1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/systm.h>
35 #include <sys/user.h>
36 #include <sys/mman.h>
37 #include <sys/vm.h>
38 #include <sys/conf.h>
39 #include <sys/avintr.h>
40 #include <sys/autoconf.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 #include <sys/bitmap.h>
44
45 #include <sys/privregs.h>
46
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/kmem.h>
50 #include <sys/mem.h>
51 #include <sys/kstat.h>
52
53 #include <sys/reboot.h>
54
55 #include <sys/cred.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58
59 #include <sys/procfs.h>
60
61 #include <sys/vfs.h>
62 #include <sys/cmn_err.h>
63 #include <sys/utsname.h>
64 #include <sys/debug.h>
65 #include <sys/kdi.h>
66
67 #include <sys/dumphdr.h>
68 #include <sys/bootconf.h>
69 #include <sys/memlist_plat.h>
70 #include <sys/varargs.h>
71 #include <sys/promif.h>
72 #include <sys/modctl.h>
73
74 #include <sys/sunddi.h>
75 #include <sys/sunndi.h>
76 #include <sys/ndi_impldefs.h>
77 #include <sys/ddidmareq.h>
78 #include <sys/psw.h>
79 #include <sys/regset.h>
80 #include <sys/clock.h>
81 #include <sys/pte.h>
82 #include <sys/tss.h>
83 #include <sys/stack.h>
84 #include <sys/trap.h>
85 #include <sys/fp.h>
86 #include <vm/kboot_mmu.h>
87 #include <vm/anon.h>
88 #include <vm/as.h>
89 #include <vm/page.h>
90 #include <vm/seg.h>
91 #include <vm/seg_dev.h>
92 #include <vm/seg_kmem.h>
93 #include <vm/seg_kpm.h>
94 #include <vm/seg_map.h>
95 #include <vm/seg_vn.h>
96 #include <vm/seg_kp.h>
97 #include <sys/memnode.h>
98 #include <vm/vm_dep.h>
99 #include <sys/thread.h>
100 #include <sys/sysconf.h>
101 #include <sys/vm_machparam.h>
102 #include <sys/archsystm.h>
103 #include <sys/machsystm.h>
104 #include <vm/hat.h>
105 #include <vm/hat_i86.h>
106 #include <sys/pmem.h>
107 #include <sys/smp_impldefs.h>
108 #include <sys/x86_archext.h>
109 #include <sys/cpuvar.h>
110 #include <sys/segments.h>
111 #include <sys/clconf.h>
112 #include <sys/kobj.h>
113 #include <sys/kobj_lex.h>
114 #include <sys/cpc_impl.h>
115 #include <sys/cpu_module.h>
116 #include <sys/smbios.h>
117 #include <sys/debug_info.h>
118 #include <sys/bootinfo.h>
119 #include <sys/ddi_timer.h>
120 #include <sys/systeminfo.h>
121 #include <sys/multiboot.h>
122
123 #ifdef __xpv
124
125 #include <sys/hypervisor.h>
126 #include <sys/xen_mmu.h>
127 #include <sys/evtchn_impl.h>
128 #include <sys/gnttab.h>
129 #include <sys/xpv_panic.h>
130 #include <xen/sys/xenbus_comms.h>
131 #include <xen/public/physdev.h>
132
133 extern void xen_late_startup(void);
134
135 struct xen_evt_data cpu0_evt_data;
136
137 #else /* __xpv */
138 #include <sys/memlist_impl.h>
139
140 extern void mem_config_init(void);
141 #endif /* __xpv */
142
143 extern void progressbar_init(void);
144 extern void brand_init(void);
145 extern void pcf_init(void);
146 extern void pg_init(void);
147
148 extern int size_pse_array(pgcnt_t, int);
149
150 #if defined(_SOFT_HOSTID)
151
152 #include <sys/rtc.h>
153
154 static int32_t set_soft_hostid(void);
155 static char hostid_file[] = "/etc/hostid";
156
157 #endif
158
159 void *gfx_devinfo_list;
160
161 #if defined(__amd64) && !defined(__xpv)
162 extern void immu_startup(void);
163 #endif
164
165 /*
166 * XXX make declaration below "static" when drivers no longer use this
167 * interface.
168 */
169 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
170
171 /*
172 * segkp
173 */
174 extern int segkp_fromheap;
175
176 static void kvm_init(void);
177 static void startup_init(void);
178 static void startup_memlist(void);
179 static void startup_kmem(void);
180 static void startup_modules(void);
181 static void startup_vm(void);
182 static void startup_end(void);
183 static void layout_kernel_va(void);
184
185 /*
186 * Declare these as initialized data so we can patch them.
187 */
188 #ifdef __i386
189
190 /*
191 * Due to virtual address space limitations running in 32 bit mode, restrict
192 * the amount of physical memory configured to a max of PHYSMEM pages (16g).
193 *
194 * If the physical max memory size of 64g were allowed to be configured, the
195 * size of user virtual address space will be less than 1g. A limited user
196 * address space greatly reduces the range of applications that can run.
197 *
198 * If more physical memory than PHYSMEM is required, users should preferably
199 * run in 64 bit mode which has far looser virtual address space limitations.
200 *
201 * If 64 bit mode is not available (as in IA32) and/or more physical memory
202 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
203 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
204 * should also be carefully tuned to balance out the need of the user
205 * application while minimizing the risk of kernel heap exhaustion due to
206 * kernelbase being set too high.
207 */
208 #define PHYSMEM 0x400000
209
210 #else /* __amd64 */
211
212 /*
213 * For now we can handle memory with physical addresses up to about
214 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
215 * half the VA space for seg_kpm. When systems get bigger than 64TB this
216 * code will need revisiting. There is an implicit assumption that there
217 * are no *huge* holes in the physical address space too.
218 */
219 #define TERABYTE (1ul << 40)
220 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
221 #define PHYSMEM PHYSMEM_MAX64
222 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
223
224 #endif /* __amd64 */
225
226 pgcnt_t physmem = PHYSMEM;
227 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
228
229 char *kobj_file_buf;
230 int kobj_file_bufsize; /* set in /etc/system */
231
232 /* Global variables for MP support. Used in mp_startup */
233 caddr_t rm_platter_va = 0;
234 uint32_t rm_platter_pa;
235
236 int auto_lpg_disable = 1;
237
238 /*
239 * Some CPUs have holes in the middle of the 64-bit virtual address range.
240 */
241 uintptr_t hole_start, hole_end;
242
243 /*
244 * kpm mapping window
245 */
246 caddr_t kpm_vbase;
247 size_t kpm_size;
248 static int kpm_desired;
249 #ifdef __amd64
250 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
251 #endif
252
253 /*
254 * Configuration parameters set at boot time.
255 */
256
257 caddr_t econtig; /* end of first block of contiguous kernel */
258
259 struct bootops *bootops = 0; /* passed in from boot */
260 struct bootops **bootopsp;
261 struct boot_syscalls *sysp; /* passed in from boot */
262
263 char bootblock_fstype[16];
264
265 char kern_bootargs[OBP_MAXPATHLEN];
266 char kern_bootfile[OBP_MAXPATHLEN];
267
268 /*
269 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
270 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
271 * zio buffers from their own segment, otherwise they are allocated from the
272 * heap. The optimization of allocating zio buffers from their own segment is
273 * only valid on 64-bit kernels.
274 */
275 #if defined(__amd64)
276 int segzio_fromheap = 0;
277 #else
278 int segzio_fromheap = 1;
279 #endif
280
281 /*
282 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
283 * depends on number of BOP_ALLOC calls made and requested size, memory size
284 * combination and whether boot.bin memory needs to be freed.
