCK(hmebp);
2061 }
2062
2063 sfmmu_hblks_list_purge(&list, 0);
2064
2065 /*
2066 * Now free up the ctx so that others can reuse it.
2067 */
2068 hatlockp = sfmmu_hat_enter(sfmmup);
2069
2070 sfmmu_invalidate_ctx(sfmmup);
2071
2072 /*
2073 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2074 * If TSBs were never swapped in, just return.
2075 * This implies that we don't support partial swapping
2076 * of TSBs -- either all are swapped out, or none are.
2077 *
2078 * We must hold the HAT lock here to prevent racing with another
2079 * thread trying to unmap TTEs from the TSB or running the post-
2080 * relocator after relocating the TSB's memory. Unfortunately, we
2081 * can't free memory while holding the HAT lock or we could
2082 * deadlock, so we build a list of TSBs to be freed after marking
2083 * the tsbinfos as swapped out and free them after dropping the
2084 * lock.
2085 */
2086 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2087 sfmmu_hat_exit(hatlockp);
2088 return;
2089 }
2090
2091 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2092 last = freelist = NULL;
2093 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2094 tsbinfop = tsbinfop->tsb_next) {
2095 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2096
2097 /*
2098 * Cast the TSB into a struct free_tsb and put it on the free
2099 * list.
2100 */
2101 if (freelist == NULL) {
2102 last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2103 } else {
2104 last->next = (struct free_tsb *)tsbinfop->tsb_va;
2105 last = last->next;
2106 }
2107 last->next = NULL;
2108 last->tsbinfop = tsbinfop;
2109 tsbinfop->tsb_flags |= TSB_SWAPPED;
2110 /*
2111 * Zero out the TTE to clear the valid bit.
2112 * Note we can't use a value like 0xbad because we want to
2113 * ensure diagnostic bits are NEVER set on TTEs that might
2114 * be loaded. The intent is to catch any invalid access
2115 * to the swapped TSB, such as a thread running with a valid
2116 * context without first calling sfmmu_tsb_swapin() to
2117 * allocate TSB memory.
2118 */
2119 tsbinfop->tsb_tte.ll = 0;
2120 }
2121
2122 /* Now we can drop the lock and free the TSB memory. */
2123 sfmmu_hat_exit(hatlockp);
2124 for (; freelist != NULL; freelist = next) {
2125 next = freelist->next;
2126 sfmmu_tsb_free(freelist->tsbinfop);
2127 }
2128 }
2129
2130 /*
2131 * Duplicate the translations of an as into another newas
2132 */
2133 /* ARGSUSED */
2134 int
hat_dup(struct hat * hat,struct hat * newhat,caddr_t addr,size_t len,uint_t flag)2135 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2136 uint_t flag)
2137 {
2138 sf_srd_t *srdp;
2139 sf_scd_t *scdp;
2140 int i;
2141 extern uint_t get_color_start(struct as *);
2142
2143 ASSERT(hat->sfmmu_xhat_provider == NULL);
2144 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2145 (flag == HAT_DUP_SRD));
2146 ASSERT(hat != ksfmmup);
2147 ASSERT(newhat != ksfmmup);
2148 ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2149
2150 if (flag == HAT_DUP_COW) {
2151 panic("hat_dup: HAT_DUP_COW not supported");
2152 }
2153
2154 if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2155 ASSERT(srdp->srd_evp != NULL);
2156 VN_HOLD(srdp->srd_evp);
2157 ASSERT(srdp->srd_refcnt > 0);
2158 newhat->sfmmu_srdp = srdp;
2159 atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2160 }
2161
2162 /*
2163 * HAT_DUP_ALL flag is used after as duplication is done.
2164 */
2165 if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2166 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2167 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2168 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2169 newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2170 }
2171
2172 /* check if need to join scd */
2173 if ((scdp = hat->sfmmu_scdp) != NULL &&
2174 newhat->sfmmu_scdp != scdp) {
2175 int ret;
2176 SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2177 &scdp->scd_region_map, ret);
2178 ASSERT(ret);
2179 sfmmu_join_scd(scdp, newhat);
2180 ASSERT(newhat->sfmmu_scdp == scdp &&
2181 scdp->scd_refcnt >= 2);
2182 for (i = 0; i < max_mmu_page_sizes; i++) {
2183 newhat->sfmmu_ismttecnt[i] =
2184 hat->sfmmu_ismttecnt[i];
2185 newhat->sfmmu_scdismttecnt[i] =
2186 hat->sfmmu_scdismttecnt[i];
2187 }
2188 }
2189
2190 sfmmu_check_page_sizes(newhat, 1);
2191 }
2192
2193 if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2194 update_proc_pgcolorbase_after_fork != 0) {
2195 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2196 }
2197 return (0);
2198 }
2199
2200 void
hat_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags)2201 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2202 uint_t attr, uint_t flags)
2203 {
2204 hat_do_memload(hat, addr, pp, attr, flags,
2205 SFMMU_INVALID_SHMERID);
2206 }
2207
2208 void
hat_memload_region(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2209 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2210 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2211 {
2212 uint_t rid;
2213 if (rcookie == HAT_INVALID_REGION_COOKIE ||
2214 hat->sfmmu_xhat_provider != NULL) {
2215 hat_do_memload(hat, addr, pp, attr, flags,
2216 SFMMU_INVALID_SHMERID);
2217 return;
2218 }
2219 rid = (uint_t)((uint64_t)rcookie);
2220 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2221 hat_do_memload(hat, addr, pp, attr, flags, rid);
2222 }
2223
2224 /*
2225 * Set up addr to map to page pp with protection prot.
2226 * As an optimization we also load the TSB with the
2227 * corresponding tte but it is no big deal if the tte gets kicked out.
2228 */
2229 static void
hat_do_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,uint_t rid)2230 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2231 uint_t attr, uint_t flags, uint_t rid)
2232 {
2233 tte_t tte;
2234
2235
2236 ASSERT(hat != NULL);
2237 ASSERT(PAGE_LOCKED(pp));
2238 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2239 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2240 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2241 SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2242
2243 if (PP_ISFREE(pp)) {
2244 panic("hat_memload: loading a mapping to free page %p",
2245 (void *)pp);
2246 }
2247
2248 if (hat->sfmmu_xhat_provider) {
2249 /* no regions for xhats */
2250 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2251 XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2252 return;
2253 }
2254
2255 ASSERT((hat == ksfmmup) ||
2256 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2257
2258 if (flags & ~SFMMU_LOAD_ALLFLAG)
2259 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2260 flags & ~SFMMU_LOAD_ALLFLAG);
2261
2262 if (hat->sfmmu_rmstat)
2263 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2264
2265 #if defined(SF_ERRATA_57)
2266 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2267 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2268 !(flags & HAT_LOAD_SHARE)) {
2269 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2270 " page executable");
2271 attr &= ~PROT_EXEC;
2272 }
2273 #endif
2274
2275 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2276 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2277
2278 /*
2279 * Check TSB and TLB page sizes.
2280 */
2281 if ((flags & HAT_LOAD_SHARE) == 0) {
2282 sfmmu_check_page_sizes(hat, 1);
2283 }
2284 }
2285
2286 /*
2287 * hat_devload can be called to map real memory (e.g.
2288 * /dev/kmem) and even though hat_devload will determine pf is
2289 * for memory, it will be unable to get a shared lock on the
2290 * page (because someone else has it exclusively) and will
2291 * pass dp = NULL. If tteload doesn't get a non-NULL
2292 * page pointer it can't cache memory.
2293 */
2294 void
hat_devload(struct hat * hat,caddr_t addr,size_t len,pfn_t pfn,uint_t attr,int flags)2295 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2296 uint_t attr, int flags)
2297 {
2298 tte_t tte;
2299 struct page *pp = NULL;
2300 int use_lgpg = 0;
2301
2302 ASSERT(hat != NULL);
2303
2304 if (hat->sfmmu_xhat_provider) {
2305 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2306 return;
2307 }
2308
2309 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2310 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2311 ASSERT((hat == ksfmmup) ||
2312 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2313 if (len == 0)
2314 panic("hat_devload: zero len");
2315 if (flags & ~SFMMU_LOAD_ALLFLAG)
2316 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2317 flags & ~SFMMU_LOAD_ALLFLAG);
2318
2319 #if defined(SF_ERRATA_57)
2320 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2321 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2322 !(flags & HAT_LOAD_SHARE)) {
2323 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2324 " page executable");
2325 attr &= ~PROT_EXEC;
2326 }
2327 #endif
2328
2329 /*
2330 * If it's a memory page find its pp
2331 */
2332 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2333 pp = page_numtopp_nolock(pfn);
2334 if (pp == NULL) {
2335 flags |= HAT_LOAD_NOCONSIST;
2336 } else {
2337 if (PP_ISFREE(pp)) {
2338 panic("hat_memload: loading "
2339 "a mapping to free page %p",
2340 (void *)pp);
2341 }
2342 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2343 panic("hat_memload: loading a mapping "
2344 "to unlocked relocatable page %p",
2345 (void *)pp);
2346 }
2347 ASSERT(len == MMU_PAGESIZE);
2348 }
2349 }
2350
2351 if (hat->sfmmu_rmstat)
2352 hat_resvstat(len, hat->sfmmu_as, addr);
2353
2354 if (flags & HAT_LOAD_NOCONSIST) {
2355 attr |= SFMMU_UNCACHEVTTE;
2356 use_lgpg = 1;
2357 }
2358 if (!pf_is_memory(pfn)) {
2359 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2360 use_lgpg = 1;
2361 switch (attr & HAT_ORDER_MASK) {
2362 case HAT_STRICTORDER:
2363 case HAT_UNORDERED_OK:
2364 /*
2365 * we set the side effect bit for all non
2366 * memory mappings unless merging is ok
2367 */
2368 attr |= SFMMU_SIDEFFECT;
2369 break;
2370 case HAT_MERGING_OK:
2371 case HAT_LOADCACHING_OK:
2372 case HAT_STORECACHING_OK:
2373 break;
2374 default:
2375 panic("hat_devload: bad attr");
2376 break;
2377 }
2378 }
2379 while (len) {
2380 if (!use_lgpg) {
2381 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2382 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2383 flags, SFMMU_INVALID_SHMERID);
2384 len -= MMU_PAGESIZE;
2385 addr += MMU_PAGESIZE;
2386 pfn++;
2387 continue;
2388 }
2389 /*
2390 * try to use large pages, check va/pa alignments
2391 * Note that 32M/256M page sizes are not (yet) supported.
2392 */
2393 if ((len >= MMU_PAGESIZE4M) &&
2394 !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2395 !(disable_large_pages & (1 << TTE4M)) &&
2396 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2397 sfmmu_memtte(&tte, pfn, attr, TTE4M);
2398 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2399 flags, SFMMU_INVALID_SHMERID);
2400 len -= MMU_PAGESIZE4M;
2401 addr += MMU_PAGESIZE4M;
2402 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2403 } else if ((len >= MMU_PAGESIZE512K) &&
2404 !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2405 !(disable_large_pages & (1 << TTE512K)) &&
2406 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2407 sfmmu_memtte(&tte, pfn, attr, TTE512K);
2408 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2409 flags, SFMMU_INVALID_SHMERID);
2410 len -= MMU_PAGESIZE512K;
2411 addr += MMU_PAGESIZE512K;
2412 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2413 } else if ((len >= MMU_PAGESIZE64K) &&
2414 !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2415 !(disable_large_pages & (1 << TTE64K)) &&
2416 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2417 sfmmu_memtte(&tte, pfn, attr, TTE64K);
2418 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2419 flags, SFMMU_INVALID_SHMERID);
2420 len -= MMU_PAGESIZE64K;
2421 addr += MMU_PAGESIZE64K;
2422 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2423 } else {
2424 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2425 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2426 flags, SFMMU_INVALID_SHMERID);
2427 len -= MMU_PAGESIZE;
2428 addr += MMU_PAGESIZE;
2429 pfn++;
2430 }
2431 }
2432
2433 /*
2434 * Check TSB and TLB page sizes.
2435 */
2436 if ((flags & HAT_LOAD_SHARE) == 0) {
2437 sfmmu_check_page_sizes(hat, 1);
2438 }
2439 }
2440
2441 void
hat_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags)2442 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2443 struct page **pps, uint_t attr, uint_t flags)
2444 {
2445 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2446 SFMMU_INVALID_SHMERID);
2447 }
2448
2449 void
hat_memload_array_region(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2450 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2451 struct page **pps, uint_t attr, uint_t flags,
2452 hat_region_cookie_t rcookie)
2453 {
2454 uint_t rid;
2455 if (rcookie == HAT_INVALID_REGION_COOKIE ||
2456 hat->sfmmu_xhat_provider != NULL) {
2457 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2458 SFMMU_INVALID_SHMERID);
2459 return;
2460 }
2461 rid = (uint_t)((uint64_t)rcookie);
2462 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2463 hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2464 }
2465
2466 /*
2467 * Map the largest extend possible out of the page array. The array may NOT
2468 * be in order. The largest possible mapping a page can have
2469 * is specified in the p_szc field. The p_szc field
2470 * cannot change as long as there any mappings (large or small)
2471 * to any of the pages that make up the large page. (ie. any
2472 * promotion/demotion of page size is not up to the hat but up to
2473 * the page free list manager). The array
2474 * should consist of properly aligned contigous pages that are
2475 * part of a big page for a large mapping to be created.
2476 */
2477 static void
hat_do_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,uint_t rid)2478 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2479 struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2480 {
2481 int ttesz;
2482 size_t mapsz;
2483 pgcnt_t numpg, npgs;
2484 tte_t tte;
2485 page_t *pp;
2486 uint_t large_pages_disable;
2487
2488 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2489 SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2490
2491 if (hat->sfmmu_xhat_provider) {
2492 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2493 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2494 return;
2495 }
2496
2497 if (hat->sfmmu_rmstat)
2498 hat_resvstat(len, hat->sfmmu_as, addr);
2499
2500 #if defined(SF_ERRATA_57)
2501 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2502 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2503 !(flags & HAT_LOAD_SHARE)) {
2504 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2505 "user page executable");
2506 attr &= ~PROT_EXEC;
2507 }
2508 #endif
2509
2510 /* Get number of pages */
2511 npgs = len >> MMU_PAGESHIFT;
2512
2513 if (flags & HAT_LOAD_SHARE) {
2514 large_pages_disable = disable_ism_large_pages;
2515 } else {
2516 large_pages_disable = disable_large_pages;
2517 }
2518
2519 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2520 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2521 rid);
2522 return;
2523 }
2524
2525 while (npgs >= NHMENTS) {
2526 pp = *pps;
2527 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2528 /*
2529 * Check if this page size is disabled.
2530 */
2531 if (large_pages_disable & (1 << ttesz))
2532 continue;
2533
2534 numpg = TTEPAGES(ttesz);
2535 mapsz = numpg << MMU_PAGESHIFT;
2536 if ((npgs >= numpg) &&
2537 IS_P2ALIGNED(addr, mapsz) &&
2538 IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2539 /*
2540 * At this point we have enough pages and
2541 * we know the virtual address and the pfn
2542 * are properly aligned. We still need
2543 * to check for physical contiguity but since
2544 * it is very likely that this is the case
2545 * we will assume they are so and undo
2546 * the request if necessary. It would
2547 * be great if we could get a hint flag
2548 * like HAT_CONTIG which would tell us
2549 * the pages are contigous for sure.
2550 */
2551 sfmmu_memtte(&tte, (*pps)->p_pagenum,
2552 attr, ttesz);
2553 if (!sfmmu_tteload_array(hat, &tte, addr,
2554 pps, flags, rid)) {
2555 break;
2556 }
2557 }
2558 }
2559 if (ttesz == TTE8K) {
2560 /*
2561 * We were not able to map array using a large page
2562 * batch a hmeblk or fraction at a time.
2563 */
2564 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2565 & (NHMENTS-1);
2566 numpg = NHMENTS - numpg;
2567 ASSERT(numpg <= npgs);
2568 mapsz = numpg * MMU_PAGESIZE;
2569 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2570 numpg, rid);
2571 }
2572 addr += mapsz;
2573 npgs -= numpg;
2574 pps += numpg;
2575 }
2576
2577 if (npgs) {
2578 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2579 rid);
2580 }
2581
2582 /*
2583 * Check TSB and TLB page sizes.
2584 */
2585 if ((flags & HAT_LOAD_SHARE) == 0) {
2586 sfmmu_check_page_sizes(hat, 1);
2587 }
2588 }
2589
2590 /*
2591 * Function tries to batch 8K pages into the same hme blk.
2592 */
2593 static void
sfmmu_memload_batchsmall(struct hat * hat,caddr_t vaddr,page_t ** pps,uint_t attr,uint_t flags,pgcnt_t npgs,uint_t rid)2594 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2595 uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2596 {
2597 tte_t tte;
2598 page_t *pp;
2599 struct hmehash_bucket *hmebp;
2600 struct hme_blk *hmeblkp;
2601 int index;
2602
2603 while (npgs) {
2604 /*
2605 * Acquire the hash bucket.
2606 */
2607 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2608 rid);
2609 ASSERT(hmebp);
2610
2611 /*
2612 * Find the hment block.
2613 */
2614 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2615 TTE8K, flags, rid);
2616 ASSERT(hmeblkp);
2617
2618 do {
2619 /*
2620 * Make the tte.
2621 */
2622 pp = *pps;
2623 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2624
2625 /*
2626 * Add the translation.
2627 */
2628 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2629 vaddr, pps, flags, rid);
2630
2631 /*
2632 * Goto next page.
2633 */
2634 pps++;
2635 npgs--;
2636
2637 /*
2638 * Goto next address.
2639 */
2640 vaddr += MMU_PAGESIZE;
2641
2642 /*
2643 * Don't crossover into a different hmentblk.
2644 */
2645 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2646 (NHMENTS-1));
2647
2648 } while (index != 0 && npgs != 0);
2649
2650 /*
2651 * Release the hash bucket.
2652 */
2653
2654 sfmmu_tteload_release_hashbucket(hmebp);
2655 }
2656 }
2657
2658 /*
2659 * Construct a tte for a page:
2660 *
2661 * tte_valid = 1
2662 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2663 * tte_size = size
2664 * tte_nfo = attr & HAT_NOFAULT
2665 * tte_ie = attr & HAT_STRUCTURE_LE
2666 * tte_hmenum = hmenum
2667 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2668 * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2669 * tte_ref = 1 (optimization)
2670 * tte_wr_perm = attr & PROT_WRITE;
2671 * tte_no_sync = attr & HAT_NOSYNC
2672 * tte_lock = attr & SFMMU_LOCKTTE
2673 * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2674 * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2675 * tte_e = attr & SFMMU_SIDEFFECT
2676 * tte_priv = !(attr & PROT_USER)
2677 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2678 * tte_glb = 0
2679 */
2680 void
sfmmu_memtte(tte_t * ttep,pfn_t pfn,uint_t attr,int tte_sz)2681 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2682 {
2683 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2684
2685 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2686 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2687
2688 if (TTE_IS_NOSYNC(ttep)) {
2689 TTE_SET_REF(ttep);
2690 if (TTE_IS_WRITABLE(ttep)) {
2691 TTE_SET_MOD(ttep);
2692 }
2693 }
2694 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2695 panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2696 }
2697 }
2698
2699 /*
2700 * This function will add a translation to the hme_blk and allocate the
2701 * hme_blk if one does not exist.
2702 * If a page structure is specified then it will add the
2703 * corresponding hment to the mapping list.
2704 * It will also update the hmenum field for the tte.
2705 *
2706 * Currently this function is only used for kernel mappings.
2707 * So pass invalid region to sfmmu_tteload_array().
2708 */
2709 void
sfmmu_tteload(struct hat * sfmmup,tte_t * ttep,caddr_t vaddr,page_t * pp,uint_t flags)2710 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2711 uint_t flags)
2712 {
2713 ASSERT(sfmmup == ksfmmup);
2714 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2715 SFMMU_INVALID_SHMERID);
2716 }
2717
2718 /*
2719 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2720 * Assumes that a particular page size may only be resident in one TSB.
2721 */
2722 static void
sfmmu_mod_tsb(sfmmu_t * sfmmup,caddr_t vaddr,tte_t * ttep,int ttesz)2723 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2724 {
2725 struct tsb_info *tsbinfop = NULL;
2726 uint64_t tag;
2727 struct tsbe *tsbe_addr;
2728 uint64_t tsb_base;
2729 uint_t tsb_size;
2730 int vpshift = MMU_PAGESHIFT;
2731 int phys = 0;
2732
2733 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2734 phys = ktsb_phys;
2735 if (ttesz >= TTE4M) {
2736 #ifndef sun4v
2737 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2738 #endif
2739 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2740 tsb_size = ktsb4m_szcode;
2741 } else {
2742 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2743 tsb_size = ktsb_szcode;
2744 }
2745 } else {
2746 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2747
2748 /*
2749 * If there isn't a TSB for this page size, or the TSB is
2750 * swapped out, there is nothing to do. Note that the latter
2751 * case seems impossible but can occur if hat_pageunload()
2752 * is called on an ISM mapping while the process is swapped
2753 * out.
2754 */
2755 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2756 return;
2757
2758 /*
2759 * If another thread is in the middle of relocating a TSB
2760 * we can't unload the entry so set a flag so that the
2761 * TSB will be flushed before it can be accessed by the
2762 * process.
2763 */
2764 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2765 if (ttep == NULL)
2766 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2767 return;
2768 }
2769 #if defined(UTSB_PHYS)
2770 phys = 1;
2771 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2772 #else
2773 tsb_base = (uint64_t)tsbinfop->tsb_va;
2774 #endif
2775 tsb_size = tsbinfop->tsb_szc;
2776 }
2777 if (ttesz >= TTE4M)
2778 vpshift = MMU_PAGESHIFT4M;
2779
2780 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2781 tag = sfmmu_make_tsbtag(vaddr);
2782
2783 if (ttep == NULL) {
2784 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2785 } else {
2786 if (ttesz >= TTE4M) {
2787 SFMMU_STAT(sf_tsb_load4m);
2788 } else {
2789 SFMMU_STAT(sf_tsb_load8k);
2790 }
2791
2792 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2793 }
2794 }
2795
2796 /*
2797 * Unmap all entries from [start, end) matching the given page size.
2798 *
2799 * This function is used primarily to unmap replicated 64K or 512K entries
2800 * from the TSB that are inserted using the base page size TSB pointer, but
2801 * it may also be called to unmap a range of addresses from the TSB.
2802 */
2803 void
sfmmu_unload_tsb_range(sfmmu_t * sfmmup,caddr_t start,caddr_t end,int ttesz)2804 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2805 {
2806 struct tsb_info *tsbinfop;
2807 uint64_t tag;
2808 struct tsbe *tsbe_addr;
2809 caddr_t vaddr;
2810 uint64_t tsb_base;
2811 int vpshift, vpgsz;
2812 uint_t tsb_size;
2813 int phys = 0;
2814
2815 /*
2816 * Assumptions:
2817 * If ttesz == 8K, 64K or 512K, we walk through the range 8K
2818 * at a time shooting down any valid entries we encounter.
2819 *
2820 * If ttesz >= 4M we walk the range 4M at a time shooting
2821 * down any valid mappings we find.
2822 */
2823 if (sfmmup == ksfmmup) {
2824 phys = ktsb_phys;
2825 if (ttesz >= TTE4M) {
2826 #ifndef sun4v
2827 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2828 #endif
2829 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2830 tsb_size = ktsb4m_szcode;
2831 } else {
2832 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2833 tsb_size = ktsb_szcode;
2834 }
2835 } else {
2836 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2837
2838 /*
2839 * If there isn't a TSB for this page size, or the TSB is
2840 * swapped out, there is nothing to do. Note that the latter
2841 * case seems impossible but can occur if hat_pageunload()
2842 * is called on an ISM mapping while the process is swapped
2843 * out.
2844 */
2845 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2846 return;
2847
2848 /*
2849 * If another thread is in the middle of relocating a TSB
2850 * we can't unload the entry so set a flag so that the
2851 * TSB will be flushed before it can be accessed by the
2852 * process.
2853 */
2854 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2855 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2856 return;
2857 }
2858 #if defined(UTSB_PHYS)
2859 phys = 1;
2860 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2861 #else
2862 tsb_base = (uint64_t)tsbinfop->tsb_va;
2863 #endif
2864 tsb_size = tsbinfop->tsb_szc;
2865 }
2866 if (ttesz >= TTE4M) {
2867 vpshift = MMU_PAGESHIFT4M;
2868 vpgsz = MMU_PAGESIZE4M;
2869 } else {
2870 vpshift = MMU_PAGESHIFT;
2871 vpgsz = MMU_PAGESIZE;
2872 }
2873
2874 for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2875 tag = sfmmu_make_tsbtag(vaddr);
2876 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2877 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2878 }
2879 }
2880
2881 /*
2882 * Select the optimum TSB size given the number of mappings
2883 * that need to be cached.
2884 */
2885 static int
sfmmu_select_tsb_szc(pgcnt_t pgcnt)2886 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2887 {
2888 int szc = 0;
2889
2890 #ifdef DEBUG
2891 if (tsb_grow_stress) {
2892 uint32_t randval = (uint32_t)gettick() >> 4;
2893 return (randval % (tsb_max_growsize + 1));
2894 }
2895 #endif /* DEBUG */
2896
2897 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2898 szc++;
2899 return (szc);
2900 }
2901
2902 /*
2903 * This function will add a translation to the hme_blk and allocate the
2904 * hme_blk if one does not exist.
2905 * If a page structure is specified then it will add the
2906 * corresponding hment to the mapping list.
2907 * It will also update the hmenum field for the tte.
2908 * Furthermore, it attempts to create a large page translation
2909 * for <addr,hat> at page array pps. It assumes addr and first
2910 * pp is correctly aligned. It returns 0 if successful and 1 otherwise.
2911 */
2912 static int
sfmmu_tteload_array(sfmmu_t * sfmmup,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)2913 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2914 page_t **pps, uint_t flags, uint_t rid)
2915 {
2916 struct hmehash_bucket *hmebp;
2917 struct hme_blk *hmeblkp;
2918 int ret;
2919 uint_t size;
2920
2921 /*
2922 * Get mapping size.
2923 */
2924 size = TTE_CSZ(ttep);
2925 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2926
2927 /*
2928 * Acquire the hash bucket.
2929 */
2930 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2931 ASSERT(hmebp);
2932
2933 /*
2934 * Find the hment block.
2935 */
2936 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2937 rid);
2938 ASSERT(hmeblkp);
2939
2940 /*
2941 * Add the translation.
2942 */
2943 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2944 rid);
2945
2946 /*
2947 * Release the hash bucket.
2948 */
2949 sfmmu_tteload_release_hashbucket(hmebp);
2950
2951 return (ret);
2952 }
2953
2954 /*
2955 * Function locks and returns a pointer to the hash bucket for vaddr and size.
2956 */
2957 static struct hmehash_bucket *
sfmmu_tteload_acquire_hashbucket(sfmmu_t * sfmmup,caddr_t vaddr,int size,uint_t rid)2958 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2959 uint_t rid)
2960 {
2961 struct hmehash_bucket *hmebp;
2962 int hmeshift;
2963 void *htagid = sfmmutohtagid(sfmmup, rid);
2964
2965 ASSERT(htagid != NULL);
2966
2967 hmeshift = HME_HASH_SHIFT(size);
2968
2969 hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2970
2971 SFMMU_HASH_LOCK(hmebp);
2972
2973 return (hmebp);
2974 }
2975
2976 /*
2977 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2978 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2979 * allocated.
2980 */
2981 static struct hme_blk *
sfmmu_tteload_find_hmeblk(sfmmu_t * sfmmup,struct hmehash_bucket * hmebp,caddr_t vaddr,uint_t size,uint_t flags,uint_t rid)2982 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2983 caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2984 {
2985 hmeblk_tag hblktag;
2986 int hmeshift;
2987 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2988
2989 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2990
2991 hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2992 ASSERT(hblktag.htag_id != NULL);
2993 hmeshift = HME_HASH_SHIFT(size);
2994 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2995 hblktag.htag_rehash = HME_HASH_REHASH(size);
2996 hblktag.htag_rid = rid;
2997
2998 ttearray_realloc:
2999
3000 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3001
3002 /*
3003 * We block until hblk_reserve_lock is released; it's held by
3004 * the thread, temporarily using hblk_reserve, until hblk_reserve is
3005 * replaced by a hblk from sfmmu8_cache.
3006 */
3007 if (hmeblkp == (struct hme_blk *)hblk_reserve &&
3008 hblk_reserve_thread != curthread) {
3009 SFMMU_HASH_UNLOCK(hmebp);
3010 mutex_enter(&hblk_reserve_lock);
3011 mutex_exit(&hblk_reserve_lock);
3012 SFMMU_STAT(sf_hblk_reserve_hit);
3013 SFMMU_HASH_LOCK(hmebp);
3014 goto ttearray_realloc;
3015 }
3016
3017 if (hmeblkp == NULL) {
3018 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3019 hblktag, flags, rid);
3020 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3021 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3022 } else {
3023 /*
3024 * It is possible for 8k and 64k hblks to collide since they
3025 * have the same rehash value. This is because we
3026 * lazily free hblks and 8K/64K blks could be lingering.
3027 * If we find size mismatch we free the block and & try again.
3028 */
3029 if (get_hblk_ttesz(hmeblkp) != size) {
3030 ASSERT(!hmeblkp->hblk_vcnt);
3031 ASSERT(!hmeblkp->hblk_hmecnt);
3032 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3033 &list, 0);
3034 goto ttearray_realloc;
3035 }
3036 if (hmeblkp->hblk_shw_bit) {
3037 /*
3038 * if the hblk was previously used as a shadow hblk then
3039 * we will change it to a normal hblk
3040 */
3041 ASSERT(!hmeblkp->hblk_shared);
3042 if (hmeblkp->hblk_shw_mask) {
3043 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3044 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3045 goto ttearray_realloc;
3046 } else {
3047 hmeblkp->hblk_shw_bit = 0;
3048 }
3049 }
3050 SFMMU_STAT(sf_hblk_hit);
3051 }
3052
3053 /*
3054 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3055 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3056 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3057 * just add these hmeblks to the per-cpu pending queue.
3058 */
3059 sfmmu_hblks_list_purge(&list, 1);
3060
3061 ASSERT(get_hblk_ttesz(hmeblkp) == size);
3062 ASSERT(!hmeblkp->hblk_shw_bit);
3063 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3064 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3065 ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3066
3067 return (hmeblkp);
3068 }
3069
3070 /*
3071 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3072 * otherwise.
3073 */
3074 static int
sfmmu_tteload_addentry(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)3075 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3076 caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3077 {
3078 page_t *pp = *pps;
3079 int hmenum, size, remap;
3080 tte_t tteold, flush_tte;
3081 #ifdef DEBUG
3082 tte_t orig_old;
3083 #endif /* DEBUG */
3084 struct sf_hment *sfhme;
3085 kmutex_t *pml, *pmtx;
3086 hatlock_t *hatlockp;
3087 int myflt;
3088
3089 /*
3090 * remove this panic when we decide to let user virtual address
3091 * space be >= USERLIMIT.
3092 */
3093 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3094 panic("user addr %p in kernel space", (void *)vaddr);
3095 #if defined(TTE_IS_GLOBAL)
3096 if (TTE_IS_GLOBAL(ttep))
3097 panic("sfmmu_tteload: creating global tte");
3098 #endif
3099
3100 #ifdef DEBUG
3101 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3102 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3103 panic("sfmmu_tteload: non cacheable memory tte");
3104 #endif /* DEBUG */
3105
3106 /* don't simulate dirty bit for writeable ISM/DISM mappings */
3107 if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3108 TTE_SET_REF(ttep);
3109 TTE_SET_MOD(ttep);
3110 }
3111
3112 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3113 !TTE_IS_MOD(ttep)) {
3114 /*
3115 * Don't load TSB for dummy as in ISM. Also don't preload
3116 * the TSB if the TTE isn't writable since we're likely to
3117 * fault on it again -- preloading can be fairly expensive.
3118 */
3119 flags |= SFMMU_NO_TSBLOAD;
3120 }
3121
3122 size = TTE_CSZ(ttep);
3123 switch (size) {
3124 case TTE8K:
3125 SFMMU_STAT(sf_tteload8k);
3126 break;
3127 case TTE64K:
3128 SFMMU_STAT(sf_tteload64k);
3129 break;
3130 case TTE512K:
3131 SFMMU_STAT(sf_tteload512k);
3132 break;
3133 case TTE4M:
3134 SFMMU_STAT(sf_tteload4m);
3135 break;
3136 case (TTE32M):
3137 SFMMU_STAT(sf_tteload32m);
3138 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3139 break;
3140 case (TTE256M):
3141 SFMMU_STAT(sf_tteload256m);
3142 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3143 break;
3144 }
3145
3146 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3147 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3148 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3149 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3150
3151 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3152
3153 /*
3154 * Need to grab mlist lock here so that pageunload
3155 * will not change tte behind us.
3156 */
3157 if (pp) {
3158 pml = sfmmu_mlist_enter(pp);
3159 }
3160
3161 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3162 /*
3163 * Look for corresponding hment and if valid verify
3164 * pfns are equal.
3165 */
3166 remap = TTE_IS_VALID(&tteold);
3167 if (remap) {
3168 pfn_t new_pfn, old_pfn;
3169
3170 old_pfn = TTE_TO_PFN(vaddr, &tteold);
3171 new_pfn = TTE_TO_PFN(vaddr, ttep);
3172
3173 if (flags & HAT_LOAD_REMAP) {
3174 /* make sure we are remapping same type of pages */
3175 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3176 panic("sfmmu_tteload - tte remap io<->memory");
3177 }
3178 if (old_pfn != new_pfn &&
3179 (pp != NULL || sfhme->hme_page != NULL)) {
3180 panic("sfmmu_tteload - tte remap pp != NULL");
3181 }
3182 } else if (old_pfn != new_pfn) {
3183 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3184 (void *)hmeblkp);
3185 }
3186 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3187 }
3188
3189 if (pp) {
3190 if (size == TTE8K) {
3191 #ifdef VAC
3192 /*
3193 * Handle VAC consistency
3194 */
3195 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3196 sfmmu_vac_conflict(sfmmup, vaddr, pp);
3197 }
3198 #endif
3199
3200 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3201 pmtx = sfmmu_page_enter(pp);
3202 PP_CLRRO(pp);
3203 sfmmu_page_exit(pmtx);
3204 } else if (!PP_ISMAPPED(pp) &&
3205 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3206 pmtx = sfmmu_page_enter(pp);
3207 if (!(PP_ISMOD(pp))) {
3208 PP_SETRO(pp);
3209 }
3210 sfmmu_page_exit(pmtx);
3211 }
3212
3213 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3214 /*
3215 * sfmmu_pagearray_setup failed so return
3216 */
3217 sfmmu_mlist_exit(pml);
3218 return (1);
3219 }
3220 }
3221
3222 /*
3223 * Make sure hment is not on a mapping list.
3224 */
3225 ASSERT(remap || (sfhme->hme_page == NULL));
3226
3227 /* if it is not a remap then hme->next better be NULL */
3228 ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3229
3230 if (flags & HAT_LOAD_LOCK) {
3231 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3232 panic("too high lckcnt-hmeblk %p",
3233 (void *)hmeblkp);
3234 }
3235 atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3236
3237 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3238 }
3239
3240 #ifdef VAC
3241 if (pp && PP_ISNC(pp)) {
3242 /*
3243 * If the physical page is marked to be uncacheable, like
3244 * by a vac conflict, make sure the new mapping is also
3245 * uncacheable.
3246 */
3247 TTE_CLR_VCACHEABLE(ttep);
3248 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3249 }
3250 #endif
3251 ttep->tte_hmenum = hmenum;
3252
3253 #ifdef DEBUG
3254 orig_old = tteold;
3255 #endif /* DEBUG */
3256
3257 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3258 if ((sfmmup == KHATID) &&
3259 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3260 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3261 }
3262 #ifdef DEBUG
3263 chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3264 #endif /* DEBUG */
3265 }
3266 ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3267
3268 if (!TTE_IS_VALID(&tteold)) {
3269
3270 atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3271 if (rid == SFMMU_INVALID_SHMERID) {
3272 atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3273 } else {
3274 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3275 sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3276 /*
3277 * We already accounted for region ttecnt's in sfmmu
3278 * during hat_join_region() processing. Here we
3279 * only update ttecnt's in region struture.
3280 */
3281 atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3282 }
3283 }
3284
3285 myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3286 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3287 sfmmup != ksfmmup) {
3288 uchar_t tteflag = 1 << size;
3289 if (rid == SFMMU_INVALID_SHMERID) {
3290 if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3291 hatlockp = sfmmu_hat_enter(sfmmup);
3292 sfmmup->sfmmu_tteflags |= tteflag;
3293 sfmmu_hat_exit(hatlockp);
3294 }
3295 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3296 hatlockp = sfmmu_hat_enter(sfmmup);
3297 sfmmup->sfmmu_rtteflags |= tteflag;
3298 sfmmu_hat_exit(hatlockp);
3299 }
3300 /*
3301 * Update the current CPU tsbmiss area, so the current thread
3302 * won't need to take the tsbmiss for the new pagesize.
3303 * The other threads in the process will update their tsb
3304 * miss area lazily in sfmmu_tsbmiss_exception() when they
3305 * fail to find the translation for a newly added pagesize.
3306 */
3307 if (size > TTE64K && myflt) {
3308 struct tsbmiss *tsbmp;
3309 kpreempt_disable();
3310 tsbmp = &tsbmiss_area[CPU->cpu_id];
3311 if (rid == SFMMU_INVALID_SHMERID) {
3312 if (!(tsbmp->uhat_tteflags & tteflag)) {
3313 tsbmp->uhat_tteflags |= tteflag;
3314 }
3315 } else {
3316 if (!(tsbmp->uhat_rtteflags & tteflag)) {
3317 tsbmp->uhat_rtteflags |= tteflag;
3318 }
3319 }
3320 kpreempt_enable();
3321 }
3322 }
3323
3324 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3325 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3326 hatlockp = sfmmu_hat_enter(sfmmup);
3327 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3328 sfmmu_hat_exit(hatlockp);
3329 }
3330
3331 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3332 hw_tte.tte_intlo;
3333 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3334 hw_tte.tte_inthi;
3335
3336 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3337 /*
3338 * If remap and new tte differs from old tte we need
3339 * to sync the mod bit and flush TLB/TSB. We don't
3340 * need to sync ref bit because we currently always set
3341 * ref bit in tteload.
3342 */
3343 ASSERT(TTE_IS_REF(ttep));
3344 if (TTE_IS_MOD(&tteold)) {
3345 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3346 }
3347 /*
3348 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3349 * hmes are only used for read only text. Adding this code for
3350 * completeness and future use of shared hmeblks with writable
3351 * mappings of VMODSORT vnodes.
3352 */
3353 if (hmeblkp->hblk_shared) {
3354 cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3355 sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3356 xt_sync(cpuset);
3357 SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3358 } else {
3359 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3360 xt_sync(sfmmup->sfmmu_cpusran);
3361 }
3362 }
3363
3364 if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3365 /*
3366 * We only preload 8K and 4M mappings into the TSB, since
3367 * 64K and 512K mappings are replicated and hence don't
3368 * have a single, unique TSB entry. Ditto for 32M/256M.
3369 */
3370 if (size == TTE8K || size == TTE4M) {
3371 sf_scd_t *scdp;
3372 hatlockp = sfmmu_hat_enter(sfmmup);
3373 /*
3374 * Don't preload private TSB if the mapping is used
3375 * by the shctx in the SCD.
3376 */
3377 scdp = sfmmup->sfmmu_scdp;
3378 if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3379 !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3380 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3381 size);
3382 }
3383 sfmmu_hat_exit(hatlockp);
3384 }
3385 }
3386 if (pp) {
3387 if (!remap) {
3388 HME_ADD(sfhme, pp);
3389 atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3390 ASSERT(hmeblkp->hblk_hmecnt > 0);
3391
3392 /*
3393 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3394 * see pageunload() for comment.
3395 */
3396 }
3397 sfmmu_mlist_exit(pml);
3398 }
3399
3400 return (0);
3401 }
3402 /*
3403 * Function unlocks hash bucket.
3404 */
3405 static void
sfmmu_tteload_release_hashbucket(struct hmehash_bucket * hmebp)3406 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3407 {
3408 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3409 SFMMU_HASH_UNLOCK(hmebp);
3410 }
3411
3412 /*
3413 * function which checks and sets up page array for a large
3414 * translation. Will set p_vcolor, p_index, p_ro fields.
3415 * Assumes addr and pfnum of first page are properly aligned.
3416 * Will check for physical contiguity. If check fails it return
3417 * non null.
3418 */
3419 static int
sfmmu_pagearray_setup(caddr_t addr,page_t ** pps,tte_t * ttep,int remap)3420 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3421 {
3422 int i, index, ttesz;
3423 pfn_t pfnum;
3424 pgcnt_t npgs;
3425 page_t *pp, *pp1;
3426 kmutex_t *pmtx;
3427 #ifdef VAC
3428 int osz;
3429 int cflags = 0;
3430 int vac_err = 0;
3431 #endif
3432 int newidx = 0;
3433
3434 ttesz = TTE_CSZ(ttep);
3435
3436 ASSERT(ttesz > TTE8K);
3437
3438 npgs = TTEPAGES(ttesz);
3439 index = PAGESZ_TO_INDEX(ttesz);
3440
3441 pfnum = (*pps)->p_pagenum;
3442 ASSERT(IS_P2ALIGNED(pfnum, npgs));
3443
3444 /*
3445 * Save the first pp so we can do HAT_TMPNC at the end.
3446 */
3447 pp1 = *pps;
3448 #ifdef VAC
3449 osz = fnd_mapping_sz(pp1);
3450 #endif
3451
3452 for (i = 0; i < npgs; i++, pps++) {
3453 pp = *pps;
3454 ASSERT(PAGE_LOCKED(pp));
3455 ASSERT(pp->p_szc >= ttesz);
3456 ASSERT(pp->p_szc == pp1->p_szc);
3457 ASSERT(sfmmu_mlist_held(pp));
3458
3459 /*
3460 * XXX is it possible to maintain P_RO on the root only?
3461 */
3462 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3463 pmtx = sfmmu_page_enter(pp);
3464 PP_CLRRO(pp);
3465 sfmmu_page_exit(pmtx);
3466 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3467 !PP_ISMOD(pp)) {
3468 pmtx = sfmmu_page_enter(pp);
3469 if (!(PP_ISMOD(pp))) {
3470 PP_SETRO(pp);
3471 }
3472 sfmmu_page_exit(pmtx);
3473 }
3474
3475 /*
3476 * If this is a remap we skip vac & contiguity checks.
3477 */
3478 if (remap)
3479 continue;
3480
3481 /*
3482 * set p_vcolor and detect any vac conflicts.
3483 */
3484 #ifdef VAC
3485 if (vac_err == 0) {
3486 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3487
3488 }
3489 #endif
3490
3491 /*
3492 * Save current index in case we need to undo it.
3493 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))"
3494 * "SFMMU_INDEX_SHIFT 6"
3495 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)"
3496 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)"
3497 *
3498 * So: index = PAGESZ_TO_INDEX(ttesz);
3499 * if ttesz == 1 then index = 0x2
3500 * 2 then index = 0x4
3501 * 3 then index = 0x8
3502 * 4 then index = 0x10
3503 * 5 then index = 0x20
3504 * The code below checks if it's a new pagesize (ie, newidx)
3505 * in case we need to take it back out of p_index,
3506 * and then or's the new index into the existing index.
3507 */
3508 if ((PP_MAPINDEX(pp) & index) == 0)
3509 newidx = 1;
3510 pp->p_index = (PP_MAPINDEX(pp) | index);
3511
3512 /*
3513 * contiguity check
3514 */
3515 if (pp->p_pagenum != pfnum) {
3516 /*
3517 * If we fail the contiguity test then
3518 * the only thing we need to fix is the p_index field.
3519 * We might get a few extra flushes but since this
3520 * path is rare that is ok. The p_ro field will
3521 * get automatically fixed on the next tteload to
3522 * the page. NO TNC bit is set yet.
3523 */
3524 while (i >= 0) {
3525 pp = *pps;
3526 if (newidx)
3527 pp->p_index = (PP_MAPINDEX(pp) &
3528 ~index);
3529 pps--;
3530 i--;
3531 }
3532 return (1);
3533 }
3534 pfnum++;
3535 addr += MMU_PAGESIZE;
3536 }
3537
3538 #ifdef VAC
3539 if (vac_err) {
3540 if (ttesz > osz) {
3541 /*
3542 * There are some smaller mappings that causes vac
3543 * conflicts. Convert all existing small mappings to
3544 * TNC.
3545 */
3546 SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3547 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3548 npgs);
3549 } else {
3550 /* EMPTY */
3551 /*
3552 * If there exists an big page mapping,
3553 * that means the whole existing big page
3554 * has TNC setting already. No need to covert to
3555 * TNC again.
3556 */
3557 ASSERT(PP_ISTNC(pp1));
3558 }
3559 }
3560 #endif /* VAC */
3561
3562 return (0);
3563 }
3564
3565 #ifdef VAC
3566 /*
3567 * Routine that detects vac consistency for a large page. It also
3568 * sets virtual color for all pp's for this big mapping.
3569 */
3570 static int
sfmmu_vacconflict_array(caddr_t addr,page_t * pp,int * cflags)3571 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3572 {
3573 int vcolor, ocolor;
3574
3575 ASSERT(sfmmu_mlist_held(pp));
3576
3577 if (PP_ISNC(pp)) {
3578 return (HAT_TMPNC);
3579 }
3580
3581 vcolor = addr_to_vcolor(addr);
3582 if (PP_NEWPAGE(pp)) {
3583 PP_SET_VCOLOR(pp, vcolor);
3584 return (0);
3585 }
3586
3587 ocolor = PP_GET_VCOLOR(pp);
3588 if (ocolor == vcolor) {
3589 return (0);
3590 }
3591
3592 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3593 /*
3594 * Previous user of page had a differnet color
3595 * but since there are no current users
3596 * we just flush the cache and change the color.
3597 * As an optimization for large pages we flush the
3598 * entire cache of that color and set a flag.
3599 */
3600 SFMMU_STAT(sf_pgcolor_conflict);
3601 if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3602 CacheColor_SetFlushed(*cflags, ocolor);
3603 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3604 }
3605 PP_SET_VCOLOR(pp, vcolor);
3606 return (0);
3607 }
3608
3609 /*
3610 * We got a real conflict with a current mapping.
3611 * set flags to start unencaching all mappings
3612 * and return failure so we restart looping
3613 * the pp array from the beginning.
3614 */
3615 return (HAT_TMPNC);
3616 }
3617 #endif /* VAC */
3618
3619 /*
3620 * creates a large page shadow hmeblk for a tte.
3621 * The purpose of this routine is to allow us to do quick unloads because
3622 * the vm layer can easily pass a very large but sparsely populated range.
3623 */
3624 static struct hme_blk *
sfmmu_shadow_hcreate(sfmmu_t * sfmmup,caddr_t vaddr,int ttesz,uint_t flags)3625 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3626 {
3627 struct hmehash_bucket *hmebp;
3628 hmeblk_tag hblktag;
3629 int hmeshift, size, vshift;
3630 uint_t shw_mask, newshw_mask;
3631 struct hme_blk *hmeblkp;
3632
3633 ASSERT(sfmmup != KHATID);
3634 if (mmu_page_sizes == max_mmu_page_sizes) {
3635 ASSERT(ttesz < TTE256M);
3636 } else {
3637 ASSERT(ttesz < TTE4M);
3638 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3639 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3640 }
3641
3642 if (ttesz == TTE8K) {
3643 size = TTE512K;
3644 } else {
3645 size = ++ttesz;
3646 }
3647
3648 hblktag.htag_id = sfmmup;
3649 hmeshift = HME_HASH_SHIFT(size);
3650 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3651 hblktag.htag_rehash = HME_HASH_REHASH(size);
3652 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3653 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3654
3655 SFMMU_HASH_LOCK(hmebp);
3656
3657 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3658 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3659 if (hmeblkp == NULL) {
3660 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3661 hblktag, flags, SFMMU_INVALID_SHMERID);
3662 }
3663 ASSERT(hmeblkp);
3664 if (!hmeblkp->hblk_shw_mask) {
3665 /*
3666 * if this is a unused hblk it was just allocated or could
3667 * potentially be a previous large page hblk so we need to
3668 * set the shadow bit.
3669 */
3670 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3671 hmeblkp->hblk_shw_bit = 1;
3672 } else if (hmeblkp->hblk_shw_bit == 0) {
3673 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3674 (void *)hmeblkp);
3675 }
3676 ASSERT(hmeblkp->hblk_shw_bit == 1);
3677 ASSERT(!hmeblkp->hblk_shared);
3678 vshift = vaddr_to_vshift(hblktag, vaddr, size);
3679 ASSERT(vshift < 8);
3680 /*
3681 * Atomically set shw mask bit
3682 */
3683 do {
3684 shw_mask = hmeblkp->hblk_shw_mask;
3685 newshw_mask = shw_mask | (1 << vshift);
3686 newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3687 newshw_mask);
3688 } while (newshw_mask != shw_mask);
3689
3690 SFMMU_HASH_UNLOCK(hmebp);
3691
3692 return (hmeblkp);
3693 }
3694
3695 /*
3696 * This routine cleanup a previous shadow hmeblk and changes it to
3697 * a regular hblk. This happens rarely but it is possible
3698 * when a process wants to use large pages and there are hblks still
3699 * lying around from the previous as that used these hmeblks.
3700 * The alternative was to cleanup the shadow hblks at unload time
3701 * but since so few user processes actually use large pages, it is
3702 * better to be lazy and cleanup at this time.
3703 */
3704 static void
sfmmu_shadow_hcleanup(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,struct hmehash_bucket * hmebp)3705 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3706 struct hmehash_bucket *hmebp)
3707 {
3708 caddr_t addr, endaddr;
3709 int hashno, size;
3710
3711 ASSERT(hmeblkp->hblk_shw_bit);
3712 ASSERT(!hmeblkp->hblk_shared);
3713
3714 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3715
3716 if (!hmeblkp->hblk_shw_mask) {
3717 hmeblkp->hblk_shw_bit = 0;
3718 return;
3719 }
3720 addr = (caddr_t)get_hblk_base(hmeblkp);
3721 endaddr = get_hblk_endaddr(hmeblkp);
3722 size = get_hblk_ttesz(hmeblkp);
3723 hashno = size - 1;
3724 ASSERT(hashno > 0);
3725 SFMMU_HASH_UNLOCK(hmebp);
3726
3727 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3728
3729 SFMMU_HASH_LOCK(hmebp);
3730 }
3731
3732 static void
sfmmu_free_hblks(sfmmu_t * sfmmup,caddr_t addr,caddr_t endaddr,int hashno)3733 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3734 int hashno)
3735 {
3736 int hmeshift, shadow = 0;
3737 hmeblk_tag hblktag;
3738 struct hmehash_bucket *hmebp;
3739 struct hme_blk *hmeblkp;
3740 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3741
3742 ASSERT(hashno > 0);
3743 hblktag.htag_id = sfmmup;
3744 hblktag.htag_rehash = hashno;
3745 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3746
3747 hmeshift = HME_HASH_SHIFT(hashno);
3748
3749 while (addr < endaddr) {
3750 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3751 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3752 SFMMU_HASH_LOCK(hmebp);
3753 /* inline HME_HASH_SEARCH */
3754 hmeblkp = hmebp->hmeblkp;
3755 pr_hblk = NULL;
3756 while (hmeblkp) {
3757 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3758 /* found hme_blk */
3759 ASSERT(!hmeblkp->hblk_shared);
3760 if (hmeblkp->hblk_shw_bit) {
3761 if (hmeblkp->hblk_shw_mask) {
3762 shadow = 1;
3763 sfmmu_shadow_hcleanup(sfmmup,
3764 hmeblkp, hmebp);
3765 break;
3766 } else {
3767 hmeblkp->hblk_shw_bit = 0;
3768 }
3769 }
3770
3771 /*
3772 * Hblk_hmecnt and hblk_vcnt could be non zero
3773 * since hblk_unload() does not gurantee that.
3774 *
3775 * XXX - this could cause tteload() to spin
3776 * where sfmmu_shadow_hcleanup() is called.
3777 */
3778 }
3779
3780 nx_hblk = hmeblkp->hblk_next;
3781 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3782 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3783 &list, 0);
3784 } else {
3785 pr_hblk = hmeblkp;
3786 }
3787 hmeblkp = nx_hblk;
3788 }
3789
3790 SFMMU_HASH_UNLOCK(hmebp);
3791
3792 if (shadow) {
3793 /*
3794 * We found another shadow hblk so cleaned its
3795 * children. We need to go back and cleanup
3796 * the original hblk so we don't change the
3797 * addr.
3798 */
3799 shadow = 0;
3800 } else {
3801 addr = (caddr_t)roundup((uintptr_t)addr + 1,
3802 (1 << hmeshift));
3803 }
3804 }
3805 sfmmu_hblks_list_purge(&list, 0);
3806 }
3807
3808 /*
3809 * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3810 * may still linger on after pageunload.
3811 */
3812 static void
sfmmu_cleanup_rhblk(sf_srd_t * srdp,caddr_t addr,uint_t rid,int ttesz)3813 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3814 {
3815 int hmeshift;
3816 hmeblk_tag hblktag;
3817 struct hmehash_bucket *hmebp;
3818 struct hme_blk *hmeblkp;
3819 struct hme_blk *pr_hblk;
3820 struct hme_blk *list = NULL;
3821
3822 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3823 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3824
3825 hmeshift = HME_HASH_SHIFT(ttesz);
3826 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3827 hblktag.htag_rehash = ttesz;
3828 hblktag.htag_rid = rid;
3829 hblktag.htag_id = srdp;
3830 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3831
3832 SFMMU_HASH_LOCK(hmebp);
3833 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3834 if (hmeblkp != NULL) {
3835 ASSERT(hmeblkp->hblk_shared);
3836 ASSERT(!hmeblkp->hblk_shw_bit);
3837 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3838 panic("sfmmu_cleanup_rhblk: valid hmeblk");
3839 }
3840 ASSERT(!hmeblkp->hblk_lckcnt);
3841 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3842 &list, 0);
3843 }
3844 SFMMU_HASH_UNLOCK(hmebp);
3845 sfmmu_hblks_list_purge(&list, 0);
3846 }
3847
3848 /* ARGSUSED */
3849 static void
sfmmu_rgn_cb_noop(caddr_t saddr,caddr_t eaddr,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff)3850 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3851 size_t r_size, void *r_obj, u_offset_t r_objoff)
3852 {
3853 }
3854
3855 /*
3856 * Searches for an hmeblk which maps addr, then unloads this mapping
3857 * and updates *eaddrp, if the hmeblk is found.