285 */
286 #define POSS_NEW_FRAGMENTS 12
287
288 /*
289 * VM data structures
290 */
291 long page_hashsz; /* Size of page hash table (power of two) */
292 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
293 struct page *pp_base; /* Base of initial system page struct array */
294 struct page **page_hash; /* Page hash table */
295 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
296 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
297 int pse_shift; /* log2(pse_table_size) */
298 struct seg ktextseg; /* Segment used for kernel executable image */
299 struct seg kvalloc; /* Segment used for "valloc" mapping */
300 struct seg kpseg; /* Segment used for pageable kernel virt mem */
301 struct seg kmapseg; /* Segment used for generic kernel mappings */
302 struct seg kdebugseg; /* Segment used for the kernel debugger */
303
304 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
305 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
306
307 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
308
309 #if defined(__amd64)
310 struct seg kvseg_core; /* Segment used for the core heap */
311 struct seg kpmseg; /* Segment used for physical mapping */
312 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
313 #else
314 struct seg *segkpm = NULL; /* Unused on IA32 */
315 #endif
316
317 caddr_t segkp_base; /* Base address of segkp */
318 caddr_t segzio_base; /* Base address of segzio */
319 #if defined(__amd64)
320 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
321 #else
322 pgcnt_t segkpsize = 0;
323 #endif
324 pgcnt_t segziosize = 0; /* size of zio segment in pages */
325
326 /*
327 * A static DR page_t VA map is reserved that can map the page structures
328 * for a domain's entire RA space. The pages that back this space are
329 * dynamically allocated and need not be physically contiguous. The DR
330 * map size is derived from KPM size.
331 * This mechanism isn't used by x86 yet, so just stubs here.
332 */
333 int ppvm_enable = 0; /* Static virtual map for page structs */
334 page_t *ppvm_base = NULL; /* Base of page struct map */
335 pgcnt_t ppvm_size = 0; /* Size of page struct map */
336
337 /*
338 * VA range available to the debugger
339 */
340 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
341 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
342
343 struct memseg *memseg_base;
344 struct vnode unused_pages_vp;
345
346 #define FOURGB 0x100000000LL
347
348 struct memlist *memlist;
349
350 caddr_t s_text; /* start of kernel text segment */
351 caddr_t e_text; /* end of kernel text segment */
352 caddr_t s_data; /* start of kernel data segment */
353 caddr_t e_data; /* end of kernel data segment */
354 caddr_t modtext; /* start of loadable module text reserved */
355 caddr_t e_modtext; /* end of loadable module text reserved */
356 caddr_t moddata; /* start of loadable module data reserved */
357 caddr_t e_moddata; /* end of loadable module data reserved */
358
359 struct memlist *phys_install; /* Total installed physical memory */
360 struct memlist *phys_avail; /* Total available physical memory */
361 struct memlist *bios_rsvd; /* Bios reserved memory */
362
363 /*
364 * kphysm_init returns the number of pages that were processed
365 */
366 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
367
368 #define IO_PROP_SIZE 64 /* device property size */
369
370 /*
371 * a couple useful roundup macros
372 */
373 #define ROUND_UP_PAGE(x) \
374 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
375 #define ROUND_UP_LPAGE(x) \
376 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
377 #define ROUND_UP_4MEG(x) \
378 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
379 #define ROUND_UP_TOPLEVEL(x) \
380 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
381
382 /*
383 * 32-bit Kernel's Virtual memory layout.
384 * +-----------------------+
385 * | |
386 * 0xFFC00000 -|-----------------------|- ARGSBASE
387 * | debugger |
388 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
389 * | Kernel Data |
390 * 0xFEC00000 -|-----------------------|
391 * | Kernel Text |
392 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
393 * |--- GDT ---|- GDT page (GDT_VA)
394 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
395 * | |
396 * | page_t structures |
397 * | memsegs, memlists, |
398 * | page hash, etc. |
399 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
400 * | | (segkp is just an arena in the heap)
401 * | |
402 * | kvseg |
403 * | |
404 * | |
405 * --- -|-----------------------|- kernelheap (floating)
406 * | Segkmap |
407 * 0xC3002000 -|-----------------------|- segmap_start (floating)
408 * | Red Zone |
409 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
410 * | | ||
411 * | Shared objects | \/
412 * | |
413 * : :
414 * | user data |
415 * |-----------------------|
416 * | user text |
417 * 0x08048000 -|-----------------------|
418 * | user stack |
419 * : :
420 * | invalid |
421 * 0x00000000 +-----------------------+
422 *
423 *
424 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
425 * +-----------------------+
426 * | |
427 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
428 * | debugger (?) |
429 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
430 * | unused |
431 * +-----------------------+
432 * | Kernel Data |
433 * 0xFFFFFFFF.FBC00000 |-----------------------|
434 * | Kernel Text |
435 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
436 * |--- GDT ---|- GDT page (GDT_VA)
437 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
438 * | |
439 * | Core heap | (used for loadable modules)
440 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
441 * | Kernel |
442 * | heap |
443 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
444 * | segmap |
445 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
446 * | device mappings |
447 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
448 * | segzio |
449 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
450 * | segkp |
451 * --- |-----------------------|- segkp_base (floating)
452 * | page_t structures | valloc_base + valloc_sz
453 * | memsegs, memlists, |
454 * | page hash, etc. |
455 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB)
456 * | segkpm |
457 * 0xFFFFFE00.00000000 |-----------------------|
458 * | Red Zone |
459 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB)
460 * | User stack |- User space memory
461 * | |
462 * | shared objects, etc | (grows downwards)
463 * : :
464 * | |
465 * 0xFFFF8000.00000000 |-----------------------|
466 * | |
467 * | VA Hole / unused |
468 * | |
469 * 0x00008000.00000000 |-----------------------|
470 * | |
471 * | |
472 * : :
473 * | user heap | (grows upwards)
474 * | |
475 * | user data |
476 * |-----------------------|
477 * | user text |
478 * 0x00000000.04000000 |-----------------------|
479 * | invalid |
480 * 0x00000000.00000000 +-----------------------+
481 *
482 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
483 * kernel, except that userlimit is raised to 0xfe000000
484 *
485 * Floating values:
486 *
487 * valloc_base: start of the kernel's memory management/tracking data
488 * structures. This region contains page_t structures for
489 * physical memory, memsegs, memlists, and the page hash.
490 *
491 * core_base: start of the kernel's "core" heap area on 64-bit systems.
492 * This area is intended to be used for global data as well as for module
493 * text/data that does not fit into the nucleus pages. The core heap is
494 * restricted to a 2GB range, allowing every address within it to be
495 * accessed using rip-relative addressing
496 *
497 * ekernelheap: end of kernelheap and start of segmap.
498 *
499 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
500 * above a red zone that separates the user's address space from the
501 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
502 *
503 * segmap_start: start of segmap. The length of segmap can be modified
504 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
505 * on 64-bit systems.
506 *
507 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
508 * decreased by 2X the size required for page_t. This allows the kernel
509 * heap to grow in size with physical memory. With sizeof(page_t) == 80
510 * bytes, the following shows the values of kernelbase and kernel heap
511 * sizes for different memory configurations (assuming default segmap and
512 * segkp sizes).
513 *
514 * mem size for kernelbase kernel heap
515 * size page_t's size
516 * ---- --------- ---------- -----------
517 * 1gb 0x01400000 0xd1800000 684MB
518 * 2gb 0x02800000 0xcf000000 704MB
519 * 4gb 0x05000000 0xca000000 744MB
520 * 6gb 0x07800000 0xc5000000 784MB
521 * 8gb 0x0a000000 0xc0000000 824MB
522 * 16gb 0x14000000 0xac000000 984MB
523 * 32gb 0x28000000 0x84000000 1304MB
524 * 64gb 0x50000000 0x34000000 1944MB (*)
525 *
526 * kernelbase is less than the abi minimum of 0xc0000000 for memory
527 * configurations above 8gb.
528 *
529 * (*) support for memory configurations above 32gb will require manual tuning
530 * of kernelbase to balance out the need of user applications.
531 */
532
533 /* real-time-clock initialization parameters */
534 extern time_t process_rtc_config_file(void);
535
536 uintptr_t kernelbase;
537 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
538 uintptr_t eprom_kernelbase;
539 size_t segmapsize;
540 uintptr_t segmap_start;
541 int segmapfreelists;
542 pgcnt_t npages;
543 pgcnt_t orig_npages;
544 size_t core_size; /* size of "core" heap */
545 uintptr_t core_base; /* base address of "core" heap */
546
547 /*
548 * List of bootstrap pages. We mark these as allocated in startup.
549 * release_bootstrap() will free them when we're completely done with
550 * the bootstrap.
551 */
552 static page_t *bootpages;
553
554 /*
555 * boot time pages that have a vnode from the ramdisk will keep that forever.
556 */
557 static page_t *rd_pages;
558
559 /*
560 * Lower 64K
561 */
562 static page_t *lower_pages = NULL;
563 static int lower_pages_count = 0;
564
565 struct system_hardware system_hardware;
566
567 /*
568 * Enable some debugging messages concerning memory usage...
569 */
570 static void
print_memlist(char * title,struct memlist * mp)571 print_memlist(char *title, struct memlist *mp)
572 {
573 prom_printf("MEMLIST: %s:\n", title);
574 while (mp != NULL) {
575 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
576 mp->ml_address, mp->ml_size);
577 mp = mp->ml_next;
578 }
579 }
580
581 /*
582 * XX64 need a comment here.. are these just default values, surely
583 * we read the "cpuid" type information to figure this out.
584 */
585 int l2cache_sz = 0x80000;
586 int l2cache_linesz = 0x40;
587 int l2cache_assoc = 1;
588
589 static size_t textrepl_min_gb = 10;
590
591 /*
592 * on 64 bit we use a predifined VA range for mapping devices in the kernel
593 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
594 */
595 #ifdef __amd64
596
597 vmem_t *device_arena;
598 uintptr_t toxic_addr = (uintptr_t)NULL;
599 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
600
601 #else /* __i386 */
602
603 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
604 size_t toxic_bit_map_len = 0; /* in bits */
605
606 #endif /* __i386 */
607
608 /*
609 * Simple boot time debug facilities
610 */
611 static char *prm_dbg_str[] = {
612 "%s:%d: '%s' is 0x%x\n",
613 "%s:%d: '%s' is 0x%llx\n"
614 };
615
616 int prom_debug;
617
618 #define PRM_DEBUG(q) if (prom_debug) \
619 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
620 #define PRM_POINT(q) if (prom_debug) \
621 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
622
623 /*
624 * This structure is used to keep track of the intial allocations
625 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
626 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
627 */
628 #define NUM_ALLOCATIONS 8
629 int num_allocations = 0;
630 struct {
631 void **al_ptr;
632 size_t al_size;
633 } allocations[NUM_ALLOCATIONS];
634 size_t valloc_sz = 0;
635 uintptr_t valloc_base;
636
637 #define ADD_TO_ALLOCATIONS(ptr, size) { \
638 size = ROUND_UP_PAGE(size); \
639 if (num_allocations == NUM_ALLOCATIONS) \
640 panic("too many ADD_TO_ALLOCATIONS()"); \
641 allocations[num_allocations].al_ptr = (void**)&ptr; \
642 allocations[num_allocations].al_size = size; \
643 valloc_sz += size; \
644 ++num_allocations; \
645 }
646
647 /*
648 * Allocate all the initial memory needed by the page allocator.
649 */
650 static void
perform_allocations(void)651 perform_allocations(void)
652 {
653 caddr_t mem;
654 int i;
655 int valloc_align;
656
657 PRM_DEBUG(valloc_base);
658 PRM_DEBUG(valloc_sz);
659 valloc_align = mmu.level_size[mmu.max_page_level > 0];
660 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
661 if (mem != (caddr_t)valloc_base)
662 panic("BOP_ALLOC() failed");
663 bzero(mem, valloc_sz);
664 for (i = 0; i < num_allocations; ++i) {
665 *allocations[i].al_ptr = (void *)mem;
666 mem += allocations[i].al_size;
667 }
668 }
669
670 /*
671 * Our world looks like this at startup time.
672 *
673 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
674 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
675 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
676 * addresses are fixed in the binary at link time.
677 *
678 * On the text page:
679 * unix/genunix/krtld/module text loads.
680 *
681 * On the data page:
682 * unix/genunix/krtld/module data loads.
683 *
684 * Machine-dependent startup code
685 */
686 void
startup(void)687 startup(void)
688 {
689 #if !defined(__xpv)
690 extern void startup_pci_bios(void);
691 #endif
692 extern cpuset_t cpu_ready_set;
693
694 /*
695 * Make sure that nobody tries to use sekpm until we have
696 * initialized it properly.
697 */
698 #if defined(__amd64)
699 kpm_desired = 1;
700 #endif
701 kpm_enable = 0;
702 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
703
704 #if defined(__xpv) /* XXPV fix me! */
705 {
706 extern int segvn_use_regions;
707 segvn_use_regions = 0;
708 }
709 #endif
710 progressbar_init();
711 startup_init();
712 #if defined(__xpv)
713 startup_xen_version();
714 #endif
715 startup_memlist();
716 startup_kmem();
717 startup_vm();
718 #if !defined(__xpv)
719 /*
720 * Note we need to do this even on fast reboot in order to access
721 * the irq routing table (used for pci labels).
722 */
723 startup_pci_bios();
724 #endif
725 #if defined(__xpv)
726 startup_xen_mca();
727 #endif
728 startup_modules();
729
730 startup_end();
731 }
732
733 static void
startup_init()734 startup_init()
735 {
736 PRM_POINT("startup_init() starting...");
737
738 /*
739 * Complete the extraction of cpuid data
740 */
741 cpuid_pass2(CPU);
742
743 (void) check_boot_version(BOP_GETVERSION(bootops));
744
745 /*
746 * Check for prom_debug in boot environment
747 */
748 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
749 ++prom_debug;
750 PRM_POINT("prom_debug found in boot enviroment");
751 }
752
753 /*
754 * Collect node, cpu and memory configuration information.
755 */
756 get_system_configuration();
757
758 /*
759 * Halt if this is an unsupported processor.
760 */
761 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
762 printf("\n486 processor (\"%s\") detected.\n",
763 CPU->cpu_brandstr);
764 halt("This processor is not supported by this release "
765 "of Solaris.");
766 }
767
768 PRM_POINT("startup_init() done");
769 }
770
771 /*
772 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
773 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
774 * also filters out physical page zero. There is some reliance on the
775 * boot loader allocating only a few contiguous physical memory chunks.
776 */
777 static void
avail_filter(uint64_t * addr,uint64_t * size)778 avail_filter(uint64_t *addr, uint64_t *size)
779 {
780 uintptr_t va;
781 uintptr_t next_va;
782 pfn_t pfn;
783 uint64_t pfn_addr;
784 uint64_t pfn_eaddr;
785 uint_t prot;
786 size_t len;
787 uint_t change;
788
789 if (prom_debug)
790 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
791 *addr, *size);
792
793 /*
794 * page zero is required for BIOS.. never make it available
795 */
796 if (*addr == 0) {
797 *addr += MMU_PAGESIZE;
798 *size -= MMU_PAGESIZE;
799 }
800
801 /*
802 * First we trim from the front of the range. Since kbm_probe()
803 * walks ranges in virtual order, but addr/size are physical, we need
804 * to the list until no changes are seen. This deals with the case
805 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
806 * but w < v.
807 */
808 do {
809 change = 0;
810 for (va = KERNEL_TEXT;
811 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
812 va = next_va) {
813
814 next_va = va + len;
815 pfn_addr = pfn_to_pa(pfn);
816 pfn_eaddr = pfn_addr + len;
817
818 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
819 change = 1;
820 while (*size > 0 && len > 0) {
821 *addr += MMU_PAGESIZE;
822 *size -= MMU_PAGESIZE;
823 len -= MMU_PAGESIZE;
824 }
825 }
826 }
827 if (change && prom_debug)
828 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
829 *addr, *size);
830 } while (change);
831
832 /*
833 * Trim pages from the end of the range.
834 */
835 for (va = KERNEL_TEXT;
836 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
837 va = next_va) {
838
839 next_va = va + len;
840 pfn_addr = pfn_to_pa(pfn);
841
842 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
843 *size = pfn_addr - *addr;
844 }
845
846 if (prom_debug)
847 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
848 *addr, *size);
849 }
850
851 static void
kpm_init()852 kpm_init()
853 {
854 struct segkpm_crargs b;
855
856 /*
857 * These variables were all designed for sfmmu in which segkpm is
858 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
859 * might use 2+ page sizes on a single machine, so none of these
860 * variables have a single correct value. They are set up as if we
861 * always use a 4KB pagesize, which should do no harm. In the long
862 * run, we should get rid of KPM's assumption that only a single
863 * pagesize is used.
864 */
865 kpm_pgshft = MMU_PAGESHIFT;
866 kpm_pgsz = MMU_PAGESIZE;
867 kpm_pgoff = MMU_PAGEOFFSET;
868 kpmp2pshft = 0;
869 kpmpnpgs = 1;
870 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
871
872 PRM_POINT("about to create segkpm");
873 rw_enter(&kas.a_lock, RW_WRITER);
874
875 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
876 panic("cannot attach segkpm");
877
878 b.prot = PROT_READ | PROT_WRITE;
879 b.nvcolors = 1;
880
881 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
882 panic("segkpm_create segkpm");
883
884 rw_exit(&kas.a_lock);
885 }
886
887 /*
888 * The debug info page provides enough information to allow external
889 * inspectors (e.g. when running under a hypervisor) to bootstrap
890 * themselves into allowing full-blown kernel debugging.