3858 */
3859 static void
sfmmu_unload_hmeregion_va(sf_srd_t * srdp,uint_t rid,caddr_t addr,caddr_t eaddr,int ttesz,caddr_t * eaddrp)3860 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3861 caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3862 {
3863 int hmeshift;
3864 hmeblk_tag hblktag;
3865 struct hmehash_bucket *hmebp;
3866 struct hme_blk *hmeblkp;
3867 struct hme_blk *pr_hblk;
3868 struct hme_blk *list = NULL;
3869
3870 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3871 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3872 ASSERT(ttesz >= HBLK_MIN_TTESZ);
3873
3874 hmeshift = HME_HASH_SHIFT(ttesz);
3875 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3876 hblktag.htag_rehash = ttesz;
3877 hblktag.htag_rid = rid;
3878 hblktag.htag_id = srdp;
3879 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3880
3881 SFMMU_HASH_LOCK(hmebp);
3882 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3883 if (hmeblkp != NULL) {
3884 ASSERT(hmeblkp->hblk_shared);
3885 ASSERT(!hmeblkp->hblk_lckcnt);
3886 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3887 *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3888 eaddr, NULL, HAT_UNLOAD);
3889 ASSERT(*eaddrp > addr);
3890 }
3891 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3892 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3893 &list, 0);
3894 }
3895 SFMMU_HASH_UNLOCK(hmebp);
3896 sfmmu_hblks_list_purge(&list, 0);
3897 }
3898
3899 static void
sfmmu_unload_hmeregion(sf_srd_t * srdp,sf_region_t * rgnp)3900 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3901 {
3902 int ttesz = rgnp->rgn_pgszc;
3903 size_t rsz = rgnp->rgn_size;
3904 caddr_t rsaddr = rgnp->rgn_saddr;
3905 caddr_t readdr = rsaddr + rsz;
3906 caddr_t rhsaddr;
3907 caddr_t va;
3908 uint_t rid = rgnp->rgn_id;
3909 caddr_t cbsaddr;
3910 caddr_t cbeaddr;
3911 hat_rgn_cb_func_t rcbfunc;
3912 ulong_t cnt;
3913
3914 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3915 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3916
3917 ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3918 ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3919 if (ttesz < HBLK_MIN_TTESZ) {
3920 ttesz = HBLK_MIN_TTESZ;
3921 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3922 } else {
3923 rhsaddr = rsaddr;
3924 }
3925
3926 if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3927 rcbfunc = sfmmu_rgn_cb_noop;
3928 }
3929
3930 while (ttesz >= HBLK_MIN_TTESZ) {
3931 cbsaddr = rsaddr;
3932 cbeaddr = rsaddr;
3933 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3934 ttesz--;
3935 continue;
3936 }
3937 cnt = 0;
3938 va = rsaddr;
3939 while (va < readdr) {
3940 ASSERT(va >= rhsaddr);
3941 if (va != cbeaddr) {
3942 if (cbeaddr != cbsaddr) {
3943 ASSERT(cbeaddr > cbsaddr);
3944 (*rcbfunc)(cbsaddr, cbeaddr,
3945 rsaddr, rsz, rgnp->rgn_obj,
3946 rgnp->rgn_objoff);
3947 }
3948 cbsaddr = va;
3949 cbeaddr = va;
3950 }
3951 sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3952 ttesz, &cbeaddr);
3953 cnt++;
3954 va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3955 }
3956 if (cbeaddr != cbsaddr) {
3957 ASSERT(cbeaddr > cbsaddr);
3958 (*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3959 rsz, rgnp->rgn_obj,
3960 rgnp->rgn_objoff);
3961 }
3962 ttesz--;
3963 }
3964 }
3965
3966 /*
3967 * Release one hardware address translation lock on the given address range.
3968 */
3969 void
hat_unlock(struct hat * sfmmup,caddr_t addr,size_t len)3970 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3971 {
3972 struct hmehash_bucket *hmebp;
3973 hmeblk_tag hblktag;
3974 int hmeshift, hashno = 1;
3975 struct hme_blk *hmeblkp, *list = NULL;
3976 caddr_t endaddr;
3977
3978 ASSERT(sfmmup != NULL);
3979 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3980
3981 ASSERT((sfmmup == ksfmmup) ||
3982 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3983 ASSERT((len & MMU_PAGEOFFSET) == 0);
3984 endaddr = addr + len;
3985 hblktag.htag_id = sfmmup;
3986 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3987
3988 /*
3989 * Spitfire supports 4 page sizes.
3990 * Most pages are expected to be of the smallest page size (8K) and
3991 * these will not need to be rehashed. 64K pages also don't need to be
3992 * rehashed because an hmeblk spans 64K of address space. 512K pages
3993 * might need 1 rehash and and 4M pages might need 2 rehashes.
3994 */
3995 while (addr < endaddr) {
3996 hmeshift = HME_HASH_SHIFT(hashno);
3997 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3998 hblktag.htag_rehash = hashno;
3999 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4000
4001 SFMMU_HASH_LOCK(hmebp);
4002
4003 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4004 if (hmeblkp != NULL) {
4005 ASSERT(!hmeblkp->hblk_shared);
4006 /*
4007 * If we encounter a shadow hmeblk then
4008 * we know there are no valid hmeblks mapping
4009 * this address at this size or larger.
4010 * Just increment address by the smallest
4011 * page size.
4012 */
4013 if (hmeblkp->hblk_shw_bit) {
4014 addr += MMU_PAGESIZE;
4015 } else {
4016 addr = sfmmu_hblk_unlock(hmeblkp, addr,
4017 endaddr);
4018 }
4019 SFMMU_HASH_UNLOCK(hmebp);
4020 hashno = 1;
4021 continue;
4022 }
4023 SFMMU_HASH_UNLOCK(hmebp);
4024
4025 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4026 /*
4027 * We have traversed the whole list and rehashed
4028 * if necessary without finding the address to unlock
4029 * which should never happen.
4030 */
4031 panic("sfmmu_unlock: addr not found. "
4032 "addr %p hat %p", (void *)addr, (void *)sfmmup);
4033 } else {
4034 hashno++;
4035 }
4036 }
4037
4038 sfmmu_hblks_list_purge(&list, 0);
4039 }
4040
4041 void
hat_unlock_region(struct hat * sfmmup,caddr_t addr,size_t len,hat_region_cookie_t rcookie)4042 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4043 hat_region_cookie_t rcookie)
4044 {
4045 sf_srd_t *srdp;
4046 sf_region_t *rgnp;
4047 int ttesz;
4048 uint_t rid;
4049 caddr_t eaddr;
4050 caddr_t va;
4051 int hmeshift;
4052 hmeblk_tag hblktag;
4053 struct hmehash_bucket *hmebp;
4054 struct hme_blk *hmeblkp;
4055 struct hme_blk *pr_hblk;
4056 struct hme_blk *list;
4057
4058 if (rcookie == HAT_INVALID_REGION_COOKIE) {
4059 hat_unlock(sfmmup, addr, len);
4060 return;
4061 }
4062
4063 ASSERT(sfmmup != NULL);
4064 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4065 ASSERT(sfmmup != ksfmmup);
4066
4067 srdp = sfmmup->sfmmu_srdp;
4068 rid = (uint_t)((uint64_t)rcookie);
4069 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
4070 eaddr = addr + len;
4071 va = addr;
4072 list = NULL;
4073 rgnp = srdp->srd_hmergnp[rid];
4074 SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4075
4076 ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4077 ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4078 if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4079 ttesz = HBLK_MIN_TTESZ;
4080 } else {
4081 ttesz = rgnp->rgn_pgszc;
4082 }
4083 while (va < eaddr) {
4084 while (ttesz < rgnp->rgn_pgszc &&
4085 IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4086 ttesz++;
4087 }
4088 while (ttesz >= HBLK_MIN_TTESZ) {
4089 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4090 ttesz--;
4091 continue;
4092 }
4093 hmeshift = HME_HASH_SHIFT(ttesz);
4094 hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4095 hblktag.htag_rehash = ttesz;
4096 hblktag.htag_rid = rid;
4097 hblktag.htag_id = srdp;
4098 hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4099 SFMMU_HASH_LOCK(hmebp);
4100 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4101 &list);
4102 if (hmeblkp == NULL) {
4103 SFMMU_HASH_UNLOCK(hmebp);
4104 ttesz--;
4105 continue;
4106 }
4107 ASSERT(hmeblkp->hblk_shared);
4108 va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4109 ASSERT(va >= eaddr ||
4110 IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4111 SFMMU_HASH_UNLOCK(hmebp);
4112 break;
4113 }
4114 if (ttesz < HBLK_MIN_TTESZ) {
4115 panic("hat_unlock_region: addr not found "
4116 "addr %p hat %p", (void *)va, (void *)sfmmup);
4117 }
4118 }
4119 sfmmu_hblks_list_purge(&list, 0);
4120 }
4121
4122 /*
4123 * Function to unlock a range of addresses in an hmeblk. It returns the
4124 * next address that needs to be unlocked.
4125 * Should be called with the hash lock held.
4126 */
4127 static caddr_t
sfmmu_hblk_unlock(struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr)4128 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4129 {
4130 struct sf_hment *sfhme;
4131 tte_t tteold, ttemod;
4132 int ttesz, ret;
4133
4134 ASSERT(in_hblk_range(hmeblkp, addr));
4135 ASSERT(hmeblkp->hblk_shw_bit == 0);
4136
4137 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4138 ttesz = get_hblk_ttesz(hmeblkp);
4139
4140 HBLKTOHME(sfhme, hmeblkp, addr);
4141 while (addr < endaddr) {
4142 readtte:
4143 sfmmu_copytte(&sfhme->hme_tte, &tteold);
4144 if (TTE_IS_VALID(&tteold)) {
4145
4146 ttemod = tteold;
4147
4148 ret = sfmmu_modifytte_try(&tteold, &ttemod,
4149 &sfhme->hme_tte);
4150
4151 if (ret < 0)
4152 goto readtte;
4153
4154 if (hmeblkp->hblk_lckcnt == 0)
4155 panic("zero hblk lckcnt");
4156
4157 if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4158 (uintptr_t)endaddr)
4159 panic("can't unlock large tte");
4160
4161 ASSERT(hmeblkp->hblk_lckcnt > 0);
4162 atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4163 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4164 } else {
4165 panic("sfmmu_hblk_unlock: invalid tte");
4166 }
4167 addr += TTEBYTES(ttesz);
4168 sfhme++;
4169 }
4170 return (addr);
4171 }
4172
4173 /*
4174 * Physical Address Mapping Framework
4175 *
4176 * General rules:
4177 *
4178 * (1) Applies only to seg_kmem memory pages. To make things easier,
4179 * seg_kpm addresses are also accepted by the routines, but nothing
4180 * is done with them since by definition their PA mappings are static.
4181 * (2) hat_add_callback() may only be called while holding the page lock
4182 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4183 * or passing HAC_PAGELOCK flag.
4184 * (3) prehandler() and posthandler() may not call hat_add_callback() or
4185 * hat_delete_callback(), nor should they allocate memory. Post quiesce
4186 * callbacks may not sleep or acquire adaptive mutex locks.
4187 * (4) Either prehandler() or posthandler() (but not both) may be specified
4188 * as being NULL. Specifying an errhandler() is optional.
4189 *
4190 * Details of using the framework:
4191 *
4192 * registering a callback (hat_register_callback())
4193 *
4194 * Pass prehandler, posthandler, errhandler addresses
4195 * as described below. If capture_cpus argument is nonzero,
4196 * suspend callback to the prehandler will occur with CPUs
4197 * captured and executing xc_loop() and CPUs will remain
4198 * captured until after the posthandler suspend callback
4199 * occurs.
4200 *
4201 * adding a callback (hat_add_callback())
4202 *
4203 * as_pagelock();
4204 * hat_add_callback();
4205 * save returned pfn in private data structures or program registers;
4206 * as_pageunlock();
4207 *
4208 * prehandler()
4209 *
4210 * Stop all accesses by physical address to this memory page.
4211 * Called twice: the first, PRESUSPEND, is a context safe to acquire
4212 * adaptive locks. The second, SUSPEND, is called at high PIL with
4213 * CPUs captured so adaptive locks may NOT be acquired (and all spin
4214 * locks must be XCALL_PIL or higher locks).
4215 *
4216 * May return the following errors:
4217 * EIO: A fatal error has occurred. This will result in panic.
4218 * EAGAIN: The page cannot be suspended. This will fail the
4219 * relocation.
4220 * 0: Success.
4221 *
4222 * posthandler()
4223 *
4224 * Save new pfn in private data structures or program registers;
4225 * not allowed to fail (non-zero return values will result in panic).
4226 *
4227 * errhandler()
4228 *
4229 * called when an error occurs related to the callback. Currently
4230 * the only such error is HAT_CB_ERR_LEAKED which indicates that
4231 * a page is being freed, but there are still outstanding callback(s)
4232 * registered on the page.
4233 *
4234 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4235 *
4236 * stop using physical address
4237 * hat_delete_callback();
4238 *
4239 */
4240
4241 /*
4242 * Register a callback class. Each subsystem should do this once and
4243 * cache the id_t returned for use in setting up and tearing down callbacks.
4244 *
4245 * There is no facility for removing callback IDs once they are created;
4246 * the "key" should be unique for each module, so in case a module is unloaded
4247 * and subsequently re-loaded, we can recycle the module's previous entry.
4248 */
4249 id_t
hat_register_callback(int key,int (* prehandler)(caddr_t,uint_t,uint_t,void *),int (* posthandler)(caddr_t,uint_t,uint_t,void *,pfn_t),int (* errhandler)(caddr_t,uint_t,uint_t,void *),int capture_cpus)4250 hat_register_callback(int key,
4251 int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4252 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4253 int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4254 int capture_cpus)
4255 {
4256 id_t id;
4257
4258 /*
4259 * Search the table for a pre-existing callback associated with
4260 * the identifier "key". If one exists, we re-use that entry in
4261 * the table for this instance, otherwise we assign the next
4262 * available table slot.
4263 */
4264 for (id = 0; id < sfmmu_max_cb_id; id++) {
4265 if (sfmmu_cb_table[id].key == key)
4266 break;
4267 }
4268
4269 if (id == sfmmu_max_cb_id) {
4270 id = sfmmu_cb_nextid++;
4271 if (id >= sfmmu_max_cb_id)
4272 panic("hat_register_callback: out of callback IDs");
4273 }
4274
4275 ASSERT(prehandler != NULL || posthandler != NULL);
4276
4277 sfmmu_cb_table[id].key = key;
4278 sfmmu_cb_table[id].prehandler = prehandler;
4279 sfmmu_cb_table[id].posthandler = posthandler;
4280 sfmmu_cb_table[id].errhandler = errhandler;
4281 sfmmu_cb_table[id].capture_cpus = capture_cpus;
4282
4283 return (id);
4284 }
4285
4286 #define HAC_COOKIE_NONE (void *)-1
4287
4288 /*
4289 * Add relocation callbacks to the specified addr/len which will be called
4290 * when relocating the associated page. See the description of pre and
4291 * posthandler above for more details.
4292 *
4293 * If HAC_PAGELOCK is included in flags, the underlying memory page is
4294 * locked internally so the caller must be able to deal with the callback
4295 * running even before this function has returned. If HAC_PAGELOCK is not
4296 * set, it is assumed that the underlying memory pages are locked.
4297 *
4298 * Since the caller must track the individual page boundaries anyway,
4299 * we only allow a callback to be added to a single page (large
4300 * or small). Thus [addr, addr + len) MUST be contained within a single
4301 * page.
4302 *
4303 * Registering multiple callbacks on the same [addr, addr+len) is supported,
4304 * _provided_that_ a unique parameter is specified for each callback.
4305 * If multiple callbacks are registered on the same range the callback will
4306 * be invoked with each unique parameter. Registering the same callback with
4307 * the same argument more than once will result in corrupted kernel state.
4308 *
4309 * Returns the pfn of the underlying kernel page in *rpfn
4310 * on success, or PFN_INVALID on failure.
4311 *
4312 * cookiep (if passed) provides storage space for an opaque cookie
4313 * to return later to hat_delete_callback(). This cookie makes the callback
4314 * deletion significantly quicker by avoiding a potentially lengthy hash
4315 * search.
4316 *
4317 * Returns values:
4318 * 0: success
4319 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4320 * EINVAL: callback ID is not valid
4321 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4322 * space
4323 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4324 */
4325 int
hat_add_callback(id_t callback_id,caddr_t vaddr,uint_t len,uint_t flags,void * pvt,pfn_t * rpfn,void ** cookiep)4326 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4327 void *pvt, pfn_t *rpfn, void **cookiep)
4328 {
4329 struct hmehash_bucket *hmebp;
4330 hmeblk_tag hblktag;
4331 struct hme_blk *hmeblkp;
4332 int hmeshift, hashno;
4333 caddr_t saddr, eaddr, baseaddr;
4334 struct pa_hment *pahmep;
4335 struct sf_hment *sfhmep, *osfhmep;
4336 kmutex_t *pml;
4337 tte_t tte;
4338 page_t *pp;
4339 vnode_t *vp;
4340 u_offset_t off;
4341 pfn_t pfn;
4342 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4343 int locked = 0;
4344
4345 /*
4346 * For KPM mappings, just return the physical address since we
4347 * don't need to register any callbacks.
4348 */
4349 if (IS_KPM_ADDR(vaddr)) {
4350 uint64_t paddr;
4351 SFMMU_KPM_VTOP(vaddr, paddr);
4352 *rpfn = btop(paddr);
4353 if (cookiep != NULL)
4354 *cookiep = HAC_COOKIE_NONE;
4355 return (0);
4356 }
4357
4358 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4359 *rpfn = PFN_INVALID;
4360 return (EINVAL);
4361 }
4362
4363 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4364 *rpfn = PFN_INVALID;
4365 return (ENOMEM);
4366 }
4367
4368 sfhmep = &pahmep->sfment;
4369
4370 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4371 eaddr = saddr + len;
4372
4373 rehash:
4374 /* Find the mapping(s) for this page */
4375 for (hashno = TTE64K, hmeblkp = NULL;
4376 hmeblkp == NULL && hashno <= mmu_hashcnt;
4377 hashno++) {
4378 hmeshift = HME_HASH_SHIFT(hashno);
4379 hblktag.htag_id = ksfmmup;
4380 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4381 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4382 hblktag.htag_rehash = hashno;
4383 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4384
4385 SFMMU_HASH_LOCK(hmebp);
4386
4387 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4388
4389 if (hmeblkp == NULL)
4390 SFMMU_HASH_UNLOCK(hmebp);
4391 }
4392
4393 if (hmeblkp == NULL) {
4394 kmem_cache_free(pa_hment_cache, pahmep);
4395 *rpfn = PFN_INVALID;
4396 return (ENXIO);
4397 }
4398
4399 ASSERT(!hmeblkp->hblk_shared);
4400
4401 HBLKTOHME(osfhmep, hmeblkp, saddr);
4402 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4403
4404 if (!TTE_IS_VALID(&tte)) {
4405 SFMMU_HASH_UNLOCK(hmebp);
4406 kmem_cache_free(pa_hment_cache, pahmep);
4407 *rpfn = PFN_INVALID;
4408 return (ENXIO);
4409 }
4410
4411 /*
4412 * Make sure the boundaries for the callback fall within this
4413 * single mapping.
4414 */
4415 baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4416 ASSERT(saddr >= baseaddr);
4417 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4418 SFMMU_HASH_UNLOCK(hmebp);
4419 kmem_cache_free(pa_hment_cache, pahmep);
4420 *rpfn = PFN_INVALID;
4421 return (ERANGE);
4422 }
4423
4424 pfn = sfmmu_ttetopfn(&tte, vaddr);
4425
4426 /*
4427 * The pfn may not have a page_t underneath in which case we
4428 * just return it. This can happen if we are doing I/O to a
4429 * static portion of the kernel's address space, for instance.
4430 */
4431 pp = osfhmep->hme_page;
4432 if (pp == NULL) {
4433 SFMMU_HASH_UNLOCK(hmebp);
4434 kmem_cache_free(pa_hment_cache, pahmep);
4435 *rpfn = pfn;
4436 if (cookiep)
4437 *cookiep = HAC_COOKIE_NONE;
4438 return (0);
4439 }
4440 ASSERT(pp == PP_PAGEROOT(pp));
4441
4442 vp = pp->p_vnode;
4443 off = pp->p_offset;
4444
4445 pml = sfmmu_mlist_enter(pp);
4446
4447 if (flags & HAC_PAGELOCK) {
4448 if (!page_trylock(pp, SE_SHARED)) {
4449 /*
4450 * Somebody is holding SE_EXCL lock. Might
4451 * even be hat_page_relocate(). Drop all
4452 * our locks, lookup the page in &kvp, and
4453 * retry. If it doesn't exist in &kvp and &zvp,
4454 * then we must be dealing with a kernel mapped
4455 * page which doesn't actually belong to
4456 * segkmem so we punt.
4457 */
4458 sfmmu_mlist_exit(pml);
4459 SFMMU_HASH_UNLOCK(hmebp);
4460 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4461
4462 /* check zvp before giving up */
4463 if (pp == NULL)
4464 pp = page_lookup(&zvp, (u_offset_t)saddr,
4465 SE_SHARED);
4466
4467 /* Okay, we didn't find it, give up */
4468 if (pp == NULL) {
4469 kmem_cache_free(pa_hment_cache, pahmep);
4470 *rpfn = pfn;
4471 if (cookiep)
4472 *cookiep = HAC_COOKIE_NONE;
4473 return (0);
4474 }
4475 page_unlock(pp);
4476 goto rehash;
4477 }
4478 locked = 1;
4479 }
4480
4481 if (!PAGE_LOCKED(pp) && !panicstr)
4482 panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4483
4484 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4485 pp->p_offset != off) {
4486 /*
4487 * The page moved before we got our hands on it. Drop
4488 * all the locks and try again.
4489 */
4490 ASSERT((flags & HAC_PAGELOCK) != 0);
4491 sfmmu_mlist_exit(pml);
4492 SFMMU_HASH_UNLOCK(hmebp);
4493 page_unlock(pp);
4494 locked = 0;
4495 goto rehash;
4496 }
4497
4498 if (!VN_ISKAS(vp)) {
4499 /*
4500 * This is not a segkmem page but another page which
4501 * has been kernel mapped. It had better have at least
4502 * a share lock on it. Return the pfn.
4503 */
4504 sfmmu_mlist_exit(pml);
4505 SFMMU_HASH_UNLOCK(hmebp);
4506 if (locked)
4507 page_unlock(pp);
4508 kmem_cache_free(pa_hment_cache, pahmep);
4509 ASSERT(PAGE_LOCKED(pp));
4510 *rpfn = pfn;
4511 if (cookiep)
4512 *cookiep = HAC_COOKIE_NONE;
4513 return (0);
4514 }
4515
4516 /*
4517 * Setup this pa_hment and link its embedded dummy sf_hment into
4518 * the mapping list.
4519 */
4520 pp->p_share++;
4521 pahmep->cb_id = callback_id;
4522 pahmep->addr = vaddr;
4523 pahmep->len = len;
4524 pahmep->refcnt = 1;
4525 pahmep->flags = 0;
4526 pahmep->pvt = pvt;
4527
4528 sfhmep->hme_tte.ll = 0;
4529 sfhmep->hme_data = pahmep;
4530 sfhmep->hme_prev = osfhmep;
4531 sfhmep->hme_next = osfhmep->hme_next;
4532
4533 if (osfhmep->hme_next)
4534 osfhmep->hme_next->hme_prev = sfhmep;
4535
4536 osfhmep->hme_next = sfhmep;
4537
4538 sfmmu_mlist_exit(pml);
4539 SFMMU_HASH_UNLOCK(hmebp);
4540
4541 if (locked)
4542 page_unlock(pp);
4543
4544 *rpfn = pfn;
4545 if (cookiep)
4546 *cookiep = (void *)pahmep;
4547
4548 return (0);
4549 }
4550
4551 /*
4552 * Remove the relocation callbacks from the specified addr/len.
4553 */
4554 void
hat_delete_callback(caddr_t vaddr,uint_t len,void * pvt,uint_t flags,void * cookie)4555 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4556 void *cookie)
4557 {
4558 struct hmehash_bucket *hmebp;
4559 hmeblk_tag hblktag;
4560 struct hme_blk *hmeblkp;
4561 int hmeshift, hashno;
4562 caddr_t saddr;
4563 struct pa_hment *pahmep;
4564 struct sf_hment *sfhmep, *osfhmep;
4565 kmutex_t *pml;
4566 tte_t tte;
4567 page_t *pp;
4568 vnode_t *vp;
4569 u_offset_t off;
4570 int locked = 0;
4571
4572 /*
4573 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4574 * remove so just return.
4575 */
4576 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4577 return;
4578
4579 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4580
4581 rehash:
4582 /* Find the mapping(s) for this page */
4583 for (hashno = TTE64K, hmeblkp = NULL;
4584 hmeblkp == NULL && hashno <= mmu_hashcnt;
4585 hashno++) {
4586 hmeshift = HME_HASH_SHIFT(hashno);
4587 hblktag.htag_id = ksfmmup;
4588 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4589 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4590 hblktag.htag_rehash = hashno;
4591 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4592
4593 SFMMU_HASH_LOCK(hmebp);
4594
4595 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4596
4597 if (hmeblkp == NULL)
4598 SFMMU_HASH_UNLOCK(hmebp);
4599 }
4600
4601 if (hmeblkp == NULL)
4602 return;
4603
4604 ASSERT(!hmeblkp->hblk_shared);
4605
4606 HBLKTOHME(osfhmep, hmeblkp, saddr);
4607
4608 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4609 if (!TTE_IS_VALID(&tte)) {
4610 SFMMU_HASH_UNLOCK(hmebp);
4611 return;
4612 }
4613
4614 pp = osfhmep->hme_page;
4615 if (pp == NULL) {
4616 SFMMU_HASH_UNLOCK(hmebp);
4617 ASSERT(cookie == NULL);
4618 return;
4619 }
4620
4621 vp = pp->p_vnode;
4622 off = pp->p_offset;
4623
4624 pml = sfmmu_mlist_enter(pp);
4625
4626 if (flags & HAC_PAGELOCK) {
4627 if (!page_trylock(pp, SE_SHARED)) {
4628 /*
4629 * Somebody is holding SE_EXCL lock. Might
4630 * even be hat_page_relocate(). Drop all
4631 * our locks, lookup the page in &kvp, and
4632 * retry. If it doesn't exist in &kvp and &zvp,
4633 * then we must be dealing with a kernel mapped
4634 * page which doesn't actually belong to
4635 * segkmem so we punt.
4636 */
4637 sfmmu_mlist_exit(pml);
4638 SFMMU_HASH_UNLOCK(hmebp);
4639 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4640 /* check zvp before giving up */
4641 if (pp == NULL)
4642 pp = page_lookup(&zvp, (u_offset_t)saddr,
4643 SE_SHARED);
4644
4645 if (pp == NULL) {
4646 ASSERT(cookie == NULL);
4647 return;
4648 }
4649 page_unlock(pp);
4650 goto rehash;
4651 }
4652 locked = 1;
4653 }
4654
4655 ASSERT(PAGE_LOCKED(pp));
4656
4657 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4658 pp->p_offset != off) {
4659 /*
4660 * The page moved before we got our hands on it. Drop
4661 * all the locks and try again.
4662 */
4663 ASSERT((flags & HAC_PAGELOCK) != 0);
4664 sfmmu_mlist_exit(pml);
4665 SFMMU_HASH_UNLOCK(hmebp);
4666 page_unlock(pp);
4667 locked = 0;
4668 goto rehash;
4669 }
4670
4671 if (!VN_ISKAS(vp)) {
4672 /*
4673 * This is not a segkmem page but another page which
4674 * has been kernel mapped.
4675 */
4676 sfmmu_mlist_exit(pml);
4677 SFMMU_HASH_UNLOCK(hmebp);
4678 if (locked)
4679 page_unlock(pp);
4680 ASSERT(cookie == NULL);
4681 return;
4682 }
4683
4684 if (cookie != NULL) {
4685 pahmep = (struct pa_hment *)cookie;
4686 sfhmep = &pahmep->sfment;
4687 } else {
4688 for (sfhmep = pp->p_mapping; sfhmep != NULL;
4689 sfhmep = sfhmep->hme_next) {
4690
4691 /*
4692 * skip va<->pa mappings
4693 */
4694 if (!IS_PAHME(sfhmep))
4695 continue;
4696
4697 pahmep = sfhmep->hme_data;
4698 ASSERT(pahmep != NULL);
4699
4700 /*
4701 * if pa_hment matches, remove it
4702 */
4703 if ((pahmep->pvt == pvt) &&
4704 (pahmep->addr == vaddr) &&
4705 (pahmep->len == len)) {
4706 break;
4707 }
4708 }
4709 }
4710
4711 if (sfhmep == NULL) {
4712 if (!panicstr) {
4713 panic("hat_delete_callback: pa_hment not found, pp %p",
4714 (void *)pp);
4715 }
4716 return;
4717 }
4718
4719 /*
4720 * Note: at this point a valid kernel mapping must still be
4721 * present on this page.
4722 */
4723 pp->p_share--;
4724 if (pp->p_share <= 0)
4725 panic("hat_delete_callback: zero p_share");
4726
4727 if (--pahmep->refcnt == 0) {
4728 if (pahmep->flags != 0)
4729 panic("hat_delete_callback: pa_hment is busy");
4730
4731 /*
4732 * Remove sfhmep from the mapping list for the page.
4733 */
4734 if (sfhmep->hme_prev) {
4735 sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4736 } else {
4737 pp->p_mapping = sfhmep->hme_next;
4738 }
4739
4740 if (sfhmep->hme_next)
4741 sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4742
4743 sfmmu_mlist_exit(pml);
4744 SFMMU_HASH_UNLOCK(hmebp);
4745
4746 if (locked)
4747 page_unlock(pp);
4748
4749 kmem_cache_free(pa_hment_cache, pahmep);
4750 return;
4751 }
4752
4753 sfmmu_mlist_exit(pml);
4754 SFMMU_HASH_UNLOCK(hmebp);
4755 if (locked)
4756 page_unlock(pp);
4757 }
4758
4759 /*
4760 * hat_probe returns 1 if the translation for the address 'addr' is
4761 * loaded, zero otherwise.
4762 *
4763 * hat_probe should be used only for advisorary purposes because it may
4764 * occasionally return the wrong value. The implementation must guarantee that
4765 * returning the wrong value is a very rare event. hat_probe is used
4766 * to implement optimizations in the segment drivers.
4767 *
4768 */
4769 int
hat_probe(struct hat * sfmmup,caddr_t addr)4770 hat_probe(struct hat *sfmmup, caddr_t addr)
4771 {
4772 pfn_t pfn;
4773 tte_t tte;
4774
4775 ASSERT(sfmmup != NULL);
4776 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4777
4778 ASSERT((sfmmup == ksfmmup) ||
4779 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4780
4781 if (sfmmup == ksfmmup) {
4782 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4783 == PFN_SUSPENDED) {
4784 sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4785 }
4786 } else {
4787 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4788 }
4789
4790 if (pfn != PFN_INVALID)
4791 return (1);
4792 else
4793 return (0);
4794 }
4795
4796 ssize_t
hat_getpagesize(struct hat * sfmmup,caddr_t addr)4797 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4798 {
4799 tte_t tte;
4800
4801 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4802
4803 if (sfmmup == ksfmmup) {
4804 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4805 return (-1);
4806 }
4807 } else {
4808 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4809 return (-1);
4810 }
4811 }
4812
4813 ASSERT(TTE_IS_VALID(&tte));
4814 return (TTEBYTES(TTE_CSZ(&tte)));
4815 }
4816
4817 uint_t
hat_getattr(struct hat * sfmmup,caddr_t addr,uint_t * attr)4818 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4819 {
4820 tte_t tte;
4821
4822 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4823
4824 if (sfmmup == ksfmmup) {
4825 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4826 tte.ll = 0;
4827 }
4828 } else {
4829 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4830 tte.ll = 0;
4831 }
4832 }
4833 if (TTE_IS_VALID(&tte)) {
4834 *attr = sfmmu_ptov_attr(&tte);
4835 return (0);
4836 }
4837 *attr = 0;
4838 return ((uint_t)0xffffffff);
4839 }
4840
4841 /*
4842 * Enables more attributes on specified address range (ie. logical OR)
4843 */
4844 void
hat_setattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4845 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4846 {
4847 if (hat->sfmmu_xhat_provider) {
4848 XHAT_SETATTR(hat, addr, len, attr);
4849 return;
4850 } else {
4851 /*
4852 * This must be a CPU HAT. If the address space has
4853 * XHATs attached, change attributes for all of them,
4854 * just in case
4855 */
4856 ASSERT(hat->sfmmu_as != NULL);
4857 if (hat->sfmmu_as->a_xhat != NULL)
4858 xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4859 }
4860
4861 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4862 }
4863
4864 /*
4865 * Assigns attributes to the specified address range. All the attributes
4866 * are specified.
4867 */
4868 void
hat_chgattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4869 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4870 {
4871 if (hat->sfmmu_xhat_provider) {
4872 XHAT_CHGATTR(hat, addr, len, attr);
4873 return;
4874 } else {
4875 /*
4876 * This must be a CPU HAT. If the address space has
4877 * XHATs attached, change attributes for all of them,
4878 * just in case
4879 */
4880 ASSERT(hat->sfmmu_as != NULL);
4881 if (hat->sfmmu_as->a_xhat != NULL)
4882 xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4883 }
4884
4885 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4886 }
4887
4888 /*
4889 * Remove attributes on the specified address range (ie. loginal NAND)
4890 */
4891 void
hat_clrattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4892 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4893 {
4894 if (hat->sfmmu_xhat_provider) {
4895 XHAT_CLRATTR(hat, addr, len, attr);
4896 return;
4897 } else {
4898 /*
4899 * This must be a CPU HAT. If the address space has
4900 * XHATs attached, change attributes for all of them,
4901 * just in case
4902 */
4903 ASSERT(hat->sfmmu_as != NULL);
4904 if (hat->sfmmu_as->a_xhat != NULL)
4905 xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4906 }
4907
4908 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4909 }
4910
4911 /*
4912 * Change attributes on an address range to that specified by attr and mode.
4913 */
4914 static void
sfmmu_chgattr(struct hat * sfmmup,caddr_t addr,size_t len,uint_t attr,int mode)4915 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4916 int mode)
4917 {
4918 struct hmehash_bucket *hmebp;
4919 hmeblk_tag hblktag;
4920 int hmeshift, hashno = 1;
4921 struct hme_blk *hmeblkp, *list = NULL;
4922 caddr_t endaddr;
4923 cpuset_t cpuset;
4924 demap_range_t dmr;
4925
4926 CPUSET_ZERO(cpuset);
4927
4928 ASSERT((sfmmup == ksfmmup) ||
4929 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4930 ASSERT((len & MMU_PAGEOFFSET) == 0);
4931 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4932
4933 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4934 ((addr + len) > (caddr_t)USERLIMIT)) {
4935 panic("user addr %p in kernel space",
4936 (void *)addr);
4937 }
4938
4939 endaddr = addr + len;
4940 hblktag.htag_id = sfmmup;
4941 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4942 DEMAP_RANGE_INIT(sfmmup, &dmr);
4943
4944 while (addr < endaddr) {
4945 hmeshift = HME_HASH_SHIFT(hashno);
4946 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4947 hblktag.htag_rehash = hashno;
4948 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4949
4950 SFMMU_HASH_LOCK(hmebp);
4951
4952 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4953 if (hmeblkp != NULL) {
4954 ASSERT(!hmeblkp->hblk_shared);
4955 /*
4956 * We've encountered a shadow hmeblk so skip the range
4957 * of the next smaller mapping size.
4958 */
4959 if (hmeblkp->hblk_shw_bit) {
4960 ASSERT(sfmmup != ksfmmup);
4961 ASSERT(hashno > 1);
4962 addr = (caddr_t)P2END((uintptr_t)addr,
4963 TTEBYTES(hashno - 1));
4964 } else {
4965 addr = sfmmu_hblk_chgattr(sfmmup,
4966 hmeblkp, addr, endaddr, &dmr, attr, mode);
4967 }
4968 SFMMU_HASH_UNLOCK(hmebp);
4969 hashno = 1;
4970 continue;
4971 }
4972 SFMMU_HASH_UNLOCK(hmebp);
4973
4974 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4975 /*
4976 * We have traversed the whole list and rehashed
4977 * if necessary without finding the address to chgattr.
4978 * This is ok, so we increment the address by the
4979 * smallest hmeblk range for kernel mappings or for
4980 * user mappings with no large pages, and the largest
4981 * hmeblk range, to account for shadow hmeblks, for
4982 * user mappings with large pages and continue.
4983 */
4984 if (sfmmup == ksfmmup)
4985 addr = (caddr_t)P2END((uintptr_t)addr,
4986 TTEBYTES(1));
4987 else
4988 addr = (caddr_t)P2END((uintptr_t)addr,
4989 TTEBYTES(hashno));
4990 hashno = 1;
4991 } else {
4992 hashno++;
4993 }
4994 }
4995
4996 sfmmu_hblks_list_purge(&list, 0);
4997 DEMAP_RANGE_FLUSH(&dmr);
4998 cpuset = sfmmup->sfmmu_cpusran;
4999 xt_sync(cpuset);
5000 }
5001
5002 /*
5003 * This function chgattr on a range of addresses in an hmeblk. It returns the
5004 * next addres that needs to be chgattr.
5005 * It should be called with the hash lock held.
5006 * XXX It should be possible to optimize chgattr by not flushing every time but
5007 * on the other hand:
5008 * 1. do one flush crosscall.
5009 * 2. only flush if we are increasing permissions (make sure this will work)
5010 */
5011 static caddr_t
sfmmu_hblk_chgattr(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t attr,int mode)5012 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5013 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
5014 {
5015 tte_t tte, tteattr, tteflags, ttemod;
5016 struct sf_hment *sfhmep;
5017 int ttesz;
5018 struct page *pp = NULL;
5019 kmutex_t *pml, *pmtx;
5020 int ret;
5021 int use_demap_range;
5022 #if defined(SF_ERRATA_57)
5023 int check_exec;
5024 #endif
5025
5026 ASSERT(in_hblk_range(hmeblkp, addr));
5027 ASSERT(hmeblkp->hblk_shw_bit == 0);
5028 ASSERT(!hmeblkp->hblk_shared);
5029
5030 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5031 ttesz = get_hblk_ttesz(hmeblkp);
5032
5033 /*
5034 * Flush the current demap region if addresses have been
5035 * skipped or the page size doesn't match.
5036 */
5037 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
5038 if (use_demap_range) {
5039 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5040 } else {
5041 DEMAP_RANGE_FLUSH(dmrp);
5042 }
5043
5044 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
5045 #if defined(SF_ERRATA_57)
5046 check_exec = (sfmmup != ksfmmup) &&
5047 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5048 TTE_IS_EXECUTABLE(&tteattr);
5049 #endif
5050 HBLKTOHME(sfhmep, hmeblkp, addr);
5051 while (addr < endaddr) {
5052 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5053 if (TTE_IS_VALID(&tte)) {
5054 if ((tte.ll & tteflags.ll) == tteattr.ll) {
5055 /*
5056 * if the new attr is the same as old
5057 * continue
5058 */
5059 goto next_addr;
5060 }
5061 if (!TTE_IS_WRITABLE(&tteattr)) {
5062 /*
5063 * make sure we clear hw modify bit if we
5064 * removing write protections
5065 */
5066 tteflags.tte_intlo |= TTE_HWWR_INT;
5067 }
5068
5069 pml = NULL;
5070 pp = sfhmep->hme_page;
5071 if (pp) {
5072 pml = sfmmu_mlist_enter(pp);
5073 }
5074
5075 if (pp != sfhmep->hme_page) {
5076 /*
5077 * tte must have been unloaded.
5078 */
5079 ASSERT(pml);
5080 sfmmu_mlist_exit(pml);
5081 continue;
5082 }
5083
5084 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5085
5086 ttemod = tte;
5087 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5088 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5089
5090 #if defined(SF_ERRATA_57)
5091 if (check_exec && addr < errata57_limit)
5092 ttemod.tte_exec_perm = 0;
5093 #endif
5094 ret = sfmmu_modifytte_try(&tte, &ttemod,
5095 &sfhmep->hme_tte);
5096
5097 if (ret < 0) {
5098 /* tte changed underneath us */
5099 if (pml) {
5100 sfmmu_mlist_exit(pml);
5101 }
5102 continue;
5103 }
5104
5105 if (tteflags.tte_intlo & TTE_HWWR_INT) {
5106 /*
5107 * need to sync if we are clearing modify bit.
5108 */
5109 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5110 }
5111
5112 if (pp && PP_ISRO(pp)) {
5113 if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5114 pmtx = sfmmu_page_enter(pp);
5115 PP_CLRRO(pp);
5116 sfmmu_page_exit(pmtx);
5117 }
5118 }
5119
5120 if (ret > 0 && use_demap_range) {
5121 DEMAP_RANGE_MARKPG(dmrp, addr);
5122 } else if (ret > 0) {
5123 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5124 }
5125
5126 if (pml) {
5127 sfmmu_mlist_exit(pml);
5128 }
5129 }
5130 next_addr:
5131 addr += TTEBYTES(ttesz);
5132 sfhmep++;
5133 DEMAP_RANGE_NEXTPG(dmrp);
5134 }
5135 return (addr);
5136 }
5137
5138 /*
5139 * This routine converts virtual attributes to physical ones. It will
5140 * update the tteflags field with the tte mask corresponding to the attributes
5141 * affected and it returns the new attributes. It will also clear the modify
5142 * bit if we are taking away write permission. This is necessary since the
5143 * modify bit is the hardware permission bit and we need to clear it in order
5144 * to detect write faults.
5145 */
5146 static uint64_t
sfmmu_vtop_attr(uint_t attr,int mode,tte_t * ttemaskp)5147 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5148 {
5149 tte_t ttevalue;
5150
5151 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5152
5153 switch (mode) {
5154 case SFMMU_CHGATTR:
5155 /* all attributes specified */
5156 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5157 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5158 ttemaskp->tte_inthi = TTEINTHI_ATTR;
5159 ttemaskp->tte_intlo = TTEINTLO_ATTR;
5160 break;
5161 case SFMMU_SETATTR:
5162 ASSERT(!(attr & ~HAT_PROT_MASK));
5163 ttemaskp->ll = 0;
5164 ttevalue.ll = 0;
5165 /*
5166 * a valid tte implies exec and read for sfmmu
5167 * so no need to do anything about them.
5168 * since priviledged access implies user access
5169 * PROT_USER doesn't make sense either.
5170 */
5171 if (attr & PROT_WRITE) {
5172 ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5173 ttevalue.tte_intlo |= TTE_WRPRM_INT;
5174 }
5175 break;
5176 case SFMMU_CLRATTR:
5177 /* attributes will be nand with current ones */
5178 if (attr & ~(PROT_WRITE | PROT_USER)) {
5179 panic("sfmmu: attr %x not supported", attr);
5180 }
5181 ttemaskp->ll = 0;
5182 ttevalue.ll = 0;
5183 if (attr & PROT_WRITE) {
5184 /* clear both writable and modify bit */
5185 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5186 }
5187 if (attr & PROT_USER) {
5188 ttemaskp->tte_intlo |= TTE_PRIV_INT;
5189 ttevalue.tte_intlo |= TTE_PRIV_INT;
5190 }
5191 break;
5192 default:
5193 panic("sfmmu_vtop_attr: bad mode %x", mode);
5194 }
5195 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5196 return (ttevalue.ll);
5197 }
5198
5199 static uint_t
sfmmu_ptov_attr(tte_t * ttep)5200 sfmmu_ptov_attr(tte_t *ttep)
5201 {
5202 uint_t attr;
5203
5204 ASSERT(TTE_IS_VALID(ttep));
5205
5206 attr = PROT_READ;
5207
5208 if (TTE_IS_WRITABLE(ttep)) {
5209 attr |= PROT_WRITE;
5210 }
5211 if (TTE_IS_EXECUTABLE(ttep)) {
5212 attr |= PROT_EXEC;
5213 }
5214 if (!TTE_IS_PRIVILEGED(ttep)) {
5215 attr |= PROT_USER;
5216 }
5217 if (TTE_IS_NFO(ttep)) {
5218 attr |= HAT_NOFAULT;
5219 }
5220 if (TTE_IS_NOSYNC(ttep)) {
5221 attr |= HAT_NOSYNC;
5222 }
5223 if (TTE_IS_SIDEFFECT(ttep)) {
5224 attr |= SFMMU_SIDEFFECT;
5225 }
5226 if (!TTE_IS_VCACHEABLE(ttep)) {
5227 attr |= SFMMU_UNCACHEVTTE;
5228 }
5229 if (!TTE_IS_PCACHEABLE(ttep)) {
5230 attr |= SFMMU_UNCACHEPTTE;
5231 }
5232 return (attr);
5233 }
5234
5235 /*
5236 * hat_chgprot is a deprecated hat call. New segment drivers
5237 * should store all attributes and use hat_*attr calls.
5238 *
5239 * Change the protections in the virtual address range
5240 * given to the specified virtual protection. If vprot is ~PROT_WRITE,
5241 * then remove write permission, leaving the other
5242 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions.
5243 *
5244 */
5245 void
hat_chgprot(struct hat * sfmmup,caddr_t addr,size_t len,uint_t vprot)5246 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5247 {
5248 struct hmehash_bucket *hmebp;
5249 hmeblk_tag hblktag;
5250 int hmeshift, hashno = 1;
5251 struct hme_blk *hmeblkp, *list = NULL;
5252 caddr_t endaddr;
5253 cpuset_t cpuset;
5254 demap_range_t dmr;
5255
5256 ASSERT((len & MMU_PAGEOFFSET) == 0);
5257 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5258
5259 if (sfmmup->sfmmu_xhat_provider) {
5260 XHAT_CHGPROT(sfmmup, addr, len, vprot);
5261 return;
5262 } else {
5263 /*
5264 * This must be a CPU HAT. If the address space has
5265 * XHATs attached, change attributes for all of them,
5266 * just in case
5267 */
5268 ASSERT(sfmmup->sfmmu_as != NULL);
5269 if (sfmmup->sfmmu_as->a_xhat != NULL)
5270 xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5271 }
5272
5273 CPUSET_ZERO(cpuset);
5274
5275 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5276 ((addr + len) > (caddr_t)USERLIMIT)) {
5277 panic("user addr %p vprot %x in kernel space",
5278 (void *)addr, vprot);
5279 }
5280 endaddr = addr + len;
5281 hblktag.htag_id = sfmmup;
5282 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5283 DEMAP_RANGE_INIT(sfmmup, &dmr);
5284
5285 while (addr < endaddr) {
5286 hmeshift = HME_HASH_SHIFT(hashno);
5287 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5288 hblktag.htag_rehash = hashno;
5289 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5290
5291 SFMMU_HASH_LOCK(hmebp);
5292
5293 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5294 if (hmeblkp != NULL) {
5295 ASSERT(!hmeblkp->hblk_shared);
5296 /*
5297 * We've encountered a shadow hmeblk so skip the range
5298 * of the next smaller mapping size.
5299 */
5300 if (hmeblkp->hblk_shw_bit) {
5301 ASSERT(sfmmup != ksfmmup);
5302 ASSERT(hashno > 1);
5303 addr = (caddr_t)P2END((uintptr_t)addr,
5304 TTEBYTES(hashno - 1));
5305 } else {
5306 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5307 addr, endaddr, &dmr, vprot);
5308 }
5309 SFMMU_HASH_UNLOCK(hmebp);
5310 hashno = 1;
5311 continue;
5312 }
5313 SFMMU_HASH_UNLOCK(hmebp);
5314
5315 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5316 /*
5317 * We have traversed the whole list and rehashed
5318 * if necessary without finding the address to chgprot.
5319 * This is ok so we increment the address by the
5320 * smallest hmeblk range for kernel mappings and the
5321 * largest hmeblk range, to account for shadow hmeblks,
5322 * for user mappings and continue.
5323 */
5324 if (sfmmup == ksfmmup)
5325 addr = (caddr_t)P2END((uintptr_t)addr,
5326 TTEBYTES(1));
5327 else
5328 addr = (caddr_t)P2END((uintptr_t)addr,
5329 TTEBYTES(hashno));
5330 hashno = 1;
5331 } else {
5332 hashno++;
5333 }
5334 }
5335
5336 sfmmu_hblks_list_purge(&list, 0);
5337 DEMAP_RANGE_FLUSH(&dmr);
5338 cpuset = sfmmup->sfmmu_cpusran;
5339 xt_sync(cpuset);
5340 }
5341
5342 /*
5343 * This function chgprots a range of addresses in an hmeblk. It returns the
5344 * next addres that needs to be chgprot.
5345 * It should be called with the hash lock held.
5346 * XXX It shold be possible to optimize chgprot by not flushing every time but
5347 * on the other hand:
5348 * 1. do one flush crosscall.
5349 * 2. only flush if we are increasing permissions (make sure this will work)
5350 */
5351 static caddr_t
sfmmu_hblk_chgprot(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t vprot)5352 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5353 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5354 {
5355 uint_t pprot;
5356 tte_t tte, ttemod;
5357 struct sf_hment *sfhmep;
5358 uint_t tteflags;
5359 int ttesz;
5360 struct page *pp = NULL;
5361 kmutex_t *pml, *pmtx;
5362 int ret;
5363 int use_demap_range;
5364 #if defined(SF_ERRATA_57)
5365 int check_exec;
5366 #endif
5367
5368 ASSERT(in_hblk_range(hmeblkp, addr));
5369 ASSERT(hmeblkp->hblk_shw_bit == 0);
5370 ASSERT(!hmeblkp->hblk_shared);
5371
5372 #ifdef DEBUG
5373 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5374 (endaddr < get_hblk_endaddr(hmeblkp))) {
5375 panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5376 }
5377 #endif /* DEBUG */
5378
5379 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5380 ttesz = get_hblk_ttesz(hmeblkp);
5381
5382 pprot = sfmmu_vtop_prot(vprot, &tteflags);
5383 #if defined(SF_ERRATA_57)
5384 check_exec = (sfmmup != ksfmmup) &&
5385 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5386 ((vprot & PROT_EXEC) == PROT_EXEC);
5387 #endif
5388 HBLKTOHME(sfhmep, hmeblkp, addr);
5389
5390 /*
5391 * Flush the current demap region if addresses have been
5392 * skipped or the page size doesn't match.
5393 */
5394 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5395 if (use_demap_range) {
5396 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5397 } else {
5398 DEMAP_RANGE_FLUSH(dmrp);
5399 }
5400
5401 while (addr < endaddr) {
5402 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5403 if (TTE_IS_VALID(&tte)) {
5404 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5405 /*
5406 * if the new protection is the same as old
5407 * continue
5408 */
5409 goto next_addr;
5410 }
5411 pml = NULL;
5412 pp = sfhmep->hme_page;
5413 if (pp) {
5414 pml = sfmmu_mlist_enter(pp);
5415 }
5416 if (pp != sfhmep->hme_page) {
5417 /*
5418 * tte most have been unloaded
5419 * underneath us. Recheck
5420 */
5421 ASSERT(pml);
5422 sfmmu_mlist_exit(pml);
5423 continue;
5424 }
5425
5426 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5427
5428 ttemod = tte;
5429 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5430 #if defined(SF_ERRATA_57)
5431 if (check_exec && addr < errata57_limit)
5432 ttemod.tte_exec_perm = 0;
5433 #endif
5434 ret = sfmmu_modifytte_try(&tte, &ttemod,
5435 &sfhmep->hme_tte);
5436
5437 if (ret < 0) {
5438 /* tte changed underneath us */
5439 if (pml) {
5440 sfmmu_mlist_exit(pml);
5441 }
5442 continue;
5443 }
5444
5445 if (tteflags & TTE_HWWR_INT) {
5446 /*
5447 * need to sync if we are clearing modify bit.
5448 */
5449 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5450 }
5451
5452 if (pp && PP_ISRO(pp)) {
5453 if (pprot & TTE_WRPRM_INT) {
5454 pmtx = sfmmu_page_enter(pp);
5455 PP_CLRRO(pp);
5456 sfmmu_page_exit(pmtx);
5457 }
5458 }
5459
5460 if (ret > 0 && use_demap_range) {
5461 DEMAP_RANGE_MARKPG(dmrp, addr);
5462 } else if (ret > 0) {
5463 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5464 }
5465
5466 if (pml) {
5467 sfmmu_mlist_exit(pml);
5468 }
5469 }
5470 next_addr:
5471 addr += TTEBYTES(ttesz);
5472 sfhmep++;
5473 DEMAP_RANGE_NEXTPG(dmrp);
5474 }
5475 return (addr);
5476 }
5477
5478 /*
5479 * This routine is deprecated and should only be used by hat_chgprot.
5480 * The correct routine is sfmmu_vtop_attr.
5481 * This routine converts virtual page protections to physical ones. It will
5482 * update the tteflags field with the tte mask corresponding to the protections
5483 * affected and it returns the new protections. It will also clear the modify
5484 * bit if we are taking away write permission. This is necessary since the
5485 * modify bit is the hardware permission bit and we need to clear it in order
5486 * to detect write faults.
5487 * It accepts the following special protections:
5488 * ~PROT_WRITE = remove write permissions.
5489 * ~PROT_USER = remove user permissions.
5490 */
5491 static uint_t
sfmmu_vtop_prot(uint_t vprot,uint_t * tteflagsp)5492 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5493 {
5494 if (vprot == (uint_t)~PROT_WRITE) {
5495 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5496 return (0); /* will cause wrprm to be cleared */
5497 }
5498 if (vprot == (uint_t)~PROT_USER) {
5499 *tteflagsp = TTE_PRIV_INT;
5500 return (0); /* will cause privprm to be cleared */
5501 }
5502 if ((vprot == 0) || (vprot == PROT_USER) ||
5503 ((vprot & PROT_ALL) != vprot)) {
5504 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5505 }
5506
5507 switch (vprot) {
5508 case (PROT_READ):
5509 case (PROT_EXEC):
5510 case (PROT_EXEC | PROT_READ):
5511 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5512 return (TTE_PRIV_INT); /* set prv and clr wrt */
5513 case (PROT_WRITE):
5514 case (PROT_WRITE | PROT_READ):
5515 case (PROT_EXEC | PROT_WRITE):
5516 case (PROT_EXEC | PROT_WRITE | PROT_READ):
5517 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5518 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */
5519 case (PROT_USER | PROT_READ):
5520 case (PROT_USER | PROT_EXEC):
5521 case (PROT_USER | PROT_EXEC | PROT_READ):
5522 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5523 return (0); /* clr prv and wrt */
5524 case (PROT_USER | PROT_WRITE):
5525 case (PROT_USER | PROT_WRITE | PROT_READ):
5526 case (PROT_USER | PROT_EXEC | PROT_WRITE):
5527 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5528 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5529 return (TTE_WRPRM_INT); /* clr prv and set wrt */
5530 default:
5531 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5532 }
5533 return (0);
5534 }
5535
5536 /*
5537 * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5538 * the normal algorithm would take too long for a very large VA range with
5539 * few real mappings. This routine just walks thru all HMEs in the global
5540 * hash table to find and remove mappings.
5541 */
5542 static void
hat_unload_large_virtual(struct hat * sfmmup,caddr_t startaddr,size_t len,uint_t flags,hat_callback_t * callback)5543 hat_unload_large_virtual(
5544 struct hat *sfmmup,
5545 caddr_t startaddr,
5546 size_t len,
5547 uint_t flags,
5548 hat_callback_t *callback)
5549 {
5550 struct hmehash_bucket *hmebp;
5551 struct hme_blk *hmeblkp;
5552 struct hme_blk *pr_hblk = NULL;
5553 struct hme_blk *nx_hblk;
5554 struct hme_blk *list = NULL;
5555 int i;
5556 demap_range_t dmr, *dmrp;
5557 cpuset_t cpuset;
5558 caddr_t endaddr = startaddr + len;
5559 caddr_t sa;
5560 caddr_t ea;
5561 caddr_t cb_sa[MAX_CB_ADDR];
5562 caddr_t cb_ea[MAX_CB_ADDR];
5563 int addr_cnt = 0;
5564 int a = 0;
5565
5566 if (sfmmup->sfmmu_free) {
5567 dmrp = NULL;
5568 } else {
5569 dmrp = &dmr;
5570 DEMAP_RANGE_INIT(sfmmup, dmrp);
5571 }
5572
5573 /*
5574 * Loop through all the hash buckets of HME blocks looking for matches.
5575 */
5576 for (i = 0; i <= UHMEHASH_SZ; i++) {
5577 hmebp = &uhme_hash[i];
5578 SFMMU_HASH_LOCK(hmebp);
5579 hmeblkp = hmebp->hmeblkp;
5580 pr_hblk = NULL;
5581 while (hmeblkp) {
5582 nx_hblk = hmeblkp->hblk_next;
5583
5584 /*
5585 * skip if not this context, if a shadow block or
5586 * if the mapping is not in the requested range
5587 */
5588 if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5589 hmeblkp->hblk_shw_bit ||
5590 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5591 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5592 pr_hblk = hmeblkp;
5593 goto next_block;
5594 }
5595
5596 ASSERT(!hmeblkp->hblk_shared);
5597 /*
5598 * unload if there are any current valid mappings
5599 */
5600 if (hmeblkp->hblk_vcnt != 0 ||
5601 hmeblkp->hblk_hmecnt != 0)
5602 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5603 sa, ea, dmrp, flags);
5604
5605 /*
5606 * on unmap we also release the HME block itself, once
5607 * all mappings are gone.
5608 */
5609 if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5610 !hmeblkp->hblk_vcnt &&
5611 !hmeblkp->hblk_hmecnt) {
5612 ASSERT(!hmeblkp->hblk_lckcnt);
5613 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5614 &list, 0);
5615 } else {
5616 pr_hblk = hmeblkp;
5617 }
5618
5619 if (callback == NULL)
5620 goto next_block;
5621
5622 /*
5623 * HME blocks may span more than one page, but we may be
5624 * unmapping only one page, so check for a smaller range
5625 * for the callback
5626 */
5627 if (sa < startaddr)
5628 sa = startaddr;
5629 if (--ea > endaddr)
5630 ea = endaddr - 1;
5631
5632 cb_sa[addr_cnt] = sa;
5633 cb_ea[addr_cnt] = ea;
5634 if (++addr_cnt == MAX_CB_ADDR) {
5635 if (dmrp != NULL) {
5636 DEMAP_RANGE_FLUSH(dmrp);
5637 cpuset = sfmmup->sfmmu_cpusran;
5638 xt_sync(cpuset);
5639 }
5640
5641 for (a = 0; a < MAX_CB_ADDR; ++a) {
5642 callback->hcb_start_addr = cb_sa[a];
5643 callback->hcb_end_addr = cb_ea[a];
5644 callback->hcb_function(callback);
5645 }
5646 addr_cnt = 0;
5647 }
5648
5649 next_block:
5650 hmeblkp = nx_hblk;
5651 }
5652 SFMMU_HASH_UNLOCK(hmebp);
5653 }
5654
5655 sfmmu_hblks_list_purge(&list, 0);
5656 if (dmrp != NULL) {
5657 DEMAP_RANGE_FLUSH(dmrp);
5658 cpuset = sfmmup->sfmmu_cpusran;
5659 xt_sync(cpuset);
5660 }
5661
5662 for (a = 0; a < addr_cnt; ++a) {
5663 callback->hcb_start_addr = cb_sa[a];
5664 callback->hcb_end_addr = cb_ea[a];
5665 callback->hcb_function(callback);
5666 }
5667
5668 /*
5669 * Check TSB and TLB page sizes if the process isn't exiting.
5670 */
5671 if (!sfmmup->sfmmu_free)
5672 sfmmu_check_page_sizes(sfmmup, 0);
5673 }
5674
5675 /*
5676 * Unload all the mappings in the range [addr..addr+len). addr and len must
5677 * be MMU_PAGESIZE aligned.
5678 */
5679
5680 extern struct seg *segkmap;
5681 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5682 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5683
5684
5685 void
hat_unload_callback(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags,hat_callback_t * callback)5686 hat_unload_callback(
5687 struct hat *sfmmup,
5688 caddr_t addr,
5689 size_t len,
5690 uint_t flags,
5691 hat_callback_t *callback)
5692 {
5693 struct hmehash_bucket *hmebp;
5694 hmeblk_tag hblktag;
5695 int hmeshift, hashno, iskernel;
5696 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5697 caddr_t endaddr;
5698 cpuset_t cpuset;
5699 int addr_count = 0;
5700 int a;
5701 caddr_t cb_start_addr[MAX_CB_ADDR];
5702 caddr_t cb_end_addr[MAX_CB_ADDR];
5703 int issegkmap = ISSEGKMAP(sfmmup, addr);
5704 demap_range_t dmr, *dmrp;
5705
5706 if (sfmmup->sfmmu_xhat_provider) {
5707 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5708 return;
5709 } else {
5710 /*
5711 * This must be a CPU HAT. If the address space has
5712 * XHATs attached, unload the mappings for all of them,
5713 * just in case
5714 */
5715 ASSERT(sfmmup->sfmmu_as != NULL);
5716 if (sfmmup->sfmmu_as->a_xhat != NULL)
5717 xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5718 len, flags, callback);
5719 }
5720
5721 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5722 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5723
5724 ASSERT(sfmmup != NULL);
5725 ASSERT((len & MMU_PAGEOFFSET) == 0);
5726 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5727
5728 /*
5729 * Probing through a large VA range (say 63 bits) will be slow, even
5730 * at 4 Meg steps between the probes. So, when the virtual address range
5731 * is very large, search the HME entries for what to unload.
5732 *
5733 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5734 *
5735 * UHMEHASH_SZ is number of hash buckets to examine
5736 *
5737 */
5738 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5739 hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5740 return;
5741 }
5742
5743 CPUSET_ZERO(cpuset);
5744
5745 /*
5746 * If the process is exiting, we can save a lot of fuss since
5747 * we'll flush the TLB when we free the ctx anyway.
5748 */
5749 if (sfmmup->sfmmu_free)
5750 dmrp = NULL;
5751 else
5752 dmrp = &dmr;
5753
5754 DEMAP_RANGE_INIT(sfmmup, dmrp);
5755 endaddr = addr + len;
5756 hblktag.htag_id = sfmmup;
5757 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5758
5759 /*
5760 * It is likely for the vm to call unload over a wide range of
5761 * addresses that are actually very sparsely populated by
5762 * translations. In order to speed this up the sfmmu hat supports
5763 * the concept of shadow hmeblks. Dummy large page hmeblks that
5764 * correspond to actual small translations are allocated at tteload
5765 * time and are referred to as shadow hmeblks. Now, during unload
5766 * time, we first check if we have a shadow hmeblk for that
5767 * translation. The absence of one means the corresponding address
5768 * range is empty and can be skipped.
5769 *
5770 * The kernel is an exception to above statement and that is why
5771 * we don't use shadow hmeblks and hash starting from the smallest
5772 * page size.
5773 */
5774 if (sfmmup == KHATID) {
5775 iskernel = 1;
5776 hashno = TTE64K;
5777 } else {
5778 iskernel = 0;
5779 if (mmu_page_sizes == max_mmu_page_sizes) {
5780 hashno = TTE256M;
5781 } else {
5782 hashno = TTE4M;
5783 }
5784 }
5785 while (addr < endaddr) {
5786 hmeshift = HME_HASH_SHIFT(hashno);
5787 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5788 hblktag.htag_rehash = hashno;
5789 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5790
5791 SFMMU_HASH_LOCK(hmebp);
5792
5793 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5794 if (hmeblkp == NULL) {
5795 /*
5796 * didn't find an hmeblk. skip the appropiate
5797 * address range.
5798 */
5799 SFMMU_HASH_UNLOCK(hmebp);
5800 if (iskernel) {
5801 if (hashno < mmu_hashcnt) {
5802 hashno++;
5803 continue;
5804 } else {
5805 hashno = TTE64K;
5806 addr = (caddr_t)roundup((uintptr_t)addr
5807 + 1, MMU_PAGESIZE64K);
5808 continue;
5809 }
5810 }
5811 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5812 (1 << hmeshift));
5813 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5814 ASSERT(hashno == TTE64K);
5815 continue;
5816 }
5817 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5818 hashno = TTE512K;
5819 continue;
5820 }
5821 if (mmu_page_sizes == max_mmu_page_sizes) {
5822 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5823 hashno = TTE4M;
5824 continue;
5825 }
5826 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5827 hashno = TTE32M;
5828 continue;
5829 }
5830 hashno = TTE256M;
5831 continue;
5832 } else {
5833 hashno = TTE4M;
5834 continue;
5835 }
5836 }
5837 ASSERT(hmeblkp);
5838 ASSERT(!hmeblkp->hblk_shared);
5839 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5840 /*
5841 * If the valid count is zero we can skip the range
5842 * mapped by this hmeblk.
5843 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP
5844 * is used by segment drivers as a hint
5845 * that the mapping resource won't be used any longer.
5846 * The best example of this is during exit().
5847 */
5848 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5849 get_hblk_span(hmeblkp));
5850 if ((flags & HAT_UNLOAD_UNMAP) ||
5851 (iskernel && !issegkmap)) {
5852 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5853 &list, 0);
5854 }
5855 SFMMU_HASH_UNLOCK(hmebp);
5856
5857 if (iskernel) {
5858 hashno = TTE64K;
5859 continue;
5860 }
5861 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5862 ASSERT(hashno == TTE64K);
5863 continue;
5864 }
5865 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5866 hashno = TTE512K;
5867 continue;
5868 }
5869 if (mmu_page_sizes == max_mmu_page_sizes) {
5870 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5871 hashno = TTE4M;
5872 continue;
5873 }
5874 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5875 hashno = TTE32M;
5876 continue;
5877 }
5878 hashno = TTE256M;
5879 continue;
5880 } else {
5881 hashno = TTE4M;
5882 continue;
5883 }
5884 }
5885 if (hmeblkp->hblk_shw_bit) {
5886 /*
5887 * If we encounter a shadow hmeblk we know there is
5888 * smaller sized hmeblks mapping the same address space.
5889 * Decrement the hash size and rehash.
5890 */
5891 ASSERT(sfmmup != KHATID);
5892 hashno--;
5893 SFMMU_HASH_UNLOCK(hmebp);
5894 continue;
5895 }
5896
5897 /*
5898 * track callback address ranges.
5899 * only start a new range when it's not contiguous
5900 */
5901 if (callback != NULL) {
5902 if (addr_count > 0 &&
5903 addr == cb_end_addr[addr_count - 1])
5904 --addr_count;
5905 else
5906 cb_start_addr[addr_count] = addr;
5907 }
5908
5909 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5910 dmrp, flags);
5911
5912 if (callback != NULL)
5913 cb_end_addr[addr_count++] = addr;
5914
5915 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5916 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5917 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5918 }
5919 SFMMU_HASH_UNLOCK(hmebp);
5920
5921 /*
5922 * Notify our caller as to exactly which pages
5923 * have been unloaded. We do these in clumps,
5924 * to minimize the number of xt_sync()s that need to occur.
5925 */
5926 if (callback != NULL && addr_count == MAX_CB_ADDR) {
5927 DEMAP_RANGE_FLUSH(dmrp);
5928 if (dmrp != NULL) {
5929 cpuset = sfmmup->sfmmu_cpusran;
5930 xt_sync(cpuset);
5931 }
5932
5933 for (a = 0; a < MAX_CB_ADDR; ++a) {
5934 callback->hcb_start_addr = cb_start_addr[a];
5935 callback->hcb_end_addr = cb_end_addr[a];
5936 callback->hcb_function(callback);
5937 }
5938 addr_count = 0;
5939 }
5940 if (iskernel) {
5941 hashno = TTE64K;
5942 continue;
5943 }
5944 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5945 ASSERT(hashno == TTE64K);
5946 continue;
5947 }
5948 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5949 hashno = TTE512K;
5950 continue;
5951 }
5952 if (mmu_page_sizes == max_mmu_page_sizes) {
5953 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5954 hashno = TTE4M;
5955 continue;
5956 }
5957 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5958 hashno = TTE32M;
5959 continue;
5960 }
5961 hashno = TTE256M;
5962 } else {
5963 hashno = TTE4M;
5964 }
5965 }
5966
5967 sfmmu_hblks_list_purge(&list, 0);
5968 DEMAP_RANGE_FLUSH(dmrp);
5969 if (dmrp != NULL) {
5970 cpuset = sfmmup->sfmmu_cpusran;
5971 xt_sync(cpuset);
5972 }
5973 if (callback && addr_count != 0) {
5974 for (a = 0; a < addr_count; ++a) {
5975 callback->hcb_start_addr = cb_start_addr[a];
5976 callback->hcb_end_addr = cb_end_addr[a];
5977 callback->hcb_function(callback);
5978 }
5979 }
5980
5981 /*
5982 * Check TSB and TLB page sizes if the process isn't exiting.
5983 */
5984 if (!sfmmup->sfmmu_free)
5985 sfmmu_check_page_sizes(sfmmup, 0);
5986 }
5987
5988 /*
5989 * Unload all the mappings in the range [addr..addr+len). addr and len must
5990 * be MMU_PAGESIZE aligned.
5991 */
5992 void
hat_unload(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags)5993 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5994 {
5995 if (sfmmup->sfmmu_xhat_provider) {
5996 XHAT_UNLOAD(sfmmup, addr, len, flags);
5997 return;
5998 }
5999 hat_unload_callback(sfmmup, addr, len, flags, NULL);
6000 }
6001
6002
6003 /*
6004 * Find the largest mapping size for this page.
6005 */
6006 int
fnd_mapping_sz(page_t * pp)6007 fnd_mapping_sz(page_t *pp)
6008 {
6009 int sz;
6010 int p_index;
6011
6012 p_index = PP_MAPINDEX(pp);
6013
6014 sz = 0;
6015 p_index >>= 1; /* don't care about 8K bit */
6016 for (; p_index; p_index >>= 1) {
6017 sz++;
6018 }
6019
6020 return (sz);
6021 }
6022
6023 /*
6024 * This function unloads a range of addresses for an hmeblk.
6025 * It returns the next address to be unloaded.
6026 * It should be called with the hash lock held.
6027 */
6028 static caddr_t
sfmmu_hblk_unload(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t flags)6029 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6030 caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
6031 {
6032 tte_t tte, ttemod;
6033 struct sf_hment *sfhmep;
6034 int ttesz;
6035 long ttecnt;
6036 page_t *pp;
6037 kmutex_t *pml;
6038 int ret;
6039 int use_demap_range;
6040
6041 ASSERT(in_hblk_range(hmeblkp, addr));
6042 ASSERT(!hmeblkp->hblk_shw_bit);
6043 ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
6044 ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
6045 ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
6046
6047 #ifdef DEBUG
6048 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
6049 (endaddr < get_hblk_endaddr(hmeblkp))) {
6050 panic("sfmmu_hblk_unload: partial unload of large page");
6051 }
6052 #endif /* DEBUG */
6053
6054 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6055 ttesz = get_hblk_ttesz(hmeblkp);
6056
6057 use_demap_range = ((dmrp == NULL) ||
6058 (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
6059
6060 if (use_demap_range) {
6061 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
6062 } else {
6063 DEMAP_RANGE_FLUSH(dmrp);
6064 }
6065 ttecnt = 0;
6066 HBLKTOHME(sfhmep, hmeblkp, addr);
6067
6068 while (addr < endaddr) {
6069 pml = NULL;
6070 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6071 if (TTE_IS_VALID(&tte)) {
6072 pp = sfhmep->hme_page;
6073 if (pp != NULL) {
6074 pml = sfmmu_mlist_enter(pp);
6075 }
6076
6077 /*
6078 * Verify if hme still points to 'pp' now that
6079 * we have p_mapping lock.
6080 */
6081 if (sfhmep->hme_page != pp) {
6082 if (pp != NULL && sfhmep->hme_page != NULL) {
6083 ASSERT(pml != NULL);
6084 sfmmu_mlist_exit(pml);
6085 /* Re-start this iteration. */
6086 continue;
6087 }
6088 ASSERT((pp != NULL) &&
6089 (sfhmep->hme_page == NULL));
6090 goto tte_unloaded;
6091 }
6092
6093 /*
6094 * This point on we have both HASH and p_mapping
6095 * lock.
6096 */
6097 ASSERT(pp == sfhmep->hme_page);
6098 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6099
6100 /*
6101 * We need to loop on modify tte because it is
6102 * possible for pagesync to come along and
6103 * change the software bits beneath us.
6104 *
6105 * Page_unload can also invalidate the tte after
6106 * we read tte outside of p_mapping lock.
6107 */
6108 again:
6109 ttemod = tte;
6110
6111 TTE_SET_INVALID(&ttemod);
6112 ret = sfmmu_modifytte_try(&tte, &ttemod,
6113 &sfhmep->hme_tte);
6114
6115 if (ret <= 0) {
6116 if (TTE_IS_VALID(&tte)) {
6117 ASSERT(ret < 0);
6118 goto again;
6119 }
6120 if (pp != NULL) {
6121 panic("sfmmu_hblk_unload: pp = 0x%p "
6122 "tte became invalid under mlist"
6123 " lock = 0x%p", (void *)pp,
6124 (void *)pml);
6125 }
6126 continue;
6127 }
6128
6129 if (!(flags & HAT_UNLOAD_NOSYNC)) {
6130 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6131 }
6132
6133 /*
6134 * Ok- we invalidated the tte. Do the rest of the job.
6135 */
6136 ttecnt++;
6137
6138 if (flags & HAT_UNLOAD_UNLOCK) {
6139 ASSERT(hmeblkp->hblk_lckcnt > 0);
6140 atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6141 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6142 }
6143
6144 /*
6145 * Normally we would need to flush the page
6146 * from the virtual cache at this point in
6147 * order to prevent a potential cache alias
6148 * inconsistency.
6149 * The particular scenario we need to worry
6150 * about is:
6151 * Given: va1 and va2 are two virtual address
6152 * that alias and map the same physical
6153 * address.
6154 * 1. mapping exists from va1 to pa and data
6155 * has been read into the cache.
6156 * 2. unload va1.
6157 * 3. load va2 and modify data using va2.
6158 * 4 unload va2.
6159 * 5. load va1 and reference data. Unless we
6160 * flush the data cache when we unload we will
6161 * get stale data.
6162 * Fortunately, page coloring eliminates the
6163 * above scenario by remembering the color a
6164 * physical page was last or is currently
6165 * mapped to. Now, we delay the flush until
6166 * the loading of translations. Only when the
6167 * new translation is of a different color
6168 * are we forced to flush.
6169 */
6170 if (use_demap_range) {
6171 /*
6172 * Mark this page as needing a demap.
6173 */
6174 DEMAP_RANGE_MARKPG(dmrp, addr);
6175 } else {
6176 ASSERT(sfmmup != NULL);
6177 ASSERT(!hmeblkp->hblk_shared);
6178 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6179 sfmmup->sfmmu_free, 0);
6180 }
6181
6182 if (pp) {
6183 /*
6184 * Remove the hment from the mapping list
6185 */
6186 ASSERT(hmeblkp->hblk_hmecnt > 0);
6187
6188 /*
6189 * Again, we cannot
6190 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6191 */
6192 HME_SUB(sfhmep, pp);
6193 membar_stst();
6194 atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6195 }
6196
6197 ASSERT(hmeblkp->hblk_vcnt > 0);
6198 atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6199
6200 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6201 !hmeblkp->hblk_lckcnt);
6202
6203 #ifdef VAC
6204 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6205 if (PP_ISTNC(pp)) {
6206 /*
6207 * If page was temporary
6208 * uncached, try to recache
6209 * it. Note that HME_SUB() was
6210 * called above so p_index and
6211 * mlist had been updated.
6212 */
6213 conv_tnc(pp, ttesz);
6214 } else if (pp->p_mapping == NULL) {
6215 ASSERT(kpm_enable);
6216 /*
6217 * Page is marked to be in VAC conflict
6218 * to an existing kpm mapping and/or is
6219 * kpm mapped using only the regular
6220 * pagesize.
6221 */
6222 sfmmu_kpm_hme_unload(pp);
6223 }
6224 }
6225 #endif /* VAC */
6226 } else if ((pp = sfhmep->hme_page) != NULL) {
6227 /*
6228 * TTE is invalid but the hme
6229 * still exists. let pageunload
6230 * complete its job.
6231 */
6232 ASSERT(pml == NULL);
6233 pml = sfmmu_mlist_enter(pp);
6234 if (sfhmep->hme_page != NULL) {
6235 sfmmu_mlist_exit(pml);
6236 continue;
6237 }
6238 ASSERT(sfhmep->hme_page == NULL);
6239 } else if (hmeblkp->hblk_hmecnt != 0) {
6240 /*
6241 * pageunload may have not finished decrementing
6242 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6243 * wait for pageunload to finish. Rely on pageunload
6244 * to decrement hblk_hmecnt after hblk_vcnt.
6245 */
6246 pfn_t pfn = TTE_TO_TTEPFN(&tte);
6247 ASSERT(pml == NULL);
6248 if (pf_is_memory(pfn)) {
6249 pp = page_numtopp_nolock(pfn);
6250 if (pp != NULL) {
6251 pml = sfmmu_mlist_enter(pp);
6252 sfmmu_mlist_exit(pml);
6253 pml = NULL;
6254 }
6255 }
6256 }
6257
6258 tte_unloaded:
6259 /*
6260 * At this point, the tte we are looking at
6261 * should be unloaded, and hme has been unlinked
6262 * from page too. This is important because in
6263 * pageunload, it does ttesync() then HME_SUB.
6264 * We need to make sure HME_SUB has been completed
6265 * so we know ttesync() has been completed. Otherwise,
6266 * at exit time, after return from hat layer, VM will
6267 * release as structure which hat_setstat() (called
6268 * by ttesync()) needs.
6269 */
6270 #ifdef DEBUG
6271 {
6272 tte_t dtte;
6273
6274 ASSERT(sfhmep->hme_page == NULL);
6275
6276 sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6277 ASSERT(!TTE_IS_VALID(&dtte));
6278 }
6279 #endif
6280
6281 if (pml) {
6282 sfmmu_mlist_exit(pml);
6283 }
6284
6285 addr += TTEBYTES(ttesz);
6286 sfhmep++;
6287 DEMAP_RANGE_NEXTPG(dmrp);
6288 }
6289 /*
6290 * For shared hmeblks this routine is only called when region is freed
6291 * and no longer referenced. So no need to decrement ttecnt
6292 * in the region structure here.
6293 */
6294 if (ttecnt > 0 && sfmmup != NULL) {
6295 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6296 }
6297 return (addr);
6298 }
6299
6300 /*
6301 * Invalidate a virtual address range for the local CPU.
6302 * For best performance ensure that the va range is completely
6303 * mapped, otherwise the entire TLB will be flushed.
6304 */
6305 void
hat_flush_range(struct hat * sfmmup,caddr_t va,size_t size)6306 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6307 {
6308 ssize_t sz;
6309 caddr_t endva = va + size;
6310
6311 while (va < endva) {
6312 sz = hat_getpagesize(sfmmup, va);
6313 if (sz < 0) {
6314 vtag_flushall();
6315 break;
6316 }
6317 vtag_flushpage(va, (uint64_t)sfmmup);
6318 va += sz;
6319 }
6320 }
6321
6322 /*
6323 * Synchronize all the mappings in the range [addr..addr+len).
6324 * Can be called with clearflag having two states:
6325 * HAT_SYNC_DONTZERO means just return the rm stats
6326 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6327 */
6328 void
hat_sync(struct hat * sfmmup,caddr_t addr,size_t len,uint_t clearflag)6329 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6330 {
6331 struct hmehash_bucket *hmebp;
6332 hmeblk_tag hblktag;
6333 int hmeshift, hashno = 1;
6334 struct hme_blk *hmeblkp, *list = NULL;
6335 caddr_t endaddr;
6336 cpuset_t cpuset;
6337
6338 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6339 ASSERT((sfmmup == ksfmmup) ||
6340 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6341 ASSERT((len & MMU_PAGEOFFSET) == 0);
6342 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6343 (clearflag == HAT_SYNC_ZERORM));
6344
6345 CPUSET_ZERO(cpuset);
6346
6347 endaddr = addr + len;
6348 hblktag.htag_id = sfmmup;
6349 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6350
6351 /*
6352 * Spitfire supports 4 page sizes.
6353 * Most pages are expected to be of the smallest page
6354 * size (8K) and these will not need to be rehashed. 64K
6355 * pages also don't need to be rehashed because the an hmeblk
6356 * spans 64K of address space. 512K pages might need 1 rehash and
6357 * and 4M pages 2 rehashes.
6358 */
6359 while (addr < endaddr) {
6360 hmeshift = HME_HASH_SHIFT(hashno);
6361 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6362 hblktag.htag_rehash = hashno;
6363 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6364
6365 SFMMU_HASH_LOCK(hmebp);
6366
6367 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6368 if (hmeblkp != NULL) {
6369 ASSERT(!hmeblkp->hblk_shared);
6370 /*
6371 * We've encountered a shadow hmeblk so skip the range
6372 * of the next smaller mapping size.
6373 */
6374 if (hmeblkp->hblk_shw_bit) {
6375 ASSERT(sfmmup != ksfmmup);
6376 ASSERT(hashno > 1);
6377 addr = (caddr_t)P2END((uintptr_t)addr,
6378 TTEBYTES(hashno - 1));
6379 } else {
6380 addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6381 addr, endaddr, clearflag);
6382 }
6383 SFMMU_HASH_UNLOCK(hmebp);
6384 hashno = 1;
6385 continue;
6386 }
6387 SFMMU_HASH_UNLOCK(hmebp);
6388
6389 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6390 /*
6391 * We have traversed the whole list and rehashed
6392 * if necessary without finding the address to sync.
6393 * This is ok so we increment the address by the
6394 * smallest hmeblk range for kernel mappings and the
6395 * largest hmeblk range, to account for shadow hmeblks,
6396 * for user mappings and continue.
6397 */
6398 if (sfmmup == ksfmmup)
6399 addr = (caddr_t)P2END((uintptr_t)addr,
6400 TTEBYTES(1));
6401 else
6402 addr = (caddr_t)P2END((uintptr_t)addr,
6403 TTEBYTES(hashno));
6404 hashno = 1;
6405 } else {
6406 hashno++;
6407 }
6408 }
6409 sfmmu_hblks_list_purge(&list, 0);
6410 cpuset = sfmmup->sfmmu_cpusran;
6411 xt_sync(cpuset);
6412 }
6413
6414 static caddr_t
sfmmu_hblk_sync(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,int clearflag)6415 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6416 caddr_t endaddr, int clearflag)
6417 {
6418 tte_t tte, ttemod;
6419 struct sf_hment *sfhmep;
6420 int ttesz;
6421 struct page *pp;
6422 kmutex_t *pml;
6423 int ret;
6424
6425 ASSERT(hmeblkp->hblk_shw_bit == 0);
6426 ASSERT(!hmeblkp->hblk_shared);
6427
6428 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6429
6430 ttesz = get_hblk_ttesz(hmeblkp);
6431 HBLKTOHME(sfhmep, hmeblkp, addr);
6432
6433 while (addr < endaddr) {
6434 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6435 if (TTE_IS_VALID(&tte)) {
6436 pml = NULL;
6437 pp = sfhmep->hme_page;
6438 if (pp) {
6439 pml = sfmmu_mlist_enter(pp);
6440 }
6441 if (pp != sfhmep->hme_page) {
6442 /*
6443 * tte most have been unloaded
6444 * underneath us. Recheck
6445 */
6446 ASSERT(pml);
6447 sfmmu_mlist_exit(pml);
6448 continue;
6449 }
6450
6451 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6452
6453 if (clearflag == HAT_SYNC_ZERORM) {
6454 ttemod = tte;
6455 TTE_CLR_RM(&ttemod);
6456 ret = sfmmu_modifytte_try(&tte, &ttemod,
6457 &sfhmep->hme_tte);
6458 if (ret < 0) {
6459 if (pml) {
6460 sfmmu_mlist_exit(pml);
6461 }
6462 continue;
6463 }
6464
6465 if (ret > 0) {
6466 sfmmu_tlb_demap(addr, sfmmup,
6467 hmeblkp, 0, 0);
6468 }
6469 }
6470 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6471 if (pml) {
6472 sfmmu_mlist_exit(pml);
6473 }
6474 }
6475 addr += TTEBYTES(ttesz);
6476 sfhmep++;
6477 }
6478 return (addr);
6479 }
6480
6481 /*
6482 * This function will sync a tte to the page struct and it will
6483 * update the hat stats. Currently it allows us to pass a NULL pp
6484 * and we will simply update the stats. We may want to change this
6485 * so we only keep stats for pages backed by pp's.
6486 */
6487 static void
sfmmu_ttesync(struct hat * sfmmup,caddr_t addr,tte_t * ttep,page_t * pp)6488 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6489 {
6490 uint_t rm = 0;
6491 int sz;
6492 pgcnt_t npgs;
6493
6494 ASSERT(TTE_IS_VALID(ttep));
6495
6496 if (TTE_IS_NOSYNC(ttep)) {
6497 return;
6498 }
6499
6500 if (TTE_IS_REF(ttep)) {
6501 rm = P_REF;
6502 }
6503 if (TTE_IS_MOD(ttep)) {
6504 rm |= P_MOD;
6505 }
6506
6507 if (rm == 0) {
6508 return;
6509 }
6510
6511 sz = TTE_CSZ(ttep);
6512 if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6513 int i;
6514 caddr_t vaddr = addr;
6515
6516 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6517 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6518 }
6519
6520 }
6521
6522 /*
6523 * XXX I want to use cas to update nrm bits but they
6524 * currently belong in common/vm and not in hat where
6525 * they should be.
6526 * The nrm bits are protected by the same mutex as
6527 * the one that protects the page's mapping list.
6528 */
6529 if (!pp)
6530 return;
6531 ASSERT(sfmmu_mlist_held(pp));
6532 /*
6533 * If the tte is for a large page, we need to sync all the
6534 * pages covered by the tte.
6535 */
6536 if (sz != TTE8K) {
6537 ASSERT(pp->p_szc != 0);
6538 pp = PP_GROUPLEADER(pp, sz);
6539 ASSERT(sfmmu_mlist_held(pp));
6540 }
6541
6542 /* Get number of pages from tte size. */
6543 npgs = TTEPAGES(sz);
6544
6545 do {
6546 ASSERT(pp);
6547 ASSERT(sfmmu_mlist_held(pp));
6548 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6549 ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6550 hat_page_setattr(pp, rm);
6551
6552 /*
6553 * Are we done? If not, we must have a large mapping.
6554 * For large mappings we need to sync the rest of the pages
6555 * covered by this tte; goto the next page.
6556 */
6557 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6558 }
6559
6560 /*
6561 * Execute pre-callback handler of each pa_hment linked to pp
6562 *
6563 * Inputs:
6564 * flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6565 * capture_cpus: pointer to return value (below)
6566 *
6567 * Returns:
6568 * Propagates the subsystem callback return values back to the caller;
6569 * returns 0 on success. If capture_cpus is non-NULL, the value returned
6570 * is zero if all of the pa_hments are of a type that do not require
6571 * capturing CPUs prior to suspending the mapping, else it is 1.
6572 */
6573 static int
hat_pageprocess_precallbacks(struct page * pp,uint_t flag,int * capture_cpus)6574 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6575 {
6576 struct sf_hment *sfhmep;
6577 struct pa_hment *pahmep;
6578 int (*f)(caddr_t, uint_t, uint_t, void *);
6579 int ret;
6580 id_t id;
6581 int locked = 0;
6582 kmutex_t *pml;
6583
6584 ASSERT(PAGE_EXCL(pp));
6585 if (!sfmmu_mlist_held(pp)) {
6586 pml = sfmmu_mlist_enter(pp);
6587 locked = 1;
6588 }
6589
6590 if (capture_cpus)
6591 *capture_cpus = 0;
6592
6593 top:
6594 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6595 /*
6596 * skip sf_hments corresponding to VA<->PA mappings;
6597 * for pa_hment's, hme_tte.ll is zero
6598 */
6599 if (!IS_PAHME(sfhmep))
6600 continue;
6601
6602 pahmep = sfhmep->hme_data;
6603 ASSERT(pahmep != NULL);
6604
6605 /*
6606 * skip if pre-handler has been called earlier in this loop
6607 */
6608 if (pahmep->flags & flag)
6609 continue;
6610
6611 id = pahmep->cb_id;
6612 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6613 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6614 *capture_cpus = 1;
6615 if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6616 pahmep->flags |= flag;
6617 continue;
6618 }
6619
6620 /*
6621 * Drop the mapping list lock to avoid locking order issues.
6622 */
6623 if (locked)
6624 sfmmu_mlist_exit(pml);
6625
6626 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6627 if (ret != 0)
6628 return (ret); /* caller must do the cleanup */
6629
6630 if (locked) {
6631 pml = sfmmu_mlist_enter(pp);
6632 pahmep->flags |= flag;
6633 goto top;
6634 }
6635
6636 pahmep->flags |= flag;
6637 }
6638
6639 if (locked)
6640 sfmmu_mlist_exit(pml);
6641
6642 return (0);
6643 }
6644
6645 /*
6646 * Execute post-callback handler of each pa_hment linked to pp
6647 *
6648 * Same overall assumptions and restrictions apply as for
6649 * hat_pageprocess_precallbacks().
6650 */
6651 static void
hat_pageprocess_postcallbacks(struct page * pp,uint_t flag)6652 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6653 {
6654 pfn_t pgpfn = pp->p_pagenum;
6655 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6656 pfn_t newpfn;
6657 struct sf_hment *sfhmep;
6658 struct pa_hment *pahmep;
6659 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6660 id_t id;
6661 int locked = 0;
6662 kmutex_t *pml;
6663
6664 ASSERT(PAGE_EXCL(pp));
6665 if (!sfmmu_mlist_held(pp)) {
6666 pml = sfmmu_mlist_enter(pp);
6667 locked = 1;
6668 }
6669
6670 top:
6671 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6672 /*
6673 * skip sf_hments corresponding to VA<->PA mappings;
6674 * for pa_hment's, hme_tte.ll is zero
6675 */
6676 if (!IS_PAHME(sfhmep))
6677 continue;
6678
6679 pahmep = sfhmep->hme_data;
6680 ASSERT(pahmep != NULL);
6681
6682 if ((pahmep->flags & flag) == 0)
6683 continue;
6684
6685 pahmep->flags &= ~flag;
6686
6687 id = pahmep->cb_id;
6688 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6689 if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6690 continue;
6691
6692 /*
6693 * Convert the base page PFN into the constituent PFN
6694 * which is needed by the callback handler.
6695 */
6696 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6697
6698 /*
6699 * Drop the mapping list lock to avoid locking order issues.
6700 */
6701 if (locked)
6702 sfmmu_mlist_exit(pml);
6703
6704 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6705 != 0)
6706 panic("sfmmu: posthandler failed");
6707
6708 if (locked) {
6709 pml = sfmmu_mlist_enter(pp);
6710 goto top;
6711 }
6712 }
6713
6714 if (locked)
6715 sfmmu_mlist_exit(pml);
6716 }
6717
6718 /*
6719 * Suspend locked kernel mapping
6720 */
6721 void
hat_pagesuspend(struct page * pp)6722 hat_pagesuspend(struct page *pp)
6723 {
6724 struct sf_hment *sfhmep;
6725 sfmmu_t *sfmmup;
6726 tte_t tte, ttemod;
6727 struct hme_blk *hmeblkp;
6728 caddr_t addr;
6729 int index, cons;
6730 cpuset_t cpuset;
6731
6732 ASSERT(PAGE_EXCL(pp));
6733 ASSERT(sfmmu_mlist_held(pp));
6734
6735 mutex_enter(&kpr_suspendlock);
6736
6737 /*
6738 * We're about to suspend a kernel mapping so mark this thread as
6739 * non-traceable by DTrace. This prevents us from running into issues
6740 * with probe context trying to touch a suspended page
6741 * in the relocation codepath itself.
6742 */
6743 curthread->t_flag |= T_DONTDTRACE;
6744
6745 index = PP_MAPINDEX(pp);
6746 cons = TTE8K;
6747
6748 retry:
6749 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6750
6751 if (IS_PAHME(sfhmep))
6752 continue;
6753
6754 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6755 continue;
6756
6757 /*
6758 * Loop until we successfully set the suspend bit in
6759 * the TTE.
6760 */
6761 again:
6762 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6763 ASSERT(TTE_IS_VALID(&tte));
6764
6765 ttemod = tte;
6766 TTE_SET_SUSPEND(&ttemod);
6767 if (sfmmu_modifytte_try(&tte, &ttemod,
6768 &sfhmep->hme_tte) < 0)
6769 goto again;
6770
6771 /*
6772 * Invalidate TSB entry
6773 */
6774 hmeblkp = sfmmu_hmetohblk(sfhmep);
6775
6776 sfmmup = hblktosfmmu(hmeblkp);
6777 ASSERT(sfmmup == ksfmmup);
6778 ASSERT(!hmeblkp->hblk_shared);
6779
6780 addr = tte_to_vaddr(hmeblkp, tte);
6781
6782 /*
6783 * No need to make sure that the TSB for this sfmmu is
6784 * not being relocated since it is ksfmmup and thus it
6785 * will never be relocated.
6786 */
6787 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6788
6789 /*
6790 * Update xcall stats
6791 */
6792 cpuset = cpu_ready_set;
6793 CPUSET_DEL(cpuset, CPU->cpu_id);
6794
6795 /* LINTED: constant in conditional context */
6796 SFMMU_XCALL_STATS(ksfmmup);
6797
6798 /*
6799 * Flush TLB entry on remote CPU's
6800 */
6801 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6802 (uint64_t)ksfmmup);
6803 xt_sync(cpuset);
6804
6805 /*
6806 * Flush TLB entry on local CPU
6807 */
6808 vtag_flushpage(addr, (uint64_t)ksfmmup);
6809 }
6810
6811 while (index != 0) {
6812 index = index >> 1;
6813 if (index != 0)
6814 cons++;
6815 if (index & 0x1) {
6816 pp = PP_GROUPLEADER(pp, cons);
6817 goto retry;
6818 }
6819 }
6820 }
6821
6822 #ifdef DEBUG
6823
6824 #define N_PRLE 1024
6825 struct prle {
6826 page_t *targ;
6827 page_t *repl;
6828 int status;
6829 int pausecpus;
6830 hrtime_t whence;
6831 };
6832
6833 static struct prle page_relocate_log[N_PRLE];
6834 static int prl_entry;
6835 static kmutex_t prl_mutex;
6836
6837 #define PAGE_RELOCATE_LOG(t, r, s, p) \
6838 mutex_enter(&prl_mutex); \
6839 page_relocate_log[prl_entry].targ = *(t); \
6840 page_relocate_log[prl_entry].repl = *(r); \
6841 page_relocate_log[prl_entry].status = (s); \
6842 page_relocate_log[prl_entry].pausecpus = (p); \
6843 page_relocate_log[prl_entry].whence = gethrtime(); \
6844 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \
6845 mutex_exit(&prl_mutex);
6846
6847 #else /* !DEBUG */
6848 #define PAGE_RELOCATE_LOG(t, r, s, p)
6849 #endif
6850
6851 /*
6852 * Core Kernel Page Relocation Algorithm
6853 *
6854 * Input:
6855 *
6856 * target : constituent pages are SE_EXCL locked.
6857 * replacement: constituent pages are SE_EXCL locked.
6858 *
6859 * Output:
6860 *
6861 * nrelocp: number of pages relocated
6862 */
6863 int
hat_page_relocate(page_t ** target,page_t ** replacement,spgcnt_t * nrelocp)6864 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6865 {
6866 page_t *targ, *repl;
6867 page_t *tpp, *rpp;
6868 kmutex_t *low, *high;
6869 spgcnt_t npages, i;
6870 page_t *pl = NULL;
6871 int old_pil;
6872 cpuset_t cpuset;
6873 int cap_cpus;
6874 int ret;
6875 #ifdef VAC
6876 int cflags = 0;
6877 #endif
6878
6879 if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6880 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6881 return (EAGAIN);
6882 }
6883
6884 mutex_enter(&kpr_mutex);
6885 kreloc_thread = curthread;
6886
6887 targ = *target;
6888 repl = *replacement;
6889 ASSERT(repl != NULL);
6890 ASSERT(targ->p_szc == repl->p_szc);
6891
6892 npages = page_get_pagecnt(targ->p_szc);
6893
6894 /*
6895 * unload VA<->PA mappings that are not locked
6896 */
6897 tpp = targ;
6898 for (i = 0; i < npages; i++) {
6899 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6900 tpp++;
6901 }
6902
6903 /*
6904 * Do "presuspend" callbacks, in a context from which we can still
6905 * block as needed. Note that we don't hold the mapping list lock
6906 * of "targ" at this point due to potential locking order issues;
6907 * we assume that between the hat_pageunload() above and holding
6908 * the SE_EXCL lock that the mapping list *cannot* change at this
6909 * point.
6910 */
6911 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6912 if (ret != 0) {
6913 /*
6914 * EIO translates to fatal error, for all others cleanup
6915 * and return EAGAIN.
6916 */
6917 ASSERT(ret != EIO);
6918 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6919 PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6920 kreloc_thread = NULL;
6921 mutex_exit(&kpr_mutex);
6922 return (EAGAIN);
6923 }
6924
6925 /*
6926 * acquire p_mapping list lock for both the target and replacement
6927 * root pages.
6928 *
6929 * low and high refer to the need to grab the mlist locks in a
6930 * specific order in order to prevent race conditions. Thus the
6931 * lower lock must be grabbed before the higher lock.
6932 *
6933 * This will block hat_unload's accessing p_mapping list. Since
6934 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6935 * blocked. Thus, no one else will be accessing the p_mapping list
6936 * while we suspend and reload the locked mapping below.
6937 */
6938 tpp = targ;
6939 rpp = repl;
6940 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6941
6942 kpreempt_disable();
6943
6944 /*
6945 * We raise our PIL to 13 so that we don't get captured by
6946 * another CPU or pinned by an interrupt thread. We can't go to
6947 * PIL 14 since the nexus driver(s) may need to interrupt at
6948 * that level in the case of IOMMU pseudo mappings.
6949 */
6950 cpuset = cpu_ready_set;
6951 CPUSET_DEL(cpuset, CPU->cpu_id);
6952 if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6953 old_pil = splr(XCALL_PIL);
6954 } else {
6955 old_pil = -1;
6956 xc_attention(cpuset);
6957 }
6958 ASSERT(getpil() == XCALL_PIL);
6959
6960 /*
6961 * Now do suspend callbacks. In the case of an IOMMU mapping
6962 * this will suspend all DMA activity to the page while it is
6963 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6964 * may be captured at this point we should have acquired any needed
6965 * locks in the presuspend callback.
6966 */
6967 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6968 if (ret != 0) {
6969 repl = targ;
6970 goto suspend_fail;
6971 }
6972
6973 /*
6974 * Raise the PIL yet again, this time to block all high-level
6975 * interrupts on this CPU. This is necessary to prevent an
6976 * interrupt routine from pinning the thread which holds the
6977 * mapping suspended and then touching the suspended page.
6978 *
6979 * Once the page is suspended we also need to be careful to
6980 * avoid calling any functions which touch any seg_kmem memory
6981 * since that memory may be backed by the very page we are
6982 * relocating in here!
6983 */
6984 hat_pagesuspend(targ);
6985
6986 /*
6987 * Now that we are confident everybody has stopped using this page,
6988 * copy the page contents. Note we use a physical copy to prevent
6989 * locking issues and to avoid fpRAS because we can't handle it in
6990 * this context.
6991 */
6992 for (i = 0; i < npages; i++, tpp++, rpp++) {
6993 #ifdef VAC
6994 /*
6995 * If the replacement has a different vcolor than
6996 * the one being replacd, we need to handle VAC
6997 * consistency for it just as we were setting up
6998 * a new mapping to it.
6999 */
7000 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
7001 (tpp->p_vcolor != rpp->p_vcolor) &&
7002 !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
7003 CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
7004 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
7005 rpp->p_pagenum);
7006 }
7007 #endif
7008 /*
7009 * Copy the contents of the page.
7010 */
7011 ppcopy_kernel(tpp, rpp);
7012 }
7013
7014 tpp = targ;
7015 rpp = repl;
7016 for (i = 0; i < npages; i++, tpp++, rpp++) {
7017 /*
7018 * Copy attributes. VAC consistency was handled above,
7019 * if required.
7020 */
7021 rpp->p_nrm = tpp->p_nrm;
7022 tpp->p_nrm = 0;
7023 rpp->p_index = tpp->p_index;
7024 tpp->p_index = 0;
7025 #ifdef VAC
7026 rpp->p_vcolor = tpp->p_vcolor;
7027 #endif
7028 }
7029
7030 /*
7031 * First, unsuspend the page, if we set the suspend bit, and transfer
7032 * the mapping list from the target page to the replacement page.
7033 * Next process postcallbacks; since pa_hment's are linked only to the
7034 * p_mapping list of root page, we don't iterate over the constituent
7035 * pages.
7036 */
7037 hat_pagereload(targ, repl);
7038
7039 suspend_fail:
7040 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
7041
7042 /*
7043 * Now lower our PIL and release any captured CPUs since we
7044 * are out of the "danger zone". After this it will again be
7045 * safe to acquire adaptive mutex locks, or to drop them...
7046 */
7047 if (old_pil != -1) {
7048 splx(old_pil);
7049 } else {
7050 xc_dismissed(cpuset);
7051 }
7052
7053 kpreempt_enable();
7054
7055 sfmmu_mlist_reloc_exit(low, high);
7056
7057 /*
7058 * Postsuspend callbacks should drop any locks held across
7059 * the suspend callbacks. As before, we don't hold the mapping
7060 * list lock at this point.. our assumption is that the mapping
7061 * list still can't change due to our holding SE_EXCL lock and
7062 * there being no unlocked mappings left. Hence the restriction
7063 * on calling context to hat_delete_callback()
7064 */
7065 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
7066 if (ret != 0) {
7067 /*
7068 * The second presuspend call failed: we got here through
7069 * the suspend_fail label above.
7070 */
7071 ASSERT(ret != EIO);
7072 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
7073 kreloc_thread = NULL;
7074 mutex_exit(&kpr_mutex);
7075 return (EAGAIN);
7076 }
7077
7078 /*
7079 * Now that we're out of the performance critical section we can
7080 * take care of updating the hash table, since we still
7081 * hold all the pages locked SE_EXCL at this point we
7082 * needn't worry about things changing out from under us.
7083 */
7084 tpp = targ;
7085 rpp = repl;
7086 for (i = 0; i < npages; i++, tpp++, rpp++) {
7087
7088 /*
7089 * replace targ with replacement in page_hash table
7090 */
7091 targ = tpp;
7092 page_relocate_hash(rpp, targ);
7093
7094 /*
7095 * concatenate target; caller of platform_page_relocate()
7096 * expects target to be concatenated after returning.
7097 */
7098 ASSERT(targ->p_next == targ);
7099 ASSERT(targ->p_prev == targ);
7100 page_list_concat(&pl, &targ);
7101 }
7102
7103 ASSERT(*target == pl);
7104 *nrelocp = npages;
7105 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
7106 kreloc_thread = NULL;
7107 mutex_exit(&kpr_mutex);
7108 return (0);
7109 }
7110
7111 /*
7112 * Called when stray pa_hments are found attached to a page which is
7113 * being freed. Notify the subsystem which attached the pa_hment of
7114 * the error if it registered a suitable handler, else panic.
7115 */
7116 static void
sfmmu_pahment_leaked(struct pa_hment * pahmep)7117 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7118 {
7119 id_t cb_id = pahmep->cb_id;
7120
7121 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7122 if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7123 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7124 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7125 return; /* non-fatal */
7126 }
7127 panic("pa_hment leaked: 0x%p", (void *)pahmep);
7128 }
7129
7130 /*
7131 * Remove all mappings to page 'pp'.
7132 */
7133 int
hat_pageunload(struct page * pp,uint_t forceflag)7134 hat_pageunload(struct page *pp, uint_t forceflag)
7135 {
7136 struct page *origpp = pp;
7137 struct sf_hment *sfhme, *tmphme;
7138 struct hme_blk *hmeblkp;
7139 kmutex_t *pml;
7140 #ifdef VAC
7141 kmutex_t *pmtx;
7142 #endif
7143 cpuset_t cpuset, tset;
7144 int index, cons;
7145 int xhme_blks;
7146 int pa_hments;
7147
7148 ASSERT(PAGE_EXCL(pp));
7149
7150 retry_xhat:
7151 tmphme = NULL;
7152 xhme_blks = 0;
7153 pa_hments = 0;
7154 CPUSET_ZERO(cpuset);
7155
7156 pml = sfmmu_mlist_enter(pp);
7157
7158 #ifdef VAC
7159 if (pp->p_kpmref)
7160 sfmmu_kpm_pageunload(pp);
7161 ASSERT(!PP_ISMAPPED_KPM(pp));
7162 #endif
7163 /*
7164 * Clear vpm reference. Since the page is exclusively locked
7165 * vpm cannot be referencing it.
7166 */
7167 if (vpm_enable) {
7168 pp->p_vpmref = 0;
7169 }
7170
7171 index = PP_MAPINDEX(pp);
7172 cons = TTE8K;
7173 retry:
7174 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7175 tmphme = sfhme->hme_next;
7176
7177 if (IS_PAHME(sfhme)) {
7178 ASSERT(sfhme->hme_data != NULL);
7179 pa_hments++;
7180 continue;
7181 }
7182
7183 hmeblkp = sfmmu_hmetohblk(sfhme);
7184 if (hmeblkp->hblk_xhat_bit) {
7185 struct xhat_hme_blk *xblk =
7186 (struct xhat_hme_blk *)hmeblkp;
7187
7188 (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7189 pp, forceflag, XBLK2PROVBLK(xblk));
7190
7191 xhme_blks = 1;
7192 continue;
7193 }
7194
7195 /*
7196 * If there are kernel mappings don't unload them, they will
7197 * be suspended.
7198 */
7199 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7200 hmeblkp->hblk_tag.htag_id == ksfmmup)
7201 continue;
7202
7203 tset = sfmmu_pageunload(pp, sfhme, cons);
7204 CPUSET_OR(cpuset, tset);
7205 }
7206
7207 while (index != 0) {
7208 index = index >> 1;
7209 if (index != 0)
7210 cons++;
7211 if (index & 0x1) {
7212 /* Go to leading page */
7213 pp = PP_GROUPLEADER(pp, cons);
7214 ASSERT(sfmmu_mlist_held(pp));
7215 goto retry;
7216 }
7217 }
7218
7219 /*
7220 * cpuset may be empty if the page was only mapped by segkpm,
7221 * in which case we won't actually cross-trap.
7222 */
7223 xt_sync(cpuset);
7224
7225 /*
7226 * The page should have no mappings at this point, unless
7227 * we were called from hat_page_relocate() in which case we
7228 * leave the locked mappings which will be suspended later.
7229 */
7230 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7231 (forceflag == SFMMU_KERNEL_RELOC));
7232
7233 #ifdef VAC
7234 if (PP_ISTNC(pp)) {
7235 if (cons == TTE8K) {
7236 pmtx = sfmmu_page_enter(pp);
7237 PP_CLRTNC(pp);
7238 sfmmu_page_exit(pmtx);
7239 } else {
7240 conv_tnc(pp, cons);
7241 }
7242 }
7243 #endif /* VAC */
7244
7245 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7246 /*
7247 * Unlink any pa_hments and free them, calling back
7248 * the responsible subsystem to notify it of the error.
7249 * This can occur in situations such as drivers leaking
7250 * DMA handles: naughty, but common enough that we'd like
7251 * to keep the system running rather than bringing it
7252 * down with an obscure error like "pa_hment leaked"
7253 * which doesn't aid the user in debugging their driver.
7254 */
7255 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7256 tmphme = sfhme->hme_next;
7257 if (IS_PAHME(sfhme)) {
7258 struct pa_hment *pahmep = sfhme->hme_data;
7259 sfmmu_pahment_leaked(pahmep);
7260 HME_SUB(sfhme, pp);
7261 kmem_cache_free(pa_hment_cache, pahmep);
7262 }
7263 }
7264
7265 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7266 }
7267
7268 sfmmu_mlist_exit(pml);
7269
7270 /*
7271 * XHAT may not have finished unloading pages
7272 * because some other thread was waiting for
7273 * mlist lock and XHAT_PAGEUNLOAD let it do
7274 * the job.
7275 */
7276 if (xhme_blks) {
7277 pp = origpp;
7278 goto retry_xhat;
7279 }
7280
7281 return (0);
7282 }
7283
7284 cpuset_t
sfmmu_pageunload(page_t * pp,struct sf_hment * sfhme,int cons)7285 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7286 {
7287 struct hme_blk *hmeblkp;
7288 sfmmu_t *sfmmup;
7289 tte_t tte, ttemod;
7290 #ifdef DEBUG
7291 tte_t orig_old;
7292 #endif /* DEBUG */
7293 caddr_t addr;
7294 int ttesz;
7295 int ret;
7296 cpuset_t cpuset;
7297
7298 ASSERT(pp != NULL);
7299 ASSERT(sfmmu_mlist_held(pp));
7300 ASSERT(!PP_ISKAS(pp));
7301
7302 CPUSET_ZERO(cpuset);
7303
7304 hmeblkp = sfmmu_hmetohblk(sfhme);
7305
7306 readtte:
7307 sfmmu_copytte(&sfhme->hme_tte, &tte);
7308 if (TTE_IS_VALID(&tte)) {
7309 sfmmup = hblktosfmmu(hmeblkp);
7310 ttesz = get_hblk_ttesz(hmeblkp);
7311 /*
7312 * Only unload mappings of 'cons' size.
7313 */
7314 if (ttesz != cons)
7315 return (cpuset);
7316
7317 /*
7318 * Note that we have p_mapping lock, but no hash lock here.
7319 * hblk_unload() has to have both hash lock AND p_mapping
7320 * lock before it tries to modify tte. So, the tte could
7321 * not become invalid in the sfmmu_modifytte_try() below.
7322 */
7323 ttemod = tte;
7324 #ifdef DEBUG
7325 orig_old = tte;
7326 #endif /* DEBUG */
7327
7328 TTE_SET_INVALID(&ttemod);
7329 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7330 if (ret < 0) {
7331 #ifdef DEBUG
7332 /* only R/M bits can change. */
7333 chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7334 #endif /* DEBUG */
7335 goto readtte;
7336 }
7337
7338 if (ret == 0) {
7339 panic("pageunload: cas failed?");
7340 }
7341
7342 addr = tte_to_vaddr(hmeblkp, tte);
7343
7344 if (hmeblkp->hblk_shared) {
7345 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7346 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7347 sf_region_t *rgnp;
7348 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7349 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7350 ASSERT(srdp != NULL);
7351 rgnp = srdp->srd_hmergnp[rid];
7352 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7353 cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7354 sfmmu_ttesync(NULL, addr, &tte, pp);
7355 ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7356 atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7357 } else {
7358 sfmmu_ttesync(sfmmup, addr, &tte, pp);
7359 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7360
7361 /*
7362 * We need to flush the page from the virtual cache
7363 * in order to prevent a virtual cache alias
7364 * inconsistency. The particular scenario we need
7365 * to worry about is:
7366 * Given: va1 and va2 are two virtual address that
7367 * alias and will map the same physical address.
7368 * 1. mapping exists from va1 to pa and data has
7369 * been read into the cache.
7370 * 2. unload va1.
7371 * 3. load va2 and modify data using va2.
7372 * 4 unload va2.
7373 * 5. load va1 and reference data. Unless we flush
7374 * the data cache when we unload we will get
7375 * stale data.
7376 * This scenario is taken care of by using virtual
7377 * page coloring.
7378 */
7379 if (sfmmup->sfmmu_ismhat) {
7380 /*
7381 * Flush TSBs, TLBs and caches
7382 * of every process
7383 * sharing this ism segment.
7384 */
7385 sfmmu_hat_lock_all();
7386 mutex_enter(&ism_mlist_lock);
7387 kpreempt_disable();
7388 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7389 pp->p_pagenum, CACHE_NO_FLUSH);
7390 kpreempt_enable();
7391 mutex_exit(&ism_mlist_lock);
7392 sfmmu_hat_unlock_all();
7393 cpuset = cpu_ready_set;
7394 } else {
7395 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7396 cpuset = sfmmup->sfmmu_cpusran;
7397 }
7398 }
7399
7400 /*
7401 * Hme_sub has to run after ttesync() and a_rss update.
7402 * See hblk_unload().
7403 */
7404 HME_SUB(sfhme, pp);
7405 membar_stst();
7406
7407 /*
7408 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7409 * since pteload may have done a HME_ADD() right after
7410 * we did the HME_SUB() above. Hmecnt is now maintained
7411 * by cas only. no lock guranteed its value. The only
7412 * gurantee we have is the hmecnt should not be less than
7413 * what it should be so the hblk will not be taken away.
7414 * It's also important that we decremented the hmecnt after
7415 * we are done with hmeblkp so that this hmeblk won't be
7416 * stolen.
7417 */
7418 ASSERT(hmeblkp->hblk_hmecnt > 0);
7419 ASSERT(hmeblkp->hblk_vcnt > 0);
7420 atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7421 atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7422 /*
7423 * This is bug 4063182.