891 */
892 static void
init_debug_info(void)893 init_debug_info(void)
894 {
895 caddr_t mem;
896 debug_info_t *di;
897
898 #ifndef __lint
899 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
900 #endif
901
902 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
903 MMU_PAGESIZE);
904
905 if (mem != (caddr_t)DEBUG_INFO_VA)
906 panic("BOP_ALLOC() failed");
907 bzero(mem, MMU_PAGESIZE);
908
909 di = (debug_info_t *)mem;
910
911 di->di_magic = DEBUG_INFO_MAGIC;
912 di->di_version = DEBUG_INFO_VERSION;
913 di->di_modules = (uintptr_t)&modules;
914 di->di_s_text = (uintptr_t)s_text;
915 di->di_e_text = (uintptr_t)e_text;
916 di->di_s_data = (uintptr_t)s_data;
917 di->di_e_data = (uintptr_t)e_data;
918 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
919 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
920 }
921
922 /*
923 * Build the memlists and other kernel essential memory system data structures.
924 * This is everything at valloc_base.
925 */
926 static void
startup_memlist(void)927 startup_memlist(void)
928 {
929 size_t memlist_sz;
930 size_t memseg_sz;
931 size_t pagehash_sz;
932 size_t pp_sz;
933 uintptr_t va;
934 size_t len;
935 uint_t prot;
936 pfn_t pfn;
937 int memblocks;
938 pfn_t rsvd_high_pfn;
939 pgcnt_t rsvd_pgcnt;
940 size_t rsvdmemlist_sz;
941 int rsvdmemblocks;
942 caddr_t pagecolor_mem;
943 size_t pagecolor_memsz;
944 caddr_t page_ctrs_mem;
945 size_t page_ctrs_size;
946 size_t pse_table_alloc_size;
947 struct memlist *current;
948 extern void startup_build_mem_nodes(struct memlist *);
949
950 /* XX64 fix these - they should be in include files */
951 extern size_t page_coloring_init(uint_t, int, int);
952 extern void page_coloring_setup(caddr_t);
953
954 PRM_POINT("startup_memlist() starting...");
955
956 /*
957 * Use leftover large page nucleus text/data space for loadable modules.
958 * Use at most MODTEXT/MODDATA.
959 */
960 len = kbm_nucleus_size;
961 ASSERT(len > MMU_PAGESIZE);
962
963 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
964 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
965 if (e_moddata - moddata > MODDATA)
966 e_moddata = moddata + MODDATA;
967
968 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
969 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
970 if (e_modtext - modtext > MODTEXT)
971 e_modtext = modtext + MODTEXT;
972
973 econtig = e_moddata;
974
975 PRM_DEBUG(modtext);
976 PRM_DEBUG(e_modtext);
977 PRM_DEBUG(moddata);
978 PRM_DEBUG(e_moddata);
979 PRM_DEBUG(econtig);
980
981 /*
982 * Examine the boot loader physical memory map to find out:
983 * - total memory in system - physinstalled
984 * - the max physical address - physmax
985 * - the number of discontiguous segments of memory.
986 */
987 if (prom_debug)
988 print_memlist("boot physinstalled",
989 bootops->boot_mem->physinstalled);
990 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
991 &physinstalled, &memblocks);
992 PRM_DEBUG(physmax);
993 PRM_DEBUG(physinstalled);
994 PRM_DEBUG(memblocks);
995
996 /*
997 * Compute maximum physical address for memory DR operations.
998 * Memory DR operations are unsupported on xpv or 32bit OSes.
999 */
1000 #ifdef __amd64
1001 if (plat_dr_support_memory()) {
1002 if (plat_dr_physmax == 0) {
1003 uint_t pabits = UINT_MAX;
1004
1005 cpuid_get_addrsize(CPU, &pabits, NULL);
1006 plat_dr_physmax = btop(1ULL << pabits);
1007 }
1008 if (plat_dr_physmax > PHYSMEM_MAX64)
1009 plat_dr_physmax = PHYSMEM_MAX64;
1010 } else
1011 #endif
1012 plat_dr_physmax = 0;
1013
1014 /*
1015 * Examine the bios reserved memory to find out:
1016 * - the number of discontiguous segments of memory.
1017 */
1018 if (prom_debug)
1019 print_memlist("boot reserved mem",
1020 bootops->boot_mem->rsvdmem);
1021 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1022 &rsvd_pgcnt, &rsvdmemblocks);
1023 PRM_DEBUG(rsvd_high_pfn);
1024 PRM_DEBUG(rsvd_pgcnt);
1025 PRM_DEBUG(rsvdmemblocks);
1026
1027 /*
1028 * Initialize hat's mmu parameters.
1029 * Check for enforce-prot-exec in boot environment. It's used to
1030 * enable/disable support for the page table entry NX bit.
1031 * The default is to enforce PROT_EXEC on processors that support NX.
1032 * Boot seems to round up the "len", but 8 seems to be big enough.
1033 */
1034 mmu_init();
1035
1036 #ifdef __i386
1037 /*
1038 * physmax is lowered if there is more memory than can be
1039 * physically addressed in 32 bit (PAE/non-PAE) modes.
1040 */
1041 if (mmu.pae_hat) {
1042 if (PFN_ABOVE64G(physmax)) {
1043 physinstalled -= (physmax - (PFN_64G - 1));
1044 physmax = PFN_64G - 1;
1045 }
1046 } else {
1047 if (PFN_ABOVE4G(physmax)) {
1048 physinstalled -= (physmax - (PFN_4G - 1));
1049 physmax = PFN_4G - 1;
1050 }
1051 }
1052 #endif
1053
1054 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1055
1056 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1057 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1058 char value[8];
1059
1060 if (len < 8)
1061 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1062 else
1063 (void) strcpy(value, "");
1064 if (strcmp(value, "off") == 0)
1065 mmu.pt_nx = 0;
1066 }
1067 PRM_DEBUG(mmu.pt_nx);
1068
1069 /*
1070 * We will need page_t's for every page in the system, except for
1071 * memory mapped at or above above the start of the kernel text segment.
1072 *
1073 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1074 */
1075 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1076 obp_pages = 0;
1077 va = KERNEL_TEXT;
1078 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1079 npages -= len >> MMU_PAGESHIFT;
1080 if (va >= (uintptr_t)e_moddata)
1081 obp_pages += len >> MMU_PAGESHIFT;
1082 va += len;
1083 }
1084 PRM_DEBUG(npages);
1085 PRM_DEBUG(obp_pages);
1086
1087 /*
1088 * If physmem is patched to be non-zero, use it instead of the computed
1089 * value unless it is larger than the actual amount of memory on hand.
1090 */
1091 if (physmem == 0 || physmem > npages) {
1092 physmem = npages;
1093 } else if (physmem < npages) {
1094 orig_npages = npages;
1095 npages = physmem;
1096 }
1097 PRM_DEBUG(physmem);
1098
1099 /*
1100 * We now compute the sizes of all the initial allocations for
1101 * structures the kernel needs in order do kmem_alloc(). These
1102 * include:
1103 * memsegs
1104 * memlists
1105 * page hash table
1106 * page_t's
1107 * page coloring data structs
1108 */
1109 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1110 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1111 PRM_DEBUG(memseg_sz);
1112
1113 /*
1114 * Reserve space for memlists. There's no real good way to know exactly
1115 * how much room we'll need, but this should be a good upper bound.
1116 */
1117 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1118 (memblocks + POSS_NEW_FRAGMENTS));
1119 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1120 PRM_DEBUG(memlist_sz);
1121
1122 /*
1123 * Reserve space for bios reserved memlists.
1124 */
1125 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1126 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1127 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1128 PRM_DEBUG(rsvdmemlist_sz);
1129
1130 /* LINTED */
1131 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1132 /*
1133 * The page structure hash table size is a power of 2
1134 * such that the average hash chain length is PAGE_HASHAVELEN.
1135 */
1136 page_hashsz = npages / PAGE_HASHAVELEN;
1137 page_hashsz_shift = highbit(page_hashsz);
1138 page_hashsz = 1 << page_hashsz_shift;
1139 pagehash_sz = sizeof (struct page *) * page_hashsz;
1140 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1141 PRM_DEBUG(pagehash_sz);
1142
1143 /*
1144 * Set aside room for the page structures themselves.