7424 * XXX: fixme
7425 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7426 * !hmeblkp->hblk_lckcnt);
7427 */
7428 } else {
7429 panic("invalid tte? pp %p &tte %p",
7430 (void *)pp, (void *)&tte);
7431 }
7432
7433 return (cpuset);
7434 }
7435
7436 /*
7437 * While relocating a kernel page, this function will move the mappings
7438 * from tpp to dpp and modify any associated data with these mappings.
7439 * It also unsuspends the suspended kernel mapping.
7440 */
7441 static void
hat_pagereload(struct page * tpp,struct page * dpp)7442 hat_pagereload(struct page *tpp, struct page *dpp)
7443 {
7444 struct sf_hment *sfhme;
7445 tte_t tte, ttemod;
7446 int index, cons;
7447
7448 ASSERT(getpil() == PIL_MAX);
7449 ASSERT(sfmmu_mlist_held(tpp));
7450 ASSERT(sfmmu_mlist_held(dpp));
7451
7452 index = PP_MAPINDEX(tpp);
7453 cons = TTE8K;
7454
7455 /* Update real mappings to the page */
7456 retry:
7457 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7458 if (IS_PAHME(sfhme))
7459 continue;
7460 sfmmu_copytte(&sfhme->hme_tte, &tte);
7461 ttemod = tte;
7462
7463 /*
7464 * replace old pfn with new pfn in TTE
7465 */
7466 PFN_TO_TTE(ttemod, dpp->p_pagenum);
7467
7468 /*
7469 * clear suspend bit
7470 */
7471 ASSERT(TTE_IS_SUSPEND(&ttemod));
7472 TTE_CLR_SUSPEND(&ttemod);
7473
7474 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7475 panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7476
7477 /*
7478 * set hme_page point to new page
7479 */
7480 sfhme->hme_page = dpp;
7481 }
7482
7483 /*
7484 * move p_mapping list from old page to new page
7485 */
7486 dpp->p_mapping = tpp->p_mapping;
7487 tpp->p_mapping = NULL;
7488 dpp->p_share = tpp->p_share;
7489 tpp->p_share = 0;
7490
7491 while (index != 0) {
7492 index = index >> 1;
7493 if (index != 0)
7494 cons++;
7495 if (index & 0x1) {
7496 tpp = PP_GROUPLEADER(tpp, cons);
7497 dpp = PP_GROUPLEADER(dpp, cons);
7498 goto retry;
7499 }
7500 }
7501
7502 curthread->t_flag &= ~T_DONTDTRACE;
7503 mutex_exit(&kpr_suspendlock);
7504 }
7505
7506 uint_t
hat_pagesync(struct page * pp,uint_t clearflag)7507 hat_pagesync(struct page *pp, uint_t clearflag)
7508 {
7509 struct sf_hment *sfhme, *tmphme = NULL;
7510 struct hme_blk *hmeblkp;
7511 kmutex_t *pml;
7512 cpuset_t cpuset, tset;
7513 int index, cons;
7514 extern ulong_t po_share;
7515 page_t *save_pp = pp;
7516 int stop_on_sh = 0;
7517 uint_t shcnt;
7518
7519 CPUSET_ZERO(cpuset);
7520
7521 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7522 return (PP_GENERIC_ATTR(pp));
7523 }
7524
7525 if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7526 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7527 return (PP_GENERIC_ATTR(pp));
7528 }
7529 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7530 return (PP_GENERIC_ATTR(pp));
7531 }
7532 if (clearflag & HAT_SYNC_STOPON_SHARED) {
7533 if (pp->p_share > po_share) {
7534 hat_page_setattr(pp, P_REF);
7535 return (PP_GENERIC_ATTR(pp));
7536 }
7537 stop_on_sh = 1;
7538 shcnt = 0;
7539 }
7540 }
7541
7542 clearflag &= ~HAT_SYNC_STOPON_SHARED;
7543 pml = sfmmu_mlist_enter(pp);
7544 index = PP_MAPINDEX(pp);
7545 cons = TTE8K;
7546 retry:
7547 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7548 /*
7549 * We need to save the next hment on the list since
7550 * it is possible for pagesync to remove an invalid hment
7551 * from the list.
7552 */
7553 tmphme = sfhme->hme_next;
7554 if (IS_PAHME(sfhme))
7555 continue;
7556 /*
7557 * If we are looking for large mappings and this hme doesn't
7558 * reach the range we are seeking, just ignore it.
7559 */
7560 hmeblkp = sfmmu_hmetohblk(sfhme);
7561 if (hmeblkp->hblk_xhat_bit)
7562 continue;
7563
7564 if (hme_size(sfhme) < cons)
7565 continue;
7566
7567 if (stop_on_sh) {
7568 if (hmeblkp->hblk_shared) {
7569 sf_srd_t *srdp = hblktosrd(hmeblkp);
7570 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7571 sf_region_t *rgnp;
7572 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7573 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7574 ASSERT(srdp != NULL);
7575 rgnp = srdp->srd_hmergnp[rid];
7576 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7577 rgnp, rid);
7578 shcnt += rgnp->rgn_refcnt;
7579 } else {
7580 shcnt++;
7581 }
7582 if (shcnt > po_share) {
7583 /*
7584 * tell the pager to spare the page this time
7585 * around.
7586 */
7587 hat_page_setattr(save_pp, P_REF);
7588 index = 0;
7589 break;
7590 }
7591 }
7592 tset = sfmmu_pagesync(pp, sfhme,
7593 clearflag & ~HAT_SYNC_STOPON_RM);
7594 CPUSET_OR(cpuset, tset);
7595
7596 /*
7597 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7598 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7599 */
7600 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7601 (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7602 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7603 index = 0;
7604 break;
7605 }
7606 }
7607
7608 while (index) {
7609 index = index >> 1;
7610 cons++;
7611 if (index & 0x1) {
7612 /* Go to leading page */
7613 pp = PP_GROUPLEADER(pp, cons);
7614 goto retry;
7615 }
7616 }
7617
7618 xt_sync(cpuset);
7619 sfmmu_mlist_exit(pml);
7620 return (PP_GENERIC_ATTR(save_pp));
7621 }
7622
7623 /*
7624 * Get all the hardware dependent attributes for a page struct
7625 */
7626 static cpuset_t
sfmmu_pagesync(struct page * pp,struct sf_hment * sfhme,uint_t clearflag)7627 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7628 uint_t clearflag)
7629 {
7630 caddr_t addr;
7631 tte_t tte, ttemod;
7632 struct hme_blk *hmeblkp;
7633 int ret;
7634 sfmmu_t *sfmmup;
7635 cpuset_t cpuset;
7636
7637 ASSERT(pp != NULL);
7638 ASSERT(sfmmu_mlist_held(pp));
7639 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7640 (clearflag == HAT_SYNC_ZERORM));
7641
7642 SFMMU_STAT(sf_pagesync);
7643
7644 CPUSET_ZERO(cpuset);
7645
7646 sfmmu_pagesync_retry:
7647
7648 sfmmu_copytte(&sfhme->hme_tte, &tte);
7649 if (TTE_IS_VALID(&tte)) {
7650 hmeblkp = sfmmu_hmetohblk(sfhme);
7651 sfmmup = hblktosfmmu(hmeblkp);
7652 addr = tte_to_vaddr(hmeblkp, tte);
7653 if (clearflag == HAT_SYNC_ZERORM) {
7654 ttemod = tte;
7655 TTE_CLR_RM(&ttemod);
7656 ret = sfmmu_modifytte_try(&tte, &ttemod,
7657 &sfhme->hme_tte);
7658 if (ret < 0) {
7659 /*
7660 * cas failed and the new value is not what
7661 * we want.
7662 */
7663 goto sfmmu_pagesync_retry;
7664 }
7665
7666 if (ret > 0) {
7667 /* we win the cas */
7668 if (hmeblkp->hblk_shared) {
7669 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7670 uint_t rid =
7671 hmeblkp->hblk_tag.htag_rid;
7672 sf_region_t *rgnp;
7673 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7674 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7675 ASSERT(srdp != NULL);
7676 rgnp = srdp->srd_hmergnp[rid];
7677 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7678 srdp, rgnp, rid);
7679 cpuset = sfmmu_rgntlb_demap(addr,
7680 rgnp, hmeblkp, 1);
7681 } else {
7682 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7683 0, 0);
7684 cpuset = sfmmup->sfmmu_cpusran;
7685 }
7686 }
7687 }
7688 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7689 &tte, pp);
7690 }
7691 return (cpuset);
7692 }
7693
7694 /*
7695 * Remove write permission from a mappings to a page, so that
7696 * we can detect the next modification of it. This requires modifying
7697 * the TTE then invalidating (demap) any TLB entry using that TTE.
7698 * This code is similar to sfmmu_pagesync().
7699 */
7700 static cpuset_t
sfmmu_pageclrwrt(struct page * pp,struct sf_hment * sfhme)7701 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7702 {
7703 caddr_t addr;
7704 tte_t tte;
7705 tte_t ttemod;
7706 struct hme_blk *hmeblkp;
7707 int ret;
7708 sfmmu_t *sfmmup;
7709 cpuset_t cpuset;
7710
7711 ASSERT(pp != NULL);
7712 ASSERT(sfmmu_mlist_held(pp));
7713
7714 CPUSET_ZERO(cpuset);
7715 SFMMU_STAT(sf_clrwrt);
7716
7717 retry:
7718
7719 sfmmu_copytte(&sfhme->hme_tte, &tte);
7720 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7721 hmeblkp = sfmmu_hmetohblk(sfhme);
7722
7723 /*
7724 * xhat mappings should never be to a VMODSORT page.
7725 */
7726 ASSERT(hmeblkp->hblk_xhat_bit == 0);
7727
7728 sfmmup = hblktosfmmu(hmeblkp);
7729 addr = tte_to_vaddr(hmeblkp, tte);
7730
7731 ttemod = tte;
7732 TTE_CLR_WRT(&ttemod);
7733 TTE_CLR_MOD(&ttemod);
7734 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7735
7736 /*
7737 * if cas failed and the new value is not what
7738 * we want retry
7739 */
7740 if (ret < 0)
7741 goto retry;
7742
7743 /* we win the cas */
7744 if (ret > 0) {
7745 if (hmeblkp->hblk_shared) {
7746 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7747 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7748 sf_region_t *rgnp;
7749 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7750 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7751 ASSERT(srdp != NULL);
7752 rgnp = srdp->srd_hmergnp[rid];
7753 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7754 srdp, rgnp, rid);
7755 cpuset = sfmmu_rgntlb_demap(addr,
7756 rgnp, hmeblkp, 1);
7757 } else {
7758 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7759 cpuset = sfmmup->sfmmu_cpusran;
7760 }
7761 }
7762 }
7763
7764 return (cpuset);
7765 }
7766
7767 /*
7768 * Walk all mappings of a page, removing write permission and clearing the
7769 * ref/mod bits. This code is similar to hat_pagesync()
7770 */
7771 static void
hat_page_clrwrt(page_t * pp)7772 hat_page_clrwrt(page_t *pp)
7773 {
7774 struct sf_hment *sfhme;
7775 struct sf_hment *tmphme = NULL;
7776 kmutex_t *pml;
7777 cpuset_t cpuset;
7778 cpuset_t tset;
7779 int index;
7780 int cons;
7781
7782 CPUSET_ZERO(cpuset);
7783
7784 pml = sfmmu_mlist_enter(pp);
7785 index = PP_MAPINDEX(pp);
7786 cons = TTE8K;
7787 retry:
7788 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7789 tmphme = sfhme->hme_next;
7790
7791 /*
7792 * If we are looking for large mappings and this hme doesn't
7793 * reach the range we are seeking, just ignore its.
7794 */
7795
7796 if (hme_size(sfhme) < cons)
7797 continue;
7798
7799 tset = sfmmu_pageclrwrt(pp, sfhme);
7800 CPUSET_OR(cpuset, tset);
7801 }
7802
7803 while (index) {
7804 index = index >> 1;
7805 cons++;
7806 if (index & 0x1) {
7807 /* Go to leading page */
7808 pp = PP_GROUPLEADER(pp, cons);
7809 goto retry;
7810 }
7811 }
7812
7813 xt_sync(cpuset);
7814 sfmmu_mlist_exit(pml);
7815 }
7816
7817 /*
7818 * Set the given REF/MOD/RO bits for the given page.
7819 * For a vnode with a sorted v_pages list, we need to change
7820 * the attributes and the v_pages list together under page_vnode_mutex.
7821 */
7822 void
hat_page_setattr(page_t * pp,uint_t flag)7823 hat_page_setattr(page_t *pp, uint_t flag)
7824 {
7825 vnode_t *vp = pp->p_vnode;
7826 page_t **listp;
7827 kmutex_t *pmtx;
7828 kmutex_t *vphm = NULL;
7829 int noshuffle;
7830
7831 noshuffle = flag & P_NSH;
7832 flag &= ~P_NSH;
7833
7834 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7835
7836 /*
7837 * nothing to do if attribute already set
7838 */
7839 if ((pp->p_nrm & flag) == flag)
7840 return;
7841
7842 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7843 !noshuffle) {
7844 vphm = page_vnode_mutex(vp);
7845 mutex_enter(vphm);
7846 }
7847
7848 pmtx = sfmmu_page_enter(pp);
7849 pp->p_nrm |= flag;
7850 sfmmu_page_exit(pmtx);
7851
7852 if (vphm != NULL) {
7853 /*
7854 * Some File Systems examine v_pages for NULL w/o
7855 * grabbing the vphm mutex. Must not let it become NULL when
7856 * pp is the only page on the list.
7857 */
7858 if (pp->p_vpnext != pp) {
7859 page_vpsub(&vp->v_pages, pp);
7860 if (vp->v_pages != NULL)
7861 listp = &vp->v_pages->p_vpprev->p_vpnext;
7862 else
7863 listp = &vp->v_pages;
7864 page_vpadd(listp, pp);
7865 }
7866 mutex_exit(vphm);
7867 }
7868 }
7869
7870 void
hat_page_clrattr(page_t * pp,uint_t flag)7871 hat_page_clrattr(page_t *pp, uint_t flag)
7872 {
7873 vnode_t *vp = pp->p_vnode;
7874 kmutex_t *pmtx;
7875
7876 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7877
7878 pmtx = sfmmu_page_enter(pp);
7879
7880 /*
7881 * Caller is expected to hold page's io lock for VMODSORT to work
7882 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7883 * bit is cleared.
7884 * We don't have assert to avoid tripping some existing third party
7885 * code. The dirty page is moved back to top of the v_page list
7886 * after IO is done in pvn_write_done().
7887 */
7888 pp->p_nrm &= ~flag;
7889 sfmmu_page_exit(pmtx);
7890
7891 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7892
7893 /*
7894 * VMODSORT works by removing write permissions and getting
7895 * a fault when a page is made dirty. At this point
7896 * we need to remove write permission from all mappings
7897 * to this page.
7898 */
7899 hat_page_clrwrt(pp);
7900 }
7901 }
7902
7903 uint_t
hat_page_getattr(page_t * pp,uint_t flag)7904 hat_page_getattr(page_t *pp, uint_t flag)
7905 {
7906 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7907 return ((uint_t)(pp->p_nrm & flag));
7908 }
7909
7910 /*
7911 * DEBUG kernels: verify that a kernel va<->pa translation
7912 * is safe by checking the underlying page_t is in a page
7913 * relocation-safe state.
7914 */
7915 #ifdef DEBUG
7916 void
sfmmu_check_kpfn(pfn_t pfn)7917 sfmmu_check_kpfn(pfn_t pfn)
7918 {
7919 page_t *pp;
7920 int index, cons;
7921
7922 if (hat_check_vtop == 0)
7923 return;
7924
7925 if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7926 return;
7927
7928 pp = page_numtopp_nolock(pfn);
7929 if (!pp)
7930 return;
7931
7932 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7933 return;
7934
7935 /*
7936 * Handed a large kernel page, we dig up the root page since we
7937 * know the root page might have the lock also.
7938 */
7939 if (pp->p_szc != 0) {
7940 index = PP_MAPINDEX(pp);
7941 cons = TTE8K;
7942 again:
7943 while (index != 0) {
7944 index >>= 1;
7945 if (index != 0)
7946 cons++;
7947 if (index & 0x1) {
7948 pp = PP_GROUPLEADER(pp, cons);
7949 goto again;
7950 }
7951 }
7952 }
7953
7954 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7955 return;
7956
7957 /*
7958 * Pages need to be locked or allocated "permanent" (either from
7959 * static_arena arena or explicitly setting PG_NORELOC when calling
7960 * page_create_va()) for VA->PA translations to be valid.
7961 */
7962 if (!PP_ISNORELOC(pp))
7963 panic("Illegal VA->PA translation, pp 0x%p not permanent",
7964 (void *)pp);
7965 else
7966 panic("Illegal VA->PA translation, pp 0x%p not locked",
7967 (void *)pp);
7968 }
7969 #endif /* DEBUG */
7970
7971 /*
7972 * Returns a page frame number for a given virtual address.
7973 * Returns PFN_INVALID to indicate an invalid mapping
7974 */
7975 pfn_t
hat_getpfnum(struct hat * hat,caddr_t addr)7976 hat_getpfnum(struct hat *hat, caddr_t addr)
7977 {
7978 pfn_t pfn;
7979 tte_t tte;
7980
7981 /*
7982 * We would like to
7983 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7984 * but we can't because the iommu driver will call this
7985 * routine at interrupt time and it can't grab the as lock
7986 * or it will deadlock: A thread could have the as lock
7987 * and be waiting for io. The io can't complete
7988 * because the interrupt thread is blocked trying to grab
7989 * the as lock.
7990 */
7991
7992 ASSERT(hat->sfmmu_xhat_provider == NULL);
7993
7994 if (hat == ksfmmup) {
7995 if (IS_KMEM_VA_LARGEPAGE(addr)) {
7996 ASSERT(segkmem_lpszc > 0);
7997 pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7998 if (pfn != PFN_INVALID) {
7999 sfmmu_check_kpfn(pfn);
8000 return (pfn);
8001 }
8002 } else if (segkpm && IS_KPM_ADDR(addr)) {
8003 return (sfmmu_kpm_vatopfn(addr));
8004 }
8005 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
8006 == PFN_SUSPENDED) {
8007 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
8008 }
8009 sfmmu_check_kpfn(pfn);
8010 return (pfn);
8011 } else {
8012 return (sfmmu_uvatopfn(addr, hat, NULL));
8013 }
8014 }
8015
8016 /*
8017 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
8018 * Use hat_getpfnum(kas.a_hat, ...) instead.
8019 *
8020 * We'd like to return PFN_INVALID if the mappings have underlying page_t's
8021 * but can't right now due to the fact that some software has grown to use
8022 * this interface incorrectly. So for now when the interface is misused,
8023 * return a warning to the user that in the future it won't work in the
8024 * way they're abusing it, and carry on (after disabling page relocation).
8025 */
8026 pfn_t
hat_getkpfnum(caddr_t addr)8027 hat_getkpfnum(caddr_t addr)
8028 {
8029 pfn_t pfn;
8030 tte_t tte;
8031 int badcaller = 0;
8032 extern int segkmem_reloc;
8033
8034 if (segkpm && IS_KPM_ADDR(addr)) {
8035 badcaller = 1;
8036 pfn = sfmmu_kpm_vatopfn(addr);
8037 } else {
8038 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
8039 == PFN_SUSPENDED) {
8040 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
8041 }
8042 badcaller = pf_is_memory(pfn);
8043 }
8044
8045 if (badcaller) {
8046 /*
8047 * We can't return PFN_INVALID or the caller may panic
8048 * or corrupt the system. The only alternative is to
8049 * disable page relocation at this point for all kernel
8050 * memory. This will impact any callers of page_relocate()
8051 * such as FMA or DR.
8052 *
8053 * RFE: Add junk here to spit out an ereport so the sysadmin
8054 * can be advised that he should upgrade his device driver
8055 * so that this doesn't happen.
8056 */
8057 hat_getkpfnum_badcall(caller());
8058 if (hat_kpr_enabled && segkmem_reloc) {
8059 hat_kpr_enabled = 0;
8060 segkmem_reloc = 0;
8061 cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
8062 }
8063 }
8064 return (pfn);
8065 }
8066
8067 /*
8068 * This routine will return both pfn and tte for the vaddr.
8069 */
8070 static pfn_t
sfmmu_uvatopfn(caddr_t vaddr,struct hat * sfmmup,tte_t * ttep)8071 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
8072 {
8073 struct hmehash_bucket *hmebp;
8074 hmeblk_tag hblktag;
8075 int hmeshift, hashno = 1;
8076 struct hme_blk *hmeblkp = NULL;
8077 tte_t tte;
8078
8079 struct sf_hment *sfhmep;
8080 pfn_t pfn;
8081
8082 /* support for ISM */
8083 ism_map_t *ism_map;
8084 ism_blk_t *ism_blkp;
8085 int i;
8086 sfmmu_t *ism_hatid = NULL;
8087 sfmmu_t *locked_hatid = NULL;
8088 sfmmu_t *sv_sfmmup = sfmmup;
8089 caddr_t sv_vaddr = vaddr;
8090 sf_srd_t *srdp;
8091
8092 if (ttep == NULL) {
8093 ttep = &tte;
8094 } else {
8095 ttep->ll = 0;
8096 }
8097
8098 ASSERT(sfmmup != ksfmmup);
8099 SFMMU_STAT(sf_user_vtop);
8100 /*
8101 * Set ism_hatid if vaddr falls in a ISM segment.
8102 */
8103 ism_blkp = sfmmup->sfmmu_iblk;
8104 if (ism_blkp != NULL) {
8105 sfmmu_ismhat_enter(sfmmup, 0);
8106 locked_hatid = sfmmup;
8107 }
8108 while (ism_blkp != NULL && ism_hatid == NULL) {
8109 ism_map = ism_blkp->iblk_maps;
8110 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
8111 if (vaddr >= ism_start(ism_map[i]) &&
8112 vaddr < ism_end(ism_map[i])) {
8113 sfmmup = ism_hatid = ism_map[i].imap_ismhat;
8114 vaddr = (caddr_t)(vaddr -
8115 ism_start(ism_map[i]));
8116 break;
8117 }
8118 }
8119 ism_blkp = ism_blkp->iblk_next;
8120 }
8121 if (locked_hatid) {
8122 sfmmu_ismhat_exit(locked_hatid, 0);
8123 }
8124
8125 hblktag.htag_id = sfmmup;
8126 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
8127 do {
8128 hmeshift = HME_HASH_SHIFT(hashno);
8129 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
8130 hblktag.htag_rehash = hashno;
8131 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
8132
8133 SFMMU_HASH_LOCK(hmebp);
8134
8135 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
8136 if (hmeblkp != NULL) {
8137 ASSERT(!hmeblkp->hblk_shared);
8138 HBLKTOHME(sfhmep, hmeblkp, vaddr);
8139 sfmmu_copytte(&sfhmep->hme_tte, ttep);
8140 SFMMU_HASH_UNLOCK(hmebp);
8141 if (TTE_IS_VALID(ttep)) {
8142 pfn = TTE_TO_PFN(vaddr, ttep);
8143 return (pfn);
8144 }
8145 break;
8146 }
8147 SFMMU_HASH_UNLOCK(hmebp);
8148 hashno++;
8149 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8150
8151 if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8152 return (PFN_INVALID);
8153 }
8154 srdp = sv_sfmmup->sfmmu_srdp;
8155 ASSERT(srdp != NULL);
8156 ASSERT(srdp->srd_refcnt != 0);
8157 hblktag.htag_id = srdp;
8158 hashno = 1;
8159 do {
8160 hmeshift = HME_HASH_SHIFT(hashno);
8161 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8162 hblktag.htag_rehash = hashno;
8163 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8164
8165 SFMMU_HASH_LOCK(hmebp);
8166 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8167 hmeblkp = hmeblkp->hblk_next) {
8168 uint_t rid;
8169 sf_region_t *rgnp;
8170 caddr_t rsaddr;
8171 caddr_t readdr;
8172
8173 if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8174 sv_sfmmup->sfmmu_hmeregion_map)) {
8175 continue;
8176 }
8177 ASSERT(hmeblkp->hblk_shared);
8178 rid = hmeblkp->hblk_tag.htag_rid;
8179 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8180 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8181 rgnp = srdp->srd_hmergnp[rid];
8182 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8183 HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8184 sfmmu_copytte(&sfhmep->hme_tte, ttep);
8185 rsaddr = rgnp->rgn_saddr;
8186 readdr = rsaddr + rgnp->rgn_size;
8187 #ifdef DEBUG
8188 if (TTE_IS_VALID(ttep) ||
8189 get_hblk_ttesz(hmeblkp) > TTE8K) {
8190 caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8191 ASSERT(eva > sv_vaddr);
8192 ASSERT(sv_vaddr >= rsaddr);
8193 ASSERT(sv_vaddr < readdr);
8194 ASSERT(eva <= readdr);
8195 }
8196 #endif /* DEBUG */
8197 /*
8198 * Continue the search if we
8199 * found an invalid 8K tte outside of the area
8200 * covered by this hmeblk's region.
8201 */
8202 if (TTE_IS_VALID(ttep)) {
8203 SFMMU_HASH_UNLOCK(hmebp);
8204 pfn = TTE_TO_PFN(sv_vaddr, ttep);
8205 return (pfn);
8206 } else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8207 (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8208 SFMMU_HASH_UNLOCK(hmebp);
8209 pfn = PFN_INVALID;
8210 return (pfn);
8211 }
8212 }
8213 SFMMU_HASH_UNLOCK(hmebp);
8214 hashno++;
8215 } while (hashno <= mmu_hashcnt);
8216 return (PFN_INVALID);
8217 }
8218
8219
8220 /*
8221 * For compatability with AT&T and later optimizations
8222 */
8223 /* ARGSUSED */
8224 void
hat_map(struct hat * hat,caddr_t addr,size_t len,uint_t flags)8225 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8226 {
8227 ASSERT(hat != NULL);
8228 ASSERT(hat->sfmmu_xhat_provider == NULL);
8229 }
8230
8231 /*
8232 * Return the number of mappings to a particular page. This number is an
8233 * approximation of the number of people sharing the page.
8234 *
8235 * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8236 * hat_page_checkshare() can be used to compare threshold to share
8237 * count that reflects the number of region sharers albeit at higher cost.
8238 */
8239 ulong_t
hat_page_getshare(page_t * pp)8240 hat_page_getshare(page_t *pp)
8241 {
8242 page_t *spp = pp; /* start page */
8243 kmutex_t *pml;
8244 ulong_t cnt;
8245 int index, sz = TTE64K;
8246
8247 /*
8248 * We need to grab the mlist lock to make sure any outstanding
8249 * load/unloads complete. Otherwise we could return zero
8250 * even though the unload(s) hasn't finished yet.
8251 */
8252 pml = sfmmu_mlist_enter(spp);
8253 cnt = spp->p_share;
8254
8255 #ifdef VAC
8256 if (kpm_enable)
8257 cnt += spp->p_kpmref;
8258 #endif
8259 if (vpm_enable && pp->p_vpmref) {
8260 cnt += 1;
8261 }
8262
8263 /*
8264 * If we have any large mappings, we count the number of
8265 * mappings that this large page is part of.
8266 */
8267 index = PP_MAPINDEX(spp);
8268 index >>= 1;
8269 while (index) {
8270 pp = PP_GROUPLEADER(spp, sz);
8271 if ((index & 0x1) && pp != spp) {
8272 cnt += pp->p_share;
8273 spp = pp;
8274 }
8275 index >>= 1;
8276 sz++;
8277 }
8278 sfmmu_mlist_exit(pml);
8279 return (cnt);
8280 }
8281
8282 /*
8283 * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8284 * otherwise. Count shared hmeblks by region's refcnt.
8285 */
8286 int
hat_page_checkshare(page_t * pp,ulong_t sh_thresh)8287 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8288 {
8289 kmutex_t *pml;
8290 ulong_t cnt = 0;
8291 int index, sz = TTE8K;
8292 struct sf_hment *sfhme, *tmphme = NULL;
8293 struct hme_blk *hmeblkp;
8294
8295 pml = sfmmu_mlist_enter(pp);
8296
8297 #ifdef VAC
8298 if (kpm_enable)
8299 cnt = pp->p_kpmref;
8300 #endif
8301
8302 if (vpm_enable && pp->p_vpmref) {
8303 cnt += 1;
8304 }
8305
8306 if (pp->p_share + cnt > sh_thresh) {
8307 sfmmu_mlist_exit(pml);
8308 return (1);
8309 }
8310
8311 index = PP_MAPINDEX(pp);
8312
8313 again:
8314 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8315 tmphme = sfhme->hme_next;
8316 if (IS_PAHME(sfhme)) {
8317 continue;
8318 }
8319
8320 hmeblkp = sfmmu_hmetohblk(sfhme);
8321 if (hmeblkp->hblk_xhat_bit) {
8322 cnt++;
8323 if (cnt > sh_thresh) {
8324 sfmmu_mlist_exit(pml);
8325 return (1);
8326 }
8327 continue;
8328 }
8329 if (hme_size(sfhme) != sz) {
8330 continue;
8331 }
8332
8333 if (hmeblkp->hblk_shared) {
8334 sf_srd_t *srdp = hblktosrd(hmeblkp);
8335 uint_t rid = hmeblkp->hblk_tag.htag_rid;
8336 sf_region_t *rgnp;
8337 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8338 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8339 ASSERT(srdp != NULL);
8340 rgnp = srdp->srd_hmergnp[rid];
8341 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8342 rgnp, rid);
8343 cnt += rgnp->rgn_refcnt;
8344 } else {
8345 cnt++;
8346 }
8347 if (cnt > sh_thresh) {
8348 sfmmu_mlist_exit(pml);
8349 return (1);
8350 }
8351 }
8352
8353 index >>= 1;
8354 sz++;
8355 while (index) {
8356 pp = PP_GROUPLEADER(pp, sz);
8357 ASSERT(sfmmu_mlist_held(pp));
8358 if (index & 0x1) {
8359 goto again;
8360 }
8361 index >>= 1;
8362 sz++;
8363 }
8364 sfmmu_mlist_exit(pml);
8365 return (0);
8366 }
8367
8368 /*
8369 * Unload all large mappings to the pp and reset the p_szc field of every
8370 * constituent page according to the remaining mappings.
8371 *
8372 * pp must be locked SE_EXCL. Even though no other constituent pages are
8373 * locked it's legal to unload the large mappings to the pp because all
8374 * constituent pages of large locked mappings have to be locked SE_SHARED.
8375 * This means if we have SE_EXCL lock on one of constituent pages none of the
8376 * large mappings to pp are locked.
8377 *
8378 * Decrease p_szc field starting from the last constituent page and ending
8379 * with the root page. This method is used because other threads rely on the
8380 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8381 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8382 * ensures that p_szc changes of the constituent pages appears atomic for all
8383 * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8384 *
8385 * This mechanism is only used for file system pages where it's not always
8386 * possible to get SE_EXCL locks on all constituent pages to demote the size
8387 * code (as is done for anonymous or kernel large pages).
8388 *
8389 * See more comments in front of sfmmu_mlspl_enter().
8390 */
8391 void
hat_page_demote(page_t * pp)8392 hat_page_demote(page_t *pp)
8393 {
8394 int index;
8395 int sz;
8396 cpuset_t cpuset;
8397 int sync = 0;
8398 page_t *rootpp;
8399 struct sf_hment *sfhme;
8400 struct sf_hment *tmphme = NULL;
8401 struct hme_blk *hmeblkp;
8402 uint_t pszc;
8403 page_t *lastpp;
8404 cpuset_t tset;
8405 pgcnt_t npgs;
8406 kmutex_t *pml;
8407 kmutex_t *pmtx = NULL;
8408
8409 ASSERT(PAGE_EXCL(pp));
8410 ASSERT(!PP_ISFREE(pp));
8411 ASSERT(!PP_ISKAS(pp));
8412 ASSERT(page_szc_lock_assert(pp));
8413 pml = sfmmu_mlist_enter(pp);
8414
8415 pszc = pp->p_szc;
8416 if (pszc == 0) {
8417 goto out;
8418 }
8419
8420 index = PP_MAPINDEX(pp) >> 1;
8421
8422 if (index) {
8423 CPUSET_ZERO(cpuset);
8424 sz = TTE64K;
8425 sync = 1;
8426 }
8427
8428 while (index) {
8429 if (!(index & 0x1)) {
8430 index >>= 1;
8431 sz++;
8432 continue;
8433 }
8434 ASSERT(sz <= pszc);
8435 rootpp = PP_GROUPLEADER(pp, sz);
8436 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8437 tmphme = sfhme->hme_next;
8438 ASSERT(!IS_PAHME(sfhme));
8439 hmeblkp = sfmmu_hmetohblk(sfhme);
8440 if (hme_size(sfhme) != sz) {
8441 continue;
8442 }
8443 if (hmeblkp->hblk_xhat_bit) {
8444 cmn_err(CE_PANIC,
8445 "hat_page_demote: xhat hmeblk");
8446 }
8447 tset = sfmmu_pageunload(rootpp, sfhme, sz);
8448 CPUSET_OR(cpuset, tset);
8449 }
8450 if (index >>= 1) {
8451 sz++;
8452 }
8453 }
8454
8455 ASSERT(!PP_ISMAPPED_LARGE(pp));
8456
8457 if (sync) {
8458 xt_sync(cpuset);
8459 #ifdef VAC
8460 if (PP_ISTNC(pp)) {
8461 conv_tnc(rootpp, sz);
8462 }
8463 #endif /* VAC */
8464 }
8465
8466 pmtx = sfmmu_page_enter(pp);
8467
8468 ASSERT(pp->p_szc == pszc);
8469 rootpp = PP_PAGEROOT(pp);
8470 ASSERT(rootpp->p_szc == pszc);
8471 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8472
8473 while (lastpp != rootpp) {
8474 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8475 ASSERT(sz < pszc);
8476 npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8477 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8478 while (--npgs > 0) {
8479 lastpp->p_szc = (uchar_t)sz;
8480 lastpp = PP_PAGEPREV(lastpp);
8481 }
8482 if (sz) {
8483 /*
8484 * make sure before current root's pszc
8485 * is updated all updates to constituent pages pszc
8486 * fields are globally visible.
8487 */
8488 membar_producer();
8489 }
8490 lastpp->p_szc = sz;
8491 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8492 if (lastpp != rootpp) {
8493 lastpp = PP_PAGEPREV(lastpp);
8494 }
8495 }
8496 if (sz == 0) {
8497 /* the loop above doesn't cover this case */
8498 rootpp->p_szc = 0;
8499 }
8500 out:
8501 ASSERT(pp->p_szc == 0);
8502 if (pmtx != NULL) {
8503 sfmmu_page_exit(pmtx);
8504 }
8505 sfmmu_mlist_exit(pml);
8506 }
8507
8508 /*
8509 * Refresh the HAT ismttecnt[] element for size szc.
8510 * Caller must have set ISM busy flag to prevent mapping
8511 * lists from changing while we're traversing them.
8512 */
8513 pgcnt_t
ism_tsb_entries(sfmmu_t * sfmmup,int szc)8514 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8515 {
8516 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk;
8517 ism_map_t *ism_map;
8518 pgcnt_t npgs = 0;
8519 pgcnt_t npgs_scd = 0;
8520 int j;
8521 sf_scd_t *scdp;
8522 uchar_t rid;
8523
8524 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8525 scdp = sfmmup->sfmmu_scdp;
8526
8527 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8528 ism_map = ism_blkp->iblk_maps;
8529 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8530 rid = ism_map[j].imap_rid;
8531 ASSERT(rid == SFMMU_INVALID_ISMRID ||
8532 rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8533
8534 if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8535 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8536 /* ISM is in sfmmup's SCD */
8537 npgs_scd +=
8538 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8539 } else {
8540 /* ISMs is not in SCD */
8541 npgs +=
8542 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8543 }
8544 }
8545 }
8546 sfmmup->sfmmu_ismttecnt[szc] = npgs;
8547 sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8548 return (npgs);
8549 }
8550
8551 /*
8552 * Yield the memory claim requirement for an address space.
8553 *
8554 * This is currently implemented as the number of bytes that have active
8555 * hardware translations that have page structures. Therefore, it can
8556 * underestimate the traditional resident set size, eg, if the
8557 * physical page is present and the hardware translation is missing;
8558 * and it can overestimate the rss, eg, if there are active
8559 * translations to a frame buffer with page structs.
8560 * Also, it does not take sharing into account.
8561 *
8562 * Note that we don't acquire locks here since this function is most often
8563 * called from the clock thread.
8564 */
8565 size_t
hat_get_mapped_size(struct hat * hat)8566 hat_get_mapped_size(struct hat *hat)
8567 {
8568 size_t assize = 0;
8569 int i;
8570
8571 if (hat == NULL)
8572 return (0);
8573
8574 ASSERT(hat->sfmmu_xhat_provider == NULL);
8575
8576 for (i = 0; i < mmu_page_sizes; i++)
8577 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8578 (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8579
8580 if (hat->sfmmu_iblk == NULL)
8581 return (assize);
8582
8583 for (i = 0; i < mmu_page_sizes; i++)
8584 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8585 (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8586
8587 return (assize);
8588 }
8589
8590 int
hat_stats_enable(struct hat * hat)8591 hat_stats_enable(struct hat *hat)
8592 {
8593 hatlock_t *hatlockp;
8594
8595 ASSERT(hat->sfmmu_xhat_provider == NULL);
8596
8597 hatlockp = sfmmu_hat_enter(hat);
8598 hat->sfmmu_rmstat++;
8599 sfmmu_hat_exit(hatlockp);
8600 return (1);
8601 }
8602
8603 void
hat_stats_disable(struct hat * hat)8604 hat_stats_disable(struct hat *hat)
8605 {
8606 hatlock_t *hatlockp;
8607
8608 ASSERT(hat->sfmmu_xhat_provider == NULL);
8609
8610 hatlockp = sfmmu_hat_enter(hat);
8611 hat->sfmmu_rmstat--;
8612 sfmmu_hat_exit(hatlockp);
8613 }
8614
8615 /*
8616 * Routines for entering or removing ourselves from the
8617 * ism_hat's mapping list. This is used for both private and
8618 * SCD hats.
8619 */
8620 static void
iment_add(struct ism_ment * iment,struct hat * ism_hat)8621 iment_add(struct ism_ment *iment, struct hat *ism_hat)
8622 {
8623 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8624
8625 iment->iment_prev = NULL;
8626 iment->iment_next = ism_hat->sfmmu_iment;
8627 if (ism_hat->sfmmu_iment) {
8628 ism_hat->sfmmu_iment->iment_prev = iment;
8629 }
8630 ism_hat->sfmmu_iment = iment;
8631 }
8632
8633 static void
iment_sub(struct ism_ment * iment,struct hat * ism_hat)8634 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8635 {
8636 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8637
8638 if (ism_hat->sfmmu_iment == NULL) {
8639 panic("ism map entry remove - no entries");
8640 }
8641
8642 if (iment->iment_prev) {
8643 ASSERT(ism_hat->sfmmu_iment != iment);
8644 iment->iment_prev->iment_next = iment->iment_next;
8645 } else {
8646 ASSERT(ism_hat->sfmmu_iment == iment);
8647 ism_hat->sfmmu_iment = iment->iment_next;
8648 }
8649
8650 if (iment->iment_next) {
8651 iment->iment_next->iment_prev = iment->iment_prev;
8652 }
8653
8654 /*
8655 * zero out the entry
8656 */
8657 iment->iment_next = NULL;
8658 iment->iment_prev = NULL;
8659 iment->iment_hat = NULL;
8660 iment->iment_base_va = 0;
8661 }
8662
8663 /*
8664 * Hat_share()/unshare() return an (non-zero) error
8665 * when saddr and daddr are not properly aligned.
8666 *
8667 * The top level mapping element determines the alignment
8668 * requirement for saddr and daddr, depending on different
8669 * architectures.
8670 *
8671 * When hat_share()/unshare() are not supported,
8672 * HATOP_SHARE()/UNSHARE() return 0
8673 */
8674 int
hat_share(struct hat * sfmmup,caddr_t addr,struct hat * ism_hatid,caddr_t sptaddr,size_t len,uint_t ismszc)8675 hat_share(struct hat *sfmmup, caddr_t addr,
8676 struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8677 {
8678 ism_blk_t *ism_blkp;
8679 ism_blk_t *new_iblk;
8680 ism_map_t *ism_map;
8681 ism_ment_t *ism_ment;
8682 int i, added;
8683 hatlock_t *hatlockp;
8684 int reload_mmu = 0;
8685 uint_t ismshift = page_get_shift(ismszc);
8686 size_t ismpgsz = page_get_pagesize(ismszc);
8687 uint_t ismmask = (uint_t)ismpgsz - 1;
8688 size_t sh_size = ISM_SHIFT(ismshift, len);
8689 ushort_t ismhatflag;
8690 hat_region_cookie_t rcookie;
8691 sf_scd_t *old_scdp;
8692
8693 #ifdef DEBUG
8694 caddr_t eaddr = addr + len;
8695 #endif /* DEBUG */
8696
8697 ASSERT(ism_hatid != NULL && sfmmup != NULL);
8698 ASSERT(sptaddr == ISMID_STARTADDR);
8699 /*
8700 * Check the alignment.
8701 */
8702 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8703 return (EINVAL);
8704
8705 /*
8706 * Check size alignment.
8707 */
8708 if (!ISM_ALIGNED(ismshift, len))
8709 return (EINVAL);
8710
8711 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8712
8713 /*
8714 * Allocate ism_ment for the ism_hat's mapping list, and an
8715 * ism map blk in case we need one. We must do our
8716 * allocations before acquiring locks to prevent a deadlock
8717 * in the kmem allocator on the mapping list lock.
8718 */
8719 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8720 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8721
8722 /*
8723 * Serialize ISM mappings with the ISM busy flag, and also the
8724 * trap handlers.
8725 */
8726 sfmmu_ismhat_enter(sfmmup, 0);
8727
8728 /*
8729 * Allocate an ism map blk if necessary.
8730 */
8731 if (sfmmup->sfmmu_iblk == NULL) {
8732 sfmmup->sfmmu_iblk = new_iblk;
8733 bzero(new_iblk, sizeof (*new_iblk));
8734 new_iblk->iblk_nextpa = (uint64_t)-1;
8735 membar_stst(); /* make sure next ptr visible to all CPUs */
8736 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8737 reload_mmu = 1;
8738 new_iblk = NULL;
8739 }
8740
8741 #ifdef DEBUG
8742 /*
8743 * Make sure mapping does not already exist.
8744 */
8745 ism_blkp = sfmmup->sfmmu_iblk;
8746 while (ism_blkp != NULL) {
8747 ism_map = ism_blkp->iblk_maps;
8748 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8749 if ((addr >= ism_start(ism_map[i]) &&
8750 addr < ism_end(ism_map[i])) ||
8751 eaddr > ism_start(ism_map[i]) &&
8752 eaddr <= ism_end(ism_map[i])) {
8753 panic("sfmmu_share: Already mapped!");
8754 }
8755 }
8756 ism_blkp = ism_blkp->iblk_next;
8757 }
8758 #endif /* DEBUG */
8759
8760 ASSERT(ismszc >= TTE4M);
8761 if (ismszc == TTE4M) {
8762 ismhatflag = HAT_4M_FLAG;
8763 } else if (ismszc == TTE32M) {
8764 ismhatflag = HAT_32M_FLAG;
8765 } else if (ismszc == TTE256M) {
8766 ismhatflag = HAT_256M_FLAG;
8767 }
8768 /*
8769 * Add mapping to first available mapping slot.
8770 */
8771 ism_blkp = sfmmup->sfmmu_iblk;
8772 added = 0;
8773 while (!added) {
8774 ism_map = ism_blkp->iblk_maps;
8775 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8776 if (ism_map[i].imap_ismhat == NULL) {
8777
8778 ism_map[i].imap_ismhat = ism_hatid;
8779 ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8780 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8781 ism_map[i].imap_hatflags = ismhatflag;
8782 ism_map[i].imap_sz_mask = ismmask;
8783 /*
8784 * imap_seg is checked in ISM_CHECK to see if
8785 * non-NULL, then other info assumed valid.
8786 */
8787 membar_stst();
8788 ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8789 ism_map[i].imap_ment = ism_ment;
8790
8791 /*
8792 * Now add ourselves to the ism_hat's
8793 * mapping list.
8794 */
8795 ism_ment->iment_hat = sfmmup;
8796 ism_ment->iment_base_va = addr;
8797 ism_hatid->sfmmu_ismhat = 1;
8798 mutex_enter(&ism_mlist_lock);
8799 iment_add(ism_ment, ism_hatid);
8800 mutex_exit(&ism_mlist_lock);
8801 added = 1;
8802 break;
8803 }
8804 }
8805 if (!added && ism_blkp->iblk_next == NULL) {
8806 ism_blkp->iblk_next = new_iblk;
8807 new_iblk = NULL;
8808 bzero(ism_blkp->iblk_next,
8809 sizeof (*ism_blkp->iblk_next));
8810 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8811 membar_stst();
8812 ism_blkp->iblk_nextpa =
8813 va_to_pa((caddr_t)ism_blkp->iblk_next);
8814 }
8815 ism_blkp = ism_blkp->iblk_next;
8816 }
8817
8818 /*
8819 * After calling hat_join_region, sfmmup may join a new SCD or
8820 * move from the old scd to a new scd, in which case, we want to
8821 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8822 * sfmmu_check_page_sizes at the end of this routine.
8823 */
8824 old_scdp = sfmmup->sfmmu_scdp;
8825
8826 rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8827 PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8828 if (rcookie != HAT_INVALID_REGION_COOKIE) {
8829 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8830 }
8831 /*
8832 * Update our counters for this sfmmup's ism mappings.
8833 */
8834 for (i = 0; i <= ismszc; i++) {
8835 if (!(disable_ism_large_pages & (1 << i)))
8836 (void) ism_tsb_entries(sfmmup, i);
8837 }
8838
8839 /*
8840 * For ISM and DISM we do not support 512K pages, so we only only
8841 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8842 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8843 *
8844 * Need to set 32M/256M ISM flags to make sure
8845 * sfmmu_check_page_sizes() enables them on Panther.
8846 */
8847 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8848
8849 switch (ismszc) {
8850 case TTE256M:
8851 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8852 hatlockp = sfmmu_hat_enter(sfmmup);
8853 SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8854 sfmmu_hat_exit(hatlockp);
8855 }
8856 break;
8857 case TTE32M:
8858 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8859 hatlockp = sfmmu_hat_enter(sfmmup);
8860 SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8861 sfmmu_hat_exit(hatlockp);
8862 }
8863 break;
8864 default:
8865 break;
8866 }
8867
8868 /*
8869 * If we updated the ismblkpa for this HAT we must make
8870 * sure all CPUs running this process reload their tsbmiss area.
8871 * Otherwise they will fail to load the mappings in the tsbmiss
8872 * handler and will loop calling pagefault().
8873 */
8874 if (reload_mmu) {
8875 hatlockp = sfmmu_hat_enter(sfmmup);
8876 sfmmu_sync_mmustate(sfmmup);
8877 sfmmu_hat_exit(hatlockp);
8878 }
8879
8880 sfmmu_ismhat_exit(sfmmup, 0);
8881
8882 /*
8883 * Free up ismblk if we didn't use it.
8884 */
8885 if (new_iblk != NULL)
8886 kmem_cache_free(ism_blk_cache, new_iblk);
8887
8888 /*
8889 * Check TSB and TLB page sizes.
8890 */
8891 if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8892 sfmmu_check_page_sizes(sfmmup, 0);
8893 } else {
8894 sfmmu_check_page_sizes(sfmmup, 1);
8895 }
8896 return (0);
8897 }
8898
8899 /*
8900 * hat_unshare removes exactly one ism_map from
8901 * this process's as. It expects multiple calls
8902 * to hat_unshare for multiple shm segments.
8903 */
8904 void
hat_unshare(struct hat * sfmmup,caddr_t addr,size_t len,uint_t ismszc)8905 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8906 {
8907 ism_map_t *ism_map;
8908 ism_ment_t *free_ment = NULL;
8909 ism_blk_t *ism_blkp;
8910 struct hat *ism_hatid;
8911 int found, i;
8912 hatlock_t *hatlockp;
8913 struct tsb_info *tsbinfo;
8914 uint_t ismshift = page_get_shift(ismszc);
8915 size_t sh_size = ISM_SHIFT(ismshift, len);
8916 uchar_t ism_rid;
8917 sf_scd_t *old_scdp;
8918
8919 ASSERT(ISM_ALIGNED(ismshift, addr));
8920 ASSERT(ISM_ALIGNED(ismshift, len));
8921 ASSERT(sfmmup != NULL);
8922 ASSERT(sfmmup != ksfmmup);
8923
8924 if (sfmmup->sfmmu_xhat_provider) {
8925 XHAT_UNSHARE(sfmmup, addr, len);
8926 return;
8927 } else {
8928 /*
8929 * This must be a CPU HAT. If the address space has
8930 * XHATs attached, inform all XHATs that ISM segment
8931 * is going away
8932 */
8933 ASSERT(sfmmup->sfmmu_as != NULL);
8934 if (sfmmup->sfmmu_as->a_xhat != NULL)
8935 xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8936 }
8937
8938 /*
8939 * Make sure that during the entire time ISM mappings are removed,
8940 * the trap handlers serialize behind us, and that no one else
8941 * can be mucking with ISM mappings. This also lets us get away
8942 * with not doing expensive cross calls to flush the TLB -- we
8943 * just discard the context, flush the entire TSB, and call it
8944 * a day.
8945 */
8946 sfmmu_ismhat_enter(sfmmup, 0);
8947
8948 /*
8949 * Remove the mapping.
8950 *
8951 * We can't have any holes in the ism map.
8952 * The tsb miss code while searching the ism map will
8953 * stop on an empty map slot. So we must move
8954 * everyone past the hole up 1 if any.
8955 *
8956 * Also empty ism map blks are not freed until the
8957 * process exits. This is to prevent a MT race condition
8958 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8959 */
8960 found = 0;
8961 ism_blkp = sfmmup->sfmmu_iblk;
8962 while (!found && ism_blkp != NULL) {
8963 ism_map = ism_blkp->iblk_maps;
8964 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8965 if (addr == ism_start(ism_map[i]) &&
8966 sh_size == (size_t)(ism_size(ism_map[i]))) {
8967 found = 1;
8968 break;
8969 }
8970 }
8971 if (!found)
8972 ism_blkp = ism_blkp->iblk_next;
8973 }
8974
8975 if (found) {
8976 ism_hatid = ism_map[i].imap_ismhat;
8977 ism_rid = ism_map[i].imap_rid;
8978 ASSERT(ism_hatid != NULL);
8979 ASSERT(ism_hatid->sfmmu_ismhat == 1);
8980
8981 /*
8982 * After hat_leave_region, the sfmmup may leave SCD,
8983 * in which case, we want to grow the private tsb size when
8984 * calling sfmmu_check_page_sizes at the end of the routine.
8985 */
8986 old_scdp = sfmmup->sfmmu_scdp;
8987 /*
8988 * Then remove ourselves from the region.
8989 */
8990 if (ism_rid != SFMMU_INVALID_ISMRID) {
8991 hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8992 HAT_REGION_ISM);
8993 }
8994
8995 /*
8996 * And now guarantee that any other cpu
8997 * that tries to process an ISM miss
8998 * will go to tl=0.
8999 */
9000 hatlockp = sfmmu_hat_enter(sfmmup);
9001 sfmmu_invalidate_ctx(sfmmup);
9002 sfmmu_hat_exit(hatlockp);
9003
9004 /*
9005 * Remove ourselves from the ism mapping list.
9006 */
9007 mutex_enter(&ism_mlist_lock);
9008 iment_sub(ism_map[i].imap_ment, ism_hatid);
9009 mutex_exit(&ism_mlist_lock);
9010 free_ment = ism_map[i].imap_ment;
9011
9012 /*
9013 * We delete the ism map by copying
9014 * the next map over the current one.
9015 * We will take the next one in the maps
9016 * array or from the next ism_blk.
9017 */
9018 while (ism_blkp != NULL) {
9019 ism_map = ism_blkp->iblk_maps;
9020 while (i < (ISM_MAP_SLOTS - 1)) {
9021 ism_map[i] = ism_map[i + 1];
9022 i++;
9023 }
9024 /* i == (ISM_MAP_SLOTS - 1) */
9025 ism_blkp = ism_blkp->iblk_next;
9026 if (ism_blkp != NULL) {
9027 ism_map[i] = ism_blkp->iblk_maps[0];
9028 i = 0;
9029 } else {
9030 ism_map[i].imap_seg = 0;
9031 ism_map[i].imap_vb_shift = 0;
9032 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
9033 ism_map[i].imap_hatflags = 0;
9034 ism_map[i].imap_sz_mask = 0;
9035 ism_map[i].imap_ismhat = NULL;
9036 ism_map[i].imap_ment = NULL;
9037 }
9038 }
9039
9040 /*
9041 * Now flush entire TSB for the process, since
9042 * demapping page by page can be too expensive.
9043 * We don't have to flush the TLB here anymore
9044 * since we switch to a new TLB ctx instead.
9045 * Also, there is no need to flush if the process
9046 * is exiting since the TSB will be freed later.
9047 */
9048 if (!sfmmup->sfmmu_free) {
9049 hatlockp = sfmmu_hat_enter(sfmmup);
9050 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
9051 tsbinfo = tsbinfo->tsb_next) {
9052 if (tsbinfo->tsb_flags & TSB_SWAPPED)
9053 continue;
9054 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
9055 tsbinfo->tsb_flags |=
9056 TSB_FLUSH_NEEDED;
9057 continue;
9058 }
9059
9060 sfmmu_inv_tsb(tsbinfo->tsb_va,
9061 TSB_BYTES(tsbinfo->tsb_szc));
9062 }
9063 sfmmu_hat_exit(hatlockp);
9064 }
9065 }
9066
9067 /*
9068 * Update our counters for this sfmmup's ism mappings.
9069 */
9070 for (i = 0; i <= ismszc; i++) {
9071 if (!(disable_ism_large_pages & (1 << i)))
9072 (void) ism_tsb_entries(sfmmup, i);
9073 }
9074
9075 sfmmu_ismhat_exit(sfmmup, 0);
9076
9077 /*
9078 * We must do our freeing here after dropping locks
9079 * to prevent a deadlock in the kmem allocator on the
9080 * mapping list lock.
9081 */
9082 if (free_ment != NULL)
9083 kmem_cache_free(ism_ment_cache, free_ment);
9084
9085 /*
9086 * Check TSB and TLB page sizes if the process isn't exiting.
9087 */
9088 if (!sfmmup->sfmmu_free) {
9089 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
9090 sfmmu_check_page_sizes(sfmmup, 1);
9091 } else {
9092 sfmmu_check_page_sizes(sfmmup, 0);
9093 }
9094 }
9095 }
9096
9097 /* ARGSUSED */
9098 static int
sfmmu_idcache_constructor(void * buf,void * cdrarg,int kmflags)9099 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
9100 {
9101 /* void *buf is sfmmu_t pointer */
9102 bzero(buf, sizeof (sfmmu_t));
9103
9104 return (0);
9105 }
9106
9107 /* ARGSUSED */
9108 static void
sfmmu_idcache_destructor(void * buf,void * cdrarg)9109 sfmmu_idcache_destructor(void *buf, void *cdrarg)
9110 {
9111 /* void *buf is sfmmu_t pointer */
9112 }
9113
9114 /*
9115 * setup kmem hmeblks by bzeroing all members and initializing the nextpa
9116 * field to be the pa of this hmeblk
9117 */
9118 /* ARGSUSED */
9119 static int
sfmmu_hblkcache_constructor(void * buf,void * cdrarg,int kmflags)9120 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
9121 {
9122 struct hme_blk *hmeblkp;
9123
9124 bzero(buf, (size_t)cdrarg);
9125 hmeblkp = (struct hme_blk *)buf;
9126 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
9127
9128 #ifdef HBLK_TRACE
9129 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
9130 #endif /* HBLK_TRACE */
9131
9132 return (0);
9133 }
9134
9135 /* ARGSUSED */
9136 static void
sfmmu_hblkcache_destructor(void * buf,void * cdrarg)9137 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
9138 {
9139
9140 #ifdef HBLK_TRACE
9141
9142 struct hme_blk *hmeblkp;
9143
9144 hmeblkp = (struct hme_blk *)buf;
9145 mutex_destroy(&hmeblkp->hblk_audit_lock);
9146
9147 #endif /* HBLK_TRACE */
9148 }
9149
9150 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
9151 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
9152 /*
9153 * The kmem allocator will callback into our reclaim routine when the system
9154 * is running low in memory. We traverse the hash and free up all unused but
9155 * still cached hme_blks. We also traverse the free list and free them up
9156 * as well.
9157 */
9158 /*ARGSUSED*/
9159 static void
sfmmu_hblkcache_reclaim(void * cdrarg)9160 sfmmu_hblkcache_reclaim(void *cdrarg)
9161 {
9162 int i;
9163 struct hmehash_bucket *hmebp;
9164 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9165 static struct hmehash_bucket *uhmehash_reclaim_hand;
9166 static struct hmehash_bucket *khmehash_reclaim_hand;
9167 struct hme_blk *list = NULL, *last_hmeblkp;
9168 cpuset_t cpuset = cpu_ready_set;
9169 cpu_hme_pend_t *cpuhp;
9170
9171 /* Free up hmeblks on the cpu pending lists */
9172 for (i = 0; i < NCPU; i++) {
9173 cpuhp = &cpu_hme_pend[i];
9174 if (cpuhp->chp_listp != NULL) {
9175 mutex_enter(&cpuhp->chp_mutex);
9176 if (cpuhp->chp_listp == NULL) {
9177 mutex_exit(&cpuhp->chp_mutex);
9178 continue;
9179 }
9180 for (last_hmeblkp = cpuhp->chp_listp;
9181 last_hmeblkp->hblk_next != NULL;
9182 last_hmeblkp = last_hmeblkp->hblk_next)
9183 ;
9184 last_hmeblkp->hblk_next = list;
9185 list = cpuhp->chp_listp;
9186 cpuhp->chp_listp = NULL;
9187 cpuhp->chp_count = 0;
9188 mutex_exit(&cpuhp->chp_mutex);
9189 }
9190
9191 }
9192
9193 if (list != NULL) {
9194 kpreempt_disable();
9195 CPUSET_DEL(cpuset, CPU->cpu_id);
9196 xt_sync(cpuset);
9197 xt_sync(cpuset);
9198 kpreempt_enable();
9199 sfmmu_hblk_free(&list);
9200 list = NULL;
9201 }
9202
9203 hmebp = uhmehash_reclaim_hand;
9204 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9205 uhmehash_reclaim_hand = hmebp = uhme_hash;
9206 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9207
9208 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9209 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9210 hmeblkp = hmebp->hmeblkp;
9211 pr_hblk = NULL;
9212 while (hmeblkp) {
9213 nx_hblk = hmeblkp->hblk_next;
9214 if (!hmeblkp->hblk_vcnt &&
9215 !hmeblkp->hblk_hmecnt) {
9216 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9217 pr_hblk, &list, 0);
9218 } else {
9219 pr_hblk = hmeblkp;
9220 }
9221 hmeblkp = nx_hblk;
9222 }
9223 SFMMU_HASH_UNLOCK(hmebp);
9224 }
9225 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9226 hmebp = uhme_hash;
9227 }
9228
9229 hmebp = khmehash_reclaim_hand;
9230 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9231 khmehash_reclaim_hand = hmebp = khme_hash;
9232 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9233
9234 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9235 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9236 hmeblkp = hmebp->hmeblkp;
9237 pr_hblk = NULL;
9238 while (hmeblkp) {
9239 nx_hblk = hmeblkp->hblk_next;
9240 if (!hmeblkp->hblk_vcnt &&
9241 !hmeblkp->hblk_hmecnt) {
9242 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9243 pr_hblk, &list, 0);
9244 } else {
9245 pr_hblk = hmeblkp;
9246 }
9247 hmeblkp = nx_hblk;
9248 }
9249 SFMMU_HASH_UNLOCK(hmebp);
9250 }
9251 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9252 hmebp = khme_hash;
9253 }
9254 sfmmu_hblks_list_purge(&list, 0);
9255 }
9256
9257 /*
9258 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9259 * same goes for sfmmu_get_addrvcolor().
9260 *
9261 * This function will return the virtual color for the specified page. The
9262 * virtual color corresponds to this page current mapping or its last mapping.
9263 * It is used by memory allocators to choose addresses with the correct
9264 * alignment so vac consistency is automatically maintained. If the page
9265 * has no color it returns -1.
9266 */
9267 /*ARGSUSED*/
9268 int
sfmmu_get_ppvcolor(struct page * pp)9269 sfmmu_get_ppvcolor(struct page *pp)
9270 {
9271 #ifdef VAC
9272 int color;
9273
9274 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9275 return (-1);
9276 }
9277 color = PP_GET_VCOLOR(pp);
9278 ASSERT(color < mmu_btop(shm_alignment));
9279 return (color);
9280 #else
9281 return (-1);
9282 #endif /* VAC */
9283 }
9284
9285 /*
9286 * This function will return the desired alignment for vac consistency
9287 * (vac color) given a virtual address. If no vac is present it returns -1.
9288 */
9289 /*ARGSUSED*/
9290 int
sfmmu_get_addrvcolor(caddr_t vaddr)9291 sfmmu_get_addrvcolor(caddr_t vaddr)
9292 {
9293 #ifdef VAC
9294 if (cache & CACHE_VAC) {
9295 return (addr_to_vcolor(vaddr));
9296 } else {
9297 return (-1);
9298 }
9299 #else
9300 return (-1);
9301 #endif /* VAC */
9302 }
9303
9304 #ifdef VAC
9305 /*
9306 * Check for conflicts.
9307 * A conflict exists if the new and existent mappings do not match in
9308 * their "shm_alignment fields. If conflicts exist, the existant mappings
9309 * are flushed unless one of them is locked. If one of them is locked, then
9310 * the mappings are flushed and converted to non-cacheable mappings.
9311 */
9312 static void
sfmmu_vac_conflict(struct hat * hat,caddr_t addr,page_t * pp)9313 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9314 {
9315 struct hat *tmphat;
9316 struct sf_hment *sfhmep, *tmphme = NULL;
9317 struct hme_blk *hmeblkp;
9318 int vcolor;
9319 tte_t tte;
9320
9321 ASSERT(sfmmu_mlist_held(pp));
9322 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */
9323
9324 vcolor = addr_to_vcolor(addr);
9325 if (PP_NEWPAGE(pp)) {
9326 PP_SET_VCOLOR(pp, vcolor);
9327 return;
9328 }
9329
9330 if (PP_GET_VCOLOR(pp) == vcolor) {
9331 return;
9332 }
9333
9334 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9335 /*
9336 * Previous user of page had a different color
9337 * but since there are no current users
9338 * we just flush the cache and change the color.
9339 */
9340 SFMMU_STAT(sf_pgcolor_conflict);
9341 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9342 PP_SET_VCOLOR(pp, vcolor);
9343 return;
9344 }
9345
9346 /*
9347 * If we get here we have a vac conflict with a current
9348 * mapping. VAC conflict policy is as follows.
9349 * - The default is to unload the other mappings unless:
9350 * - If we have a large mapping we uncache the page.
9351 * We need to uncache the rest of the large page too.
9352 * - If any of the mappings are locked we uncache the page.
9353 * - If the requested mapping is inconsistent
9354 * with another mapping and that mapping
9355 * is in the same address space we have to
9356 * make it non-cached. The default thing
9357 * to do is unload the inconsistent mapping
9358 * but if they are in the same address space
9359 * we run the risk of unmapping the pc or the
9360 * stack which we will use as we return to the user,
9361 * in which case we can then fault on the thing
9362 * we just unloaded and get into an infinite loop.
9363 */
9364 if (PP_ISMAPPED_LARGE(pp)) {
9365 int sz;
9366
9367 /*
9368 * Existing mapping is for big pages. We don't unload
9369 * existing big mappings to satisfy new mappings.
9370 * Always convert all mappings to TNC.
9371 */
9372 sz = fnd_mapping_sz(pp);
9373 pp = PP_GROUPLEADER(pp, sz);
9374 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9375 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9376 TTEPAGES(sz));
9377
9378 return;
9379 }
9380
9381 /*
9382 * check if any mapping is in same as or if it is locked
9383 * since in that case we need to uncache.
9384 */
9385 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9386 tmphme = sfhmep->hme_next;
9387 if (IS_PAHME(sfhmep))
9388 continue;
9389 hmeblkp = sfmmu_hmetohblk(sfhmep);
9390 if (hmeblkp->hblk_xhat_bit)
9391 continue;
9392 tmphat = hblktosfmmu(hmeblkp);
9393 sfmmu_copytte(&sfhmep->hme_tte, &tte);
9394 ASSERT(TTE_IS_VALID(&tte));
9395 if (hmeblkp->hblk_shared || tmphat == hat ||
9396 hmeblkp->hblk_lckcnt) {
9397 /*
9398 * We have an uncache conflict
9399 */
9400 SFMMU_STAT(sf_uncache_conflict);
9401 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9402 return;
9403 }
9404 }
9405
9406 /*
9407 * We have an unload conflict
9408 * We have already checked for LARGE mappings, therefore
9409 * the remaining mapping(s) must be TTE8K.
9410 */
9411 SFMMU_STAT(sf_unload_conflict);
9412
9413 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9414 tmphme = sfhmep->hme_next;
9415 if (IS_PAHME(sfhmep))
9416 continue;
9417 hmeblkp = sfmmu_hmetohblk(sfhmep);
9418 if (hmeblkp->hblk_xhat_bit)
9419 continue;
9420 ASSERT(!hmeblkp->hblk_shared);
9421 (void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9422 }
9423
9424 if (PP_ISMAPPED_KPM(pp))
9425 sfmmu_kpm_vac_unload(pp, addr);
9426
9427 /*
9428 * Unloads only do TLB flushes so we need to flush the
9429 * cache here.
9430 */
9431 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9432 PP_SET_VCOLOR(pp, vcolor);
9433 }
9434
9435 /*
9436 * Whenever a mapping is unloaded and the page is in TNC state,
9437 * we see if the page can be made cacheable again. 'pp' is
9438 * the page that we just unloaded a mapping from, the size
9439 * of mapping that was unloaded is 'ottesz'.
9440 * Remark:
9441 * The recache policy for mpss pages can leave a performance problem
9442 * under the following circumstances:
9443 * . A large page in uncached mode has just been unmapped.
9444 * . All constituent pages are TNC due to a conflicting small mapping.
9445 * . There are many other, non conflicting, small mappings around for
9446 * a lot of the constituent pages.
9447 * . We're called w/ the "old" groupleader page and the old ottesz,
9448 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9449 * we end up w/ TTE8K or npages == 1.
9450 * . We call tst_tnc w/ the old groupleader only, and if there is no
9451 * conflict, we re-cache only this page.
9452 * . All other small mappings are not checked and will be left in TNC mode.
9453 * The problem is not very serious because:
9454 * . mpss is actually only defined for heap and stack, so the probability
9455 * is not very high that a large page mapping exists in parallel to a small
9456 * one (this is possible, but seems to be bad programming style in the
9457 * appl).
9458 * . The problem gets a little bit more serious, when those TNC pages
9459 * have to be mapped into kernel space, e.g. for networking.
9460 * . When VAC alias conflicts occur in applications, this is regarded
9461 * as an application bug. So if kstat's show them, the appl should
9462 * be changed anyway.
9463 */
9464 void
conv_tnc(page_t * pp,int ottesz)9465 conv_tnc(page_t *pp, int ottesz)
9466 {
9467 int cursz, dosz;
9468 pgcnt_t curnpgs, dopgs;
9469 pgcnt_t pg64k;
9470 page_t *pp2;
9471
9472 /*
9473 * Determine how big a range we check for TNC and find
9474 * leader page. cursz is the size of the biggest
9475 * mapping that still exist on 'pp'.
9476 */
9477 if (PP_ISMAPPED_LARGE(pp)) {
9478 cursz = fnd_mapping_sz(pp);
9479 } else {
9480 cursz = TTE8K;
9481 }
9482
9483 if (ottesz >= cursz) {
9484 dosz = ottesz;
9485 pp2 = pp;
9486 } else {
9487 dosz = cursz;
9488 pp2 = PP_GROUPLEADER(pp, dosz);
9489 }
9490
9491 pg64k = TTEPAGES(TTE64K);
9492 dopgs = TTEPAGES(dosz);
9493
9494 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9495
9496 while (dopgs != 0) {
9497 curnpgs = TTEPAGES(cursz);
9498 if (tst_tnc(pp2, curnpgs)) {
9499 SFMMU_STAT_ADD(sf_recache, curnpgs);
9500 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9501 curnpgs);
9502 }
9503
9504 ASSERT(dopgs >= curnpgs);
9505 dopgs -= curnpgs;
9506
9507 if (dopgs == 0) {
9508 break;
9509 }
9510
9511 pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9512 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9513 cursz = fnd_mapping_sz(pp2);
9514 } else {
9515 cursz = TTE8K;
9516 }
9517 }
9518 }
9519
9520 /*
9521 * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9522 * returns 0 otherwise. Note that oaddr argument is valid for only
9523 * 8k pages.
9524 */
9525 int
tst_tnc(page_t * pp,pgcnt_t npages)9526 tst_tnc(page_t *pp, pgcnt_t npages)
9527 {
9528 struct sf_hment *sfhme;
9529 struct hme_blk *hmeblkp;
9530 tte_t tte;
9531 caddr_t vaddr;
9532 int clr_valid = 0;
9533 int color, color1, bcolor;
9534 int i, ncolors;
9535
9536 ASSERT(pp != NULL);
9537 ASSERT(!(cache & CACHE_WRITEBACK));
9538
9539 if (npages > 1) {
9540 ncolors = CACHE_NUM_COLOR;
9541 }
9542
9543 for (i = 0; i < npages; i++) {
9544 ASSERT(sfmmu_mlist_held(pp));
9545 ASSERT(PP_ISTNC(pp));
9546 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9547
9548 if (PP_ISPNC(pp)) {
9549 return (0);
9550 }
9551
9552 clr_valid = 0;
9553 if (PP_ISMAPPED_KPM(pp)) {
9554 caddr_t kpmvaddr;
9555
9556 ASSERT(kpm_enable);
9557 kpmvaddr = hat_kpm_page2va(pp, 1);
9558 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9559 color1 = addr_to_vcolor(kpmvaddr);
9560 clr_valid = 1;
9561 }
9562
9563 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9564 if (IS_PAHME(sfhme))
9565 continue;
9566 hmeblkp = sfmmu_hmetohblk(sfhme);
9567 if (hmeblkp->hblk_xhat_bit)
9568 continue;
9569
9570 sfmmu_copytte(&sfhme->hme_tte, &tte);
9571 ASSERT(TTE_IS_VALID(&tte));
9572
9573 vaddr = tte_to_vaddr(hmeblkp, tte);
9574 color = addr_to_vcolor(vaddr);
9575
9576 if (npages > 1) {
9577 /*
9578 * If there is a big mapping, make sure
9579 * 8K mapping is consistent with the big
9580 * mapping.
9581 */
9582 bcolor = i % ncolors;
9583 if (color != bcolor) {
9584 return (0);
9585 }
9586 }
9587 if (!clr_valid) {
9588 clr_valid = 1;
9589 color1 = color;
9590 }
9591
9592 if (color1 != color) {
9593 return (0);
9594 }
9595 }
9596
9597 pp = PP_PAGENEXT(pp);
9598 }
9599
9600 return (1);
9601 }
9602
9603 void
sfmmu_page_cache_array(page_t * pp,int flags,int cache_flush_flag,pgcnt_t npages)9604 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9605 pgcnt_t npages)
9606 {
9607 kmutex_t *pmtx;
9608 int i, ncolors, bcolor;
9609 kpm_hlk_t *kpmp;
9610 cpuset_t cpuset;
9611
9612 ASSERT(pp != NULL);
9613 ASSERT(!(cache & CACHE_WRITEBACK));
9614
9615 kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9616 pmtx = sfmmu_page_enter(pp);
9617
9618 /*
9619 * Fast path caching single unmapped page
9620 */
9621 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9622 flags == HAT_CACHE) {
9623 PP_CLRTNC(pp);
9624 PP_CLRPNC(pp);
9625 sfmmu_page_exit(pmtx);
9626 sfmmu_kpm_kpmp_exit(kpmp);
9627 return;
9628 }
9629
9630 /*
9631 * We need to capture all cpus in order to change cacheability
9632 * because we can't allow one cpu to access the same physical
9633 * page using a cacheable and a non-cachebale mapping at the same
9634 * time. Since we may end up walking the ism mapping list
9635 * have to grab it's lock now since we can't after all the
9636 * cpus have been captured.
9637 */
9638 sfmmu_hat_lock_all();
9639 mutex_enter(&ism_mlist_lock);
9640 kpreempt_disable();
9641 cpuset = cpu_ready_set;
9642 xc_attention(cpuset);
9643
9644 if (npages > 1) {
9645 /*
9646 * Make sure all colors are flushed since the
9647 * sfmmu_page_cache() only flushes one color-
9648 * it does not know big pages.
9649 */
9650 ncolors = CACHE_NUM_COLOR;
9651 if (flags & HAT_TMPNC) {
9652 for (i = 0; i < ncolors; i++) {
9653 sfmmu_cache_flushcolor(i, pp->p_pagenum);
9654 }
9655 cache_flush_flag = CACHE_NO_FLUSH;
9656 }
9657 }
9658
9659 for (i = 0; i < npages; i++) {
9660
9661 ASSERT(sfmmu_mlist_held(pp));
9662
9663 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9664
9665 if (npages > 1) {
9666 bcolor = i % ncolors;
9667 } else {
9668 bcolor = NO_VCOLOR;
9669 }
9670
9671 sfmmu_page_cache(pp, flags, cache_flush_flag,
9672 bcolor);
9673 }
9674
9675 pp = PP_PAGENEXT(pp);
9676 }
9677
9678 xt_sync(cpuset);
9679 xc_dismissed(cpuset);
9680 mutex_exit(&ism_mlist_lock);
9681 sfmmu_hat_unlock_all();
9682 sfmmu_page_exit(pmtx);
9683 sfmmu_kpm_kpmp_exit(kpmp);
9684 kpreempt_enable();
9685 }
9686
9687 /*
9688 * This function changes the virtual cacheability of all mappings to a
9689 * particular page. When changing from uncache to cacheable the mappings will
9690 * only be changed if all of them have the same virtual color.
9691 * We need to flush the cache in all cpus. It is possible that
9692 * a process referenced a page as cacheable but has sinced exited
9693 * and cleared the mapping list. We still to flush it but have no
9694 * state so all cpus is the only alternative.
9695 */
9696 static void
sfmmu_page_cache(page_t * pp,int flags,int cache_flush_flag,int bcolor)9697 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9698 {
9699 struct sf_hment *sfhme;
9700 struct hme_blk *hmeblkp;
9701 sfmmu_t *sfmmup;
9702 tte_t tte, ttemod;
9703 caddr_t vaddr;
9704 int ret, color;
9705 pfn_t pfn;
9706
9707 color = bcolor;
9708 pfn = pp->p_pagenum;
9709
9710 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9711
9712 if (IS_PAHME(sfhme))
9713 continue;
9714 hmeblkp = sfmmu_hmetohblk(sfhme);
9715
9716 if (hmeblkp->hblk_xhat_bit)
9717 continue;
9718
9719 sfmmu_copytte(&sfhme->hme_tte, &tte);
9720 ASSERT(TTE_IS_VALID(&tte));
9721 vaddr = tte_to_vaddr(hmeblkp, tte);
9722 color = addr_to_vcolor(vaddr);
9723
9724 #ifdef DEBUG
9725 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9726 ASSERT(color == bcolor);
9727 }
9728 #endif
9729
9730 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9731
9732 ttemod = tte;
9733 if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9734 TTE_CLR_VCACHEABLE(&ttemod);
9735 } else { /* flags & HAT_CACHE */
9736 TTE_SET_VCACHEABLE(&ttemod);
9737 }
9738 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9739 if (ret < 0) {
9740 /*
9741 * Since all cpus are captured modifytte should not
9742 * fail.
9743 */
9744 panic("sfmmu_page_cache: write to tte failed");
9745 }
9746
9747 sfmmup = hblktosfmmu(hmeblkp);
9748 if (cache_flush_flag == CACHE_FLUSH) {
9749 /*
9750 * Flush TSBs, TLBs and caches
9751 */
9752 if (hmeblkp->hblk_shared) {
9753 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9754 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9755 sf_region_t *rgnp;
9756 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9757 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9758 ASSERT(srdp != NULL);
9759 rgnp = srdp->srd_hmergnp[rid];
9760 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9761 srdp, rgnp, rid);
9762 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9763 hmeblkp, 0);
9764 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9765 } else if (sfmmup->sfmmu_ismhat) {
9766 if (flags & HAT_CACHE) {
9767 SFMMU_STAT(sf_ism_recache);
9768 } else {
9769 SFMMU_STAT(sf_ism_uncache);
9770 }
9771 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9772 pfn, CACHE_FLUSH);
9773 } else {
9774 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9775 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9776 }
9777
9778 /*
9779 * all cache entries belonging to this pfn are
9780 * now flushed.
9781 */
9782 cache_flush_flag = CACHE_NO_FLUSH;
9783 } else {
9784 /*
9785 * Flush only TSBs and TLBs.
9786 */
9787 if (hmeblkp->hblk_shared) {
9788 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9789 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9790 sf_region_t *rgnp;
9791 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9792 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9793 ASSERT(srdp != NULL);
9794 rgnp = srdp->srd_hmergnp[rid];
9795 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9796 srdp, rgnp, rid);
9797 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9798 hmeblkp, 0);
9799 } else if (sfmmup->sfmmu_ismhat) {
9800 if (flags & HAT_CACHE) {
9801 SFMMU_STAT(sf_ism_recache);
9802 } else {
9803 SFMMU_STAT(sf_ism_uncache);
9804 }
9805 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9806 pfn, CACHE_NO_FLUSH);
9807 } else {
9808 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9809 }
9810 }
9811 }
9812
9813 if (PP_ISMAPPED_KPM(pp))
9814 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9815
9816 switch (flags) {
9817
9818 default:
9819 panic("sfmmu_pagecache: unknown flags");
9820 break;
9821
9822 case HAT_CACHE:
9823 PP_CLRTNC(pp);
9824 PP_CLRPNC(pp);
9825 PP_SET_VCOLOR(pp, color);
9826 break;
9827
9828 case HAT_TMPNC:
9829 PP_SETTNC(pp);
9830 PP_SET_VCOLOR(pp, NO_VCOLOR);
9831 break;
9832
9833 case HAT_UNCACHE:
9834 PP_SETPNC(pp);
9835 PP_CLRTNC(pp);
9836 PP_SET_VCOLOR(pp, NO_VCOLOR);
9837 break;
9838 }
9839 }
9840 #endif /* VAC */
9841
9842
9843 /*
9844 * Wrapper routine used to return a context.
9845 *
9846 * It's the responsibility of the caller to guarantee that the
9847 * process serializes on calls here by taking the HAT lock for
9848 * the hat.
9849 *
9850 */
9851 static void
sfmmu_get_ctx(sfmmu_t * sfmmup)9852 sfmmu_get_ctx(sfmmu_t *sfmmup)
9853 {
9854 mmu_ctx_t *mmu_ctxp;
9855 uint_t pstate_save;
9856 int ret;
9857
9858 ASSERT(sfmmu_hat_lock_held(sfmmup));
9859 ASSERT(sfmmup != ksfmmup);
9860
9861 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9862 sfmmu_setup_tsbinfo(sfmmup);
9863 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9864 }
9865
9866 kpreempt_disable();
9867
9868 mmu_ctxp = CPU_MMU_CTXP(CPU);
9869 ASSERT(mmu_ctxp);
9870 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9871 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9872
9873 /*
9874 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9875 */
9876 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9877 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9878
9879 /*
9880 * Let the MMU set up the page sizes to use for
9881 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9882 */
9883 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9884 mmu_set_ctx_page_sizes(sfmmup);
9885 }
9886
9887 /*
9888 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9889 * interrupts disabled to prevent race condition with wrap-around
9890 * ctx invalidatation. In sun4v, ctx invalidation also involves
9891 * a HV call to set the number of TSBs to 0. If interrupts are not
9892 * disabled until after sfmmu_load_mmustate is complete TSBs may
9893 * become assigned to INVALID_CONTEXT. This is not allowed.
9894 */
9895 pstate_save = sfmmu_disable_intrs();
9896
9897 if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9898 sfmmup->sfmmu_scdp != NULL) {
9899 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9900 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9901 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9902 /* debug purpose only */
9903 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9904 != INVALID_CONTEXT);
9905 }
9906 sfmmu_load_mmustate(sfmmup);
9907
9908 sfmmu_enable_intrs(pstate_save);
9909
9910 kpreempt_enable();
9911 }
9912
9913 /*
9914 * When all cnums are used up in a MMU, cnum will wrap around to the
9915 * next generation and start from 2.
9916 */
9917 static void
sfmmu_ctx_wrap_around(mmu_ctx_t * mmu_ctxp,boolean_t reset_cnum)9918 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9919 {
9920
9921 /* caller must have disabled the preemption */
9922 ASSERT(curthread->t_preempt >= 1);
9923 ASSERT(mmu_ctxp != NULL);
9924
9925 /* acquire Per-MMU (PM) spin lock */
9926 mutex_enter(&mmu_ctxp->mmu_lock);
9927
9928 /* re-check to see if wrap-around is needed */
9929 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9930 goto done;
9931
9932 SFMMU_MMU_STAT(mmu_wrap_around);
9933
9934 /* update gnum */
9935 ASSERT(mmu_ctxp->mmu_gnum != 0);
9936 mmu_ctxp->mmu_gnum++;
9937 if (mmu_ctxp->mmu_gnum == 0 ||
9938 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9939 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9940 (void *)mmu_ctxp);
9941 }
9942
9943 if (mmu_ctxp->mmu_ncpus > 1) {
9944 cpuset_t cpuset;
9945
9946 membar_enter(); /* make sure updated gnum visible */
9947
9948 SFMMU_XCALL_STATS(NULL);
9949
9950 /* xcall to others on the same MMU to invalidate ctx */
9951 cpuset = mmu_ctxp->mmu_cpuset;
9952 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9953 CPUSET_DEL(cpuset, CPU->cpu_id);
9954 CPUSET_AND(cpuset, cpu_ready_set);
9955
9956 /*
9957 * Pass in INVALID_CONTEXT as the first parameter to
9958 * sfmmu_raise_tsb_exception, which invalidates the context
9959 * of any process running on the CPUs in the MMU.
9960 */
9961 xt_some(cpuset, sfmmu_raise_tsb_exception,
9962 INVALID_CONTEXT, INVALID_CONTEXT);
9963 xt_sync(cpuset);
9964
9965 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9966 }
9967
9968 if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9969 sfmmu_setctx_sec(INVALID_CONTEXT);
9970 sfmmu_clear_utsbinfo();
9971 }
9972
9973 /*
9974 * No xcall is needed here. For sun4u systems all CPUs in context
9975 * domain share a single physical MMU therefore it's enough to flush
9976 * TLB on local CPU. On sun4v systems we use 1 global context
9977 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9978 * handler. Note that vtag_flushall_uctxs() is called
9979 * for Ultra II machine, where the equivalent flushall functionality
9980 * is implemented in SW, and only user ctx TLB entries are flushed.
9981 */
9982 if (&vtag_flushall_uctxs != NULL) {
9983 vtag_flushall_uctxs();
9984 } else {
9985 vtag_flushall();
9986 }
9987
9988 /* reset mmu cnum, skips cnum 0 and 1 */
9989 if (reset_cnum == B_TRUE)
9990 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9991
9992 done:
9993 mutex_exit(&mmu_ctxp->mmu_lock);
9994 }
9995
9996
9997 /*
9998 * For multi-threaded process, set the process context to INVALID_CONTEXT
9999 * so that it faults and reloads the MMU state from TL=0. For single-threaded
10000 * process, we can just load the MMU state directly without having to
10001 * set context invalid. Caller must hold the hat lock since we don't
10002 * acquire it here.
10003 */
10004 static void
sfmmu_sync_mmustate(sfmmu_t * sfmmup)10005 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
10006 {
10007 uint_t cnum;
10008 uint_t pstate_save;
10009
10010 ASSERT(sfmmup != ksfmmup);
10011 ASSERT(sfmmu_hat_lock_held(sfmmup));
10012
10013 kpreempt_disable();
10014
10015 /*
10016 * We check whether the pass'ed-in sfmmup is the same as the
10017 * current running proc. This is to makes sure the current proc
10018 * stays single-threaded if it already is.
10019 */
10020 if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
10021 (curthread->t_procp->p_lwpcnt == 1)) {
10022 /* single-thread */
10023 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
10024 if (cnum != INVALID_CONTEXT) {
10025 uint_t curcnum;
10026 /*
10027 * Disable interrupts to prevent race condition
10028 * with sfmmu_ctx_wrap_around ctx invalidation.
10029 * In sun4v, ctx invalidation involves setting
10030 * TSB to NULL, hence, interrupts should be disabled
10031 * untill after sfmmu_load_mmustate is completed.
10032 */
10033 pstate_save = sfmmu_disable_intrs();
10034 curcnum = sfmmu_getctx_sec();
10035 if (curcnum == cnum)
10036 sfmmu_load_mmustate(sfmmup);
10037 sfmmu_enable_intrs(pstate_save);
10038 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
10039 }
10040 } else {
10041 /*
10042 * multi-thread
10043 * or when sfmmup is not the same as the curproc.
10044 */
10045 sfmmu_invalidate_ctx(sfmmup);
10046 }
10047
10048 kpreempt_enable();
10049 }
10050
10051
10052 /*
10053 * Replace the specified TSB with a new TSB. This function gets called when
10054 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the
10055 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
10056 * (8K).
10057 *
10058 * Caller must hold the HAT lock, but should assume any tsb_info
10059 * pointers it has are no longer valid after calling this function.
10060 *
10061 * Return values:
10062 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints
10063 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing
10064 * something to this tsbinfo/TSB
10065 * TSB_SUCCESS Operation succeeded
10066 */
10067 static tsb_replace_rc_t
sfmmu_replace_tsb(sfmmu_t * sfmmup,struct tsb_info * old_tsbinfo,uint_t szc,hatlock_t * hatlockp,uint_t flags)10068 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
10069 hatlock_t *hatlockp, uint_t flags)
10070 {
10071 struct tsb_info *new_tsbinfo = NULL;
10072 struct tsb_info *curtsb, *prevtsb;
10073 uint_t tte_sz_mask;
10074 int i;
10075
10076 ASSERT(sfmmup != ksfmmup);
10077 ASSERT(sfmmup->sfmmu_ismhat == 0);
10078 ASSERT(sfmmu_hat_lock_held(sfmmup));
10079 ASSERT(szc <= tsb_max_growsize);
10080
10081 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
10082 return (TSB_LOSTRACE);
10083
10084 /*
10085 * Find the tsb_info ahead of this one in the list, and
10086 * also make sure that the tsb_info passed in really
10087 * exists!
10088 */
10089 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10090 curtsb != old_tsbinfo && curtsb != NULL;
10091 prevtsb = curtsb, curtsb = curtsb->tsb_next)
10092 ;
10093 ASSERT(curtsb != NULL);
10094
10095 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10096 /*
10097 * The process is swapped out, so just set the new size
10098 * code. When it swaps back in, we'll allocate a new one
10099 * of the new chosen size.
10100 */
10101 curtsb->tsb_szc = szc;
10102 return (TSB_SUCCESS);
10103 }
10104 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
10105
10106 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
10107
10108 /*
10109 * All initialization is done inside of sfmmu_tsbinfo_alloc().
10110 * If we fail to allocate a TSB, exit.
10111 *
10112 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
10113 * then try 4M slab after the initial alloc fails.
10114 *
10115 * If tsb swapin with tsb size > 4M, then try 4M after the
10116 * initial alloc fails.
10117 */
10118 sfmmu_hat_exit(hatlockp);
10119 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
10120 tte_sz_mask, flags, sfmmup) &&
10121 (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
10122 (!(flags & TSB_SWAPIN) &&
10123 (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
10124 sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
10125 tte_sz_mask, flags, sfmmup))) {
10126 (void) sfmmu_hat_enter(sfmmup);
10127 if (!(flags & TSB_SWAPIN))
10128 SFMMU_STAT(sf_tsb_resize_failures);
10129 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10130 return (TSB_ALLOCFAIL);
10131 }
10132 (void) sfmmu_hat_enter(sfmmup);
10133
10134 /*
10135 * Re-check to make sure somebody else didn't muck with us while we
10136 * didn't hold the HAT lock. If the process swapped out, fine, just
10137 * exit; this can happen if we try to shrink the TSB from the context
10138 * of another process (such as on an ISM unmap), though it is rare.
10139 */
10140 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10141 SFMMU_STAT(sf_tsb_resize_failures);
10142 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10143 sfmmu_hat_exit(hatlockp);
10144 sfmmu_tsbinfo_free(new_tsbinfo);
10145 (void) sfmmu_hat_enter(sfmmup);
10146 return (TSB_LOSTRACE);
10147 }
10148
10149 #ifdef DEBUG
10150 /* Reverify that the tsb_info still exists.. for debugging only */
10151 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10152 curtsb != old_tsbinfo && curtsb != NULL;
10153 prevtsb = curtsb, curtsb = curtsb->tsb_next)
10154 ;
10155 ASSERT(curtsb != NULL);
10156 #endif /* DEBUG */
10157
10158 /*
10159 * Quiesce any CPUs running this process on their next TLB miss
10160 * so they atomically see the new tsb_info. We temporarily set the
10161 * context to invalid context so new threads that come on processor
10162 * after we do the xcall to cpusran will also serialize behind the
10163 * HAT lock on TLB miss and will see the new TSB. Since this short
10164 * race with a new thread coming on processor is relatively rare,
10165 * this synchronization mechanism should be cheaper than always
10166 * pausing all CPUs for the duration of the setup, which is what
10167 * the old implementation did. This is particuarly true if we are
10168 * copying a huge chunk of memory around during that window.
10169 *
10170 * The memory barriers are to make sure things stay consistent
10171 * with resume() since it does not hold the HAT lock while
10172 * walking the list of tsb_info structures.
10173 */
10174 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10175 /* The TSB is either growing or shrinking. */
10176 sfmmu_invalidate_ctx(sfmmup);
10177 } else {
10178 /*
10179 * It is illegal to swap in TSBs from a process other
10180 * than a process being swapped in. This in turn
10181 * implies we do not have a valid MMU context here
10182 * since a process needs one to resolve translation
10183 * misses.
10184 */
10185 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10186 }
10187
10188 #ifdef DEBUG
10189 ASSERT(max_mmu_ctxdoms > 0);
10190
10191 /*
10192 * Process should have INVALID_CONTEXT on all MMUs
10193 */
10194 for (i = 0; i < max_mmu_ctxdoms; i++) {
10195
10196 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10197 }
10198 #endif
10199
10200 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10201 membar_stst(); /* strict ordering required */
10202 if (prevtsb)
10203 prevtsb->tsb_next = new_tsbinfo;
10204 else
10205 sfmmup->sfmmu_tsb = new_tsbinfo;
10206 membar_enter(); /* make sure new TSB globally visible */
10207
10208 /*
10209 * We need to migrate TSB entries from the old TSB to the new TSB
10210 * if tsb_remap_ttes is set and the TSB is growing.
10211 */
10212 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10213 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10214
10215 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10216
10217 /*
10218 * Drop the HAT lock to free our old tsb_info.
10219 */
10220 sfmmu_hat_exit(hatlockp);
10221
10222 if ((flags & TSB_GROW) == TSB_GROW) {
10223 SFMMU_STAT(sf_tsb_grow);
10224 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10225 SFMMU_STAT(sf_tsb_shrink);
10226 }
10227
10228 sfmmu_tsbinfo_free(old_tsbinfo);
10229
10230 (void) sfmmu_hat_enter(sfmmup);
10231 return (TSB_SUCCESS);
10232 }
10233
10234 /*
10235 * This function will re-program hat pgsz array, and invalidate the
10236 * process' context, forcing the process to switch to another
10237 * context on the next TLB miss, and therefore start using the
10238 * TLB that is reprogrammed for the new page sizes.
10239 */
10240 void
sfmmu_reprog_pgsz_arr(sfmmu_t * sfmmup,uint8_t * tmp_pgsz)10241 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10242 {
10243 int i;
10244 hatlock_t *hatlockp = NULL;
10245
10246 hatlockp = sfmmu_hat_enter(sfmmup);
10247 /* USIII+-IV+ optimization, requires hat lock */
10248 if (tmp_pgsz) {
10249 for (i = 0; i < mmu_page_sizes; i++)
10250 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10251 }
10252 SFMMU_STAT(sf_tlb_reprog_pgsz);
10253
10254 sfmmu_invalidate_ctx(sfmmup);
10255
10256 sfmmu_hat_exit(hatlockp);
10257 }
10258
10259 /*
10260 * The scd_rttecnt field in the SCD must be updated to take account of the
10261 * regions which it contains.
10262 */
10263 static void
sfmmu_set_scd_rttecnt(sf_srd_t * srdp,sf_scd_t * scdp)10264 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10265 {
10266 uint_t rid;
10267 uint_t i, j;
10268 ulong_t w;
10269 sf_region_t *rgnp;
10270
10271 ASSERT(srdp != NULL);
10272
10273 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10274 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10275 continue;
10276 }
10277
10278 j = 0;
10279 while (w) {
10280 if (!(w & 0x1)) {
10281 j++;
10282 w >>= 1;
10283 continue;
10284 }
10285 rid = (i << BT_ULSHIFT) | j;
10286 j++;
10287 w >>= 1;
10288
10289 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10290 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10291 rgnp = srdp->srd_hmergnp[rid];
10292 ASSERT(rgnp->rgn_refcnt > 0);
10293 ASSERT(rgnp->rgn_id == rid);
10294
10295 scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10296 rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10297
10298 /*
10299 * Maintain the tsb0 inflation cnt for the regions
10300 * in the SCD.
10301 */
10302 if (rgnp->rgn_pgszc >= TTE4M) {
10303 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10304 rgnp->rgn_size >>
10305 (TTE_PAGE_SHIFT(TTE8K) + 2);
10306 }
10307 }
10308 }
10309 }
10310
10311 /*
10312 * This function assumes that there are either four or six supported page
10313 * sizes and at most two programmable TLBs, so we need to decide which
10314 * page sizes are most important and then tell the MMU layer so it
10315 * can adjust the TLB page sizes accordingly (if supported).
10316 *
10317 * If these assumptions change, this function will need to be
10318 * updated to support whatever the new limits are.
10319 *
10320 * The growing flag is nonzero if we are growing the address space,
10321 * and zero if it is shrinking. This allows us to decide whether
10322 * to grow or shrink our TSB, depending upon available memory
10323 * conditions.
10324 */
10325 static void
sfmmu_check_page_sizes(sfmmu_t * sfmmup,int growing)10326 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10327 {
10328 uint64_t ttecnt[MMU_PAGE_SIZES];
10329 uint64_t tte8k_cnt, tte4m_cnt;
10330 uint8_t i;
10331 int sectsb_thresh;
10332
10333 /*
10334 * Kernel threads, processes with small address spaces not using
10335 * large pages, and dummy ISM HATs need not apply.
10336 */
10337 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10338 return;
10339
10340 if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10341 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10342 return;
10343
10344 for (i = 0; i < mmu_page_sizes; i++) {
10345 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10346 sfmmup->sfmmu_ismttecnt[i];
10347 }
10348
10349 /* Check pagesizes in use, and possibly reprogram DTLB. */
10350 if (&mmu_check_page_sizes)
10351 mmu_check_page_sizes(sfmmup, ttecnt);
10352
10353 /*
10354 * Calculate the number of 8k ttes to represent the span of these
10355 * pages.
10356 */
10357 tte8k_cnt = ttecnt[TTE8K] +
10358 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10359 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10360 if (mmu_page_sizes == max_mmu_page_sizes) {
10361 tte4m_cnt = ttecnt[TTE4M] +
10362 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10363 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10364 } else {
10365 tte4m_cnt = ttecnt[TTE4M];
10366 }
10367
10368 /*
10369 * Inflate tte8k_cnt to allow for region large page allocation failure.
10370 */
10371 tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10372
10373 /*
10374 * Inflate TSB sizes by a factor of 2 if this process
10375 * uses 4M text pages to minimize extra conflict misses
10376 * in the first TSB since without counting text pages
10377 * 8K TSB may become too small.
10378 *
10379 * Also double the size of the second TSB to minimize
10380 * extra conflict misses due to competition between 4M text pages
10381 * and data pages.
10382 *
10383 * We need to adjust the second TSB allocation threshold by the
10384 * inflation factor, since there is no point in creating a second
10385 * TSB when we know all the mappings can fit in the I/D TLBs.
10386 */
10387 sectsb_thresh = tsb_sectsb_threshold;
10388 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10389 tte8k_cnt <<= 1;
10390 tte4m_cnt <<= 1;
10391 sectsb_thresh <<= 1;
10392 }
10393
10394 /*
10395 * Check to see if our TSB is the right size; we may need to
10396 * grow or shrink it. If the process is small, our work is
10397 * finished at this point.
10398 */
10399 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10400 return;
10401 }
10402 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10403 }
10404
10405 static void
sfmmu_size_tsb(sfmmu_t * sfmmup,int growing,uint64_t tte8k_cnt,uint64_t tte4m_cnt,int sectsb_thresh)10406 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10407 uint64_t tte4m_cnt, int sectsb_thresh)
10408 {
10409 int tsb_bits;
10410 uint_t tsb_szc;
10411 struct tsb_info *tsbinfop;
10412 hatlock_t *hatlockp = NULL;
10413
10414 hatlockp = sfmmu_hat_enter(sfmmup);
10415 ASSERT(hatlockp != NULL);
10416 tsbinfop = sfmmup->sfmmu_tsb;
10417 ASSERT(tsbinfop != NULL);
10418
10419 /*
10420 * If we're growing, select the size based on RSS. If we're
10421 * shrinking, leave some room so we don't have to turn around and
10422 * grow again immediately.
10423 */
10424 if (growing)
10425 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10426 else
10427 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10428
10429 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10430 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10431 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10432 hatlockp, TSB_SHRINK);
10433 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10434 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10435 hatlockp, TSB_GROW);
10436 }
10437 tsbinfop = sfmmup->sfmmu_tsb;
10438
10439 /*
10440 * With the TLB and first TSB out of the way, we need to see if
10441 * we need a second TSB for 4M pages. If we managed to reprogram
10442 * the TLB page sizes above, the process will start using this new
10443 * TSB right away; otherwise, it will start using it on the next
10444 * context switch. Either way, it's no big deal so there's no
10445 * synchronization with the trap handlers here unless we grow the
10446 * TSB (in which case it's required to prevent using the old one
10447 * after it's freed). Note: second tsb is required for 32M/256M
10448 * page sizes.
10449 */
10450 if (tte4m_cnt > sectsb_thresh) {
10451 /*
10452 * If we're growing, select the size based on RSS. If we're
10453 * shrinking, leave some room so we don't have to turn
10454 * around and grow again immediately.
10455 */
10456 if (growing)
10457 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10458 else
10459 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10460 if (tsbinfop->tsb_next == NULL) {
10461 struct tsb_info *newtsb;
10462 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10463 0 : TSB_ALLOC;
10464
10465 sfmmu_hat_exit(hatlockp);
10466
10467 /*
10468 * Try to allocate a TSB for 4[32|256]M pages. If we
10469 * can't get the size we want, retry w/a minimum sized
10470 * TSB. If that still didn't work, give up; we can
10471 * still run without one.
10472 */
10473 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10474 TSB4M|TSB32M|TSB256M:TSB4M;
10475 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10476 allocflags, sfmmup)) &&
10477 (tsb_szc <= TSB_4M_SZCODE ||
10478 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10479 tsb_bits, allocflags, sfmmup)) &&
10480 sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10481 tsb_bits, allocflags, sfmmup)) {
10482 return;
10483 }
10484
10485 hatlockp = sfmmu_hat_enter(sfmmup);
10486
10487 sfmmu_invalidate_ctx(sfmmup);
10488
10489 if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10490 sfmmup->sfmmu_tsb->tsb_next = newtsb;
10491 SFMMU_STAT(sf_tsb_sectsb_create);
10492 sfmmu_hat_exit(hatlockp);
10493 return;
10494 } else {
10495 /*
10496 * It's annoying, but possible for us
10497 * to get here.. we dropped the HAT lock
10498 * because of locking order in the kmem
10499 * allocator, and while we were off getting
10500 * our memory, some other thread decided to
10501 * do us a favor and won the race to get a
10502 * second TSB for this process. Sigh.
10503 */
10504 sfmmu_hat_exit(hatlockp);
10505 sfmmu_tsbinfo_free(newtsb);
10506 return;
10507 }
10508 }
10509
10510 /*
10511 * We have a second TSB, see if it's big enough.
10512 */
10513 tsbinfop = tsbinfop->tsb_next;
10514
10515 /*
10516 * Check to see if our second TSB is the right size;
10517 * we may need to grow or shrink it.
10518 * To prevent thrashing (e.g. growing the TSB on a
10519 * subsequent map operation), only try to shrink if
10520 * the TSB reach exceeds twice the virtual address
10521 * space size.
10522 */
10523 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10524 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10525 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10526 tsb_szc, hatlockp, TSB_SHRINK);
10527 } else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10528 TSB_OK_GROW()) {
10529 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10530 tsb_szc, hatlockp, TSB_GROW);
10531 }
10532 }
10533
10534 sfmmu_hat_exit(hatlockp);
10535 }
10536
10537 /*
10538 * Free up a sfmmu
10539 * Since the sfmmu is currently embedded in the hat struct we simply zero
10540 * out our fields and free up the ism map blk list if any.
10541 */
10542 static void
sfmmu_free_sfmmu(sfmmu_t * sfmmup)10543 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10544 {
10545 ism_blk_t *blkp, *nx_blkp;
10546 #ifdef DEBUG
10547 ism_map_t *map;
10548 int i;
10549 #endif
10550
10551 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10552 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10553 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10554 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10555 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10556 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10557 ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10558
10559 sfmmup->sfmmu_free = 0;
10560 sfmmup->sfmmu_ismhat = 0;
10561
10562 blkp = sfmmup->sfmmu_iblk;
10563 sfmmup->sfmmu_iblk = NULL;
10564
10565 while (blkp) {
10566 #ifdef DEBUG
10567 map = blkp->iblk_maps;
10568 for (i = 0; i < ISM_MAP_SLOTS; i++) {
10569 ASSERT(map[i].imap_seg == 0);
10570 ASSERT(map[i].imap_ismhat == NULL);
10571 ASSERT(map[i].imap_ment == NULL);
10572 }
10573 #endif
10574 nx_blkp = blkp->iblk_next;
10575 blkp->iblk_next = NULL;
10576 blkp->iblk_nextpa = (uint64_t)-1;
10577 kmem_cache_free(ism_blk_cache, blkp);
10578 blkp = nx_blkp;
10579 }
10580 }
10581
10582 /*
10583 * Locking primitves accessed by HATLOCK macros
10584 */
10585
10586 #define SFMMU_SPL_MTX (0x0)
10587 #define SFMMU_ML_MTX (0x1)
10588
10589 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \
10590 SPL_HASH(pg) : MLIST_HASH(pg))
10591
10592 kmutex_t *
sfmmu_page_enter(struct page * pp)10593 sfmmu_page_enter(struct page *pp)
10594 {
10595 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10596 }
10597
10598 void
sfmmu_page_exit(kmutex_t * spl)10599 sfmmu_page_exit(kmutex_t *spl)
10600 {
10601 mutex_exit(spl);
10602 }
10603
10604 int
sfmmu_page_spl_held(struct page * pp)10605 sfmmu_page_spl_held(struct page *pp)
10606 {
10607 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10608 }
10609
10610 kmutex_t *
sfmmu_mlist_enter(struct page * pp)10611 sfmmu_mlist_enter(struct page *pp)
10612 {
10613 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10614 }
10615
10616 void
sfmmu_mlist_exit(kmutex_t * mml)10617 sfmmu_mlist_exit(kmutex_t *mml)
10618 {
10619 mutex_exit(mml);
10620 }
10621
10622 int
sfmmu_mlist_held(struct page * pp)10623 sfmmu_mlist_held(struct page *pp)
10624 {
10625
10626 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10627 }
10628
10629 /*
10630 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For
10631 * sfmmu_mlist_enter() case mml_table lock array is used and for
10632 * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10633 *
10634 * The lock is taken on a root page so that it protects an operation on all
10635 * constituent pages of a large page pp belongs to.
10636 *
10637 * The routine takes a lock from the appropriate array. The lock is determined
10638 * by hashing the root page. After taking the lock this routine checks if the
10639 * root page has the same size code that was used to determine the root (i.e
10640 * that root hasn't changed). If root page has the expected p_szc field we
10641 * have the right lock and it's returned to the caller. If root's p_szc
10642 * decreased we release the lock and retry from the beginning. This case can
10643 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10644 * value and taking the lock. The number of retries due to p_szc decrease is
10645 * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10646 * determined by hashing pp itself.
10647 *
10648 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10649 * possible that p_szc can increase. To increase p_szc a thread has to lock
10650 * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10651 * callers that don't hold a page locked recheck if hmeblk through which pp
10652 * was found still maps this pp. If it doesn't map it anymore returned lock
10653 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10654 * p_szc increase after taking the lock it returns this lock without further
10655 * retries because in this case the caller doesn't care about which lock was
10656 * taken. The caller will drop it right away.
10657 *
10658 * After the routine returns it's guaranteed that hat_page_demote() can't
10659 * change p_szc field of any of constituent pages of a large page pp belongs
10660 * to as long as pp was either locked at least SHARED prior to this call or
10661 * the caller finds that hment that pointed to this pp still references this
10662 * pp (this also assumes that the caller holds hme hash bucket lock so that
10663 * the same pp can't be remapped into the same hmeblk after it was unmapped by
10664 * hat_pageunload()).
10665 */
10666 static kmutex_t *
sfmmu_mlspl_enter(struct page * pp,int type)10667 sfmmu_mlspl_enter(struct page *pp, int type)
10668 {
10669 kmutex_t *mtx;
10670 uint_t prev_rszc = UINT_MAX;
10671 page_t *rootpp;
10672 uint_t szc;
10673 uint_t rszc;
10674 uint_t pszc = pp->p_szc;
10675
10676 ASSERT(pp != NULL);
10677
10678 again:
10679 if (pszc == 0) {
10680 mtx = SFMMU_MLSPL_MTX(type, pp);
10681 mutex_enter(mtx);
10682 return (mtx);
10683 }
10684
10685 /* The lock lives in the root page */
10686 rootpp = PP_GROUPLEADER(pp, pszc);
10687 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10688 mutex_enter(mtx);
10689
10690 /*
10691 * Return mml in the following 3 cases:
10692 *
10693 * 1) If pp itself is root since if its p_szc decreased before we took
10694 * the lock pp is still the root of smaller szc page. And if its p_szc
10695 * increased it doesn't matter what lock we return (see comment in
10696 * front of this routine).
10697 *
10698 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10699 * large page we have the right lock since any previous potential
10700 * hat_page_demote() is done demoting from greater than current root's
10701 * p_szc because hat_page_demote() changes root's p_szc last. No
10702 * further hat_page_demote() can start or be in progress since it
10703 * would need the same lock we currently hold.
10704 *
10705 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10706 * matter what lock we return (see comment in front of this routine).
10707 */
10708 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10709 rszc >= prev_rszc) {
10710 return (mtx);
10711 }
10712
10713 /*
10714 * hat_page_demote() could have decreased root's p_szc.
10715 * In this case pp's p_szc must also be smaller than pszc.
10716 * Retry.
10717 */
10718 if (rszc < pszc) {
10719 szc = pp->p_szc;
10720 if (szc < pszc) {
10721 mutex_exit(mtx);
10722 pszc = szc;
10723 goto again;
10724 }
10725 /*
10726 * pp's p_szc increased after it was decreased.
10727 * page cannot be mapped. Return current lock. The caller
10728 * will drop it right away.
10729 */
10730 return (mtx);
10731 }
10732
10733 /*
10734 * root's p_szc is greater than pp's p_szc.
10735 * hat_page_demote() is not done with all pages
10736 * yet. Wait for it to complete.
10737 */
10738 mutex_exit(mtx);
10739 rootpp = PP_GROUPLEADER(rootpp, rszc);
10740 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10741 mutex_enter(mtx);
10742 mutex_exit(mtx);
10743 prev_rszc = rszc;
10744 goto again;
10745 }
10746
10747 static int
sfmmu_mlspl_held(struct page * pp,int type)10748 sfmmu_mlspl_held(struct page *pp, int type)
10749 {
10750 kmutex_t *mtx;
10751
10752 ASSERT(pp != NULL);
10753 /* The lock lives in the root page */
10754 pp = PP_PAGEROOT(pp);
10755 ASSERT(pp != NULL);
10756
10757 mtx = SFMMU_MLSPL_MTX(type, pp);
10758 return (MUTEX_HELD(mtx));
10759 }
10760
10761 static uint_t
sfmmu_get_free_hblk(struct hme_blk ** hmeblkpp,uint_t critical)10762 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10763 {
10764 struct hme_blk *hblkp;
10765
10766
10767 if (freehblkp != NULL) {
10768 mutex_enter(&freehblkp_lock);
10769 if (freehblkp != NULL) {
10770 /*
10771 * If the current thread is owning hblk_reserve OR
10772 * critical request from sfmmu_hblk_steal()
10773 * let it succeed even if freehblkcnt is really low.
10774 */
10775 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10776 SFMMU_STAT(sf_get_free_throttle);
10777 mutex_exit(&freehblkp_lock);
10778 return (0);
10779 }
10780 freehblkcnt--;
10781 *hmeblkpp = freehblkp;
10782 hblkp = *hmeblkpp;
10783 freehblkp = hblkp->hblk_next;
10784 mutex_exit(&freehblkp_lock);
10785 hblkp->hblk_next = NULL;
10786 SFMMU_STAT(sf_get_free_success);
10787
10788 ASSERT(hblkp->hblk_hmecnt == 0);
10789 ASSERT(hblkp->hblk_vcnt == 0);
10790 ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10791
10792 return (1);
10793 }
10794 mutex_exit(&freehblkp_lock);
10795 }
10796
10797 /* Check cpu hblk pending queues */
10798 if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10799 hblkp = *hmeblkpp;
10800 hblkp->hblk_next = NULL;
10801 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10802
10803 ASSERT(hblkp->hblk_hmecnt == 0);
10804 ASSERT(hblkp->hblk_vcnt == 0);
10805
10806 return (1);
10807 }
10808
10809 SFMMU_STAT(sf_get_free_fail);
10810 return (0);
10811 }
10812
10813 static uint_t
sfmmu_put_free_hblk(struct hme_blk * hmeblkp,uint_t critical)10814 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10815 {
10816 struct hme_blk *hblkp;
10817
10818 ASSERT(hmeblkp->hblk_hmecnt == 0);
10819 ASSERT(hmeblkp->hblk_vcnt == 0);
10820 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10821
10822 /*
10823 * If the current thread is mapping into kernel space,
10824 * let it succede even if freehblkcnt is max
10825 * so that it will avoid freeing it to kmem.
10826 * This will prevent stack overflow due to
10827 * possible recursion since kmem_cache_free()
10828 * might require creation of a slab which
10829 * in turn needs an hmeblk to map that slab;
10830 * let's break this vicious chain at the first
10831 * opportunity.
10832 */
10833 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10834 mutex_enter(&freehblkp_lock);
10835 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10836 SFMMU_STAT(sf_put_free_success);
10837 freehblkcnt++;
10838 hmeblkp->hblk_next = freehblkp;
10839 freehblkp = hmeblkp;
10840 mutex_exit(&freehblkp_lock);
10841 return (1);
10842 }
10843 mutex_exit(&freehblkp_lock);
10844 }
10845
10846 /*
10847 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10848 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10849 * we are not in the process of mapping into kernel space.