1145 */
1146 PRM_DEBUG(npages);
1147 pp_sz = sizeof (struct page) * npages;
1148 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1149 PRM_DEBUG(pp_sz);
1150
1151 /*
1152 * determine l2 cache info and memory size for page coloring
1153 */
1154 (void) getl2cacheinfo(CPU,
1155 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1156 pagecolor_memsz =
1157 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1158 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1159 PRM_DEBUG(pagecolor_memsz);
1160
1161 page_ctrs_size = page_ctrs_sz();
1162 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1163 PRM_DEBUG(page_ctrs_size);
1164
1165 /*
1166 * Allocate the array that protects pp->p_selock.
1167 */
1168 pse_shift = size_pse_array(physmem, max_ncpus);
1169 pse_table_size = 1 << pse_shift;
1170 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1171 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1172
1173 #if defined(__amd64)
1174 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1175 valloc_base = VALLOC_BASE;
1176
1177 /*
1178 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1179 * for values of physmax up to 1 Terabyte. They need adjusting when
1180 * memory is at addresses above 1 TB. When adjusted, segkpm_base must
1181 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1182 */
1183 if (physmax + 1 > mmu_btop(TERABYTE) ||
1184 plat_dr_physmax > mmu_btop(TERABYTE)) {
1185 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1186
1187 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1188 kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1189 }
1190
1191 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount),
1192 KERNEL_REDZONE_SIZE)); /* down from top VA */
1193
1194 /* make sure we leave some space for user apps above hole */
1195 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1196 if (segkpm_base > SEGKPM_BASE)
1197 segkpm_base = SEGKPM_BASE;
1198 PRM_DEBUG(segkpm_base);
1199
1200 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1201 if (valloc_base < segkpm_base)
1202 panic("not enough kernel VA to support memory size");
1203 PRM_DEBUG(valloc_base);
1204 }
1205 #else /* __i386 */
1206 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1207 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1208 PRM_DEBUG(valloc_base);
1209 #endif /* __i386 */
1210
1211 /*
1212 * do all the initial allocations
1213 */
1214 perform_allocations();
1215
1216 /*
1217 * Build phys_install and phys_avail in kernel memspace.
1218 * - phys_install should be all memory in the system.
1219 * - phys_avail is phys_install minus any memory mapped before this
1220 * point above KERNEL_TEXT.
1221 */
1222 current = phys_install = memlist;
1223 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1224 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1225 panic("physinstalled was too big!");
1226 if (prom_debug)
1227 print_memlist("phys_install", phys_install);
1228
1229 phys_avail = current;
1230 PRM_POINT("Building phys_avail:\n");
1231 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1232 avail_filter);
1233 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1234 panic("physavail was too big!");
1235 if (prom_debug)
1236 print_memlist("phys_avail", phys_avail);
1237 #ifndef __xpv
1238 /*
1239 * Free unused memlist items, which may be used by memory DR driver
1240 * at runtime.
1241 */
1242 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1243 memlist_free_block((caddr_t)current,
1244 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1245 }
1246 #endif
1247
1248 /*
1249 * Build bios reserved memspace
1250 */
1251 current = bios_rsvd;
1252 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1253 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1254 panic("bios_rsvd was too big!");
1255 if (prom_debug)
1256 print_memlist("bios_rsvd", bios_rsvd);
1257 #ifndef __xpv
1258 /*
1259 * Free unused memlist items, which may be used by memory DR driver
1260 * at runtime.
1261 */
1262 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1263 memlist_free_block((caddr_t)current,
1264 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1265 }
1266 #endif
1267
1268 /*
1269 * setup page coloring
1270 */
1271 page_coloring_setup(pagecolor_mem);
1272 page_lock_init(); /* currently a no-op */
1273
1274 /*
1275 * free page list counters
1276 */
1277 (void) page_ctrs_alloc(page_ctrs_mem);
1278
1279 /*
1280 * Size the pcf array based on the number of cpus in the box at
1281 * boot time.
1282 */
1283
1284 pcf_init();
1285
1286 /*
1287 * Initialize the page structures from the memory lists.
1288 */
1289 availrmem_initial = availrmem = freemem = 0;
1290 PRM_POINT("Calling kphysm_init()...");
1291 npages = kphysm_init(pp_base, npages);
1292 PRM_POINT("kphysm_init() done");
1293 PRM_DEBUG(npages);
1294
1295 init_debug_info();
1296
1297 /*
1298 * Now that page_t's have been initialized, remove all the
1299 * initial allocation pages from the kernel free page lists.
1300 */
1301 boot_mapin((caddr_t)valloc_base, valloc_sz);
1302 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1303 PRM_POINT("startup_memlist() done");
1304
1305 PRM_DEBUG(valloc_sz);
1306
1307 #if defined(__amd64)
1308 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1309 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1310 extern size_t textrepl_size_thresh;
1311 textrepl_size_thresh = (16 << 20) - 1;
1312 }
1313 #endif
1314 }
1315
1316 /*
1317 * Layout the kernel's part of address space and initialize kmem allocator.
1318 */
1319 static void
startup_kmem(void)1320 startup_kmem(void)
1321 {
1322 extern void page_set_colorequiv_arr(void);
1323
1324 PRM_POINT("startup_kmem() starting...");
1325
1326 #if defined(__amd64)
1327 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1328 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1329 "systems.");
1330 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1331 core_base = (uintptr_t)COREHEAP_BASE;
1332 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1333 #else /* __i386 */
1334 /*
1335 * We configure kernelbase based on:
1336 *
1337 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1338 * KERNELBASE_MAX. we large page align eprom_kernelbase
1339 *
1340 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1341 * On large memory systems we must lower kernelbase to allow
1342 * enough room for page_t's for all of memory.
1343 *
1344 * The value set here, might be changed a little later.
1345 */
1346 if (eprom_kernelbase) {
1347 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1348 if (kernelbase > KERNELBASE_MAX)
1349 kernelbase = KERNELBASE_MAX;
1350 } else {
1351 kernelbase = (uintptr_t)KERNELBASE;
1352 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1353 }
1354 ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1355 core_base = valloc_base;
1356 core_size = 0;
1357 #endif /* __i386 */
1358
1359 PRM_DEBUG(core_base);
1360 PRM_DEBUG(core_size);
1361 PRM_DEBUG(kernelbase);
1362
1363 #if defined(__i386)
1364 segkp_fromheap = 1;
1365 #endif /* __i386 */
1366
1367 ekernelheap = (char *)core_base;
1368 PRM_DEBUG(ekernelheap);
1369
1370 /*
1371 * Now that we know the real value of kernelbase,
1372 * update variables that were initialized with a value of
1373 * KERNELBASE (in common/conf/param.c).
1374 *
1375 * XXX The problem with this sort of hackery is that the
1376 * compiler just may feel like putting the const declarations
1377 * (in param.c) into the .text section. Perhaps they should
1378 * just be declared as variables there?
1379 */
1380
1381 *(uintptr_t *)&_kernelbase = kernelbase;
1382 *(uintptr_t *)&_userlimit = kernelbase;
1383 #if defined(__amd64)
1384 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1385 #else
1386 *(uintptr_t *)&_userlimit32 = _userlimit;
1387 #endif
1388 PRM_DEBUG(_kernelbase);
1389 PRM_DEBUG(_userlimit);
1390 PRM_DEBUG(_userlimit32);
1391
1392 layout_kernel_va();
1393
1394 #if defined(__i386)
1395 /*
1396 * If segmap is too large we can push the bottom of the kernel heap
1397 * higher than the base. Or worse, it could exceed the top of the
1398 * VA space entirely, causing it to wrap around.
1399 */
1400 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1401 panic("too little address space available for kernelheap,"
1402 " use eeprom for lower kernelbase or smaller segmapsize");
1403 #endif /* __i386 */
1404
1405 /*
1406 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1407 */
1408 kernelheap_init(kernelheap, ekernelheap,
1409 kernelheap + MMU_PAGESIZE,
1410 (void *)core_base, (void *)(core_base + core_size));
1411
1412 #if defined(__xpv)
1413 /*
1414 * Link pending events struct into cpu struct
1415 */
1416 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1417 #endif
1418 /*
1419 * Initialize kernel memory allocator.
1420 */
1421 kmem_init();
1422
1423 /*
1424 * Factor in colorequiv to check additional 'equivalent' bins
1425 */
1426 page_set_colorequiv_arr();
1427
1428 /*
1429 * print this out early so that we know what's going on
1430 */
1431 print_x86_featureset(x86_featureset);
1432
1433 /*
1434 * Initialize bp_mapin().
1435 */
1436 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1437
1438 /*
1439 * orig_npages is non-zero if physmem has been configured for less
1440 * than the available memory.
1441 */
1442 if (orig_npages) {
1443 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1444 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1445 npages, orig_npages);
1446 }
1447 #if defined(__i386)
1448 if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1449 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1450 "System using 0x%lx",
1451 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1452 #endif
1453
1454 #ifdef KERNELBASE_ABI_MIN
1455 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1456 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1457 "i386 ABI compliant.", (uintptr_t)kernelbase);
1458 }
1459 #endif
1460
1461 #ifndef __xpv
1462 if (plat_dr_support_memory()) {
1463 mem_config_init();
1464 }
1465 #else /* __xpv */
1466 /*
1467 * Some of the xen start information has to be relocated up
1468 * into the kernel's permanent address space.
1469 */
1470 PRM_POINT("calling xen_relocate_start_info()");
1471 xen_relocate_start_info();
1472 PRM_POINT("xen_relocate_start_info() done");
1473
1474 /*
1475 * (Update the vcpu pointer in our cpu structure to point into
1476 * the relocated shared info.)
1477 */
1478 CPU->cpu_m.mcpu_vcpu_info =
1479 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1480 #endif /* __xpv */
1481
1482 PRM_POINT("startup_kmem() done");
1483 }
1484
1485 #ifndef __xpv
1486 /*
1487 * If we have detected that we are running in an HVM environment, we need
1488 * to prepend the PV driver directory to the module search path.
1489 */
1490 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1491 static void
update_default_path()1492 update_default_path()
1493 {
1494 char *current, *newpath;
1495 int newlen;
1496
1497 /*
1498 * We are about to resync with krtld. krtld will reset its
1499 * internal module search path iff Solaris has set default_path.
1500 * We want to be sure we're prepending this new directory to the
1501 * right search path.
1502 */
1503 current = (default_path == NULL) ? kobj_module_path : default_path;
1504
1505 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1506 newpath = kmem_alloc(newlen, KM_SLEEP);
1507 (void) strcpy(newpath, HVM_MOD_DIR);
1508 (void) strcat(newpath, " ");
1509 (void) strcat(newpath, current);
1510
1511 default_path = newpath;
1512 }
1513 #endif
1514
1515 static void
startup_modules(void)1516 startup_modules(void)
1517 {
1518 int cnt;
1519 extern void prom_setup(void);
1520 int32_t v, h;
1521 char d[11];
1522 char *cp;
1523 cmi_hdl_t hdl;
1524
1525 PRM_POINT("startup_modules() starting...");
1526
1527 #ifndef __xpv
1528 /*
1529 * Initialize ten-micro second timer so that drivers will
1530 * not get short changed in their init phase. This was
1531 * not getting called until clkinit which, on fast cpu's
1532 * caused the drv_usecwait to be way too short.
1533 */
1534 microfind();
1535
1536 if (get_hwenv() == HW_XEN_HVM)
1537 update_default_path();
1538 #endif
1539
1540 /*
1541 * Read the GMT lag from /etc/rtc_config.
1542 */
1543 sgmtl(process_rtc_config_file());
1544
1545 /*
1546 * Calculate default settings of system parameters based upon
1547 * maxusers, yet allow to be overridden via the /etc/system file.
1548 */
1549 param_calc(0);
1550
1551 mod_setup();
1552
1553 /*
1554 * Initialize system parameters.
1555 */
1556 param_init();
1557
1558 /*
1559 * Initialize the default brands
1560 */
1561 brand_init();
1562
1563 /*
1564 * maxmem is the amount of physical memory we're playing with.
1565 */
1566 maxmem = physmem;
1567
1568 /*
1569 * Initialize segment management stuff.
1570 */
1571 seg_init();
1572
1573 if (modload("fs", "specfs") == -1)
1574 halt("Can't load specfs");
1575
1576 if (modload("fs", "devfs") == -1)
1577 halt("Can't load devfs");
1578
1579 if (modload("fs", "dev") == -1)
1580 halt("Can't load dev");
1581
1582 if (modload("fs", "procfs") == -1)
1583 halt("Can't load procfs");
1584
1585 (void) modloadonly("sys", "lbl_edition");
1586
1587 dispinit();
1588
1589 /*
1590 * This is needed here to initialize hw_serial[] for cluster booting.
1591 */
1592 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1593 cmn_err(CE_WARN, "Unable to set hostid");
1594 } else {
1595 for (v = h, cnt = 0; cnt < 10; cnt++) {
1596 d[cnt] = (char)(v % 10);
1597 v /= 10;
1598 if (v == 0)
1599 break;
1600 }
1601 for (cp = hw_serial; cnt >= 0; cnt--)
1602 *cp++ = d[cnt] + '0';
1603 *cp = 0;
1604 }
1605
1606 /* Read cluster configuration data. */
1607 clconf_init();
1608
1609 #if defined(__xpv)
1610 (void) ec_init();
1611 gnttab_init();
1612 (void) xs_early_init();
1613 #endif /* __xpv */
1614
1615 /*
1616 * Create a kernel device tree. First, create rootnex and
1617 * then invoke bus specific code to probe devices.
1618 */
1619 setup_ddi();
1620
1621 #ifdef __xpv
1622 if (DOMAIN_IS_INITDOMAIN(xen_info))
1623 #endif
1624 {
1625 /*
1626 * Load the System Management BIOS into the global ksmbios
1627 * handle, if an SMBIOS is present on this system.
1628 */
1629 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1630 }
1631
1632
1633 /*
1634 * Set up the CPU module subsystem for the boot cpu in the native
1635 * case, and all physical cpu resource in the xpv dom0 case.
1636 * Modifies the device tree, so this must be done after
1637 * setup_ddi().
1638 */
1639 #ifdef __xpv
1640 /*
1641 * If paravirtualized and on dom0 then we initialize all physical
1642 * cpu handles now; if paravirtualized on a domU then do not
1643 * initialize.
1644 */
1645 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1646 xen_mc_lcpu_cookie_t cpi;
1647
1648 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1649 cpi = xen_physcpu_next(cpi)) {
1650 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1651 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1652 xen_physcpu_strandid(cpi))) != NULL &&
1653 is_x86_feature(x86_featureset, X86FSET_MCA))
1654 cmi_mca_init(hdl);
1655 }
1656 }
1657 #else
1658 /*
1659 * Initialize a handle for the boot cpu - others will initialize
1660 * as they startup. Do not do this if we know we are in an HVM domU.
1661 */
1662 if ((get_hwenv() != HW_XEN_HVM) &&
1663 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1664 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1665 is_x86_feature(x86_featureset, X86FSET_MCA)) {
1666 cmi_mca_init(hdl);
1667 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1668 }
1669 #endif /* __xpv */
1670
1671 /*
1672 * Fake a prom tree such that /dev/openprom continues to work
1673 */
1674 PRM_POINT("startup_modules: calling prom_setup...");
1675 prom_setup();
1676 PRM_POINT("startup_modules: done");
1677
1678 /*
1679 * Load all platform specific modules
1680 */
1681 PRM_POINT("startup_modules: calling psm_modload...");
1682 psm_modload();
1683
1684 PRM_POINT("startup_modules() done");
1685 }
1686
1687 /*
1688 * claim a "setaside" boot page for use in the kernel
1689 */
1690 page_t *
boot_claim_page(pfn_t pfn)1691 boot_claim_page(pfn_t pfn)
1692 {
1693 page_t *pp;
1694
1695 pp = page_numtopp_nolock(pfn);
1696 ASSERT(pp != NULL);
1697
1698 if (PP_ISBOOTPAGES(pp)) {
1699 if (pp->p_next != NULL)
1700 pp->p_next->p_prev = pp->p_prev;
1701 if (pp->p_prev == NULL)
1702 bootpages = pp->p_next;
1703 else
1704 pp->p_prev->p_next = pp->p_next;
1705 } else {
1706 /*
1707 * htable_attach() expects a base pagesize page
1708 */
1709 if (pp->p_szc != 0)
1710 page_boot_demote(pp);
1711 pp = page_numtopp(pfn, SE_EXCL);
1712 }
1713 return (pp);
1714 }
1715
1716 /*
1717 * Walk through the pagetables looking for pages mapped in by boot. If the
1718 * setaside flag is set the pages are expected to be returned to the
1719 * kernel later in boot, so we add them to the bootpages list.