10850 */
10851 ASSERT(!critical);
10852 while (freehblkcnt > HBLK_RESERVE_CNT) {
10853 mutex_enter(&freehblkp_lock);
10854 if (freehblkcnt > HBLK_RESERVE_CNT) {
10855 freehblkcnt--;
10856 hblkp = freehblkp;
10857 freehblkp = hblkp->hblk_next;
10858 mutex_exit(&freehblkp_lock);
10859 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10860 kmem_cache_free(sfmmu8_cache, hblkp);
10861 continue;
10862 }
10863 mutex_exit(&freehblkp_lock);
10864 }
10865 SFMMU_STAT(sf_put_free_fail);
10866 return (0);
10867 }
10868
10869 static void
sfmmu_hblk_swap(struct hme_blk * new)10870 sfmmu_hblk_swap(struct hme_blk *new)
10871 {
10872 struct hme_blk *old, *hblkp, *prev;
10873 uint64_t newpa;
10874 caddr_t base, vaddr, endaddr;
10875 struct hmehash_bucket *hmebp;
10876 struct sf_hment *osfhme, *nsfhme;
10877 page_t *pp;
10878 kmutex_t *pml;
10879 tte_t tte;
10880 struct hme_blk *list = NULL;
10881
10882 #ifdef DEBUG
10883 hmeblk_tag hblktag;
10884 struct hme_blk *found;
10885 #endif
10886 old = HBLK_RESERVE;
10887 ASSERT(!old->hblk_shared);
10888
10889 /*
10890 * save pa before bcopy clobbers it
10891 */
10892 newpa = new->hblk_nextpa;
10893
10894 base = (caddr_t)get_hblk_base(old);
10895 endaddr = base + get_hblk_span(old);
10896
10897 /*
10898 * acquire hash bucket lock.
10899 */
10900 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10901 SFMMU_INVALID_SHMERID);
10902
10903 /*
10904 * copy contents from old to new
10905 */
10906 bcopy((void *)old, (void *)new, HME8BLK_SZ);
10907
10908 /*
10909 * add new to hash chain
10910 */
10911 sfmmu_hblk_hash_add(hmebp, new, newpa);
10912
10913 /*
10914 * search hash chain for hblk_reserve; this needs to be performed
10915 * after adding new, otherwise prev won't correspond to the hblk which
10916 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10917 * remove old later.
10918 */
10919 for (prev = NULL,
10920 hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10921 prev = hblkp, hblkp = hblkp->hblk_next)
10922 ;
10923
10924 if (hblkp != old)
10925 panic("sfmmu_hblk_swap: hblk_reserve not found");
10926
10927 /*
10928 * p_mapping list is still pointing to hments in hblk_reserve;
10929 * fix up p_mapping list so that they point to hments in new.
10930 *
10931 * Since all these mappings are created by hblk_reserve_thread
10932 * on the way and it's using at least one of the buffers from each of
10933 * the newly minted slabs, there is no danger of any of these
10934 * mappings getting unloaded by another thread.
10935 *
10936 * tsbmiss could only modify ref/mod bits of hments in old/new.
10937 * Since all of these hments hold mappings established by segkmem
10938 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10939 * have no meaning for the mappings in hblk_reserve. hments in
10940 * old and new are identical except for ref/mod bits.
10941 */
10942 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10943
10944 HBLKTOHME(osfhme, old, vaddr);
10945 sfmmu_copytte(&osfhme->hme_tte, &tte);
10946
10947 if (TTE_IS_VALID(&tte)) {
10948 if ((pp = osfhme->hme_page) == NULL)
10949 panic("sfmmu_hblk_swap: page not mapped");
10950
10951 pml = sfmmu_mlist_enter(pp);
10952
10953 if (pp != osfhme->hme_page)
10954 panic("sfmmu_hblk_swap: mapping changed");
10955
10956 HBLKTOHME(nsfhme, new, vaddr);
10957
10958 HME_ADD(nsfhme, pp);
10959 HME_SUB(osfhme, pp);
10960
10961 sfmmu_mlist_exit(pml);
10962 }
10963 }
10964
10965 /*
10966 * remove old from hash chain
10967 */
10968 sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10969
10970 #ifdef DEBUG
10971
10972 hblktag.htag_id = ksfmmup;
10973 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10974 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10975 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10976 HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10977
10978 if (found != new)
10979 panic("sfmmu_hblk_swap: new hblk not found");
10980 #endif
10981
10982 SFMMU_HASH_UNLOCK(hmebp);
10983
10984 /*
10985 * Reset hblk_reserve
10986 */
10987 bzero((void *)old, HME8BLK_SZ);
10988 old->hblk_nextpa = va_to_pa((caddr_t)old);
10989 }
10990
10991 /*
10992 * Grab the mlist mutex for both pages passed in.
10993 *
10994 * low and high will be returned as pointers to the mutexes for these pages.
10995 * low refers to the mutex residing in the lower bin of the mlist hash, while
10996 * high refers to the mutex residing in the higher bin of the mlist hash. This
10997 * is due to the locking order restrictions on the same thread grabbing
10998 * multiple mlist mutexes. The low lock must be acquired before the high lock.
10999 *
11000 * If both pages hash to the same mutex, only grab that single mutex, and
11001 * high will be returned as NULL
11002 * If the pages hash to different bins in the hash, grab the lower addressed
11003 * lock first and then the higher addressed lock in order to follow the locking
11004 * rules involved with the same thread grabbing multiple mlist mutexes.
11005 * low and high will both have non-NULL values.
11006 */
11007 static void
sfmmu_mlist_reloc_enter(struct page * targ,struct page * repl,kmutex_t ** low,kmutex_t ** high)11008 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
11009 kmutex_t **low, kmutex_t **high)
11010 {
11011 kmutex_t *mml_targ, *mml_repl;
11012
11013 /*
11014 * no need to do the dance around szc as in sfmmu_mlist_enter()
11015 * because this routine is only called by hat_page_relocate() and all
11016 * targ and repl pages are already locked EXCL so szc can't change.
11017 */
11018
11019 mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
11020 mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
11021
11022 if (mml_targ == mml_repl) {
11023 *low = mml_targ;
11024 *high = NULL;
11025 } else {
11026 if (mml_targ < mml_repl) {
11027 *low = mml_targ;
11028 *high = mml_repl;
11029 } else {
11030 *low = mml_repl;
11031 *high = mml_targ;
11032 }
11033 }
11034
11035 mutex_enter(*low);
11036 if (*high)
11037 mutex_enter(*high);
11038 }
11039
11040 static void
sfmmu_mlist_reloc_exit(kmutex_t * low,kmutex_t * high)11041 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
11042 {
11043 if (high)
11044 mutex_exit(high);
11045 mutex_exit(low);
11046 }
11047
11048 static hatlock_t *
sfmmu_hat_enter(sfmmu_t * sfmmup)11049 sfmmu_hat_enter(sfmmu_t *sfmmup)
11050 {
11051 hatlock_t *hatlockp;
11052
11053 if (sfmmup != ksfmmup) {
11054 hatlockp = TSB_HASH(sfmmup);
11055 mutex_enter(HATLOCK_MUTEXP(hatlockp));
11056 return (hatlockp);
11057 }
11058 return (NULL);
11059 }
11060
11061 static hatlock_t *
sfmmu_hat_tryenter(sfmmu_t * sfmmup)11062 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
11063 {
11064 hatlock_t *hatlockp;
11065
11066 if (sfmmup != ksfmmup) {
11067 hatlockp = TSB_HASH(sfmmup);
11068 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
11069 return (NULL);
11070 return (hatlockp);
11071 }
11072 return (NULL);
11073 }
11074
11075 static void
sfmmu_hat_exit(hatlock_t * hatlockp)11076 sfmmu_hat_exit(hatlock_t *hatlockp)
11077 {
11078 if (hatlockp != NULL)
11079 mutex_exit(HATLOCK_MUTEXP(hatlockp));
11080 }
11081
11082 static void
sfmmu_hat_lock_all(void)11083 sfmmu_hat_lock_all(void)
11084 {
11085 int i;
11086 for (i = 0; i < SFMMU_NUM_LOCK; i++)
11087 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
11088 }
11089
11090 static void
sfmmu_hat_unlock_all(void)11091 sfmmu_hat_unlock_all(void)
11092 {
11093 int i;
11094 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
11095 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
11096 }
11097
11098 int
sfmmu_hat_lock_held(sfmmu_t * sfmmup)11099 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
11100 {
11101 ASSERT(sfmmup != ksfmmup);
11102 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
11103 }
11104
11105 /*
11106 * Locking primitives to provide consistency between ISM unmap
11107 * and other operations. Since ISM unmap can take a long time, we
11108 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
11109 * contention on the hatlock buckets while ISM segments are being
11110 * unmapped. The tradeoff is that the flags don't prevent priority
11111 * inversion from occurring, so we must request kernel priority in
11112 * case we have to sleep to keep from getting buried while holding
11113 * the HAT_ISMBUSY flag set, which in turn could block other kernel
11114 * threads from running (for example, in sfmmu_uvatopfn()).
11115 */
11116 static void
sfmmu_ismhat_enter(sfmmu_t * sfmmup,int hatlock_held)11117 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
11118 {
11119 hatlock_t *hatlockp;
11120
11121 THREAD_KPRI_REQUEST();
11122 if (!hatlock_held)
11123 hatlockp = sfmmu_hat_enter(sfmmup);
11124 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
11125 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11126 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
11127 if (!hatlock_held)
11128 sfmmu_hat_exit(hatlockp);
11129 }
11130
11131 static void
sfmmu_ismhat_exit(sfmmu_t * sfmmup,int hatlock_held)11132 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
11133 {
11134 hatlock_t *hatlockp;
11135
11136 if (!hatlock_held)
11137 hatlockp = sfmmu_hat_enter(sfmmup);
11138 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
11139 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
11140 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11141 if (!hatlock_held)
11142 sfmmu_hat_exit(hatlockp);
11143 THREAD_KPRI_RELEASE();
11144 }
11145
11146 /*
11147 *
11148 * Algorithm:
11149 *
11150 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
11151 * hblks.
11152 *
11153 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
11154 *
11155 * (a) try to return an hblk from reserve pool of free hblks;
11156 * (b) if the reserve pool is empty, acquire hblk_reserve_lock
11157 * and return hblk_reserve.
11158 *
11159 * (3) call kmem_cache_alloc() to allocate hblk;
11160 *
11161 * (a) if hblk_reserve_lock is held by the current thread,
11162 * atomically replace hblk_reserve by the hblk that is
11163 * returned by kmem_cache_alloc; release hblk_reserve_lock
11164 * and call kmem_cache_alloc() again.
11165 * (b) if reserve pool is not full, add the hblk that is
11166 * returned by kmem_cache_alloc to reserve pool and
11167 * call kmem_cache_alloc again.
11168 *
11169 */
11170 static struct hme_blk *
sfmmu_hblk_alloc(sfmmu_t * sfmmup,caddr_t vaddr,struct hmehash_bucket * hmebp,uint_t size,hmeblk_tag hblktag,uint_t flags,uint_t rid)11171 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
11172 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
11173 uint_t flags, uint_t rid)
11174 {
11175 struct hme_blk *hmeblkp = NULL;
11176 struct hme_blk *newhblkp;
11177 struct hme_blk *shw_hblkp = NULL;
11178 struct kmem_cache *sfmmu_cache = NULL;
11179 uint64_t hblkpa;
11180 ulong_t index;
11181 uint_t owner; /* set to 1 if using hblk_reserve */
11182 uint_t forcefree;
11183 int sleep;
11184 sf_srd_t *srdp;
11185 sf_region_t *rgnp;
11186
11187 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11188 ASSERT(hblktag.htag_rid == rid);
11189 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
11190 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11191 IS_P2ALIGNED(vaddr, TTEBYTES(size)));
11192
11193 /*
11194 * If segkmem is not created yet, allocate from static hmeblks
11195 * created at the end of startup_modules(). See the block comment
11196 * in startup_modules() describing how we estimate the number of
11197 * static hmeblks that will be needed during re-map.
11198 */
11199 if (!hblk_alloc_dynamic) {
11200
11201 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11202
11203 if (size == TTE8K) {
11204 index = nucleus_hblk8.index;
11205 if (index >= nucleus_hblk8.len) {
11206 /*
11207 * If we panic here, see startup_modules() to
11208 * make sure that we are calculating the
11209 * number of hblk8's that we need correctly.
11210 */
11211 prom_panic("no nucleus hblk8 to allocate");
11212 }
11213 hmeblkp =
11214 (struct hme_blk *)&nucleus_hblk8.list[index];
11215 nucleus_hblk8.index++;
11216 SFMMU_STAT(sf_hblk8_nalloc);
11217 } else {
11218 index = nucleus_hblk1.index;
11219 if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11220 /*
11221 * If we panic here, see startup_modules().
11222 * Most likely you need to update the
11223 * calculation of the number of hblk1 elements
11224 * that the kernel needs to boot.
11225 */
11226 prom_panic("no nucleus hblk1 to allocate");
11227 }
11228 hmeblkp =
11229 (struct hme_blk *)&nucleus_hblk1.list[index];
11230 nucleus_hblk1.index++;
11231 SFMMU_STAT(sf_hblk1_nalloc);
11232 }
11233
11234 goto hblk_init;
11235 }
11236
11237 SFMMU_HASH_UNLOCK(hmebp);
11238
11239 if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11240 if (mmu_page_sizes == max_mmu_page_sizes) {
11241 if (size < TTE256M)
11242 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11243 size, flags);
11244 } else {
11245 if (size < TTE4M)
11246 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11247 size, flags);
11248 }
11249 } else if (SFMMU_IS_SHMERID_VALID(rid)) {
11250 /*
11251 * Shared hmes use per region bitmaps in rgn_hmeflag
11252 * rather than shadow hmeblks to keep track of the
11253 * mapping sizes which have been allocated for the region.
11254 * Here we cleanup old invalid hmeblks with this rid,
11255 * which may be left around by pageunload().
11256 */
11257 int ttesz;
11258 caddr_t va;
11259 caddr_t eva = vaddr + TTEBYTES(size);
11260
11261 ASSERT(sfmmup != KHATID);
11262
11263 srdp = sfmmup->sfmmu_srdp;
11264 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11265 rgnp = srdp->srd_hmergnp[rid];
11266 ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11267 ASSERT(rgnp->rgn_refcnt != 0);
11268 ASSERT(size <= rgnp->rgn_pgszc);
11269
11270 ttesz = HBLK_MIN_TTESZ;
11271 do {
11272 if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11273 continue;
11274 }
11275
11276 if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11277 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11278 } else if (ttesz < size) {
11279 for (va = vaddr; va < eva;
11280 va += TTEBYTES(ttesz)) {
11281 sfmmu_cleanup_rhblk(srdp, va, rid,
11282 ttesz);
11283 }
11284 }
11285 } while (++ttesz <= rgnp->rgn_pgszc);
11286 }
11287
11288 fill_hblk:
11289 owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11290
11291 if (owner && size == TTE8K) {
11292
11293 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11294 /*
11295 * We are really in a tight spot. We already own
11296 * hblk_reserve and we need another hblk. In anticipation
11297 * of this kind of scenario, we specifically set aside
11298 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11299 * by owner of hblk_reserve.
11300 */
11301 SFMMU_STAT(sf_hblk_recurse_cnt);
11302
11303 if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11304 panic("sfmmu_hblk_alloc: reserve list is empty");
11305
11306 goto hblk_verify;
11307 }
11308
11309 ASSERT(!owner);
11310
11311 if ((flags & HAT_NO_KALLOC) == 0) {
11312
11313 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11314 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11315
11316 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11317 hmeblkp = sfmmu_hblk_steal(size);
11318 } else {
11319 /*
11320 * if we are the owner of hblk_reserve,
11321 * swap hblk_reserve with hmeblkp and
11322 * start a fresh life. Hope things go
11323 * better this time.
11324 */
11325 if (hblk_reserve_thread == curthread) {
11326 ASSERT(sfmmu_cache == sfmmu8_cache);
11327 sfmmu_hblk_swap(hmeblkp);
11328 hblk_reserve_thread = NULL;
11329 mutex_exit(&hblk_reserve_lock);
11330 goto fill_hblk;
11331 }
11332 /*
11333 * let's donate this hblk to our reserve list if
11334 * we are not mapping kernel range
11335 */
11336 if (size == TTE8K && sfmmup != KHATID) {
11337 if (sfmmu_put_free_hblk(hmeblkp, 0))
11338 goto fill_hblk;
11339 }
11340 }
11341 } else {
11342 /*
11343 * We are here to map the slab in sfmmu8_cache; let's
11344 * check if we could tap our reserve list; if successful,
11345 * this will avoid the pain of going thru sfmmu_hblk_swap
11346 */
11347 SFMMU_STAT(sf_hblk_slab_cnt);
11348 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11349 /*
11350 * let's start hblk_reserve dance
11351 */
11352 SFMMU_STAT(sf_hblk_reserve_cnt);
11353 owner = 1;
11354 mutex_enter(&hblk_reserve_lock);
11355 hmeblkp = HBLK_RESERVE;
11356 hblk_reserve_thread = curthread;
11357 }
11358 }
11359
11360 hblk_verify:
11361 ASSERT(hmeblkp != NULL);
11362 set_hblk_sz(hmeblkp, size);
11363 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11364 SFMMU_HASH_LOCK(hmebp);
11365 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11366 if (newhblkp != NULL) {
11367 SFMMU_HASH_UNLOCK(hmebp);
11368 if (hmeblkp != HBLK_RESERVE) {
11369 /*
11370 * This is really tricky!
11371 *
11372 * vmem_alloc(vmem_seg_arena)
11373 * vmem_alloc(vmem_internal_arena)
11374 * segkmem_alloc(heap_arena)
11375 * vmem_alloc(heap_arena)
11376 * page_create()
11377 * hat_memload()
11378 * kmem_cache_free()
11379 * kmem_cache_alloc()
11380 * kmem_slab_create()
11381 * vmem_alloc(kmem_internal_arena)
11382 * segkmem_alloc(heap_arena)
11383 * vmem_alloc(heap_arena)
11384 * page_create()
11385 * hat_memload()
11386 * kmem_cache_free()
11387 * ...
11388 *
11389 * Thus, hat_memload() could call kmem_cache_free
11390 * for enough number of times that we could easily
11391 * hit the bottom of the stack or run out of reserve
11392 * list of vmem_seg structs. So, we must donate
11393 * this hblk to reserve list if it's allocated
11394 * from sfmmu8_cache *and* mapping kernel range.
11395 * We don't need to worry about freeing hmeblk1's
11396 * to kmem since they don't map any kmem slabs.
11397 *
11398 * Note: When segkmem supports largepages, we must
11399 * free hmeblk1's to reserve list as well.
11400 */
11401 forcefree = (sfmmup == KHATID) ? 1 : 0;
11402 if (size == TTE8K &&
11403 sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11404 goto re_verify;
11405 }
11406 ASSERT(sfmmup != KHATID);
11407 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11408 } else {
11409 /*
11410 * Hey! we don't need hblk_reserve any more.
11411 */
11412 ASSERT(owner);
11413 hblk_reserve_thread = NULL;
11414 mutex_exit(&hblk_reserve_lock);
11415 owner = 0;
11416 }
11417 re_verify:
11418 /*
11419 * let's check if the goodies are still present
11420 */
11421 SFMMU_HASH_LOCK(hmebp);
11422 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11423 if (newhblkp != NULL) {
11424 /*
11425 * return newhblkp if it's not hblk_reserve;
11426 * if newhblkp is hblk_reserve, return it
11427 * _only if_ we are the owner of hblk_reserve.
11428 */
11429 if (newhblkp != HBLK_RESERVE || owner) {
11430 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11431 newhblkp->hblk_shared);
11432 ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11433 !newhblkp->hblk_shared);
11434 return (newhblkp);
11435 } else {
11436 /*
11437 * we just hit hblk_reserve in the hash and
11438 * we are not the owner of that;
11439 *
11440 * block until hblk_reserve_thread completes
11441 * swapping hblk_reserve and try the dance
11442 * once again.
11443 */
11444 SFMMU_HASH_UNLOCK(hmebp);
11445 mutex_enter(&hblk_reserve_lock);
11446 mutex_exit(&hblk_reserve_lock);
11447 SFMMU_STAT(sf_hblk_reserve_hit);
11448 goto fill_hblk;
11449 }
11450 } else {
11451 /*
11452 * it's no more! try the dance once again.
11453 */
11454 SFMMU_HASH_UNLOCK(hmebp);
11455 goto fill_hblk;
11456 }
11457 }
11458
11459 hblk_init:
11460 if (SFMMU_IS_SHMERID_VALID(rid)) {
11461 uint16_t tteflag = 0x1 <<
11462 ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11463
11464 if (!(rgnp->rgn_hmeflags & tteflag)) {
11465 atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11466 }
11467 hmeblkp->hblk_shared = 1;
11468 } else {
11469 hmeblkp->hblk_shared = 0;
11470 }
11471 set_hblk_sz(hmeblkp, size);
11472 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11473 hmeblkp->hblk_next = (struct hme_blk *)NULL;
11474 hmeblkp->hblk_tag = hblktag;
11475 hmeblkp->hblk_shadow = shw_hblkp;
11476 hblkpa = hmeblkp->hblk_nextpa;
11477 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11478
11479 ASSERT(get_hblk_ttesz(hmeblkp) == size);
11480 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11481 ASSERT(hmeblkp->hblk_hmecnt == 0);
11482 ASSERT(hmeblkp->hblk_vcnt == 0);
11483 ASSERT(hmeblkp->hblk_lckcnt == 0);
11484 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11485 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11486 return (hmeblkp);
11487 }
11488
11489 /*
11490 * This function cleans up the hme_blk and returns it to the free list.
11491 */
11492 /* ARGSUSED */
11493 static void
sfmmu_hblk_free(struct hme_blk ** listp)11494 sfmmu_hblk_free(struct hme_blk **listp)
11495 {
11496 struct hme_blk *hmeblkp, *next_hmeblkp;
11497 int size;
11498 uint_t critical;
11499 uint64_t hblkpa;
11500
11501 ASSERT(*listp != NULL);
11502
11503 hmeblkp = *listp;
11504 while (hmeblkp != NULL) {
11505 next_hmeblkp = hmeblkp->hblk_next;
11506 ASSERT(!hmeblkp->hblk_hmecnt);
11507 ASSERT(!hmeblkp->hblk_vcnt);
11508 ASSERT(!hmeblkp->hblk_lckcnt);
11509 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11510 ASSERT(hmeblkp->hblk_shared == 0);
11511 ASSERT(hmeblkp->hblk_shw_bit == 0);
11512 ASSERT(hmeblkp->hblk_shadow == NULL);
11513
11514 hblkpa = va_to_pa((caddr_t)hmeblkp);
11515 ASSERT(hblkpa != (uint64_t)-1);
11516 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11517
11518 size = get_hblk_ttesz(hmeblkp);
11519 hmeblkp->hblk_next = NULL;
11520 hmeblkp->hblk_nextpa = hblkpa;
11521
11522 if (hmeblkp->hblk_nuc_bit == 0) {
11523
11524 if (size != TTE8K ||
11525 !sfmmu_put_free_hblk(hmeblkp, critical))
11526 kmem_cache_free(get_hblk_cache(hmeblkp),
11527 hmeblkp);
11528 }
11529 hmeblkp = next_hmeblkp;
11530 }
11531 }
11532
11533 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
11534 #define SFMMU_HBLK_STEAL_THRESHOLD 5
11535
11536 static uint_t sfmmu_hblk_steal_twice;
11537 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11538
11539 /*
11540 * Steal a hmeblk from user or kernel hme hash lists.
11541 * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11542 * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11543 * tap into critical reserve of freehblkp.
11544 * Note: We remain looping in this routine until we find one.
11545 */
11546 static struct hme_blk *
sfmmu_hblk_steal(int size)11547 sfmmu_hblk_steal(int size)
11548 {
11549 static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11550 struct hmehash_bucket *hmebp;
11551 struct hme_blk *hmeblkp = NULL, *pr_hblk;
11552 uint64_t hblkpa;
11553 int i;
11554 uint_t loop_cnt = 0, critical;
11555
11556 for (;;) {
11557 /* Check cpu hblk pending queues */
11558 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11559 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11560 ASSERT(hmeblkp->hblk_hmecnt == 0);
11561 ASSERT(hmeblkp->hblk_vcnt == 0);
11562 return (hmeblkp);
11563 }
11564
11565 if (size == TTE8K) {
11566 critical =
11567 (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11568 if (sfmmu_get_free_hblk(&hmeblkp, critical))
11569 return (hmeblkp);
11570 }
11571
11572 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11573 uhmehash_steal_hand;
11574 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11575
11576 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11577 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11578 SFMMU_HASH_LOCK(hmebp);
11579 hmeblkp = hmebp->hmeblkp;
11580 hblkpa = hmebp->hmeh_nextpa;
11581 pr_hblk = NULL;
11582 while (hmeblkp) {
11583 /*
11584 * check if it is a hmeblk that is not locked
11585 * and not shared. skip shadow hmeblks with
11586 * shadow_mask set i.e valid count non zero.
11587 */
11588 if ((get_hblk_ttesz(hmeblkp) == size) &&
11589 (hmeblkp->hblk_shw_bit == 0 ||
11590 hmeblkp->hblk_vcnt == 0) &&
11591 (hmeblkp->hblk_lckcnt == 0)) {
11592 /*
11593 * there is a high probability that we
11594 * will find a free one. search some
11595 * buckets for a free hmeblk initially
11596 * before unloading a valid hmeblk.
11597 */
11598 if ((hmeblkp->hblk_vcnt == 0 &&
11599 hmeblkp->hblk_hmecnt == 0) || (i >=
11600 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11601 if (sfmmu_steal_this_hblk(hmebp,
11602 hmeblkp, hblkpa, pr_hblk)) {
11603 /*
11604 * Hblk is unloaded
11605 * successfully
11606 */
11607 break;
11608 }
11609 }
11610 }
11611 pr_hblk = hmeblkp;
11612 hblkpa = hmeblkp->hblk_nextpa;
11613 hmeblkp = hmeblkp->hblk_next;
11614 }
11615
11616 SFMMU_HASH_UNLOCK(hmebp);
11617 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11618 hmebp = uhme_hash;
11619 }
11620 uhmehash_steal_hand = hmebp;
11621
11622 if (hmeblkp != NULL)
11623 break;
11624
11625 /*
11626 * in the worst case, look for a free one in the kernel
11627 * hash table.
11628 */
11629 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11630 SFMMU_HASH_LOCK(hmebp);
11631 hmeblkp = hmebp->hmeblkp;
11632 hblkpa = hmebp->hmeh_nextpa;
11633 pr_hblk = NULL;
11634 while (hmeblkp) {
11635 /*
11636 * check if it is free hmeblk
11637 */
11638 if ((get_hblk_ttesz(hmeblkp) == size) &&
11639 (hmeblkp->hblk_lckcnt == 0) &&
11640 (hmeblkp->hblk_vcnt == 0) &&
11641 (hmeblkp->hblk_hmecnt == 0)) {
11642 if (sfmmu_steal_this_hblk(hmebp,
11643 hmeblkp, hblkpa, pr_hblk)) {
11644 break;
11645 } else {
11646 /*
11647 * Cannot fail since we have
11648 * hash lock.
11649 */
11650 panic("fail to steal?");
11651 }
11652 }
11653
11654 pr_hblk = hmeblkp;
11655 hblkpa = hmeblkp->hblk_nextpa;
11656 hmeblkp = hmeblkp->hblk_next;
11657 }
11658
11659 SFMMU_HASH_UNLOCK(hmebp);
11660 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11661 hmebp = khme_hash;
11662 }
11663
11664 if (hmeblkp != NULL)
11665 break;
11666 sfmmu_hblk_steal_twice++;
11667 }
11668 return (hmeblkp);
11669 }
11670
11671 /*
11672 * This routine does real work to prepare a hblk to be "stolen" by
11673 * unloading the mappings, updating shadow counts ....
11674 * It returns 1 if the block is ready to be reused (stolen), or 0
11675 * means the block cannot be stolen yet- pageunload is still working
11676 * on this hblk.
11677 */
11678 static int
sfmmu_steal_this_hblk(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa,struct hme_blk * pr_hblk)11679 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11680 uint64_t hblkpa, struct hme_blk *pr_hblk)
11681 {
11682 int shw_size, vshift;
11683 struct hme_blk *shw_hblkp;
11684 caddr_t vaddr;
11685 uint_t shw_mask, newshw_mask;
11686 struct hme_blk *list = NULL;
11687
11688 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11689
11690 /*
11691 * check if the hmeblk is free, unload if necessary
11692 */
11693 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11694 sfmmu_t *sfmmup;
11695 demap_range_t dmr;
11696
11697 sfmmup = hblktosfmmu(hmeblkp);
11698 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11699 return (0);
11700 }
11701 DEMAP_RANGE_INIT(sfmmup, &dmr);
11702 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11703 (caddr_t)get_hblk_base(hmeblkp),
11704 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11705 DEMAP_RANGE_FLUSH(&dmr);
11706 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11707 /*
11708 * Pageunload is working on the same hblk.
11709 */
11710 return (0);
11711 }
11712
11713 sfmmu_hblk_steal_unload_count++;
11714 }
11715
11716 ASSERT(hmeblkp->hblk_lckcnt == 0);
11717 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11718
11719 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11720 hmeblkp->hblk_nextpa = hblkpa;
11721
11722 shw_hblkp = hmeblkp->hblk_shadow;
11723 if (shw_hblkp) {
11724 ASSERT(!hmeblkp->hblk_shared);
11725 shw_size = get_hblk_ttesz(shw_hblkp);
11726 vaddr = (caddr_t)get_hblk_base(hmeblkp);
11727 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11728 ASSERT(vshift < 8);
11729 /*
11730 * Atomically clear shadow mask bit
11731 */
11732 do {
11733 shw_mask = shw_hblkp->hblk_shw_mask;
11734 ASSERT(shw_mask & (1 << vshift));
11735 newshw_mask = shw_mask & ~(1 << vshift);
11736 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11737 shw_mask, newshw_mask);
11738 } while (newshw_mask != shw_mask);
11739 hmeblkp->hblk_shadow = NULL;
11740 }
11741
11742 /*
11743 * remove shadow bit if we are stealing an unused shadow hmeblk.
11744 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11745 * we are indeed allocating a shadow hmeblk.
11746 */
11747 hmeblkp->hblk_shw_bit = 0;
11748
11749 if (hmeblkp->hblk_shared) {
11750 sf_srd_t *srdp;
11751 sf_region_t *rgnp;
11752 uint_t rid;
11753
11754 srdp = hblktosrd(hmeblkp);
11755 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11756 rid = hmeblkp->hblk_tag.htag_rid;
11757 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11758 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11759 rgnp = srdp->srd_hmergnp[rid];
11760 ASSERT(rgnp != NULL);
11761 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11762 hmeblkp->hblk_shared = 0;
11763 }
11764
11765 sfmmu_hblk_steal_count++;
11766 SFMMU_STAT(sf_steal_count);
11767
11768 return (1);
11769 }
11770
11771 struct hme_blk *
sfmmu_hmetohblk(struct sf_hment * sfhme)11772 sfmmu_hmetohblk(struct sf_hment *sfhme)
11773 {
11774 struct hme_blk *hmeblkp;
11775 struct sf_hment *sfhme0;
11776 struct hme_blk *hblk_dummy = 0;
11777
11778 /*
11779 * No dummy sf_hments, please.
11780 */
11781 ASSERT(sfhme->hme_tte.ll != 0);
11782
11783 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11784 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11785 (uintptr_t)&hblk_dummy->hblk_hme[0]);
11786
11787 return (hmeblkp);
11788 }
11789
11790 /*
11791 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11792 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11793 * KM_SLEEP allocation.
11794 *
11795 * Return 0 on success, -1 otherwise.
11796 */
11797 static void
sfmmu_tsb_swapin(sfmmu_t * sfmmup,hatlock_t * hatlockp)11798 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11799 {
11800 struct tsb_info *tsbinfop, *next;
11801 tsb_replace_rc_t rc;
11802 boolean_t gotfirst = B_FALSE;
11803
11804 ASSERT(sfmmup != ksfmmup);
11805 ASSERT(sfmmu_hat_lock_held(sfmmup));
11806
11807 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11808 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11809 }
11810
11811 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11812 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11813 } else {
11814 return;
11815 }
11816
11817 ASSERT(sfmmup->sfmmu_tsb != NULL);
11818
11819 /*
11820 * Loop over all tsbinfo's replacing them with ones that actually have
11821 * a TSB. If any of the replacements ever fail, bail out of the loop.
11822 */
11823 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11824 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11825 next = tsbinfop->tsb_next;
11826 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11827 hatlockp, TSB_SWAPIN);
11828 if (rc != TSB_SUCCESS) {
11829 break;
11830 }
11831 gotfirst = B_TRUE;
11832 }
11833
11834 switch (rc) {
11835 case TSB_SUCCESS:
11836 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11837 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11838 return;
11839 case TSB_LOSTRACE:
11840 break;
11841 case TSB_ALLOCFAIL:
11842 break;
11843 default:
11844 panic("sfmmu_replace_tsb returned unrecognized failure code "
11845 "%d", rc);
11846 }
11847
11848 /*
11849 * In this case, we failed to get one of our TSBs. If we failed to
11850 * get the first TSB, get one of minimum size (8KB). Walk the list
11851 * and throw away the tsbinfos, starting where the allocation failed;
11852 * we can get by with just one TSB as long as we don't leave the
11853 * SWAPPED tsbinfo structures lying around.
11854 */
11855 tsbinfop = sfmmup->sfmmu_tsb;
11856 next = tsbinfop->tsb_next;
11857 tsbinfop->tsb_next = NULL;
11858
11859 sfmmu_hat_exit(hatlockp);
11860 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11861 next = tsbinfop->tsb_next;
11862 sfmmu_tsbinfo_free(tsbinfop);
11863 }
11864 hatlockp = sfmmu_hat_enter(sfmmup);
11865
11866 /*
11867 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11868 * pages.
11869 */
11870 if (!gotfirst) {
11871 tsbinfop = sfmmup->sfmmu_tsb;
11872 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11873 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11874 ASSERT(rc == TSB_SUCCESS);
11875 }
11876
11877 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11878 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11879 }
11880
11881 static int
sfmmu_is_rgnva(sf_srd_t * srdp,caddr_t addr,ulong_t w,ulong_t bmw)11882 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11883 {
11884 ulong_t bix = 0;
11885 uint_t rid;
11886 sf_region_t *rgnp;
11887
11888 ASSERT(srdp != NULL);
11889 ASSERT(srdp->srd_refcnt != 0);
11890
11891 w <<= BT_ULSHIFT;
11892 while (bmw) {
11893 if (!(bmw & 0x1)) {
11894 bix++;
11895 bmw >>= 1;
11896 continue;
11897 }
11898 rid = w | bix;
11899 rgnp = srdp->srd_hmergnp[rid];
11900 ASSERT(rgnp->rgn_refcnt > 0);
11901 ASSERT(rgnp->rgn_id == rid);
11902 if (addr < rgnp->rgn_saddr ||
11903 addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11904 bix++;
11905 bmw >>= 1;
11906 } else {
11907 return (1);
11908 }
11909 }
11910 return (0);
11911 }
11912
11913 /*
11914 * Handle exceptions for low level tsb_handler.
11915 *
11916 * There are many scenarios that could land us here:
11917 *
11918 * If the context is invalid we land here. The context can be invalid
11919 * for 3 reasons: 1) we couldn't allocate a new context and now need to
11920 * perform a wrap around operation in order to allocate a new context.
11921 * 2) Context was invalidated to change pagesize programming 3) ISMs or
11922 * TSBs configuration is changeing for this process and we are forced into
11923 * here to do a syncronization operation. If the context is valid we can
11924 * be here from window trap hanlder. In this case just call trap to handle
11925 * the fault.
11926 *
11927 * Note that the process will run in INVALID_CONTEXT before
11928 * faulting into here and subsequently loading the MMU registers
11929 * (including the TSB base register) associated with this process.
11930 * For this reason, the trap handlers must all test for
11931 * INVALID_CONTEXT before attempting to access any registers other
11932 * than the context registers.
11933 */
11934 void
sfmmu_tsbmiss_exception(struct regs * rp,uintptr_t tagaccess,uint_t traptype)11935 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11936 {
11937 sfmmu_t *sfmmup, *shsfmmup;
11938 uint_t ctxtype;
11939 klwp_id_t lwp;
11940 char lwp_save_state;
11941 hatlock_t *hatlockp, *shatlockp;
11942 struct tsb_info *tsbinfop;
11943 struct tsbmiss *tsbmp;
11944 sf_scd_t *scdp;
11945
11946 SFMMU_STAT(sf_tsb_exceptions);
11947 SFMMU_MMU_STAT(mmu_tsb_exceptions);
11948 sfmmup = astosfmmu(curthread->t_procp->p_as);
11949 /*
11950 * note that in sun4u, tagacces register contains ctxnum
11951 * while sun4v passes ctxtype in the tagaccess register.
11952 */
11953 ctxtype = tagaccess & TAGACC_CTX_MASK;
11954
11955 ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11956 ASSERT(sfmmup->sfmmu_ismhat == 0);
11957 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11958 ctxtype == INVALID_CONTEXT);
11959
11960 if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11961 /*
11962 * We may land here because shme bitmap and pagesize
11963 * flags are updated lazily in tsbmiss area on other cpus.
11964 * If we detect here that tsbmiss area is out of sync with
11965 * sfmmu update it and retry the trapped instruction.
11966 * Otherwise call trap().
11967 */
11968 int ret = 0;
11969 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11970 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11971
11972 /*
11973 * Must set lwp state to LWP_SYS before
11974 * trying to acquire any adaptive lock
11975 */
11976 lwp = ttolwp(curthread);
11977 ASSERT(lwp);
11978 lwp_save_state = lwp->lwp_state;
11979 lwp->lwp_state = LWP_SYS;
11980
11981 hatlockp = sfmmu_hat_enter(sfmmup);
11982 kpreempt_disable();
11983 tsbmp = &tsbmiss_area[CPU->cpu_id];
11984 ASSERT(sfmmup == tsbmp->usfmmup);
11985 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11986 ~tteflag_mask) ||
11987 ((tsbmp->uhat_rtteflags ^ sfmmup->sfmmu_rtteflags) &
11988 ~tteflag_mask)) {
11989 tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11990 tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11991 ret = 1;
11992 }
11993 if (sfmmup->sfmmu_srdp != NULL) {
11994 ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11995 ulong_t *tm = tsbmp->shmermap;
11996 ulong_t i;
11997 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11998 ulong_t d = tm[i] ^ sm[i];
11999 if (d) {
12000 if (d & sm[i]) {
12001 if (!ret && sfmmu_is_rgnva(
12002 sfmmup->sfmmu_srdp,
12003 addr, i, d & sm[i])) {
12004 ret = 1;
12005 }
12006 }
12007 tm[i] = sm[i];
12008 }
12009 }
12010 }
12011 kpreempt_enable();
12012 sfmmu_hat_exit(hatlockp);
12013 lwp->lwp_state = lwp_save_state;
12014 if (ret) {
12015 return;
12016 }
12017 } else if (ctxtype == INVALID_CONTEXT) {
12018 /*
12019 * First, make sure we come out of here with a valid ctx,
12020 * since if we don't get one we'll simply loop on the
12021 * faulting instruction.
12022 *
12023 * If the ISM mappings are changing, the TSB is relocated,
12024 * the process is swapped, the process is joining SCD or
12025 * leaving SCD or shared regions we serialize behind the
12026 * controlling thread with hat lock, sfmmu_flags and
12027 * sfmmu_tsb_cv condition variable.
12028 */
12029
12030 /*
12031 * Must set lwp state to LWP_SYS before
12032 * trying to acquire any adaptive lock
12033 */
12034 lwp = ttolwp(curthread);
12035 ASSERT(lwp);
12036 lwp_save_state = lwp->lwp_state;
12037 lwp->lwp_state = LWP_SYS;
12038
12039 hatlockp = sfmmu_hat_enter(sfmmup);
12040 retry:
12041 if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
12042 shsfmmup = scdp->scd_sfmmup;
12043 ASSERT(shsfmmup != NULL);
12044
12045 for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
12046 tsbinfop = tsbinfop->tsb_next) {
12047 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12048 /* drop the private hat lock */
12049 sfmmu_hat_exit(hatlockp);
12050 /* acquire the shared hat lock */
12051 shatlockp = sfmmu_hat_enter(shsfmmup);
12052 /*
12053 * recheck to see if anything changed
12054 * after we drop the private hat lock.
12055 */
12056 if (sfmmup->sfmmu_scdp == scdp &&
12057 shsfmmup == scdp->scd_sfmmup) {
12058 sfmmu_tsb_chk_reloc(shsfmmup,
12059 shatlockp);
12060 }
12061 sfmmu_hat_exit(shatlockp);
12062 hatlockp = sfmmu_hat_enter(sfmmup);
12063 goto retry;
12064 }
12065 }
12066 }
12067
12068 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
12069 tsbinfop = tsbinfop->tsb_next) {
12070 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12071 cv_wait(&sfmmup->sfmmu_tsb_cv,
12072 HATLOCK_MUTEXP(hatlockp));
12073 goto retry;
12074 }
12075 }
12076
12077 /*
12078 * Wait for ISM maps to be updated.
12079 */
12080 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12081 cv_wait(&sfmmup->sfmmu_tsb_cv,
12082 HATLOCK_MUTEXP(hatlockp));
12083 goto retry;
12084 }
12085
12086 /* Is this process joining an SCD? */
12087 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12088 /*
12089 * Flush private TSB and setup shared TSB.
12090 * sfmmu_finish_join_scd() does not drop the
12091 * hat lock.
12092 */
12093 sfmmu_finish_join_scd(sfmmup);
12094 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
12095 }
12096
12097 /*
12098 * If we're swapping in, get TSB(s). Note that we must do
12099 * this before we get a ctx or load the MMU state. Once
12100 * we swap in we have to recheck to make sure the TSB(s) and
12101 * ISM mappings didn't change while we slept.
12102 */
12103 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
12104 sfmmu_tsb_swapin(sfmmup, hatlockp);
12105 goto retry;
12106 }
12107
12108 sfmmu_get_ctx(sfmmup);
12109
12110 sfmmu_hat_exit(hatlockp);
12111 /*
12112 * Must restore lwp_state if not calling
12113 * trap() for further processing. Restore
12114 * it anyway.
12115 */
12116 lwp->lwp_state = lwp_save_state;
12117 return;
12118 }
12119 trap(rp, (caddr_t)tagaccess, traptype, 0);
12120 }
12121
12122 static void
sfmmu_tsb_chk_reloc(sfmmu_t * sfmmup,hatlock_t * hatlockp)12123 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
12124 {
12125 struct tsb_info *tp;
12126
12127 ASSERT(sfmmu_hat_lock_held(sfmmup));
12128
12129 for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
12130 if (tp->tsb_flags & TSB_RELOC_FLAG) {
12131 cv_wait(&sfmmup->sfmmu_tsb_cv,
12132 HATLOCK_MUTEXP(hatlockp));
12133 break;
12134 }
12135 }
12136 }
12137
12138 /*
12139 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
12140 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
12141 * rather than spinning to avoid send mondo timeouts with
12142 * interrupts enabled. When the lock is acquired it is immediately
12143 * released and we return back to sfmmu_vatopfn just after
12144 * the GET_TTE call.
12145 */
12146 void
sfmmu_vatopfn_suspended(caddr_t vaddr,sfmmu_t * sfmmu,tte_t * ttep)12147 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
12148 {
12149 struct page **pp;
12150
12151 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12152 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12153 }
12154
12155 /*
12156 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12157 * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12158 * cross traps which cannot be handled while spinning in the
12159 * trap handlers. Simply enter and exit the kpr_suspendlock spin
12160 * mutex, which is held by the holder of the suspend bit, and then
12161 * retry the trapped instruction after unwinding.
12162 */
12163 /*ARGSUSED*/
12164 void
sfmmu_tsbmiss_suspended(struct regs * rp,uintptr_t tagacc,uint_t traptype)12165 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12166 {
12167 ASSERT(curthread != kreloc_thread);
12168 mutex_enter(&kpr_suspendlock);
12169 mutex_exit(&kpr_suspendlock);
12170 }
12171
12172 /*
12173 * This routine could be optimized to reduce the number of xcalls by flushing
12174 * the entire TLBs if region reference count is above some threshold but the
12175 * tradeoff will depend on the size of the TLB. So for now flush the specific
12176 * page a context at a time.
12177 *
12178 * If uselocks is 0 then it's called after all cpus were captured and all the
12179 * hat locks were taken. In this case don't take the region lock by relying on
12180 * the order of list region update operations in hat_join_region(),
12181 * hat_leave_region() and hat_dup_region(). The ordering in those routines
12182 * guarantees that list is always forward walkable and reaches active sfmmus
12183 * regardless of where xc_attention() captures a cpu.
12184 */
12185 cpuset_t
sfmmu_rgntlb_demap(caddr_t addr,sf_region_t * rgnp,struct hme_blk * hmeblkp,int uselocks)12186 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12187 struct hme_blk *hmeblkp, int uselocks)
12188 {
12189 sfmmu_t *sfmmup;
12190 cpuset_t cpuset;
12191 cpuset_t rcpuset;
12192 hatlock_t *hatlockp;
12193 uint_t rid = rgnp->rgn_id;
12194 sf_rgn_link_t *rlink;
12195 sf_scd_t *scdp;
12196
12197 ASSERT(hmeblkp->hblk_shared);
12198 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12199 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12200
12201 CPUSET_ZERO(rcpuset);
12202 if (uselocks) {
12203 mutex_enter(&rgnp->rgn_mutex);
12204 }
12205 sfmmup = rgnp->rgn_sfmmu_head;
12206 while (sfmmup != NULL) {
12207 if (uselocks) {
12208 hatlockp = sfmmu_hat_enter(sfmmup);
12209 }
12210
12211 /*
12212 * When an SCD is created the SCD hat is linked on the sfmmu
12213 * region lists for each hme region which is part of the
12214 * SCD. If we find an SCD hat, when walking these lists,
12215 * then we flush the shared TSBs, if we find a private hat,
12216 * which is part of an SCD, but where the region
12217 * is not part of the SCD then we flush the private TSBs.
12218 */
12219 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12220 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12221 scdp = sfmmup->sfmmu_scdp;
12222 if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12223 if (uselocks) {
12224 sfmmu_hat_exit(hatlockp);
12225 }
12226 goto next;
12227 }
12228 }
12229
12230 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12231
12232 kpreempt_disable();
12233 cpuset = sfmmup->sfmmu_cpusran;
12234 CPUSET_AND(cpuset, cpu_ready_set);
12235 CPUSET_DEL(cpuset, CPU->cpu_id);
12236 SFMMU_XCALL_STATS(sfmmup);
12237 xt_some(cpuset, vtag_flushpage_tl1,
12238 (uint64_t)addr, (uint64_t)sfmmup);
12239 vtag_flushpage(addr, (uint64_t)sfmmup);
12240 if (uselocks) {
12241 sfmmu_hat_exit(hatlockp);
12242 }
12243 kpreempt_enable();
12244 CPUSET_OR(rcpuset, cpuset);
12245
12246 next:
12247 /* LINTED: constant in conditional context */
12248 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12249 ASSERT(rlink != NULL);
12250 sfmmup = rlink->next;
12251 }
12252 if (uselocks) {
12253 mutex_exit(&rgnp->rgn_mutex);
12254 }
12255 return (rcpuset);
12256 }
12257
12258 /*
12259 * This routine takes an sfmmu pointer and the va for an adddress in an
12260 * ISM region as input and returns the corresponding region id in ism_rid.
12261 * The return value of 1 indicates that a region has been found and ism_rid
12262 * is valid, otherwise 0 is returned.
12263 */
12264 static int
find_ism_rid(sfmmu_t * sfmmup,sfmmu_t * ism_sfmmup,caddr_t va,uint_t * ism_rid)12265 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12266 {
12267 ism_blk_t *ism_blkp;
12268 int i;
12269 ism_map_t *ism_map;
12270 #ifdef DEBUG
12271 struct hat *ism_hatid;
12272 #endif
12273 ASSERT(sfmmu_hat_lock_held(sfmmup));
12274
12275 ism_blkp = sfmmup->sfmmu_iblk;
12276 while (ism_blkp != NULL) {
12277 ism_map = ism_blkp->iblk_maps;
12278 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12279 if ((va >= ism_start(ism_map[i])) &&
12280 (va < ism_end(ism_map[i]))) {
12281
12282 *ism_rid = ism_map[i].imap_rid;
12283 #ifdef DEBUG
12284 ism_hatid = ism_map[i].imap_ismhat;
12285 ASSERT(ism_hatid == ism_sfmmup);
12286 ASSERT(ism_hatid->sfmmu_ismhat);
12287 #endif
12288 return (1);
12289 }
12290 }
12291 ism_blkp = ism_blkp->iblk_next;
12292 }
12293 return (0);
12294 }
12295
12296 /*
12297 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12298 * This routine may be called with all cpu's captured. Therefore, the
12299 * caller is responsible for holding all locks and disabling kernel
12300 * preemption.
12301 */
12302 /* ARGSUSED */
12303 static void
sfmmu_ismtlbcache_demap(caddr_t addr,sfmmu_t * ism_sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int cache_flush_flag)12304 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12305 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12306 {
12307 cpuset_t cpuset;
12308 caddr_t va;
12309 ism_ment_t *ment;
12310 sfmmu_t *sfmmup;
12311 #ifdef VAC
12312 int vcolor;
12313 #endif
12314
12315 sf_scd_t *scdp;
12316 uint_t ism_rid;
12317
12318 ASSERT(!hmeblkp->hblk_shared);
12319 /*
12320 * Walk the ism_hat's mapping list and flush the page
12321 * from every hat sharing this ism_hat. This routine
12322 * may be called while all cpu's have been captured.
12323 * Therefore we can't attempt to grab any locks. For now
12324 * this means we will protect the ism mapping list under
12325 * a single lock which will be grabbed by the caller.
12326 * If hat_share/unshare scalibility becomes a performance
12327 * problem then we may need to re-think ism mapping list locking.
12328 */
12329 ASSERT(ism_sfmmup->sfmmu_ismhat);
12330 ASSERT(MUTEX_HELD(&ism_mlist_lock));
12331 addr = addr - ISMID_STARTADDR;
12332
12333 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12334
12335 sfmmup = ment->iment_hat;
12336
12337 va = ment->iment_base_va;
12338 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr);
12339
12340 /*
12341 * When an SCD is created the SCD hat is linked on the ism
12342 * mapping lists for each ISM segment which is part of the
12343 * SCD. If we find an SCD hat, when walking these lists,
12344 * then we flush the shared TSBs, if we find a private hat,
12345 * which is part of an SCD, but where the region
12346 * corresponding to this va is not part of the SCD then we
12347 * flush the private TSBs.
12348 */
12349 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12350 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12351 !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12352 if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12353 &ism_rid)) {
12354 cmn_err(CE_PANIC,
12355 "can't find matching ISM rid!");
12356 }
12357
12358 scdp = sfmmup->sfmmu_scdp;
12359 if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12360 SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12361 ism_rid)) {
12362 continue;
12363 }
12364 }
12365 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12366
12367 cpuset = sfmmup->sfmmu_cpusran;
12368 CPUSET_AND(cpuset, cpu_ready_set);
12369 CPUSET_DEL(cpuset, CPU->cpu_id);
12370 SFMMU_XCALL_STATS(sfmmup);
12371 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12372 (uint64_t)sfmmup);
12373 vtag_flushpage(va, (uint64_t)sfmmup);
12374
12375 #ifdef VAC
12376 /*
12377 * Flush D$
12378 * When flushing D$ we must flush all
12379 * cpu's. See sfmmu_cache_flush().
12380 */
12381 if (cache_flush_flag == CACHE_FLUSH) {
12382 cpuset = cpu_ready_set;
12383 CPUSET_DEL(cpuset, CPU->cpu_id);
12384
12385 SFMMU_XCALL_STATS(sfmmup);
12386 vcolor = addr_to_vcolor(va);
12387 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12388 vac_flushpage(pfnum, vcolor);
12389 }
12390 #endif /* VAC */
12391 }
12392 }
12393
12394 /*
12395 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12396 * a particular virtual address and ctx. If noflush is set we do not
12397 * flush the TLB/TSB. This function may or may not be called with the
12398 * HAT lock held.
12399 */
12400 static void
sfmmu_tlbcache_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int tlb_noflush,int cpu_flag,int cache_flush_flag,int hat_lock_held)12401 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12402 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12403 int hat_lock_held)
12404 {
12405 #ifdef VAC
12406 int vcolor;
12407 #endif
12408 cpuset_t cpuset;
12409 hatlock_t *hatlockp;
12410
12411 ASSERT(!hmeblkp->hblk_shared);
12412
12413 #if defined(lint) && !defined(VAC)
12414 pfnum = pfnum;
12415 cpu_flag = cpu_flag;
12416 cache_flush_flag = cache_flush_flag;
12417 #endif
12418
12419 /*
12420 * There is no longer a need to protect against ctx being
12421 * stolen here since we don't store the ctx in the TSB anymore.
12422 */
12423 #ifdef VAC
12424 vcolor = addr_to_vcolor(addr);
12425 #endif
12426
12427 /*
12428 * We must hold the hat lock during the flush of TLB,
12429 * to avoid a race with sfmmu_invalidate_ctx(), where
12430 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12431 * causing TLB demap routine to skip flush on that MMU.
12432 * If the context on a MMU has already been set to
12433 * INVALID_CONTEXT, we just get an extra flush on
12434 * that MMU.
12435 */
12436 if (!hat_lock_held && !tlb_noflush)
12437 hatlockp = sfmmu_hat_enter(sfmmup);
12438
12439 kpreempt_disable();
12440 if (!tlb_noflush) {
12441 /*
12442 * Flush the TSB and TLB.
12443 */
12444 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12445
12446 cpuset = sfmmup->sfmmu_cpusran;
12447 CPUSET_AND(cpuset, cpu_ready_set);
12448 CPUSET_DEL(cpuset, CPU->cpu_id);
12449
12450 SFMMU_XCALL_STATS(sfmmup);
12451
12452 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12453 (uint64_t)sfmmup);
12454
12455 vtag_flushpage(addr, (uint64_t)sfmmup);
12456 }
12457
12458 if (!hat_lock_held && !tlb_noflush)
12459 sfmmu_hat_exit(hatlockp);
12460
12461 #ifdef VAC
12462 /*
12463 * Flush the D$
12464 *
12465 * Even if the ctx is stolen, we need to flush the
12466 * cache. Our ctx stealer only flushes the TLBs.
12467 */
12468 if (cache_flush_flag == CACHE_FLUSH) {
12469 if (cpu_flag & FLUSH_ALL_CPUS) {
12470 cpuset = cpu_ready_set;
12471 } else {
12472 cpuset = sfmmup->sfmmu_cpusran;
12473 CPUSET_AND(cpuset, cpu_ready_set);
12474 }
12475 CPUSET_DEL(cpuset, CPU->cpu_id);
12476 SFMMU_XCALL_STATS(sfmmup);
12477 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12478 vac_flushpage(pfnum, vcolor);
12479 }
12480 #endif /* VAC */
12481 kpreempt_enable();
12482 }
12483
12484 /*
12485 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12486 * address and ctx. If noflush is set we do not currently do anything.
12487 * This function may or may not be called with the HAT lock held.
12488 */
12489 static void
sfmmu_tlb_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,int tlb_noflush,int hat_lock_held)12490 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12491 int tlb_noflush, int hat_lock_held)
12492 {
12493 cpuset_t cpuset;
12494 hatlock_t *hatlockp;
12495
12496 ASSERT(!hmeblkp->hblk_shared);
12497
12498 /*
12499 * If the process is exiting we have nothing to do.
12500 */
12501 if (tlb_noflush)
12502 return;
12503
12504 /*
12505 * Flush TSB.