1720 */
1721 static void
protect_boot_range(uintptr_t low,uintptr_t high,int setaside)1722 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1723 {
1724 uintptr_t va = low;
1725 size_t len;
1726 uint_t prot;
1727 pfn_t pfn;
1728 page_t *pp;
1729 pgcnt_t boot_protect_cnt = 0;
1730
1731 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1732 if (va + len >= high)
1733 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1734 "legal range.", len, (void *)va);
1735
1736 while (len > 0) {
1737 pp = page_numtopp_alloc(pfn);
1738 if (pp != NULL) {
1739 if (setaside == 0)
1740 panic("Unexpected mapping by boot. "
1741 "addr=%p pfn=%lx\n",
1742 (void *)va, pfn);
1743
1744 pp->p_next = bootpages;
1745 pp->p_prev = NULL;
1746 PP_SETBOOTPAGES(pp);
1747 if (bootpages != NULL) {
1748 bootpages->p_prev = pp;
1749 }
1750 bootpages = pp;
1751 ++boot_protect_cnt;
1752 }
1753
1754 ++pfn;
1755 len -= MMU_PAGESIZE;
1756 va += MMU_PAGESIZE;
1757 }
1758 }
1759 PRM_DEBUG(boot_protect_cnt);
1760 }
1761
1762 /*
1763 *
1764 */
1765 static void
layout_kernel_va(void)1766 layout_kernel_va(void)
1767 {
1768 PRM_POINT("layout_kernel_va() starting...");
1769 /*
1770 * Establish the final size of the kernel's heap, size of segmap,
1771 * segkp, etc.
1772 */
1773
1774 #if defined(__amd64)
1775
1776 kpm_vbase = (caddr_t)segkpm_base;
1777 if (physmax + 1 < plat_dr_physmax) {
1778 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1779 } else {
1780 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1781 }
1782 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1783 panic("not enough room for kpm!");
1784 PRM_DEBUG(kpm_size);
1785 PRM_DEBUG(kpm_vbase);
1786
1787 /*
1788 * By default we create a seg_kp in 64 bit kernels, it's a little
1789 * faster to access than embedding it in the heap.
1790 */
1791 segkp_base = (caddr_t)valloc_base + valloc_sz;
1792 if (!segkp_fromheap) {
1793 size_t sz = mmu_ptob(segkpsize);
1794
1795 /*
1796 * determine size of segkp
1797 */
1798 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1799 sz = SEGKPDEFSIZE;
1800 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1801 "segkpsize has been reset to %ld pages",
1802 mmu_btop(sz));
1803 }
1804 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1805
1806 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1807 }
1808 PRM_DEBUG(segkp_base);
1809 PRM_DEBUG(segkpsize);
1810
1811 /*
1812 * segzio is used for ZFS cached data. It uses a distinct VA
1813 * segment (from kernel heap) so that we can easily tell not to
1814 * include it in kernel crash dumps on 64 bit kernels. The trick is
1815 * to give it lots of VA, but not constrain the kernel heap.
1816 * We scale the size of segzio linearly with physmem up to
1817 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1818 */
1819 segzio_base = segkp_base + mmu_ptob(segkpsize);
1820 if (segzio_fromheap) {
1821 segziosize = 0;
1822 } else {
1823 size_t physmem_size = mmu_ptob(physmem);
1824 size_t size = (segziosize == 0) ?
1825 physmem_size : mmu_ptob(segziosize);
1826
1827 if (size < SEGZIOMINSIZE)
1828 size = SEGZIOMINSIZE;
1829 if (size > SEGZIOMAXSIZE) {
1830 size = SEGZIOMAXSIZE;
1831 if (physmem_size > size)
1832 size += (physmem_size - size) / 2;
1833 }
1834 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1835 }
1836 PRM_DEBUG(segziosize);
1837 PRM_DEBUG(segzio_base);
1838
1839 /*
1840 * Put the range of VA for device mappings next, kmdb knows to not
1841 * grep in this range of addresses.
1842 */
1843 toxic_addr =
1844 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1845 PRM_DEBUG(toxic_addr);
1846 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1847 #else /* __i386 */
1848 segmap_start = ROUND_UP_LPAGE(kernelbase);
1849 #endif /* __i386 */
1850 PRM_DEBUG(segmap_start);
1851
1852 /*
1853 * Users can change segmapsize through eeprom. If the variable
1854 * is tuned through eeprom, there is no upper bound on the
1855 * size of segmap.
1856 */
1857 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1858
1859 #if defined(__i386)
1860 /*
1861 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1862 * the bottom of the kernel's address range. Set aside space for a
1863 * small red zone just below the start of segmap.
1864 */
1865 segmap_start += KERNEL_REDZONE_SIZE;
1866 segmapsize -= KERNEL_REDZONE_SIZE;
1867 #endif
1868
1869 PRM_DEBUG(segmap_start);
1870 PRM_DEBUG(segmapsize);
1871 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1872 PRM_DEBUG(kernelheap);
1873 PRM_POINT("layout_kernel_va() done...");
1874 }
1875
1876 /*
1877 * Finish initializing the VM system, now that we are no longer
1878 * relying on the boot time memory allocators.
1879 */
1880 static void
startup_vm(void)1881 startup_vm(void)
1882 {
1883 struct segmap_crargs a;
1884
1885 extern int use_brk_lpg, use_stk_lpg;
1886
1887 PRM_POINT("startup_vm() starting...");
1888
1889 /*
1890 * Initialize the hat layer.
1891 */
1892 hat_init();
1893
1894 /*
1895 * Do final allocations of HAT data structures that need to
1896 * be allocated before quiescing the boot loader.
1897 */
1898 PRM_POINT("Calling hat_kern_alloc()...");
1899 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1900 PRM_POINT("hat_kern_alloc() done");
1901
1902 #ifndef __xpv
1903 /*
1904 * Setup Page Attribute Table
1905 */
1906 pat_sync();
1907 #endif
1908
1909 /*
1910 * The next two loops are done in distinct steps in order
1911 * to be sure that any page that is doubly mapped (both above
1912 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1913 * Note this may never happen, but it might someday.
1914 */
1915 bootpages = NULL;
1916 PRM_POINT("Protecting boot pages");
1917
1918 /*
1919 * Protect any pages mapped above KERNEL_TEXT that somehow have
1920 * page_t's. This can only happen if something weird allocated
1921 * in this range (like kadb/kmdb).
1922 */
1923 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1924
1925 /*
1926 * Before we can take over memory allocation/mapping from the boot
1927 * loader we must remove from our free page lists any boot allocated
1928 * pages that stay mapped until release_bootstrap().
1929 */
1930 protect_boot_range(0, kernelbase, 1);
1931
1932
1933 /*
1934 * Switch to running on regular HAT (not boot_mmu)
1935 */
1936 PRM_POINT("Calling hat_kern_setup()...");
1937 hat_kern_setup();
1938
1939 /*
1940 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1941 */
1942 bop_no_more_mem();
1943
1944 PRM_POINT("hat_kern_setup() done");
1945
1946 hat_cpu_online(CPU);
1947
1948 /*
1949 * Initialize VM system
1950 */
1951 PRM_POINT("Calling kvm_init()...");
1952 kvm_init();
1953 PRM_POINT("kvm_init() done");
1954
1955 /*
1956 * Tell kmdb that the VM system is now working
1957 */
1958 if (boothowto & RB_DEBUG)
1959 kdi_dvec_vmready();
1960
1961 #if defined(__xpv)
1962 /*
1963 * Populate the I/O pool on domain 0
1964 */
1965 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1966 extern long populate_io_pool(void);
1967 long init_io_pool_cnt;
1968
1969 PRM_POINT("Populating reserve I/O page pool");
1970 init_io_pool_cnt = populate_io_pool();
1971 PRM_DEBUG(init_io_pool_cnt);
1972 }
1973 #endif
1974 /*
1975 * Mangle the brand string etc.