12506 */
12507 if (!hat_lock_held)
12508 hatlockp = sfmmu_hat_enter(sfmmup);
12509 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12510
12511 kpreempt_disable();
12512
12513 cpuset = sfmmup->sfmmu_cpusran;
12514 CPUSET_AND(cpuset, cpu_ready_set);
12515 CPUSET_DEL(cpuset, CPU->cpu_id);
12516
12517 SFMMU_XCALL_STATS(sfmmup);
12518 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12519
12520 vtag_flushpage(addr, (uint64_t)sfmmup);
12521
12522 if (!hat_lock_held)
12523 sfmmu_hat_exit(hatlockp);
12524
12525 kpreempt_enable();
12526
12527 }
12528
12529 /*
12530 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12531 * call handler that can flush a range of pages to save on xcalls.
12532 */
12533 static int sfmmu_xcall_save;
12534
12535 /*
12536 * this routine is never used for demaping addresses backed by SRD hmeblks.
12537 */
12538 static void
sfmmu_tlb_range_demap(demap_range_t * dmrp)12539 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12540 {
12541 sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12542 hatlock_t *hatlockp;
12543 cpuset_t cpuset;
12544 uint64_t sfmmu_pgcnt;
12545 pgcnt_t pgcnt = 0;
12546 int pgunload = 0;
12547 int dirtypg = 0;
12548 caddr_t addr = dmrp->dmr_addr;
12549 caddr_t eaddr;
12550 uint64_t bitvec = dmrp->dmr_bitvec;
12551
12552 ASSERT(bitvec & 1);
12553
12554 /*
12555 * Flush TSB and calculate number of pages to flush.
12556 */
12557 while (bitvec != 0) {
12558 dirtypg = 0;
12559 /*
12560 * Find the first page to flush and then count how many
12561 * pages there are after it that also need to be flushed.
12562 * This way the number of TSB flushes is minimized.
12563 */
12564 while ((bitvec & 1) == 0) {
12565 pgcnt++;
12566 addr += MMU_PAGESIZE;
12567 bitvec >>= 1;
12568 }
12569 while (bitvec & 1) {
12570 dirtypg++;
12571 bitvec >>= 1;
12572 }
12573 eaddr = addr + ptob(dirtypg);
12574 hatlockp = sfmmu_hat_enter(sfmmup);
12575 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12576 sfmmu_hat_exit(hatlockp);
12577 pgunload += dirtypg;
12578 addr = eaddr;
12579 pgcnt += dirtypg;
12580 }
12581
12582 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12583 if (sfmmup->sfmmu_free == 0) {
12584 addr = dmrp->dmr_addr;
12585 bitvec = dmrp->dmr_bitvec;
12586
12587 /*
12588 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12589 * as it will be used to pack argument for xt_some
12590 */
12591 ASSERT((pgcnt > 0) &&
12592 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12593
12594 /*
12595 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12596 * the low 6 bits of sfmmup. This is doable since pgcnt
12597 * always >= 1.
12598 */
12599 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12600 sfmmu_pgcnt = (uint64_t)sfmmup |
12601 ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12602
12603 /*
12604 * We must hold the hat lock during the flush of TLB,
12605 * to avoid a race with sfmmu_invalidate_ctx(), where
12606 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12607 * causing TLB demap routine to skip flush on that MMU.
12608 * If the context on a MMU has already been set to
12609 * INVALID_CONTEXT, we just get an extra flush on
12610 * that MMU.
12611 */
12612 hatlockp = sfmmu_hat_enter(sfmmup);
12613 kpreempt_disable();
12614
12615 cpuset = sfmmup->sfmmu_cpusran;
12616 CPUSET_AND(cpuset, cpu_ready_set);
12617 CPUSET_DEL(cpuset, CPU->cpu_id);
12618
12619 SFMMU_XCALL_STATS(sfmmup);
12620 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12621 sfmmu_pgcnt);
12622
12623 for (; bitvec != 0; bitvec >>= 1) {
12624 if (bitvec & 1)
12625 vtag_flushpage(addr, (uint64_t)sfmmup);
12626 addr += MMU_PAGESIZE;
12627 }
12628 kpreempt_enable();
12629 sfmmu_hat_exit(hatlockp);
12630
12631 sfmmu_xcall_save += (pgunload-1);
12632 }
12633 dmrp->dmr_bitvec = 0;
12634 }
12635
12636 /*
12637 * In cases where we need to synchronize with TLB/TSB miss trap
12638 * handlers, _and_ need to flush the TLB, it's a lot easier to
12639 * throw away the context from the process than to do a
12640 * special song and dance to keep things consistent for the
12641 * handlers.
12642 *
12643 * Since the process suddenly ends up without a context and our caller
12644 * holds the hat lock, threads that fault after this function is called
12645 * will pile up on the lock. We can then do whatever we need to
12646 * atomically from the context of the caller. The first blocked thread
12647 * to resume executing will get the process a new context, and the
12648 * process will resume executing.
12649 *
12650 * One added advantage of this approach is that on MMUs that
12651 * support a "flush all" operation, we will delay the flush until
12652 * cnum wrap-around, and then flush the TLB one time. This
12653 * is rather rare, so it's a lot less expensive than making 8000
12654 * x-calls to flush the TLB 8000 times.
12655 *
12656 * A per-process (PP) lock is used to synchronize ctx allocations in
12657 * resume() and ctx invalidations here.
12658 */
12659 static void
sfmmu_invalidate_ctx(sfmmu_t * sfmmup)12660 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12661 {
12662 cpuset_t cpuset;
12663 int cnum, currcnum;
12664 mmu_ctx_t *mmu_ctxp;
12665 int i;
12666 uint_t pstate_save;
12667
12668 SFMMU_STAT(sf_ctx_inv);
12669
12670 ASSERT(sfmmu_hat_lock_held(sfmmup));
12671 ASSERT(sfmmup != ksfmmup);
12672
12673 kpreempt_disable();
12674
12675 mmu_ctxp = CPU_MMU_CTXP(CPU);
12676 ASSERT(mmu_ctxp);
12677 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12678 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12679
12680 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12681
12682 pstate_save = sfmmu_disable_intrs();
12683
12684 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */
12685 /* set HAT cnum invalid across all context domains. */
12686 for (i = 0; i < max_mmu_ctxdoms; i++) {
12687
12688 cnum = sfmmup->sfmmu_ctxs[i].cnum;
12689 if (cnum == INVALID_CONTEXT) {
12690 continue;
12691 }
12692
12693 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12694 }
12695 membar_enter(); /* make sure globally visible to all CPUs */
12696 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */
12697
12698 sfmmu_enable_intrs(pstate_save);
12699
12700 cpuset = sfmmup->sfmmu_cpusran;
12701 CPUSET_DEL(cpuset, CPU->cpu_id);
12702 CPUSET_AND(cpuset, cpu_ready_set);
12703 if (!CPUSET_ISNULL(cpuset)) {
12704 SFMMU_XCALL_STATS(sfmmup);
12705 xt_some(cpuset, sfmmu_raise_tsb_exception,
12706 (uint64_t)sfmmup, INVALID_CONTEXT);
12707 xt_sync(cpuset);
12708 SFMMU_STAT(sf_tsb_raise_exception);
12709 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12710 }
12711
12712 /*
12713 * If the hat to-be-invalidated is the same as the current
12714 * process on local CPU we need to invalidate
12715 * this CPU context as well.
12716 */
12717 if ((sfmmu_getctx_sec() == currcnum) &&
12718 (currcnum != INVALID_CONTEXT)) {
12719 /* sets shared context to INVALID too */
12720 sfmmu_setctx_sec(INVALID_CONTEXT);
12721 sfmmu_clear_utsbinfo();
12722 }
12723
12724 SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12725
12726 kpreempt_enable();
12727
12728 /*
12729 * we hold the hat lock, so nobody should allocate a context
12730 * for us yet
12731 */
12732 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12733 }
12734
12735 #ifdef VAC
12736 /*
12737 * We need to flush the cache in all cpus. It is possible that
12738 * a process referenced a page as cacheable but has sinced exited
12739 * and cleared the mapping list. We still to flush it but have no
12740 * state so all cpus is the only alternative.
12741 */
12742 void
sfmmu_cache_flush(pfn_t pfnum,int vcolor)12743 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12744 {
12745 cpuset_t cpuset;
12746
12747 kpreempt_disable();
12748 cpuset = cpu_ready_set;
12749 CPUSET_DEL(cpuset, CPU->cpu_id);
12750 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12751 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12752 xt_sync(cpuset);
12753 vac_flushpage(pfnum, vcolor);
12754 kpreempt_enable();
12755 }
12756
12757 void
sfmmu_cache_flushcolor(int vcolor,pfn_t pfnum)12758 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12759 {
12760 cpuset_t cpuset;
12761
12762 ASSERT(vcolor >= 0);
12763
12764 kpreempt_disable();
12765 cpuset = cpu_ready_set;
12766 CPUSET_DEL(cpuset, CPU->cpu_id);
12767 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12768 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12769 xt_sync(cpuset);
12770 vac_flushcolor(vcolor, pfnum);
12771 kpreempt_enable();
12772 }
12773 #endif /* VAC */
12774
12775 /*
12776 * We need to prevent processes from accessing the TSB using a cached physical
12777 * address. It's alright if they try to access the TSB via virtual address
12778 * since they will just fault on that virtual address once the mapping has
12779 * been suspended.
12780 */
12781 #pragma weak sendmondo_in_recover
12782
12783 /* ARGSUSED */
12784 static int
sfmmu_tsb_pre_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo)12785 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12786 {
12787 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12788 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12789 hatlock_t *hatlockp;
12790 sf_scd_t *scdp;
12791
12792 if (flags != HAT_PRESUSPEND)
12793 return (0);
12794
12795 /*
12796 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12797 * be a shared hat, then set SCD's tsbinfo's flag.
12798 * If tsb is not shared, sfmmup is a private hat, then set
12799 * its private tsbinfo's flag.
12800 */
12801 hatlockp = sfmmu_hat_enter(sfmmup);
12802 tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12803
12804 if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12805 sfmmu_tsb_inv_ctx(sfmmup);
12806 sfmmu_hat_exit(hatlockp);
12807 } else {
12808 /* release lock on the shared hat */
12809 sfmmu_hat_exit(hatlockp);
12810 /* sfmmup is a shared hat */
12811 ASSERT(sfmmup->sfmmu_scdhat);
12812 scdp = sfmmup->sfmmu_scdp;
12813 ASSERT(scdp != NULL);
12814 /* get private hat from the scd list */
12815 mutex_enter(&scdp->scd_mutex);
12816 sfmmup = scdp->scd_sf_list;
12817 while (sfmmup != NULL) {
12818 hatlockp = sfmmu_hat_enter(sfmmup);
12819 /*
12820 * We do not call sfmmu_tsb_inv_ctx here because
12821 * sendmondo_in_recover check is only needed for
12822 * sun4u.
12823 */
12824 sfmmu_invalidate_ctx(sfmmup);
12825 sfmmu_hat_exit(hatlockp);
12826 sfmmup = sfmmup->sfmmu_scd_link.next;
12827
12828 }
12829 mutex_exit(&scdp->scd_mutex);
12830 }
12831 return (0);
12832 }
12833
12834 static void
sfmmu_tsb_inv_ctx(sfmmu_t * sfmmup)12835 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12836 {
12837 extern uint32_t sendmondo_in_recover;
12838
12839 ASSERT(sfmmu_hat_lock_held(sfmmup));
12840
12841 /*
12842 * For Cheetah+ Erratum 25:
12843 * Wait for any active recovery to finish. We can't risk
12844 * relocating the TSB of the thread running mondo_recover_proc()
12845 * since, if we did that, we would deadlock. The scenario we are
12846 * trying to avoid is as follows:
12847 *
12848 * THIS CPU RECOVER CPU
12849 * -------- -----------
12850 * Begins recovery, walking through TSB
12851 * hat_pagesuspend() TSB TTE
12852 * TLB miss on TSB TTE, spins at TL1
12853 * xt_sync()
12854 * send_mondo_timeout()
12855 * mondo_recover_proc()
12856 * ((deadlocked))
12857 *
12858 * The second half of the workaround is that mondo_recover_proc()
12859 * checks to see if the tsb_info has the RELOC flag set, and if it
12860 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12861 * and hence avoiding the TLB miss that could result in a deadlock.
12862 */
12863 if (&sendmondo_in_recover) {
12864 membar_enter(); /* make sure RELOC flag visible */
12865 while (sendmondo_in_recover) {
12866 drv_usecwait(1);
12867 membar_consumer();
12868 }
12869 }
12870
12871 sfmmu_invalidate_ctx(sfmmup);
12872 }
12873
12874 /* ARGSUSED */
12875 static int
sfmmu_tsb_post_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo,pfn_t newpfn)12876 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12877 void *tsbinfo, pfn_t newpfn)
12878 {
12879 hatlock_t *hatlockp;
12880 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12881 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12882
12883 if (flags != HAT_POSTUNSUSPEND)
12884 return (0);
12885
12886 hatlockp = sfmmu_hat_enter(sfmmup);
12887
12888 SFMMU_STAT(sf_tsb_reloc);
12889
12890 /*
12891 * The process may have swapped out while we were relocating one
12892 * of its TSBs. If so, don't bother doing the setup since the
12893 * process can't be using the memory anymore.
12894 */
12895 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12896 ASSERT(va == tsbinfop->tsb_va);
12897 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12898
12899 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12900 sfmmu_inv_tsb(tsbinfop->tsb_va,
12901 TSB_BYTES(tsbinfop->tsb_szc));
12902 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12903 }
12904 }
12905
12906 membar_exit();
12907 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12908 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12909
12910 sfmmu_hat_exit(hatlockp);
12911
12912 return (0);
12913 }
12914
12915 /*
12916 * Allocate and initialize a tsb_info structure. Note that we may or may not
12917 * allocate a TSB here, depending on the flags passed in.
12918 */
12919 static int
sfmmu_tsbinfo_alloc(struct tsb_info ** tsbinfopp,int tsb_szc,int tte_sz_mask,uint_t flags,sfmmu_t * sfmmup)12920 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12921 uint_t flags, sfmmu_t *sfmmup)
12922 {
12923 int err;
12924
12925 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12926 sfmmu_tsbinfo_cache, KM_SLEEP);
12927
12928 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12929 tsb_szc, flags, sfmmup)) != 0) {
12930 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12931 SFMMU_STAT(sf_tsb_allocfail);
12932 *tsbinfopp = NULL;
12933 return (err);
12934 }
12935 SFMMU_STAT(sf_tsb_alloc);
12936
12937 /*
12938 * Bump the TSB size counters for this TSB size.
12939 */
12940 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12941 return (0);
12942 }
12943
12944 static void
sfmmu_tsb_free(struct tsb_info * tsbinfo)12945 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12946 {
12947 caddr_t tsbva = tsbinfo->tsb_va;
12948 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12949 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12950 vmem_t *vmp = tsbinfo->tsb_vmp;
12951
12952 /*
12953 * If we allocated this TSB from relocatable kernel memory, then we
12954 * need to uninstall the callback handler.
12955 */
12956 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12957 uintptr_t slab_mask;
12958 caddr_t slab_vaddr;
12959 page_t **ppl;
12960 int ret;
12961
12962 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12963 if (tsb_size > MMU_PAGESIZE4M)
12964 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12965 else
12966 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12967 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12968
12969 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12970 ASSERT(ret == 0);
12971 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12972 0, NULL);
12973 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12974 }
12975
12976 if (kmem_cachep != NULL) {
12977 kmem_cache_free(kmem_cachep, tsbva);
12978 } else {
12979 vmem_xfree(vmp, (void *)tsbva, tsb_size);
12980 }
12981 tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12982 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12983 }
12984
12985 static void
sfmmu_tsbinfo_free(struct tsb_info * tsbinfo)12986 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12987 {
12988 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12989 sfmmu_tsb_free(tsbinfo);
12990 }
12991 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12992
12993 }
12994
12995 /*
12996 * Setup all the references to physical memory for this tsbinfo.
12997 * The underlying page(s) must be locked.
12998 */
12999 static void
sfmmu_tsbinfo_setup_phys(struct tsb_info * tsbinfo,pfn_t pfn)13000 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
13001 {
13002 ASSERT(pfn != PFN_INVALID);
13003 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
13004
13005 #ifndef sun4v
13006 if (tsbinfo->tsb_szc == 0) {
13007 sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
13008 PROT_WRITE|PROT_READ, TTE8K);
13009 } else {
13010 /*
13011 * Round down PA and use a large mapping; the handlers will
13012 * compute the TSB pointer at the correct offset into the
13013 * big virtual page. NOTE: this assumes all TSBs larger
13014 * than 8K must come from physically contiguous slabs of
13015 * size tsb_slab_size.
13016 */
13017 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
13018 PROT_WRITE|PROT_READ, tsb_slab_ttesz);
13019 }
13020 tsbinfo->tsb_pa = ptob(pfn);
13021
13022 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
13023 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */
13024
13025 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
13026 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
13027 #else /* sun4v */
13028 tsbinfo->tsb_pa = ptob(pfn);
13029 #endif /* sun4v */
13030 }
13031
13032
13033 /*
13034 * Returns zero on success, ENOMEM if over the high water mark,
13035 * or EAGAIN if the caller needs to retry with a smaller TSB
13036 * size (or specify TSB_FORCEALLOC if the allocation can't fail).
13037 *
13038 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
13039 * is specified and the TSB requested is PAGESIZE, though it
13040 * may sleep waiting for memory if sufficient memory is not
13041 * available.
13042 */
13043 static int
sfmmu_init_tsbinfo(struct tsb_info * tsbinfo,int tteszmask,int tsbcode,uint_t flags,sfmmu_t * sfmmup)13044 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
13045 int tsbcode, uint_t flags, sfmmu_t *sfmmup)
13046 {
13047 caddr_t vaddr = NULL;
13048 caddr_t slab_vaddr;
13049 uintptr_t slab_mask;
13050 int tsbbytes = TSB_BYTES(tsbcode);
13051 int lowmem = 0;
13052 struct kmem_cache *kmem_cachep = NULL;
13053 vmem_t *vmp = NULL;
13054 lgrp_id_t lgrpid = LGRP_NONE;
13055 pfn_t pfn;
13056 uint_t cbflags = HAC_SLEEP;
13057 page_t **pplist;
13058 int ret;
13059
13060 ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
13061 if (tsbbytes > MMU_PAGESIZE4M)
13062 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
13063 else
13064 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
13065
13066 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
13067 flags |= TSB_ALLOC;
13068
13069 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
13070
13071 tsbinfo->tsb_sfmmu = sfmmup;
13072
13073 /*
13074 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
13075 * return.
13076 */
13077 if ((flags & TSB_ALLOC) == 0) {
13078 tsbinfo->tsb_szc = tsbcode;
13079 tsbinfo->tsb_ttesz_mask = tteszmask;
13080 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
13081 tsbinfo->tsb_pa = -1;
13082 tsbinfo->tsb_tte.ll = 0;
13083 tsbinfo->tsb_next = NULL;
13084 tsbinfo->tsb_flags = TSB_SWAPPED;
13085 tsbinfo->tsb_cache = NULL;
13086 tsbinfo->tsb_vmp = NULL;
13087 return (0);
13088 }
13089
13090 #ifdef DEBUG
13091 /*
13092 * For debugging:
13093 * Randomly force allocation failures every tsb_alloc_mtbf
13094 * tries if TSB_FORCEALLOC is not specified. This will
13095 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
13096 * it is even, to allow testing of both failure paths...
13097 */
13098 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
13099 (tsb_alloc_count++ == tsb_alloc_mtbf)) {
13100 tsb_alloc_count = 0;
13101 tsb_alloc_fail_mtbf++;
13102 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
13103 }
13104 #endif /* DEBUG */
13105
13106 /*
13107 * Enforce high water mark if we are not doing a forced allocation
13108 * and are not shrinking a process' TSB.
13109 */
13110 if ((flags & TSB_SHRINK) == 0 &&
13111 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
13112 if ((flags & TSB_FORCEALLOC) == 0)
13113 return (ENOMEM);
13114 lowmem = 1;
13115 }
13116
13117 /*
13118 * Allocate from the correct location based upon the size of the TSB
13119 * compared to the base page size, and what memory conditions dictate.
13120 * Note we always do nonblocking allocations from the TSB arena since
13121 * we don't want memory fragmentation to cause processes to block
13122 * indefinitely waiting for memory; until the kernel algorithms that
13123 * coalesce large pages are improved this is our best option.
13124 *
13125 * Algorithm:
13126 * If allocating a "large" TSB (>8K), allocate from the
13127 * appropriate kmem_tsb_default_arena vmem arena
13128 * else if low on memory or the TSB_FORCEALLOC flag is set or
13129 * tsb_forceheap is set
13130 * Allocate from kernel heap via sfmmu_tsb8k_cache with
13131 * KM_SLEEP (never fails)
13132 * else
13133 * Allocate from appropriate sfmmu_tsb_cache with
13134 * KM_NOSLEEP
13135 * endif
13136 */
13137 if (tsb_lgrp_affinity)
13138 lgrpid = lgrp_home_id(curthread);
13139 if (lgrpid == LGRP_NONE)
13140 lgrpid = 0; /* use lgrp of boot CPU */
13141
13142 if (tsbbytes > MMU_PAGESIZE) {
13143 if (tsbbytes > MMU_PAGESIZE4M) {
13144 vmp = kmem_bigtsb_default_arena[lgrpid];
13145 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13146 0, 0, NULL, NULL, VM_NOSLEEP);
13147 } else {
13148 vmp = kmem_tsb_default_arena[lgrpid];
13149 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13150 0, 0, NULL, NULL, VM_NOSLEEP);
13151 }
13152 #ifdef DEBUG
13153 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13154 #else /* !DEBUG */
13155 } else if (lowmem || (flags & TSB_FORCEALLOC)) {
13156 #endif /* DEBUG */
13157 kmem_cachep = sfmmu_tsb8k_cache;
13158 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13159 ASSERT(vaddr != NULL);
13160 } else {
13161 kmem_cachep = sfmmu_tsb_cache[lgrpid];
13162 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13163 }
13164
13165 tsbinfo->tsb_cache = kmem_cachep;
13166 tsbinfo->tsb_vmp = vmp;
13167
13168 if (vaddr == NULL) {
13169 return (EAGAIN);
13170 }
13171
13172 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13173 kmem_cachep = tsbinfo->tsb_cache;
13174
13175 /*
13176 * If we are allocating from outside the cage, then we need to
13177 * register a relocation callback handler. Note that for now
13178 * since pseudo mappings always hang off of the slab's root page,
13179 * we need only lock the first 8K of the TSB slab. This is a bit
13180 * hacky but it is good for performance.
13181 */
13182 if (kmem_cachep != sfmmu_tsb8k_cache) {
13183 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13184 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13185 ASSERT(ret == 0);
13186 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13187 cbflags, (void *)tsbinfo, &pfn, NULL);
13188
13189 /*
13190 * Need to free up resources if we could not successfully
13191 * add the callback function and return an error condition.
13192 */
13193 if (ret != 0) {
13194 if (kmem_cachep) {
13195 kmem_cache_free(kmem_cachep, vaddr);
13196 } else {
13197 vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13198 }
13199 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13200 S_WRITE);
13201 return (EAGAIN);
13202 }
13203 } else {
13204 /*
13205 * Since allocation of 8K TSBs from heap is rare and occurs
13206 * during memory pressure we allocate them from permanent
13207 * memory rather than using callbacks to get the PFN.
13208 */
13209 pfn = hat_getpfnum(kas.a_hat, vaddr);
13210 }
13211
13212 tsbinfo->tsb_va = vaddr;
13213 tsbinfo->tsb_szc = tsbcode;
13214 tsbinfo->tsb_ttesz_mask = tteszmask;
13215 tsbinfo->tsb_next = NULL;
13216 tsbinfo->tsb_flags = 0;
13217
13218 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13219
13220 sfmmu_inv_tsb(vaddr, tsbbytes);
13221
13222 if (kmem_cachep != sfmmu_tsb8k_cache) {
13223 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13224 }
13225
13226 return (0);
13227 }
13228
13229 /*
13230 * Initialize per cpu tsb and per cpu tsbmiss_area
13231 */
13232 void
sfmmu_init_tsbs(void)13233 sfmmu_init_tsbs(void)
13234 {
13235 int i;
13236 struct tsbmiss *tsbmissp;
13237 struct kpmtsbm *kpmtsbmp;
13238 #ifndef sun4v
13239 extern int dcache_line_mask;
13240 #endif /* sun4v */
13241 extern uint_t vac_colors;
13242
13243 /*
13244 * Init. tsb miss area.
13245 */
13246 tsbmissp = tsbmiss_area;
13247
13248 for (i = 0; i < NCPU; tsbmissp++, i++) {
13249 /*
13250 * initialize the tsbmiss area.
13251 * Do this for all possible CPUs as some may be added
13252 * while the system is running. There is no cost to this.
13253 */
13254 tsbmissp->ksfmmup = ksfmmup;
13255 #ifndef sun4v
13256 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13257 #endif /* sun4v */
13258 tsbmissp->khashstart =
13259 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13260 tsbmissp->uhashstart =
13261 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13262 tsbmissp->khashsz = khmehash_num;
13263 tsbmissp->uhashsz = uhmehash_num;
13264 }
13265
13266 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13267 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13268
13269 if (kpm_enable == 0)
13270 return;
13271
13272 /* -- Begin KPM specific init -- */
13273
13274 if (kpm_smallpages) {
13275 /*
13276 * If we're using base pagesize pages for seg_kpm
13277 * mappings, we use the kernel TSB since we can't afford
13278 * to allocate a second huge TSB for these mappings.
13279 */
13280 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13281 kpm_tsbsz = ktsb_szcode;
13282 kpmsm_tsbbase = kpm_tsbbase;
13283 kpmsm_tsbsz = kpm_tsbsz;
13284 } else {
13285 /*
13286 * In VAC conflict case, just put the entries in the
13287 * kernel 8K indexed TSB for now so we can find them.
13288 * This could really be changed in the future if we feel
13289 * the need...
13290 */
13291 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13292 kpmsm_tsbsz = ktsb_szcode;
13293 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13294 kpm_tsbsz = ktsb4m_szcode;
13295 }
13296
13297 kpmtsbmp = kpmtsbm_area;
13298 for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13299 /*
13300 * Initialize the kpmtsbm area.
13301 * Do this for all possible CPUs as some may be added
13302 * while the system is running. There is no cost to this.
13303 */
13304 kpmtsbmp->vbase = kpm_vbase;
13305 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13306 kpmtsbmp->sz_shift = kpm_size_shift;
13307 kpmtsbmp->kpmp_shift = kpmp_shift;
13308 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13309 if (kpm_smallpages == 0) {
13310 kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13311 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13312 } else {
13313 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13314 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13315 }
13316 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13317 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13318 #ifdef DEBUG
13319 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0;
13320 #endif /* DEBUG */
13321 if (ktsb_phys)
13322 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13323 }
13324
13325 /* -- End KPM specific init -- */
13326 }
13327
13328 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13329 struct tsb_info ktsb_info[2];
13330
13331 /*
13332 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13333 */
13334 void
sfmmu_init_ktsbinfo()13335 sfmmu_init_ktsbinfo()
13336 {
13337 ASSERT(ksfmmup != NULL);
13338 ASSERT(ksfmmup->sfmmu_tsb == NULL);
13339 /*
13340 * Allocate tsbinfos for kernel and copy in data
13341 * to make debug easier and sun4v setup easier.
13342 */
13343 ktsb_info[0].tsb_sfmmu = ksfmmup;
13344 ktsb_info[0].tsb_szc = ktsb_szcode;
13345 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13346 ktsb_info[0].tsb_va = ktsb_base;
13347 ktsb_info[0].tsb_pa = ktsb_pbase;
13348 ktsb_info[0].tsb_flags = 0;
13349 ktsb_info[0].tsb_tte.ll = 0;
13350 ktsb_info[0].tsb_cache = NULL;
13351
13352 ktsb_info[1].tsb_sfmmu = ksfmmup;
13353 ktsb_info[1].tsb_szc = ktsb4m_szcode;
13354 ktsb_info[1].tsb_ttesz_mask = TSB4M;
13355 ktsb_info[1].tsb_va = ktsb4m_base;
13356 ktsb_info[1].tsb_pa = ktsb4m_pbase;
13357 ktsb_info[1].tsb_flags = 0;
13358 ktsb_info[1].tsb_tte.ll = 0;
13359 ktsb_info[1].tsb_cache = NULL;
13360
13361 /* Link them into ksfmmup. */
13362 ktsb_info[0].tsb_next = &ktsb_info[1];
13363 ktsb_info[1].tsb_next = NULL;
13364 ksfmmup->sfmmu_tsb = &ktsb_info[0];
13365
13366 sfmmu_setup_tsbinfo(ksfmmup);
13367 }
13368
13369 /*
13370 * Cache the last value returned from va_to_pa(). If the VA specified
13371 * in the current call to cached_va_to_pa() maps to the same Page (as the
13372 * previous call to cached_va_to_pa()), then compute the PA using
13373 * cached info, else call va_to_pa().
13374 *
13375 * Note: this function is neither MT-safe nor consistent in the presence
13376 * of multiple, interleaved threads. This function was created to enable
13377 * an optimization used during boot (at a point when there's only one thread
13378 * executing on the "boot CPU", and before startup_vm() has been called).
13379 */
13380 static uint64_t
cached_va_to_pa(void * vaddr)13381 cached_va_to_pa(void *vaddr)
13382 {
13383 static uint64_t prev_vaddr_base = 0;
13384 static uint64_t prev_pfn = 0;
13385
13386 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13387 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13388 } else {
13389 uint64_t pa = va_to_pa(vaddr);
13390
13391 if (pa != ((uint64_t)-1)) {
13392 /*
13393 * Computed physical address is valid. Cache its
13394 * related info for the next cached_va_to_pa() call.
13395 */
13396 prev_pfn = pa & MMU_PAGEMASK;
13397 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13398 }
13399
13400 return (pa);
13401 }
13402 }
13403
13404 /*
13405 * Carve up our nucleus hblk region. We may allocate more hblks than
13406 * asked due to rounding errors but we are guaranteed to have at least
13407 * enough space to allocate the requested number of hblk8's and hblk1's.
13408 */
13409 void
sfmmu_init_nucleus_hblks(caddr_t addr,size_t size,int nhblk8,int nhblk1)13410 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13411 {
13412 struct hme_blk *hmeblkp;
13413 size_t hme8blk_sz, hme1blk_sz;
13414 size_t i;
13415 size_t hblk8_bound;
13416 ulong_t j = 0, k = 0;
13417
13418 ASSERT(addr != NULL && size != 0);
13419
13420 /* Need to use proper structure alignment */
13421 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13422 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13423
13424 nucleus_hblk8.list = (void *)addr;
13425 nucleus_hblk8.index = 0;
13426
13427 /*
13428 * Use as much memory as possible for hblk8's since we
13429 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13430 * We need to hold back enough space for the hblk1's which
13431 * we'll allocate next.
13432 */
13433 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13434 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13435 hmeblkp = (struct hme_blk *)addr;
13436 addr += hme8blk_sz;
13437 hmeblkp->hblk_nuc_bit = 1;
13438 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13439 }
13440 nucleus_hblk8.len = j;
13441 ASSERT(j >= nhblk8);
13442 SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13443
13444 nucleus_hblk1.list = (void *)addr;
13445 nucleus_hblk1.index = 0;
13446 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13447 hmeblkp = (struct hme_blk *)addr;
13448 addr += hme1blk_sz;
13449 hmeblkp->hblk_nuc_bit = 1;
13450 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13451 }
13452 ASSERT(k >= nhblk1);
13453 nucleus_hblk1.len = k;
13454 SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13455 }
13456
13457 /*
13458 * This function is currently not supported on this platform. For what
13459 * it's supposed to do, see hat.c and hat_srmmu.c
13460 */
13461 /* ARGSUSED */
13462 faultcode_t
hat_softlock(struct hat * hat,caddr_t addr,size_t * lenp,page_t ** ppp,uint_t flags)13463 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13464 uint_t flags)
13465 {
13466 ASSERT(hat->sfmmu_xhat_provider == NULL);
13467 return (FC_NOSUPPORT);
13468 }
13469
13470 /*
13471 * Searchs the mapping list of the page for a mapping of the same size. If not
13472 * found the corresponding bit is cleared in the p_index field. When large
13473 * pages are more prevalent in the system, we can maintain the mapping list
13474 * in order and we don't have to traverse the list each time. Just check the
13475 * next and prev entries, and if both are of different size, we clear the bit.
13476 */
13477 static void
sfmmu_rm_large_mappings(page_t * pp,int ttesz)13478 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13479 {
13480 struct sf_hment *sfhmep;
13481 struct hme_blk *hmeblkp;
13482 int index;
13483 pgcnt_t npgs;
13484
13485 ASSERT(ttesz > TTE8K);
13486
13487 ASSERT(sfmmu_mlist_held(pp));
13488
13489 ASSERT(PP_ISMAPPED_LARGE(pp));
13490
13491 /*
13492 * Traverse mapping list looking for another mapping of same size.
13493 * since we only want to clear index field if all mappings of
13494 * that size are gone.
13495 */
13496
13497 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13498 if (IS_PAHME(sfhmep))
13499 continue;
13500 hmeblkp = sfmmu_hmetohblk(sfhmep);
13501 if (hmeblkp->hblk_xhat_bit)
13502 continue;
13503 if (hme_size(sfhmep) == ttesz) {
13504 /*
13505 * another mapping of the same size. don't clear index.
13506 */
13507 return;
13508 }
13509 }
13510
13511 /*
13512 * Clear the p_index bit for large page.
13513 */
13514 index = PAGESZ_TO_INDEX(ttesz);
13515 npgs = TTEPAGES(ttesz);
13516 while (npgs-- > 0) {
13517 ASSERT(pp->p_index & index);
13518 pp->p_index &= ~index;
13519 pp = PP_PAGENEXT(pp);
13520 }
13521 }
13522
13523 /*
13524 * return supported features
13525 */
13526 /* ARGSUSED */
13527 int
hat_supported(enum hat_features feature,void * arg)13528 hat_supported(enum hat_features feature, void *arg)
13529 {
13530 switch (feature) {
13531 case HAT_SHARED_PT:
13532 case HAT_DYNAMIC_ISM_UNMAP:
13533 case HAT_VMODSORT:
13534 return (1);
13535 case HAT_SHARED_REGIONS:
13536 if (shctx_on)
13537 return (1);
13538 else
13539 return (0);
13540 default:
13541 return (0);
13542 }
13543 }
13544
13545 void
hat_enter(struct hat * hat)13546 hat_enter(struct hat *hat)
13547 {
13548 hatlock_t *hatlockp;
13549
13550 if (hat != ksfmmup) {
13551 hatlockp = TSB_HASH(hat);
13552 mutex_enter(HATLOCK_MUTEXP(hatlockp));
13553 }
13554 }
13555
13556 void
hat_exit(struct hat * hat)13557 hat_exit(struct hat *hat)
13558 {
13559 hatlock_t *hatlockp;
13560
13561 if (hat != ksfmmup) {
13562 hatlockp = TSB_HASH(hat);
13563 mutex_exit(HATLOCK_MUTEXP(hatlockp));
13564 }
13565 }
13566
13567 /*ARGSUSED*/
13568 void
hat_reserve(struct as * as,caddr_t addr,size_t len)13569 hat_reserve(struct as *as, caddr_t addr, size_t len)
13570 {
13571 }
13572
13573 static void
hat_kstat_init(void)13574 hat_kstat_init(void)
13575 {
13576 kstat_t *ksp;
13577
13578 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13579 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13580 KSTAT_FLAG_VIRTUAL);
13581 if (ksp) {
13582 ksp->ks_data = (void *) &sfmmu_global_stat;
13583 kstat_install(ksp);
13584 }
13585 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13586 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13587 KSTAT_FLAG_VIRTUAL);
13588 if (ksp) {
13589 ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13590 kstat_install(ksp);
13591 }
13592 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13593 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13594 KSTAT_FLAG_WRITABLE);
13595 if (ksp) {
13596 ksp->ks_update = sfmmu_kstat_percpu_update;
13597 kstat_install(ksp);
13598 }
13599 }
13600
13601 /* ARGSUSED */
13602 static int
sfmmu_kstat_percpu_update(kstat_t * ksp,int rw)13603 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13604 {
13605 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13606 struct tsbmiss *tsbm = tsbmiss_area;
13607 struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13608 int i;
13609
13610 ASSERT(cpu_kstat);
13611 if (rw == KSTAT_READ) {
13612 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13613 cpu_kstat->sf_itlb_misses = 0;
13614 cpu_kstat->sf_dtlb_misses = 0;
13615 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13616 tsbm->uprot_traps;
13617 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13618 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13619 cpu_kstat->sf_tsb_hits = 0;
13620 cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13621 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13622 }
13623 } else {
13624 /* KSTAT_WRITE is used to clear stats */
13625 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13626 tsbm->utsb_misses = 0;
13627 tsbm->ktsb_misses = 0;
13628 tsbm->uprot_traps = 0;
13629 tsbm->kprot_traps = 0;
13630 kpmtsbm->kpm_dtlb_misses = 0;
13631 kpmtsbm->kpm_tsb_misses = 0;
13632 }
13633 }
13634 return (0);
13635 }
13636
13637 #ifdef DEBUG
13638
13639 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13640
13641 /*
13642 * A tte checker. *orig_old is the value we read before cas.
13643 * *cur is the value returned by cas.
13644 * *new is the desired value when we do the cas.
13645 *
13646 * *hmeblkp is currently unused.
13647 */
13648
13649 /* ARGSUSED */
13650 void
chk_tte(tte_t * orig_old,tte_t * cur,tte_t * new,struct hme_blk * hmeblkp)13651 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13652 {
13653 pfn_t i, j, k;
13654 int cpuid = CPU->cpu_id;
13655
13656 gorig[cpuid] = orig_old;
13657 gcur[cpuid] = cur;
13658 gnew[cpuid] = new;
13659
13660 #ifdef lint
13661 hmeblkp = hmeblkp;
13662 #endif
13663
13664 if (TTE_IS_VALID(orig_old)) {
13665 if (TTE_IS_VALID(cur)) {
13666 i = TTE_TO_TTEPFN(orig_old);
13667 j = TTE_TO_TTEPFN(cur);
13668 k = TTE_TO_TTEPFN(new);
13669 if (i != j) {
13670 /* remap error? */
13671 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13672 }
13673
13674 if (i != k) {
13675 /* remap error? */
13676 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13677 }
13678 } else {
13679 if (TTE_IS_VALID(new)) {
13680 panic("chk_tte: invalid cur? ");
13681 }
13682
13683 i = TTE_TO_TTEPFN(orig_old);
13684 k = TTE_TO_TTEPFN(new);
13685 if (i != k) {
13686 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13687 }
13688 }
13689 } else {
13690 if (TTE_IS_VALID(cur)) {
13691 j = TTE_TO_TTEPFN(cur);
13692 if (TTE_IS_VALID(new)) {
13693 k = TTE_TO_TTEPFN(new);
13694 if (j != k) {
13695 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13696 j, k);
13697 }
13698 } else {
13699 panic("chk_tte: why here?");
13700 }
13701 } else {
13702 if (!TTE_IS_VALID(new)) {
13703 panic("chk_tte: why here2 ?");
13704 }
13705 }
13706 }
13707 }
13708
13709 #endif /* DEBUG */
13710
13711 extern void prefetch_tsbe_read(struct tsbe *);
13712 extern void prefetch_tsbe_write(struct tsbe *);
13713
13714
13715 /*
13716 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives
13717 * us optimal performance on Cheetah+. You can only have 8 outstanding
13718 * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13719 * prefetch to make the most utilization of the prefetch capability.
13720 */
13721 #define TSBE_PREFETCH_STRIDE (7)
13722
13723 void
sfmmu_copy_tsb(struct tsb_info * old_tsbinfo,struct tsb_info * new_tsbinfo)13724 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13725 {
13726 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13727 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13728 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13729 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13730 struct tsbe *old;
13731 struct tsbe *new;
13732 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13733 uint64_t va;
13734 int new_offset;
13735 int i;
13736 int vpshift;
13737 int last_prefetch;
13738
13739 if (old_bytes == new_bytes) {
13740 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13741 } else {
13742
13743 /*
13744 * A TSBE is 16 bytes which means there are four TSBE's per
13745 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13746 */
13747 old = (struct tsbe *)old_tsbinfo->tsb_va;
13748 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13749 for (i = 0; i < old_entries; i++, old++) {
13750 if (((i & (4-1)) == 0) && (i < last_prefetch))
13751 prefetch_tsbe_read(old);
13752 if (!old->tte_tag.tag_invalid) {
13753 /*
13754 * We have a valid TTE to remap. Check the
13755 * size. We won't remap 64K or 512K TTEs
13756 * because they span more than one TSB entry
13757 * and are indexed using an 8K virt. page.
13758 * Ditto for 32M and 256M TTEs.
13759 */
13760 if (TTE_CSZ(&old->tte_data) == TTE64K ||
13761 TTE_CSZ(&old->tte_data) == TTE512K)
13762 continue;
13763 if (mmu_page_sizes == max_mmu_page_sizes) {
13764 if (TTE_CSZ(&old->tte_data) == TTE32M ||
13765 TTE_CSZ(&old->tte_data) == TTE256M)
13766 continue;
13767 }
13768
13769 /* clear the lower 22 bits of the va */
13770 va = *(uint64_t *)old << 22;
13771 /* turn va into a virtual pfn */
13772 va >>= 22 - TSB_START_SIZE;
13773 /*
13774 * or in bits from the offset in the tsb
13775 * to get the real virtual pfn. These
13776 * correspond to bits [21:13] in the va
13777 */
13778 vpshift =
13779 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13780 0x1ff;
13781 va |= (i << vpshift);
13782 va >>= vpshift;
13783 new_offset = va & (new_entries - 1);
13784 new = new_base + new_offset;
13785 prefetch_tsbe_write(new);
13786 *new = *old;
13787 }
13788 }
13789 }
13790 }
13791
13792 /*
13793 * unused in sfmmu
13794 */
13795 void
hat_dump(void)13796 hat_dump(void)
13797 {
13798 }
13799
13800 /*
13801 * Called when a thread is exiting and we have switched to the kernel address
13802 * space. Perform the same VM initialization resume() uses when switching
13803 * processes.
13804 *
13805 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13806 * we call it anyway in case the semantics change in the future.
13807 */
13808 /*ARGSUSED*/
13809 void
hat_thread_exit(kthread_t * thd)13810 hat_thread_exit(kthread_t *thd)
13811 {
13812 uint_t pgsz_cnum;
13813 uint_t pstate_save;
13814
13815 ASSERT(thd->t_procp->p_as == &kas);
13816
13817 pgsz_cnum = KCONTEXT;
13818 #ifdef sun4u
13819 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13820 #endif
13821
13822 /*
13823 * Note that sfmmu_load_mmustate() is currently a no-op for
13824 * kernel threads. We need to disable interrupts here,
13825 * simply because otherwise sfmmu_load_mmustate() would panic
13826 * if the caller does not disable interrupts.
13827 */
13828 pstate_save = sfmmu_disable_intrs();
13829
13830 /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13831 sfmmu_setctx_sec(pgsz_cnum);
13832 sfmmu_load_mmustate(ksfmmup);
13833 sfmmu_enable_intrs(pstate_save);
13834 }
13835
13836
13837 /*
13838 * SRD support
13839 */
13840 #define SRD_HASH_FUNCTION(vp) (((((uintptr_t)(vp)) >> 4) ^ \
13841 (((uintptr_t)(vp)) >> 11)) & \
13842 srd_hashmask)
13843
13844 /*
13845 * Attach the process to the srd struct associated with the exec vnode
13846 * from which the process is started.
13847 */
13848 void
hat_join_srd(struct hat * sfmmup,vnode_t * evp)13849 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13850 {
13851 uint_t hash = SRD_HASH_FUNCTION(evp);
13852 sf_srd_t *srdp;
13853 sf_srd_t *newsrdp;
13854
13855 ASSERT(sfmmup != ksfmmup);
13856 ASSERT(sfmmup->sfmmu_srdp == NULL);
13857
13858 if (!shctx_on) {
13859 return;
13860 }
13861
13862 VN_HOLD(evp);
13863
13864 if (srd_buckets[hash].srdb_srdp != NULL) {
13865 mutex_enter(&srd_buckets[hash].srdb_lock);
13866 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13867 srdp = srdp->srd_hash) {
13868 if (srdp->srd_evp == evp) {
13869 ASSERT(srdp->srd_refcnt >= 0);
13870 sfmmup->sfmmu_srdp = srdp;
13871 atomic_add_32(
13872 (volatile uint_t *)&srdp->srd_refcnt, 1);
13873 mutex_exit(&srd_buckets[hash].srdb_lock);
13874 return;
13875 }
13876 }
13877 mutex_exit(&srd_buckets[hash].srdb_lock);
13878 }
13879 newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13880 ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13881
13882 newsrdp->srd_evp = evp;
13883 newsrdp->srd_refcnt = 1;
13884 newsrdp->srd_hmergnfree = NULL;
13885 newsrdp->srd_ismrgnfree = NULL;
13886
13887 mutex_enter(&srd_buckets[hash].srdb_lock);
13888 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13889 srdp = srdp->srd_hash) {
13890 if (srdp->srd_evp == evp) {
13891 ASSERT(srdp->srd_refcnt >= 0);
13892 sfmmup->sfmmu_srdp = srdp;
13893 atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13894 mutex_exit(&srd_buckets[hash].srdb_lock);
13895 kmem_cache_free(srd_cache, newsrdp);
13896 return;
13897 }
13898 }
13899 newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13900 srd_buckets[hash].srdb_srdp = newsrdp;
13901 sfmmup->sfmmu_srdp = newsrdp;
13902
13903 mutex_exit(&srd_buckets[hash].srdb_lock);
13904
13905 }
13906
13907 static void
sfmmu_leave_srd(sfmmu_t * sfmmup)13908 sfmmu_leave_srd(sfmmu_t *sfmmup)
13909 {
13910 vnode_t *evp;
13911 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13912 uint_t hash;
13913 sf_srd_t **prev_srdpp;
13914 sf_region_t *rgnp;
13915 sf_region_t *nrgnp;
13916 #ifdef DEBUG
13917 int rgns = 0;
13918 #endif
13919 int i;
13920
13921 ASSERT(sfmmup != ksfmmup);
13922 ASSERT(srdp != NULL);
13923 ASSERT(srdp->srd_refcnt > 0);
13924 ASSERT(sfmmup->sfmmu_scdp == NULL);
13925 ASSERT(sfmmup->sfmmu_free == 1);
13926
13927 sfmmup->sfmmu_srdp = NULL;
13928 evp = srdp->srd_evp;
13929 ASSERT(evp != NULL);
13930 if (atomic_add_32_nv(
13931 (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13932 VN_RELE(evp);
13933 return;
13934 }
13935
13936 hash = SRD_HASH_FUNCTION(evp);
13937 mutex_enter(&srd_buckets[hash].srdb_lock);
13938 for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13939 (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13940 if (srdp->srd_evp == evp) {
13941 break;
13942 }
13943 }
13944 if (srdp == NULL || srdp->srd_refcnt) {
13945 mutex_exit(&srd_buckets[hash].srdb_lock);
13946 VN_RELE(evp);
13947 return;
13948 }
13949 *prev_srdpp = srdp->srd_hash;
13950 mutex_exit(&srd_buckets[hash].srdb_lock);
13951
13952 ASSERT(srdp->srd_refcnt == 0);
13953 VN_RELE(evp);
13954
13955 #ifdef DEBUG
13956 for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13957 ASSERT(srdp->srd_rgnhash[i] == NULL);
13958 }
13959 #endif /* DEBUG */
13960
13961 /* free each hme regions in the srd */
13962 for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13963 nrgnp = rgnp->rgn_next;
13964 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13965 ASSERT(rgnp->rgn_refcnt == 0);
13966 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13967 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13968 ASSERT(rgnp->rgn_hmeflags == 0);
13969 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13970 #ifdef DEBUG
13971 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13972 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13973 }
13974 rgns++;
13975 #endif /* DEBUG */
13976 kmem_cache_free(region_cache, rgnp);
13977 }
13978 ASSERT(rgns == srdp->srd_next_hmerid);
13979
13980 #ifdef DEBUG
13981 rgns = 0;
13982 #endif
13983 /* free each ism rgns in the srd */
13984 for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13985 nrgnp = rgnp->rgn_next;
13986 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13987 ASSERT(rgnp->rgn_refcnt == 0);
13988 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13989 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13990 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13991 #ifdef DEBUG
13992 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13993 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13994 }
13995 rgns++;
13996 #endif /* DEBUG */
13997 kmem_cache_free(region_cache, rgnp);
13998 }
13999 ASSERT(rgns == srdp->srd_next_ismrid);
14000 ASSERT(srdp->srd_ismbusyrgns == 0);
14001 ASSERT(srdp->srd_hmebusyrgns == 0);
14002
14003 srdp->srd_next_ismrid = 0;
14004 srdp->srd_next_hmerid = 0;
14005
14006 bzero((void *)srdp->srd_ismrgnp,
14007 sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
14008 bzero((void *)srdp->srd_hmergnp,
14009 sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
14010
14011 ASSERT(srdp->srd_scdp == NULL);
14012 kmem_cache_free(srd_cache, srdp);
14013 }
14014
14015 /* ARGSUSED */
14016 static int
sfmmu_srdcache_constructor(void * buf,void * cdrarg,int kmflags)14017 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
14018 {
14019 sf_srd_t *srdp = (sf_srd_t *)buf;
14020 bzero(buf, sizeof (*srdp));
14021
14022 mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
14023 mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
14024 return (0);
14025 }
14026
14027 /* ARGSUSED */
14028 static void
sfmmu_srdcache_destructor(void * buf,void * cdrarg)14029 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
14030 {
14031 sf_srd_t *srdp = (sf_srd_t *)buf;
14032
14033 mutex_destroy(&srdp->srd_mutex);
14034 mutex_destroy(&srdp->srd_scd_mutex);
14035 }
14036
14037 /*
14038 * The caller makes sure hat_join_region()/hat_leave_region() can't be called
14039 * at the same time for the same process and address range. This is ensured by
14040 * the fact that address space is locked as writer when a process joins the
14041 * regions. Therefore there's no need to hold an srd lock during the entire
14042 * execution of hat_join_region()/hat_leave_region().
14043 */
14044
14045 #define RGN_HASH_FUNCTION(obj) (((((uintptr_t)(obj)) >> 4) ^ \
14046 (((uintptr_t)(obj)) >> 11)) & \
14047 srd_rgn_hashmask)
14048 /*
14049 * This routine implements the shared context functionality required when
14050 * attaching a segment to an address space. It must be called from
14051 * hat_share() for D(ISM) segments and from segvn_create() for segments
14052 * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
14053 * which is saved in the private segment data for hme segments and
14054 * the ism_map structure for ism segments.
14055 */
14056 hat_region_cookie_t
hat_join_region(struct hat * sfmmup,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff,uchar_t r_perm,uchar_t r_pgszc,hat_rgn_cb_func_t r_cb_function,uint_t flags)14057 hat_join_region(struct hat *sfmmup,
14058 caddr_t r_saddr,
14059 size_t r_size,
14060 void *r_obj,
14061 u_offset_t r_objoff,
14062 uchar_t r_perm,
14063 uchar_t r_pgszc,
14064 hat_rgn_cb_func_t r_cb_function,
14065 uint_t flags)
14066 {
14067 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14068 uint_t rhash;
14069 uint_t rid;
14070 hatlock_t *hatlockp;
14071 sf_region_t *rgnp;
14072 sf_region_t *new_rgnp = NULL;
14073 int i;
14074 uint16_t *nextidp;
14075 sf_region_t **freelistp;
14076 int maxids;
14077 sf_region_t **rarrp;
14078 uint16_t *busyrgnsp;
14079 ulong_t rttecnt;
14080 uchar_t tteflag;
14081 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14082 int text = (r_type == HAT_REGION_TEXT);
14083
14084 if (srdp == NULL || r_size == 0) {
14085 return (HAT_INVALID_REGION_COOKIE);
14086 }
14087
14088 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14089 ASSERT(sfmmup != ksfmmup);
14090 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14091 ASSERT(srdp->srd_refcnt > 0);
14092 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14093 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14094 ASSERT(r_pgszc < mmu_page_sizes);
14095 if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
14096 !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
14097 panic("hat_join_region: region addr or size is not aligned\n");
14098 }
14099
14100
14101 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14102 SFMMU_REGION_HME;
14103 /*
14104 * Currently only support shared hmes for the read only main text
14105 * region.
14106 */
14107 if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
14108 (r_perm & PROT_WRITE))) {
14109 return (HAT_INVALID_REGION_COOKIE);
14110 }
14111
14112 rhash = RGN_HASH_FUNCTION(r_obj);
14113
14114 if (r_type == SFMMU_REGION_ISM) {
14115 nextidp = &srdp->srd_next_ismrid;
14116 freelistp = &srdp->srd_ismrgnfree;
14117 maxids = SFMMU_MAX_ISM_REGIONS;
14118 rarrp = srdp->srd_ismrgnp;
14119 busyrgnsp = &srdp->srd_ismbusyrgns;
14120 } else {
14121 nextidp = &srdp->srd_next_hmerid;
14122 freelistp = &srdp->srd_hmergnfree;
14123 maxids = SFMMU_MAX_HME_REGIONS;
14124 rarrp = srdp->srd_hmergnp;
14125 busyrgnsp = &srdp->srd_hmebusyrgns;
14126 }
14127
14128 mutex_enter(&srdp->srd_mutex);
14129
14130 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14131 rgnp = rgnp->rgn_hash) {
14132 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
14133 rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
14134 rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
14135 break;
14136 }
14137 }
14138
14139 rfound:
14140 if (rgnp != NULL) {
14141 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14142 ASSERT(rgnp->rgn_cb_function == r_cb_function);
14143 ASSERT(rgnp->rgn_refcnt >= 0);
14144 rid = rgnp->rgn_id;
14145 ASSERT(rid < maxids);
14146 ASSERT(rarrp[rid] == rgnp);
14147 ASSERT(rid < *nextidp);
14148 atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14149 mutex_exit(&srdp->srd_mutex);
14150 if (new_rgnp != NULL) {
14151 kmem_cache_free(region_cache, new_rgnp);
14152 }
14153 if (r_type == SFMMU_REGION_HME) {
14154 int myjoin =
14155 (sfmmup == astosfmmu(curthread->t_procp->p_as));
14156
14157 sfmmu_link_to_hmeregion(sfmmup, rgnp);
14158 /*
14159 * bitmap should be updated after linking sfmmu on
14160 * region list so that pageunload() doesn't skip
14161 * TSB/TLB flush. As soon as bitmap is updated another
14162 * thread in this process can already start accessing
14163 * this region.
14164 */
14165 /*
14166 * Normally ttecnt accounting is done as part of
14167 * pagefault handling. But a process may not take any
14168 * pagefaults on shared hmeblks created by some other
14169 * process. To compensate for this assume that the
14170 * entire region will end up faulted in using
14171 * the region's pagesize.
14172 *
14173 */
14174 if (r_pgszc > TTE8K) {
14175 tteflag = 1 << r_pgszc;
14176 if (disable_large_pages & tteflag) {
14177 tteflag = 0;
14178 }
14179 } else {
14180 tteflag = 0;
14181 }
14182 if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14183 hatlockp = sfmmu_hat_enter(sfmmup);
14184 sfmmup->sfmmu_rtteflags |= tteflag;
14185 sfmmu_hat_exit(hatlockp);
14186 }
14187 hatlockp = sfmmu_hat_enter(sfmmup);
14188
14189 /*
14190 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14191 * region to allow for large page allocation failure.
14192 */
14193 if (r_pgszc >= TTE4M) {
14194 sfmmup->sfmmu_tsb0_4minflcnt +=
14195 r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14196 }
14197
14198 /* update sfmmu_ttecnt with the shme rgn ttecnt */
14199 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14200 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14201 rttecnt);
14202
14203 if (text && r_pgszc >= TTE4M &&
14204 (tteflag || ((disable_large_pages >> TTE4M) &
14205 ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14206 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14207 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14208 }
14209
14210 sfmmu_hat_exit(hatlockp);
14211 /*
14212 * On Panther we need to make sure TLB is programmed
14213 * to accept 32M/256M pages. Call
14214 * sfmmu_check_page_sizes() now to make sure TLB is
14215 * setup before making hmeregions visible to other
14216 * threads.
14217 */
14218 sfmmu_check_page_sizes(sfmmup, 1);
14219 hatlockp = sfmmu_hat_enter(sfmmup);
14220 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14221
14222 /*
14223 * if context is invalid tsb miss exception code will
14224 * call sfmmu_check_page_sizes() and update tsbmiss
14225 * area later.
14226 */
14227 kpreempt_disable();
14228 if (myjoin &&
14229 (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14230 != INVALID_CONTEXT)) {
14231 struct tsbmiss *tsbmp;
14232
14233 tsbmp = &tsbmiss_area[CPU->cpu_id];
14234 ASSERT(sfmmup == tsbmp->usfmmup);
14235 BT_SET(tsbmp->shmermap, rid);
14236 if (r_pgszc > TTE64K) {
14237 tsbmp->uhat_rtteflags |= tteflag;
14238 }
14239
14240 }
14241 kpreempt_enable();
14242
14243 sfmmu_hat_exit(hatlockp);
14244 ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14245 HAT_INVALID_REGION_COOKIE);
14246 } else {
14247 hatlockp = sfmmu_hat_enter(sfmmup);
14248 SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14249 sfmmu_hat_exit(hatlockp);
14250 }
14251 ASSERT(rid < maxids);
14252
14253 if (r_type == SFMMU_REGION_ISM) {
14254 sfmmu_find_scd(sfmmup);
14255 }
14256 return ((hat_region_cookie_t)((uint64_t)rid));
14257 }
14258
14259 ASSERT(new_rgnp == NULL);
14260
14261 if (*busyrgnsp >= maxids) {
14262 mutex_exit(&srdp->srd_mutex);
14263 return (HAT_INVALID_REGION_COOKIE);
14264 }
14265
14266 ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14267 if (*freelistp != NULL) {
14268 rgnp = *freelistp;
14269 *freelistp = rgnp->rgn_next;
14270 ASSERT(rgnp->rgn_id < *nextidp);
14271 ASSERT(rgnp->rgn_id < maxids);
14272 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14273 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14274 == r_type);
14275 ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14276 ASSERT(rgnp->rgn_hmeflags == 0);
14277 } else {
14278 /*
14279 * release local locks before memory allocation.
14280 */
14281 mutex_exit(&srdp->srd_mutex);
14282
14283 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14284
14285 mutex_enter(&srdp->srd_mutex);
14286 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14287 rgnp = rgnp->rgn_hash) {
14288 if (rgnp->rgn_saddr == r_saddr &&
14289 rgnp->rgn_size == r_size &&
14290 rgnp->rgn_obj == r_obj &&
14291 rgnp->rgn_objoff == r_objoff &&
14292 rgnp->rgn_perm == r_perm &&
14293 rgnp->rgn_pgszc == r_pgszc) {
14294 break;
14295 }
14296 }
14297 if (rgnp != NULL) {
14298 goto rfound;
14299 }
14300
14301 if (*nextidp >= maxids) {
14302 mutex_exit(&srdp->srd_mutex);
14303 goto fail;
14304 }
14305 rgnp = new_rgnp;
14306 new_rgnp = NULL;
14307 rgnp->rgn_id = (*nextidp)++;
14308 ASSERT(rgnp->rgn_id < maxids);
14309 ASSERT(rarrp[rgnp->rgn_id] == NULL);
14310 rarrp[rgnp->rgn_id] = rgnp;
14311 }
14312
14313 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14314 ASSERT(rgnp->rgn_hmeflags == 0);
14315 #ifdef DEBUG
14316 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14317 ASSERT(rgnp->rgn_ttecnt[i] == 0);
14318 }
14319 #endif
14320 rgnp->rgn_saddr = r_saddr;
14321 rgnp->rgn_size = r_size;
14322 rgnp->rgn_obj = r_obj;
14323 rgnp->rgn_objoff = r_objoff;
14324 rgnp->rgn_perm = r_perm;
14325 rgnp->rgn_pgszc = r_pgszc;
14326 rgnp->rgn_flags = r_type;
14327 rgnp->rgn_refcnt = 0;
14328 rgnp->rgn_cb_function = r_cb_function;
14329 rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14330 srdp->srd_rgnhash[rhash] = rgnp;
14331 (*busyrgnsp)++;
14332 ASSERT(*busyrgnsp <= maxids);
14333 goto rfound;
14334
14335 fail:
14336 ASSERT(new_rgnp != NULL);
14337 kmem_cache_free(region_cache, new_rgnp);
14338 return (HAT_INVALID_REGION_COOKIE);
14339 }
14340
14341 /*
14342 * This function implements the shared context functionality required
14343 * when detaching a segment from an address space. It must be called
14344 * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14345 * for segments with a valid region_cookie.
14346 * It will also be called from all seg_vn routines which change a
14347 * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14348 * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14349 * from segvn_fault().
14350 */
14351 void
hat_leave_region(struct hat * sfmmup,hat_region_cookie_t rcookie,uint_t flags)14352 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14353 {
14354 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14355 sf_scd_t *scdp;
14356 uint_t rhash;
14357 uint_t rid = (uint_t)((uint64_t)rcookie);
14358 hatlock_t *hatlockp = NULL;
14359 sf_region_t *rgnp;
14360 sf_region_t **prev_rgnpp;
14361 sf_region_t *cur_rgnp;
14362 void *r_obj;
14363 int i;
14364 caddr_t r_saddr;
14365 caddr_t r_eaddr;
14366 size_t r_size;
14367 uchar_t r_pgszc;
14368 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14369
14370 ASSERT(sfmmup != ksfmmup);
14371 ASSERT(srdp != NULL);
14372 ASSERT(srdp->srd_refcnt > 0);
14373 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14374 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14375 ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14376
14377 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14378 SFMMU_REGION_HME;
14379
14380 if (r_type == SFMMU_REGION_ISM) {
14381 ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14382 ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14383 rgnp = srdp->srd_ismrgnp[rid];
14384 } else {
14385 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14386 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14387 rgnp = srdp->srd_hmergnp[rid];
14388 }
14389 ASSERT(rgnp != NULL);
14390 ASSERT(rgnp->rgn_id == rid);
14391 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14392 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14393 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14394
14395 ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14396 if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14397 xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14398 rgnp->rgn_size, 0, NULL);
14399 }
14400
14401 if (sfmmup->sfmmu_free) {
14402 ulong_t rttecnt;
14403 r_pgszc = rgnp->rgn_pgszc;
14404 r_size = rgnp->rgn_size;
14405
14406 ASSERT(sfmmup->sfmmu_scdp == NULL);
14407 if (r_type == SFMMU_REGION_ISM) {
14408 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14409 } else {
14410 /* update shme rgns ttecnt in sfmmu_ttecnt */
14411 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14412 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14413
14414 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14415 -rttecnt);
14416
14417 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14418 }
14419 } else if (r_type == SFMMU_REGION_ISM) {
14420 hatlockp = sfmmu_hat_enter(sfmmup);
14421 ASSERT(rid < srdp->srd_next_ismrid);
14422 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14423 scdp = sfmmup->sfmmu_scdp;
14424 if (scdp != NULL &&
14425 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14426 sfmmu_leave_scd(sfmmup, r_type);
14427 ASSERT(sfmmu_hat_lock_held(sfmmup));
14428 }
14429 sfmmu_hat_exit(hatlockp);
14430 } else {
14431 ulong_t rttecnt;
14432 r_pgszc = rgnp->rgn_pgszc;
14433 r_saddr = rgnp->rgn_saddr;
14434 r_size = rgnp->rgn_size;
14435 r_eaddr = r_saddr + r_size;
14436
14437 ASSERT(r_type == SFMMU_REGION_HME);
14438 hatlockp = sfmmu_hat_enter(sfmmup);
14439 ASSERT(rid < srdp->srd_next_hmerid);
14440 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14441
14442 /*
14443 * If region is part of an SCD call sfmmu_leave_scd().
14444 * Otherwise if process is not exiting and has valid context
14445 * just drop the context on the floor to lose stale TLB
14446 * entries and force the update of tsb miss area to reflect
14447 * the new region map. After that clean our TSB entries.
14448 */
14449 scdp = sfmmup->sfmmu_scdp;
14450 if (scdp != NULL &&
14451 SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14452 sfmmu_leave_scd(sfmmup, r_type);
14453 ASSERT(sfmmu_hat_lock_held(sfmmup));
14454 }
14455 sfmmu_invalidate_ctx(sfmmup);
14456
14457 i = TTE8K;
14458 while (i < mmu_page_sizes) {
14459 if (rgnp->rgn_ttecnt[i] != 0) {
14460 sfmmu_unload_tsb_range(sfmmup, r_saddr,
14461 r_eaddr, i);
14462 if (i < TTE4M) {
14463 i = TTE4M;
14464 continue;
14465 } else {
14466 break;
14467 }
14468 }
14469 i++;
14470 }
14471 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14472 if (r_pgszc >= TTE4M) {
14473 rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14474 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14475 rttecnt);
14476 sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14477 }
14478
14479 /* update shme rgns ttecnt in sfmmu_ttecnt */
14480 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14481 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14482 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14483
14484 sfmmu_hat_exit(hatlockp);
14485 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14486 /* sfmmup left the scd, grow private tsb */
14487 sfmmu_check_page_sizes(sfmmup, 1);
14488 } else {
14489 sfmmu_check_page_sizes(sfmmup, 0);
14490 }
14491 }
14492
14493 if (r_type == SFMMU_REGION_HME) {
14494 sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14495 }
14496
14497 r_obj = rgnp->rgn_obj;
14498 if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14499 return;
14500 }
14501
14502 /*
14503 * looks like nobody uses this region anymore. Free it.
14504 */
14505 rhash = RGN_HASH_FUNCTION(r_obj);
14506 mutex_enter(&srdp->srd_mutex);
14507 for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14508 (cur_rgnp = *prev_rgnpp) != NULL;
14509 prev_rgnpp = &cur_rgnp->rgn_hash) {
14510 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14511 break;
14512 }
14513 }
14514
14515 if (cur_rgnp == NULL) {
14516 mutex_exit(&srdp->srd_mutex);
14517 return;
14518 }
14519
14520 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14521 *prev_rgnpp = rgnp->rgn_hash;
14522 if (r_type == SFMMU_REGION_ISM) {
14523 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14524 ASSERT(rid < srdp->srd_next_ismrid);
14525 rgnp->rgn_next = srdp->srd_ismrgnfree;
14526 srdp->srd_ismrgnfree = rgnp;
14527 ASSERT(srdp->srd_ismbusyrgns > 0);
14528 srdp->srd_ismbusyrgns--;
14529 mutex_exit(&srdp->srd_mutex);
14530 return;
14531 }
14532 mutex_exit(&srdp->srd_mutex);
14533
14534 /*
14535 * Destroy region's hmeblks.
14536 */
14537 sfmmu_unload_hmeregion(srdp, rgnp);
14538
14539 rgnp->rgn_hmeflags = 0;
14540
14541 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14542 ASSERT(rgnp->rgn_id == rid);
14543 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14544 rgnp->rgn_ttecnt[i] = 0;
14545 }
14546 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14547 mutex_enter(&srdp->srd_mutex);
14548 ASSERT(rid < srdp->srd_next_hmerid);
14549 rgnp->rgn_next = srdp->srd_hmergnfree;
14550 srdp->srd_hmergnfree = rgnp;
14551 ASSERT(srdp->srd_hmebusyrgns > 0);
14552 srdp->srd_hmebusyrgns--;
14553 mutex_exit(&srdp->srd_mutex);
14554 }
14555
14556 /*
14557 * For now only called for hmeblk regions and not for ISM regions.
14558 */
14559 void
hat_dup_region(struct hat * sfmmup,hat_region_cookie_t rcookie)14560 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14561 {
14562 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14563 uint_t rid = (uint_t)((uint64_t)rcookie);
14564 sf_region_t *rgnp;
14565 sf_rgn_link_t *rlink;
14566 sf_rgn_link_t *hrlink;
14567 ulong_t rttecnt;
14568
14569 ASSERT(sfmmup != ksfmmup);
14570 ASSERT(srdp != NULL);
14571 ASSERT(srdp->srd_refcnt > 0);
14572
14573 ASSERT(rid < srdp->srd_next_hmerid);
14574 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14575 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14576
14577 rgnp = srdp->srd_hmergnp[rid];
14578 ASSERT(rgnp->rgn_refcnt > 0);
14579 ASSERT(rgnp->rgn_id == rid);
14580 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14581 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14582
14583 atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14584
14585 /* LINTED: constant in conditional context */
14586 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14587 ASSERT(rlink != NULL);
14588 mutex_enter(&rgnp->rgn_mutex);
14589 ASSERT(rgnp->rgn_sfmmu_head != NULL);
14590 /* LINTED: constant in conditional context */
14591 SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14592 ASSERT(hrlink != NULL);
14593 ASSERT(hrlink->prev == NULL);
14594 rlink->next = rgnp->rgn_sfmmu_head;
14595 rlink->prev = NULL;
14596 hrlink->prev = sfmmup;
14597 /*
14598 * make sure rlink's next field is correct
14599 * before making this link visible.
14600 */
14601 membar_stst();
14602 rgnp->rgn_sfmmu_head = sfmmup;
14603 mutex_exit(&rgnp->rgn_mutex);
14604
14605 /* update sfmmu_ttecnt with the shme rgn ttecnt */
14606 rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14607 atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14608 /* update tsb0 inflation count */
14609 if (rgnp->rgn_pgszc >= TTE4M) {
14610 sfmmup->sfmmu_tsb0_4minflcnt +=
14611 rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14612 }
14613 /*
14614 * Update regionid bitmask without hat lock since no other thread
14615 * can update this region bitmask right now.
14616 */
14617 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14618 }
14619
14620 /* ARGSUSED */
14621 static int
sfmmu_rgncache_constructor(void * buf,void * cdrarg,int kmflags)14622 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14623 {
14624 sf_region_t *rgnp = (sf_region_t *)buf;
14625 bzero(buf, sizeof (*rgnp));
14626
14627 mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14628
14629 return (0);
14630 }
14631
14632 /* ARGSUSED */
14633 static void
sfmmu_rgncache_destructor(void * buf,void * cdrarg)14634 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14635 {
14636 sf_region_t *rgnp = (sf_region_t *)buf;
14637 mutex_destroy(&rgnp->rgn_mutex);
14638 }
14639
14640 static int
sfrgnmap_isnull(sf_region_map_t * map)14641 sfrgnmap_isnull(sf_region_map_t *map)
14642 {
14643 int i;
14644
14645 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14646 if (map->bitmap[i] != 0) {
14647 return (0);
14648 }
14649 }
14650 return (1);
14651 }
14652
14653 static int
sfhmergnmap_isnull(sf_hmeregion_map_t * map)14654 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14655 {
14656 int i;
14657
14658 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14659 if (map->bitmap[i] != 0) {
14660 return (0);
14661 }
14662 }
14663 return (1);
14664 }
14665
14666 #ifdef DEBUG
14667 static void
check_scd_sfmmu_list(sfmmu_t ** headp,sfmmu_t * sfmmup,int onlist)14668 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14669 {
14670 sfmmu_t *sp;
14671 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14672
14673 for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14674 ASSERT(srdp == sp->sfmmu_srdp);
14675 if (sp == sfmmup) {
14676 if (onlist) {
14677 return;
14678 } else {
14679 panic("shctx: sfmmu 0x%p found on scd"
14680 "list 0x%p", (void *)sfmmup,
14681 (void *)*headp);
14682 }
14683 }
14684 }
14685 if (onlist) {
14686 panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14687 (void *)sfmmup, (void *)*headp);
14688 } else {
14689 return;
14690 }
14691 }
14692 #else /* DEBUG */
14693 #define check_scd_sfmmu_list(headp, sfmmup, onlist)
14694 #endif /* DEBUG */
14695
14696 /*
14697 * Removes an sfmmu from the SCD sfmmu list.
14698 */
14699 static void
sfmmu_from_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14700 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14701 {
14702 ASSERT(sfmmup->sfmmu_srdp != NULL);
14703 check_scd_sfmmu_list(headp, sfmmup, 1);
14704 if (sfmmup->sfmmu_scd_link.prev != NULL) {
14705 ASSERT(*headp != sfmmup);
14706 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14707 sfmmup->sfmmu_scd_link.next;
14708 } else {
14709 ASSERT(*headp == sfmmup);
14710 *headp = sfmmup->sfmmu_scd_link.next;
14711 }
14712 if (sfmmup->sfmmu_scd_link.next != NULL) {
14713 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14714 sfmmup->sfmmu_scd_link.prev;
14715 }
14716 }
14717
14718
14719 /*
14720 * Adds an sfmmu to the start of the queue.
14721 */
14722 static void
sfmmu_to_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14723 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14724 {
14725 check_scd_sfmmu_list(headp, sfmmup, 0);
14726 sfmmup->sfmmu_scd_link.prev = NULL;
14727 sfmmup->sfmmu_scd_link.next = *headp;
14728 if (*headp != NULL)
14729 (*headp)->sfmmu_scd_link.prev = sfmmup;
14730 *headp = sfmmup;
14731 }
14732
14733 /*
14734 * Remove an scd from the start of the queue.
14735 */
14736 static void
sfmmu_remove_scd(sf_scd_t ** headp,sf_scd_t * scdp)14737 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14738 {
14739 if (scdp->scd_prev != NULL) {
14740 ASSERT(*headp != scdp);
14741 scdp->scd_prev->scd_next = scdp->scd_next;
14742 } else {
14743 ASSERT(*headp == scdp);
14744 *headp = scdp->scd_next;
14745 }
14746
14747 if (scdp->scd_next != NULL) {
14748 scdp->scd_next->scd_prev = scdp->scd_prev;
14749 }
14750 }
14751
14752 /*
14753 * Add an scd to the start of the queue.
14754 */
14755 static void
sfmmu_add_scd(sf_scd_t ** headp,sf_scd_t * scdp)14756 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14757 {
14758 scdp->scd_prev = NULL;
14759 scdp->scd_next = *headp;
14760 if (*headp != NULL) {
14761 (*headp)->scd_prev = scdp;
14762 }
14763 *headp = scdp;
14764 }
14765
14766 static int
sfmmu_alloc_scd_tsbs(sf_srd_t * srdp,sf_scd_t * scdp)14767 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14768 {
14769 uint_t rid;
14770 uint_t i;
14771 uint_t j;
14772 ulong_t w;
14773 sf_region_t *rgnp;
14774 ulong_t tte8k_cnt = 0;
14775 ulong_t tte4m_cnt = 0;
14776 uint_t tsb_szc;
14777 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14778 sfmmu_t *ism_hatid;
14779 struct tsb_info *newtsb;
14780 int szc;
14781
14782 ASSERT(srdp != NULL);
14783
14784 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14785 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14786 continue;
14787 }
14788 j = 0;
14789 while (w) {
14790 if (!(w & 0x1)) {
14791 j++;
14792 w >>= 1;
14793 continue;
14794 }
14795 rid = (i << BT_ULSHIFT) | j;
14796 j++;
14797 w >>= 1;
14798
14799 if (rid < SFMMU_MAX_HME_REGIONS) {
14800 rgnp = srdp->srd_hmergnp[rid];
14801 ASSERT(rgnp->rgn_id == rid);
14802 ASSERT(rgnp->rgn_refcnt > 0);
14803
14804 if (rgnp->rgn_pgszc < TTE4M) {
14805 tte8k_cnt += rgnp->rgn_size >>
14806 TTE_PAGE_SHIFT(TTE8K);
14807 } else {
14808 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14809 tte4m_cnt += rgnp->rgn_size >>
14810 TTE_PAGE_SHIFT(TTE4M);
14811 /*
14812 * Inflate SCD tsb0 by preallocating
14813 * 1/4 8k ttecnt for 4M regions to
14814 * allow for lgpg alloc failure.
14815 */
14816 tte8k_cnt += rgnp->rgn_size >>
14817 (TTE_PAGE_SHIFT(TTE8K) + 2);
14818 }
14819 } else {
14820 rid -= SFMMU_MAX_HME_REGIONS;
14821 rgnp = srdp->srd_ismrgnp[rid];
14822 ASSERT(rgnp->rgn_id == rid);
14823 ASSERT(rgnp->rgn_refcnt > 0);
14824
14825 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14826 ASSERT(ism_hatid->sfmmu_ismhat);
14827
14828 for (szc = 0; szc < TTE4M; szc++) {
14829 tte8k_cnt +=
14830 ism_hatid->sfmmu_ttecnt[szc] <<
14831 TTE_BSZS_SHIFT(szc);
14832 }
14833
14834 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14835 if (rgnp->rgn_pgszc >= TTE4M) {
14836 tte4m_cnt += rgnp->rgn_size >>
14837 TTE_PAGE_SHIFT(TTE4M);
14838 }
14839 }
14840 }
14841 }
14842
14843 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14844
14845 /* Allocate both the SCD TSBs here. */
14846 if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14847 tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14848 (tsb_szc <= TSB_4M_SZCODE ||
14849 sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14850 TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14851 TSB_ALLOC, scsfmmup))) {
14852
14853 SFMMU_STAT(sf_scd_1sttsb_allocfail);
14854 return (TSB_ALLOCFAIL);
14855 } else {
14856 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14857
14858 if (tte4m_cnt) {
14859 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14860 if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14861 TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14862 (tsb_szc <= TSB_4M_SZCODE ||
14863 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14864 TSB4M|TSB32M|TSB256M,
14865 TSB_ALLOC, scsfmmup))) {
14866 /*
14867 * If we fail to allocate the 2nd shared tsb,
14868 * just free the 1st tsb, return failure.
14869 */
14870 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14871 SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14872 return (TSB_ALLOCFAIL);
14873 } else {
14874 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14875 newtsb->tsb_flags |= TSB_SHAREDCTX;
14876 scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14877 SFMMU_STAT(sf_scd_2ndtsb_alloc);
14878 }
14879 }
14880 SFMMU_STAT(sf_scd_1sttsb_alloc);
14881 }
14882 return (TSB_SUCCESS);
14883 }
14884
14885 static void
sfmmu_free_scd_tsbs(sfmmu_t * scd_sfmmu)14886 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14887 {
14888 while (scd_sfmmu->sfmmu_tsb != NULL) {
14889 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14890 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14891 scd_sfmmu->sfmmu_tsb = next;
14892 }
14893 }
14894
14895 /*
14896 * Link the sfmmu onto the hme region list.
14897 */
14898 void
sfmmu_link_to_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14899 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14900 {
14901 uint_t rid;
14902 sf_rgn_link_t *rlink;
14903 sfmmu_t *head;
14904 sf_rgn_link_t *hrlink;
14905
14906 rid = rgnp->rgn_id;
14907 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14908
14909 /* LINTED: constant in conditional context */
14910 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14911 ASSERT(rlink != NULL);
14912 mutex_enter(&rgnp->rgn_mutex);
14913 if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14914 rlink->next = NULL;
14915 rlink->prev = NULL;
14916 /*
14917 * make sure rlink's next field is NULL
14918 * before making this link visible.
14919 */
14920 membar_stst();
14921 rgnp->rgn_sfmmu_head = sfmmup;
14922 } else {
14923 /* LINTED: constant in conditional context */
14924 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14925 ASSERT(hrlink != NULL);
14926 ASSERT(hrlink->prev == NULL);
14927 rlink->next = head;
14928 rlink->prev = NULL;
14929 hrlink->prev = sfmmup;
14930 /*
14931 * make sure rlink's next field is correct
14932 * before making this link visible.
14933 */
14934 membar_stst();
14935 rgnp->rgn_sfmmu_head = sfmmup;
14936 }
14937 mutex_exit(&rgnp->rgn_mutex);
14938 }
14939
14940 /*
14941 * Unlink the sfmmu from the hme region list.
14942 */
14943 void
sfmmu_unlink_from_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14944 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14945 {
14946 uint_t rid;
14947 sf_rgn_link_t *rlink;
14948
14949 rid = rgnp->rgn_id;
14950 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14951
14952 /* LINTED: constant in conditional context */
14953 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14954 ASSERT(rlink != NULL);
14955 mutex_enter(&rgnp->rgn_mutex);
14956 if (rgnp->rgn_sfmmu_head == sfmmup) {
14957 sfmmu_t *next = rlink->next;
14958 rgnp->rgn_sfmmu_head = next;
14959 /*
14960 * if we are stopped by xc_attention() after this
14961 * point the forward link walking in
14962 * sfmmu_rgntlb_demap() will work correctly since the
14963 * head correctly points to the next element.
14964 */
14965 membar_stst();
14966 rlink->next = NULL;
14967 ASSERT(rlink->prev == NULL);
14968 if (next != NULL) {
14969 sf_rgn_link_t *nrlink;
14970 /* LINTED: constant in conditional context */
14971 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14972 ASSERT(nrlink != NULL);
14973 ASSERT(nrlink->prev == sfmmup);
14974 nrlink->prev = NULL;
14975 }
14976 } else {
14977 sfmmu_t *next = rlink->next;
14978 sfmmu_t *prev = rlink->prev;
14979 sf_rgn_link_t *prlink;
14980
14981 ASSERT(prev != NULL);
14982 /* LINTED: constant in conditional context */
14983 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14984 ASSERT(prlink != NULL);
14985 ASSERT(prlink->next == sfmmup);
14986 prlink->next = next;
14987 /*
14988 * if we are stopped by xc_attention()
14989 * after this point the forward link walking
14990 * will work correctly since the prev element
14991 * correctly points to the next element.
14992 */
14993 membar_stst();
14994 rlink->next = NULL;
14995 rlink->prev = NULL;
14996 if (next != NULL) {
14997 sf_rgn_link_t *nrlink;
14998 /* LINTED: constant in conditional context */
14999 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
15000 ASSERT(nrlink != NULL);
15001 ASSERT(nrlink->prev == sfmmup);
15002 nrlink->prev = prev;
15003 }
15004 }
15005 mutex_exit(&rgnp->rgn_mutex);
15006 }
15007
15008 /*
15009 * Link scd sfmmu onto ism or hme region list for each region in the
15010 * scd region map.
15011 */
15012 void
sfmmu_link_scd_to_regions(sf_srd_t * srdp,sf_scd_t * scdp)15013 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15014 {
15015 uint_t rid;
15016 uint_t i;
15017 uint_t j;
15018 ulong_t w;
15019 sf_region_t *rgnp;
15020 sfmmu_t *scsfmmup;
15021
15022 scsfmmup = scdp->scd_sfmmup;
15023 ASSERT(scsfmmup->sfmmu_scdhat);
15024 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15025 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15026 continue;
15027 }
15028 j = 0;
15029 while (w) {
15030 if (!(w & 0x1)) {
15031 j++;
15032 w >>= 1;
15033 continue;
15034 }
15035 rid = (i << BT_ULSHIFT) | j;
15036 j++;
15037 w >>= 1;
15038
15039 if (rid < SFMMU_MAX_HME_REGIONS) {
15040 rgnp = srdp->srd_hmergnp[rid];
15041 ASSERT(rgnp->rgn_id == rid);
15042 ASSERT(rgnp->rgn_refcnt > 0);
15043 sfmmu_link_to_hmeregion(scsfmmup, rgnp);
15044 } else {
15045 sfmmu_t *ism_hatid = NULL;
15046 ism_ment_t *ism_ment;
15047 rid -= SFMMU_MAX_HME_REGIONS;
15048 rgnp = srdp->srd_ismrgnp[rid];
15049 ASSERT(rgnp->rgn_id == rid);
15050 ASSERT(rgnp->rgn_refcnt > 0);
15051
15052 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15053 ASSERT(ism_hatid->sfmmu_ismhat);
15054 ism_ment = &scdp->scd_ism_links[rid];
15055 ism_ment->iment_hat = scsfmmup;
15056 ism_ment->iment_base_va = rgnp->rgn_saddr;
15057 mutex_enter(&ism_mlist_lock);
15058 iment_add(ism_ment, ism_hatid);
15059 mutex_exit(&ism_mlist_lock);
15060
15061 }
15062 }
15063 }
15064 }
15065 /*
15066 * Unlink scd sfmmu from ism or hme region list for each region in the
15067 * scd region map.
15068 */
15069 void
sfmmu_unlink_scd_from_regions(sf_srd_t * srdp,sf_scd_t * scdp)15070 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15071 {
15072 uint_t rid;
15073 uint_t i;
15074 uint_t j;
15075 ulong_t w;
15076 sf_region_t *rgnp;
15077 sfmmu_t *scsfmmup;
15078
15079 scsfmmup = scdp->scd_sfmmup;
15080 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15081 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15082 continue;
15083 }
15084 j = 0;
15085 while (w) {
15086 if (!(w & 0x1)) {
15087 j++;
15088 w >>= 1;
15089 continue;
15090 }
15091 rid = (i << BT_ULSHIFT) | j;
15092 j++;
15093 w >>= 1;
15094
15095 if (rid < SFMMU_MAX_HME_REGIONS) {
15096 rgnp = srdp->srd_hmergnp[rid];
15097 ASSERT(rgnp->rgn_id == rid);
15098 ASSERT(rgnp->rgn_refcnt > 0);
15099 sfmmu_unlink_from_hmeregion(scsfmmup,
15100 rgnp);
15101
15102 } else {
15103 sfmmu_t *ism_hatid = NULL;
15104 ism_ment_t *ism_ment;
15105 rid -= SFMMU_MAX_HME_REGIONS;
15106 rgnp = srdp->srd_ismrgnp[rid];
15107 ASSERT(rgnp->rgn_id == rid);
15108 ASSERT(rgnp->rgn_refcnt > 0);
15109
15110 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15111 ASSERT(ism_hatid->sfmmu_ismhat);
15112 ism_ment = &scdp->scd_ism_links[rid];
15113 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
15114 ASSERT(ism_ment->iment_base_va ==
15115 rgnp->rgn_saddr);
15116 mutex_enter(&ism_mlist_lock);
15117 iment_sub(ism_ment, ism_hatid);
15118 mutex_exit(&ism_mlist_lock);
15119
15120 }
15121 }
15122 }
15123 }
15124 /*
15125 * Allocates and initialises a new SCD structure, this is called with
15126 * the srd_scd_mutex held and returns with the reference count
15127 * initialised to 1.
15128 */
15129 static sf_scd_t *
sfmmu_alloc_scd(sf_srd_t * srdp,sf_region_map_t * new_map)15130 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
15131 {
15132 sf_scd_t *new_scdp;
15133 sfmmu_t *scsfmmup;
15134 int i;
15135
15136 ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
15137 new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
15138
15139 scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
15140 new_scdp->scd_sfmmup = scsfmmup;
15141 scsfmmup->sfmmu_srdp = srdp;
15142 scsfmmup->sfmmu_scdp = new_scdp;
15143 scsfmmup->sfmmu_tsb0_4minflcnt = 0;
15144 scsfmmup->sfmmu_scdhat = 1;
15145 CPUSET_ALL(scsfmmup->sfmmu_cpusran);
15146 bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
15147
15148 ASSERT(max_mmu_ctxdoms > 0);
15149 for (i = 0; i < max_mmu_ctxdoms; i++) {
15150 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15151 scsfmmup->sfmmu_ctxs[i].gnum = 0;
15152 }
15153
15154 for (i = 0; i < MMU_PAGE_SIZES; i++) {
15155 new_scdp->scd_rttecnt[i] = 0;
15156 }
15157
15158 new_scdp->scd_region_map = *new_map;
15159 new_scdp->scd_refcnt = 1;
15160 if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15161 kmem_cache_free(scd_cache, new_scdp);
15162 kmem_cache_free(sfmmuid_cache, scsfmmup);
15163 return (NULL);
15164 }
15165 if (&mmu_init_scd) {
15166 mmu_init_scd(new_scdp);
15167 }
15168 return (new_scdp);
15169 }
15170
15171 /*
15172 * The first phase of a process joining an SCD. The hat structure is
15173 * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15174 * and a cross-call with context invalidation is used to cause the
15175 * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15176 * routine.
15177 */
15178 static void
sfmmu_join_scd(sf_scd_t * scdp,sfmmu_t * sfmmup)15179 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15180 {
15181 hatlock_t *hatlockp;
15182 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15183 int i;
15184 sf_scd_t *old_scdp;
15185
15186 ASSERT(srdp != NULL);
15187 ASSERT(scdp != NULL);
15188 ASSERT(scdp->scd_refcnt > 0);
15189 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15190
15191 if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15192 ASSERT(old_scdp != scdp);
15193
15194 mutex_enter(&old_scdp->scd_mutex);
15195 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15196 mutex_exit(&old_scdp->scd_mutex);
15197 /*
15198 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15199 * include the shme rgn ttecnt for rgns that
15200 * were in the old SCD
15201 */
15202 for (i = 0; i < mmu_page_sizes; i++) {
15203 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15204 old_scdp->scd_rttecnt[i]);
15205 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15206 sfmmup->sfmmu_scdrttecnt[i]);
15207 }
15208 }
15209
15210 /*
15211 * Move sfmmu to the scd lists.
15212 */
15213 mutex_enter(&scdp->scd_mutex);
15214 sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15215 mutex_exit(&scdp->scd_mutex);
15216 SF_SCD_INCR_REF(scdp);
15217
15218 hatlockp = sfmmu_hat_enter(sfmmup);
15219 /*
15220 * For a multi-thread process, we must stop
15221 * all the other threads before joining the scd.
15222 */
15223
15224 SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15225
15226 sfmmu_invalidate_ctx(sfmmup);
15227 sfmmup->sfmmu_scdp = scdp;
15228
15229 /*
15230 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15231 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15232 */
15233 for (i = 0; i < mmu_page_sizes; i++) {
15234 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15235 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15236 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15237 -sfmmup->sfmmu_scdrttecnt[i]);
15238 }
15239 /* update tsb0 inflation count */
15240 if (old_scdp != NULL) {
15241 sfmmup->sfmmu_tsb0_4minflcnt +=
15242 old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15243 }
15244 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15245 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15246 sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15247
15248 sfmmu_hat_exit(hatlockp);
15249
15250 if (old_scdp != NULL) {
15251 SF_SCD_DECR_REF(srdp, old_scdp);
15252 }
15253
15254 }
15255
15256 /*
15257 * This routine is called by a process to become part of an SCD. It is called
15258 * from sfmmu_tsbmiss_exception() once most of the initial work has been
15259 * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15260 */
15261 static void
sfmmu_finish_join_scd(sfmmu_t * sfmmup)15262 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15263 {
15264 struct tsb_info *tsbinfop;
15265
15266 ASSERT(sfmmu_hat_lock_held(sfmmup));
15267 ASSERT(sfmmup->sfmmu_scdp != NULL);
15268 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15269 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15270 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15271
15272 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15273 tsbinfop = tsbinfop->tsb_next) {
15274 if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15275 continue;
15276 }
15277 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15278
15279 sfmmu_inv_tsb(tsbinfop->tsb_va,
15280 TSB_BYTES(tsbinfop->tsb_szc));
15281 }
15282
15283 /* Set HAT_CTX1_FLAG for all SCD ISMs */
15284 sfmmu_ism_hatflags(sfmmup, 1);
15285
15286 SFMMU_STAT(sf_join_scd);
15287 }
15288
15289 /*
15290 * This routine is called in order to check if there is an SCD which matches
15291 * the process's region map if not then a new SCD may be created.
15292 */
15293 static void
sfmmu_find_scd(sfmmu_t * sfmmup)15294 sfmmu_find_scd(sfmmu_t *sfmmup)
15295 {
15296 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15297 sf_scd_t *scdp, *new_scdp;
15298 int ret;
15299
15300 ASSERT(srdp != NULL);
15301 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15302
15303 mutex_enter(&srdp->srd_scd_mutex);
15304 for (scdp = srdp->srd_scdp; scdp != NULL;
15305 scdp = scdp->scd_next) {
15306 SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15307 &sfmmup->sfmmu_region_map, ret);
15308 if (ret == 1) {
15309 SF_SCD_INCR_REF(scdp);
15310 mutex_exit(&srdp->srd_scd_mutex);
15311 sfmmu_join_scd(scdp, sfmmup);
15312 ASSERT(scdp->scd_refcnt >= 2);
15313 atomic_add_32((volatile uint32_t *)
15314 &scdp->scd_refcnt, -1);
15315 return;
15316 } else {
15317 /*
15318 * If the sfmmu region map is a subset of the scd
15319 * region map, then the assumption is that this process
15320 * will continue attaching to ISM segments until the
15321 * region maps are equal.
15322 */
15323 SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15324 &sfmmup->sfmmu_region_map, ret);
15325 if (ret == 1) {
15326 mutex_exit(&srdp->srd_scd_mutex);
15327 return;
15328 }
15329 }
15330 }
15331
15332 ASSERT(scdp == NULL);
15333 /*
15334 * No matching SCD has been found, create a new one.
15335 */
15336 if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15337 NULL) {
15338 mutex_exit(&srdp->srd_scd_mutex);
15339 return;
15340 }
15341
15342 /*
15343 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15344 */
15345
15346 /* Set scd_rttecnt for shme rgns in SCD */
15347 sfmmu_set_scd_rttecnt(srdp, new_scdp);
15348
15349 /*
15350 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15351 */
15352 sfmmu_link_scd_to_regions(srdp, new_scdp);
15353 sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15354 SFMMU_STAT_ADD(sf_create_scd, 1);
15355
15356 mutex_exit(&srdp->srd_scd_mutex);
15357 sfmmu_join_scd(new_scdp, sfmmup);
15358 ASSERT(new_scdp->scd_refcnt >= 2);
15359 atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15360 }
15361
15362 /*
15363 * This routine is called by a process to remove itself from an SCD. It is
15364 * either called when the processes has detached from a segment or from
15365 * hat_free_start() as a result of calling exit.
15366 */
15367 static void
sfmmu_leave_scd(sfmmu_t * sfmmup,uchar_t r_type)15368 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15369 {
15370 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15371 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15372 hatlock_t *hatlockp = TSB_HASH(sfmmup);
15373 int i;
15374
15375 ASSERT(scdp != NULL);
15376 ASSERT(srdp != NULL);
15377
15378 if (sfmmup->sfmmu_free) {
15379 /*
15380 * If the process is part of an SCD the sfmmu is unlinked
15381 * from scd_sf_list.
15382 */
15383 mutex_enter(&scdp->scd_mutex);
15384 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15385 mutex_exit(&scdp->scd_mutex);
15386 /*
15387 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15388 * are about to leave the SCD
15389 */
15390 for (i = 0; i < mmu_page_sizes; i++) {
15391 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15392 scdp->scd_rttecnt[i]);
15393 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15394 sfmmup->sfmmu_scdrttecnt[i]);
15395 sfmmup->sfmmu_scdrttecnt[i] = 0;
15396 }
15397 sfmmup->sfmmu_scdp = NULL;
15398
15399 SF_SCD_DECR_REF(srdp, scdp);
15400 return;
15401 }
15402
15403 ASSERT(r_type != SFMMU_REGION_ISM ||
15404 SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15405 ASSERT(scdp->scd_refcnt);
15406 ASSERT(!sfmmup->sfmmu_free);
15407 ASSERT(sfmmu_hat_lock_held(sfmmup));
15408 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15409
15410 /*
15411 * Wait for ISM maps to be updated.
15412 */
15413 if (r_type != SFMMU_REGION_ISM) {
15414 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15415 sfmmup->sfmmu_scdp != NULL) {
15416 cv_wait(&sfmmup->sfmmu_tsb_cv,
15417 HATLOCK_MUTEXP(hatlockp));
15418 }
15419
15420 if (sfmmup->sfmmu_scdp == NULL) {
15421 sfmmu_hat_exit(hatlockp);
15422 return;
15423 }
15424 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15425 }
15426
15427 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15428 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15429 /*
15430 * Since HAT_JOIN_SCD was set our context
15431 * is still invalid.
15432 */
15433 } else {
15434 /*
15435 * For a multi-thread process, we must stop
15436 * all the other threads before leaving the scd.
15437 */
15438
15439 sfmmu_invalidate_ctx(sfmmup);
15440 }
15441
15442 /* Clear all the rid's for ISM, delete flags, etc */
15443 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15444 sfmmu_ism_hatflags(sfmmup, 0);
15445
15446 /*
15447 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15448 * are in SCD before this sfmmup leaves the SCD.
15449 */
15450 for (i = 0; i < mmu_page_sizes; i++) {
15451 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15452 scdp->scd_rttecnt[i]);
15453 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15454 sfmmup->sfmmu_scdrttecnt[i]);
15455 sfmmup->sfmmu_scdrttecnt[i] = 0;
15456 /* update ismttecnt to include SCD ism before hat leaves SCD */
15457 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15458 sfmmup->sfmmu_scdismttecnt[i] = 0;
15459 }
15460 /* update tsb0 inflation count */
15461 sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15462
15463 if (r_type != SFMMU_REGION_ISM) {
15464 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15465 }
15466 sfmmup->sfmmu_scdp = NULL;
15467
15468 sfmmu_hat_exit(hatlockp);
15469
15470 /*
15471 * Unlink sfmmu from scd_sf_list this can be done without holding
15472 * the hat lock as we hold the sfmmu_as lock which prevents
15473 * hat_join_region from adding this thread to the scd again. Other
15474 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15475 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15476 * while holding the hat lock.
15477 */
15478 mutex_enter(&scdp->scd_mutex);
15479 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15480 mutex_exit(&scdp->scd_mutex);
15481 SFMMU_STAT(sf_leave_scd);
15482
15483 SF_SCD_DECR_REF(srdp, scdp);
15484 hatlockp = sfmmu_hat_enter(sfmmup);
15485
15486 }
15487
15488 /*
15489 * Unlink and free up an SCD structure with a reference count of 0.
15490 */
15491 static void
sfmmu_destroy_scd(sf_srd_t * srdp,sf_scd_t * scdp,sf_region_map_t * scd_rmap)15492 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15493 {
15494 sfmmu_t *scsfmmup;
15495 sf_scd_t *sp;
15496 hatlock_t *shatlockp;
15497 int i, ret;
15498
15499 mutex_enter(&srdp->srd_scd_mutex);
15500 for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15501 if (sp == scdp)
15502 break;
15503 }
15504 if (sp == NULL || sp->scd_refcnt) {
15505 mutex_exit(&srdp->srd_scd_mutex);
15506 return;
15507 }
15508
15509 /*
15510 * It is possible that the scd has been freed and reallocated with a
15511 * different region map while we've been waiting for the srd_scd_mutex.
15512 */
15513 SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15514 if (ret != 1) {
15515 mutex_exit(&srdp->srd_scd_mutex);
15516 return;
15517 }
15518
15519 ASSERT(scdp->scd_sf_list == NULL);
15520 /*
15521 * Unlink scd from srd_scdp list.
15522 */
15523 sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15524 mutex_exit(&srdp->srd_scd_mutex);
15525
15526 sfmmu_unlink_scd_from_regions(srdp, scdp);
15527
15528 /* Clear shared context tsb and release ctx */
15529 scsfmmup = scdp->scd_sfmmup;
15530
15531 /*
15532 * create a barrier so that scd will not be destroyed
15533 * if other thread still holds the same shared hat lock.
15534 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15535 * shared hat lock before checking the shared tsb reloc flag.
15536 */
15537 shatlockp = sfmmu_hat_enter(scsfmmup);
15538 sfmmu_hat_exit(shatlockp);
15539
15540 sfmmu_free_scd_tsbs(scsfmmup);
15541
15542 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15543 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15544 kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15545 SFMMU_L2_HMERLINKS_SIZE);
15546 scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15547 }
15548 }
15549 kmem_cache_free(sfmmuid_cache, scsfmmup);
15550 kmem_cache_free(scd_cache, scdp);
15551 SFMMU_STAT(sf_destroy_scd);
15552 }
15553
15554 /*
15555 * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15556 * bits which are set in the ism_region_map parameter. This flag indicates to
15557 * the tsbmiss handler that mapping for these segments should be loaded using
15558 * the shared context.
15559 */
15560 static void
sfmmu_ism_hatflags(sfmmu_t * sfmmup,int addflag)15561 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15562 {
15563 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15564 ism_blk_t *ism_blkp;
15565 ism_map_t *ism_map;
15566 int i, rid;
15567
15568 ASSERT(sfmmup->sfmmu_iblk != NULL);
15569 ASSERT(scdp != NULL);
15570 /*
15571 * Note that the caller either set HAT_ISMBUSY flag or checked
15572 * under hat lock that HAT_ISMBUSY was not set by another thread.
15573 */
15574 ASSERT(sfmmu_hat_lock_held(sfmmup));
15575
15576 ism_blkp = sfmmup->sfmmu_iblk;
15577 while (ism_blkp != NULL) {
15578 ism_map = ism_blkp->iblk_maps;
15579 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15580 rid = ism_map[i].imap_rid;
15581 if (rid == SFMMU_INVALID_ISMRID) {
15582 continue;
15583 }
15584 ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15585 if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15586 addflag) {
15587 ism_map[i].imap_hatflags |=
15588 HAT_CTX1_FLAG;
15589 } else {
15590 ism_map[i].imap_hatflags &=
15591 ~HAT_CTX1_FLAG;
15592 }
15593 }
15594 ism_blkp = ism_blkp->iblk_next;
15595 }
15596 }
15597
15598 static int
sfmmu_srd_lock_held(sf_srd_t * srdp)15599 sfmmu_srd_lock_held(sf_srd_t *srdp)
15600 {
15601 return (MUTEX_HELD(&srdp->srd_mutex));
15602 }
15603
15604 /* ARGSUSED */
15605 static int
sfmmu_scdcache_constructor(void * buf,void * cdrarg,int kmflags)15606 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15607 {
15608 sf_scd_t *scdp = (sf_scd_t *)buf;
15609
15610 bzero(buf, sizeof (sf_scd_t));
15611 mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15612 return (0);
15613 }
15614
15615 /* ARGSUSED */
15616 static void
sfmmu_scdcache_destructor(void * buf,void * cdrarg)15617 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15618 {
15619 sf_scd_t *scdp = (sf_scd_t *)buf;
15620
15621 mutex_destroy(&scdp->scd_mutex);
15622 }
15623
15624 /*
15625 * The listp parameter is a pointer to a list of hmeblks which are partially
15626 * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15627 * freeing process is to cross-call all cpus to ensure that there are no
15628 * remaining cached references.
15629 *
15630 * If the local generation number is less than the global then we can free
15631 * hmeblks which are already on the pending queue as another cpu has completed
15632 * the cross-call.
15633 *
15634 * We cross-call to make sure that there are no threads on other cpus accessing
15635 * these hmblks and then complete the process of freeing them under the
15636 * following conditions:
15637 * The total number of pending hmeblks is greater than the threshold
15638 * The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15639 * It is at least 1 second since the last time we cross-called
15640 *
15641 * Otherwise, we add the hmeblks to the per-cpu pending queue.
15642 */
15643 static void
sfmmu_hblks_list_purge(struct hme_blk ** listp,int dontfree)15644 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15645 {
15646 struct hme_blk *hblkp, *pr_hblkp = NULL;
15647 int count = 0;
15648 cpuset_t cpuset = cpu_ready_set;
15649 cpu_hme_pend_t *cpuhp;
15650 timestruc_t now;
15651 int one_second_expired = 0;
15652
15653 gethrestime_lasttick(&now);
15654
15655 for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15656 ASSERT(hblkp->hblk_shw_bit == 0);
15657 ASSERT(hblkp->hblk_shared == 0);
15658 count++;
15659 pr_hblkp = hblkp;
15660 }
15661
15662 cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15663 mutex_enter(&cpuhp->chp_mutex);
15664
15665 if ((cpuhp->chp_count + count) == 0) {
15666 mutex_exit(&cpuhp->chp_mutex);
15667 return;
15668 }
15669
15670 if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15671 one_second_expired = 1;
15672 }
15673
15674 if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15675 (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15676 one_second_expired)) {
15677 /* Append global list to local */
15678 if (pr_hblkp == NULL) {
15679 *listp = cpuhp->chp_listp;
15680 } else {
15681 pr_hblkp->hblk_next = cpuhp->chp_listp;
15682 }
15683 cpuhp->chp_listp = NULL;
15684 cpuhp->chp_count = 0;
15685 cpuhp->chp_timestamp = now.tv_sec;
15686 mutex_exit(&cpuhp->chp_mutex);
15687
15688 kpreempt_disable();
15689 CPUSET_DEL(cpuset, CPU->cpu_id);
15690 xt_sync(cpuset);
15691 xt_sync(cpuset);
15692 kpreempt_enable();
15693
15694 /*
15695 * At this stage we know that no trap handlers on other
15696 * cpus can have references to hmeblks on the list.
15697 */
15698 sfmmu_hblk_free(listp);
15699 } else if (*listp != NULL) {
15700 pr_hblkp->hblk_next = cpuhp->chp_listp;
15701 cpuhp->chp_listp = *listp;
15702 cpuhp->chp_count += count;
15703 *listp = NULL;
15704 mutex_exit(&cpuhp->chp_mutex);
15705 } else {
15706 mutex_exit(&cpuhp->chp_mutex);
15707 }
15708 }
15709
15710 /*
15711 * Add an hmeblk to the the hash list.
15712 */
15713 void
sfmmu_hblk_hash_add(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa)15714 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15715 uint64_t hblkpa)
15716 {
15717 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15718 #ifdef DEBUG
15719 if (hmebp->hmeblkp == NULL) {
15720 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15721 }
15722 #endif /* DEBUG */
15723
15724 hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15725 /*
15726 * Since the TSB miss handler now does not lock the hash chain before
15727 * walking it, make sure that the hmeblks nextpa is globally visible
15728 * before we make the hmeblk globally visible by updating the chain root
15729 * pointer in the hash bucket.
15730 */
15731 membar_producer();
15732 hmebp->hmeh_nextpa = hblkpa;
15733 hmeblkp->hblk_next = hmebp->hmeblkp;
15734 hmebp->hmeblkp = hmeblkp;
15735
15736 }
15737
15738 /*
15739 * This function is the first part of a 2 part process to remove an hmeblk
15740 * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15741 * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15742 * a per-cpu pending list using the virtual address pointer.
15743 *
15744 * TSB miss trap handlers that start after this phase will no longer see
15745 * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15746 * can still use it for further chain traversal because we haven't yet modifed
15747 * the next physical pointer or freed it.
15748 *
15749 * In the second phase of hmeblk removal we'll issue a barrier xcall before
15750 * we reuse or free this hmeblk. This will make sure all lingering references to
15751 * the hmeblk after first phase disappear before we finally reclaim it.
15752 * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15753 * during their traversal.
15754 *
15755 * The hmehash_mutex must be held when calling this function.
15756 *
15757 * Input:
15758 * hmebp - hme hash bucket pointer
15759 * hmeblkp - address of hmeblk to be removed
15760 * pr_hblk - virtual address of previous hmeblkp
15761 * listp - pointer to list of hmeblks linked by virtual address
15762 * free_now flag - indicates that a complete removal from the hash chains
15763 * is necessary.
15764 *
15765 * It is inefficient to use the free_now flag as a cross-call is required to
15766 * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15767 * in short supply.
15768 */
15769 void
sfmmu_hblk_hash_rm(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,struct hme_blk * pr_hblk,struct hme_blk ** listp,int free_now)15770 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15771 struct hme_blk *pr_hblk, struct hme_blk **listp,
15772 int free_now)
15773 {
15774 int shw_size, vshift;
15775 struct hme_blk *shw_hblkp;
15776 uint_t shw_mask, newshw_mask;
15777 caddr_t vaddr;
15778 int size;
15779 cpuset_t cpuset = cpu_ready_set;
15780
15781 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15782
15783 if (hmebp->hmeblkp == hmeblkp) {
15784 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15785 hmebp->hmeblkp = hmeblkp->hblk_next;
15786 } else {
15787 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15788 pr_hblk->hblk_next = hmeblkp->hblk_next;
15789 }
15790
15791 size = get_hblk_ttesz(hmeblkp);
15792 shw_hblkp = hmeblkp->hblk_shadow;
15793 if (shw_hblkp) {
15794 ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15795 ASSERT(!hmeblkp->hblk_shared);
15796 #ifdef DEBUG
15797 if (mmu_page_sizes == max_mmu_page_sizes) {
15798 ASSERT(size < TTE256M);
15799 } else {
15800 ASSERT(size < TTE4M);
15801 }
15802 #endif /* DEBUG */
15803
15804 shw_size = get_hblk_ttesz(shw_hblkp);
15805 vaddr = (caddr_t)get_hblk_base(hmeblkp);
15806 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15807 ASSERT(vshift < 8);
15808 /*
15809 * Atomically clear shadow mask bit
15810 */
15811 do {
15812 shw_mask = shw_hblkp->hblk_shw_mask;
15813 ASSERT(shw_mask & (1 << vshift));
15814 newshw_mask = shw_mask & ~(1 << vshift);
15815 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
15816 shw_mask, newshw_mask);
15817 } while (newshw_mask != shw_mask);
15818 hmeblkp->hblk_shadow = NULL;
15819 }
15820 hmeblkp->hblk_shw_bit = 0;
15821
15822 if (hmeblkp->hblk_shared) {
15823 #ifdef DEBUG
15824 sf_srd_t *srdp;
15825 sf_region_t *rgnp;
15826 uint_t rid;
15827
15828 srdp = hblktosrd(hmeblkp);
15829 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15830 rid = hmeblkp->hblk_tag.htag_rid;
15831 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15832 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15833 rgnp = srdp->srd_hmergnp[rid];
15834 ASSERT(rgnp != NULL);
15835 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15836 #endif /* DEBUG */
15837 hmeblkp->hblk_shared = 0;
15838 }
15839 if (free_now) {
15840 kpreempt_disable();
15841 CPUSET_DEL(cpuset, CPU->cpu_id);
15842 xt_sync(cpuset);
15843 xt_sync(cpuset);
15844 kpreempt_enable();
15845
15846 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15847 hmeblkp->hblk_next = NULL;
15848 } else {
15849 /* Append hmeblkp to listp for processing later. */
15850 hmeblkp->hblk_next = *listp;
15851 *listp = hmeblkp;
15852 }
15853 }
15854
15855 /*
15856 * This routine is called when memory is in short supply and returns a free
15857 * hmeblk of the requested size from the cpu pending lists.
15858 */
15859 static struct hme_blk *
sfmmu_check_pending_hblks(int size)15860 sfmmu_check_pending_hblks(int size)
15861 {
15862 int i;
15863 struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15864 int found_hmeblk;
15865 cpuset_t cpuset = cpu_ready_set;
15866 cpu_hme_pend_t *cpuhp;
15867
15868 /* Flush cpu hblk pending queues */
15869 for (i = 0; i < NCPU; i++) {
15870 cpuhp = &cpu_hme_pend[i];
15871 if (cpuhp->chp_listp != NULL) {
15872 mutex_enter(&cpuhp->chp_mutex);
15873 if (cpuhp->chp_listp == NULL) {
15874 mutex_exit(&cpuhp->chp_mutex);
15875 continue;
15876 }
15877 found_hmeblk = 0;
15878 last_hmeblkp = NULL;
15879 for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15880 hmeblkp = hmeblkp->hblk_next) {
15881 if (get_hblk_ttesz(hmeblkp) == size) {
15882 if (last_hmeblkp == NULL) {
15883 cpuhp->chp_listp =
15884 hmeblkp->hblk_next;
15885 } else {
15886 last_hmeblkp->hblk_next =
15887 hmeblkp->hblk_next;
15888 }
15889 ASSERT(cpuhp->chp_count > 0);
15890 cpuhp->chp_count--;
15891 found_hmeblk = 1;
15892 break;
15893 } else {
15894 last_hmeblkp = hmeblkp;
15895 }
15896 }
15897 mutex_exit(&cpuhp->chp_mutex);
15898
15899 if (found_hmeblk) {
15900 kpreempt_disable();
15901 CPUSET_DEL(cpuset, CPU->cpu_id);
15902 xt_sync(cpuset);
15903 xt_sync(cpuset);
15904 kpreempt_enable();
15905 return (hmeblkp);
15906 }
15907 }
15908 }
15909 return (NULL);
15910 }
15911