1976 */
1977 cpuid_pass3(CPU);
1978
1979 #if defined(__amd64)
1980
1981 /*
1982 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1983 */
1984 device_arena = vmem_create("device", (void *)toxic_addr,
1985 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1986
1987 #else /* __i386 */
1988
1989 /*
1990 * allocate the bit map that tracks toxic pages
1991 */
1992 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1993 PRM_DEBUG(toxic_bit_map_len);
1994 toxic_bit_map =
1995 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1996 ASSERT(toxic_bit_map != NULL);
1997 PRM_DEBUG(toxic_bit_map);
1998
1999 #endif /* __i386 */
2000
2001
2002 /*
2003 * Now that we've got more VA, as well as the ability to allocate from
2004 * it, tell the debugger.
2005 */
2006 if (boothowto & RB_DEBUG)
2007 kdi_dvec_memavail();
2008
2009 /*
2010 * The following code installs a special page fault handler (#pf)
2011 * to work around a pentium bug.
2012 */
2013 #if !defined(__amd64) && !defined(__xpv)
2014 if (x86_type == X86_TYPE_P5) {
2015 desctbr_t idtr;
2016 gate_desc_t *newidt;
2017
2018 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2019 panic("failed to install pentium_pftrap");
2020
2021 bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2022 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2023 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2024
2025 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2026 PROT_READ | PROT_EXEC);
2027
2028 CPU->cpu_idt = newidt;
2029 idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2030 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2031 wr_idtr(&idtr);
2032 }
2033 #endif /* !__amd64 */
2034
2035 #if !defined(__xpv)
2036 /*
2037 * Map page pfn=0 for drivers, such as kd, that need to pick up
2038 * parameters left there by controllers/BIOS.
2039 */
2040 PRM_POINT("setup up p0_va");
2041 p0_va = i86devmap(0, 1, PROT_READ);
2042 PRM_DEBUG(p0_va);
2043 #endif
2044
2045 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2046 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2047
2048 /*
2049 * disable automatic large pages for small memory systems or
2050 * when the disable flag is set.
2051 *
2052 * Do not yet consider page sizes larger than 2m/4m.
2053 */
2054 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2055 max_uheap_lpsize = LEVEL_SIZE(1);
2056 max_ustack_lpsize = LEVEL_SIZE(1);
2057 max_privmap_lpsize = LEVEL_SIZE(1);
2058 max_uidata_lpsize = LEVEL_SIZE(1);
2059 max_utext_lpsize = LEVEL_SIZE(1);
2060 max_shm_lpsize = LEVEL_SIZE(1);
2061 }
2062 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2063 auto_lpg_disable) {
2064 use_brk_lpg = 0;
2065 use_stk_lpg = 0;
2066 }
2067 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2068
2069 PRM_POINT("Calling hat_init_finish()...");
2070 hat_init_finish();
2071 PRM_POINT("hat_init_finish() done");
2072
2073 /*
2074 * Initialize the segkp segment type.
2075 */
2076 rw_enter(&kas.a_lock, RW_WRITER);
2077 PRM_POINT("Attaching segkp");
2078 if (segkp_fromheap) {
2079 segkp->s_as = &kas;
2080 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2081 segkp) < 0) {
2082 panic("startup: cannot attach segkp");
2083 /*NOTREACHED*/
2084 }
2085 PRM_POINT("Doing segkp_create()");
2086 if (segkp_create(segkp) != 0) {
2087 panic("startup: segkp_create failed");
2088 /*NOTREACHED*/
2089 }
2090 PRM_DEBUG(segkp);
2091 rw_exit(&kas.a_lock);
2092
2093 /*
2094 * kpm segment
2095 */
2096 segmap_kpm = 0;
2097 if (kpm_desired) {
2098 kpm_init();
2099 kpm_enable = 1;
2100 }
2101
2102 /*
2103 * Now create segmap segment.
2104 */
2105 rw_enter(&kas.a_lock, RW_WRITER);
2106 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2107 panic("cannot attach segmap");
2108 /*NOTREACHED*/
2109 }
2110 PRM_DEBUG(segmap);
2111
2112 a.prot = PROT_READ | PROT_WRITE;
2113 a.shmsize = 0;
2114 a.nfreelist = segmapfreelists;
2115
2116 if (segmap_create(segmap, (caddr_t)&a) != 0)
2117 panic("segmap_create segmap");
2118 rw_exit(&kas.a_lock);
2119
2120 setup_vaddr_for_ppcopy(CPU);
2121
2122 segdev_init();
2123 #if defined(__xpv)
2124 if (DOMAIN_IS_INITDOMAIN(xen_info))
2125 #endif
2126 pmem_init();
2127
2128 PRM_POINT("startup_vm() done");
2129 }
2130
2131 /*
2132 * Load a tod module for the non-standard tod part found on this system.
2133 */
2134 static void
load_tod_module(char * todmod)2135 load_tod_module(char *todmod)
2136 {
2137 if (modload("tod", todmod) == -1)
2138 halt("Can't load TOD module");
2139 }
2140
2141 static void
startup_end(void)2142 startup_end(void)
2143 {
2144 int i;
2145 extern void setx86isalist(void);
2146 extern void cpu_event_init(void);
2147
2148 PRM_POINT("startup_end() starting...");
2149
2150 /*
2151 * Perform tasks that get done after most of the VM
2152 * initialization has been done but before the clock
2153 * and other devices get started.
2154 */
2155 kern_setup1();
2156
2157 /*
2158 * Perform CPC initialization for this CPU.
2159 */
2160 kcpc_hw_init(CPU);
2161
2162 /*
2163 * Initialize cpu event framework.
2164 */
2165 cpu_event_init();
2166
2167 #if defined(OPTERON_WORKAROUND_6323525)
2168 if (opteron_workaround_6323525)
2169 patch_workaround_6323525();
2170 #endif
2171 /*
2172 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2173 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2174 */
2175 if (tod_module_name != NULL) {
2176 PRM_POINT("load_tod_module()");
2177 load_tod_module(tod_module_name);
2178 }
2179
2180 #if defined(__xpv)
2181 /*
2182 * Forceload interposing TOD module for the hypervisor.
2183 */
2184 PRM_POINT("load_tod_module()");
2185 load_tod_module("xpvtod");
2186 #endif
2187
2188 /*
2189 * Configure the system.
2190 */
2191 PRM_POINT("Calling configure()...");
2192 configure(); /* set up devices */
2193 PRM_POINT("configure() done");
2194
2195 /*
2196 * We can now setup for XSAVE because fpu_probe is done in configure().
2197 */
2198 if (fp_save_mech == FP_XSAVE) {
2199 xsave_setup_msr(CPU);
2200 }
2201
2202 /*
2203 * Set the isa_list string to the defined instruction sets we
2204 * support.
2205 */
2206 setx86isalist();
2207 cpu_intr_alloc(CPU, NINTR_THREADS);
2208 psm_install();
2209
2210 /*
2211 * We're done with bootops. We don't unmap the bootstrap yet because
2212 * we're still using bootsvcs.
2213 */
2214 PRM_POINT("NULLing out bootops");
2215 *bootopsp = (struct bootops *)NULL;
2216 bootops = (struct bootops *)NULL;
2217
2218 #if defined(__xpv)
2219 ec_init_debug_irq();
2220 xs_domu_init();
2221 #endif
2222
2223 #if defined(__amd64) && !defined(__xpv)
2224 /*
2225 * Intel IOMMU has been setup/initialized in ddi_impl.c
2226 * Start it up now.
2227 */
2228 immu_startup();
2229 #endif
2230
2231 PRM_POINT("Enabling interrupts");
2232 (*picinitf)();
2233 sti();
2234 #if defined(__xpv)
2235 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2236 xen_late_startup();
2237 #endif
2238
2239 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2240 "softlevel1", NULL, NULL); /* XXX to be moved later */
2241
2242 /*
2243 * Register these software interrupts for ddi timer.
2244 * Software interrupts up to the level 10 are supported.
2245 */
2246 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2247 char name[sizeof ("timer_softintr") + 2];
2248 (void) sprintf(name, "timer_softintr%02d", i);
2249 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2250 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
2251 }
2252
2253 #if !defined(__xpv)
2254 if (modload("drv", "amd_iommu") < 0) {
2255 PRM_POINT("No AMD IOMMU present\n");
2256 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2257 "amd_iommu")) == NULL) {
2258 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2259 }
2260 #endif
2261 post_startup_cpu_fixups();
2262
2263 PRM_POINT("startup_end() done");
2264 }
2265
2266 /*
2267 * Don't remove the following 2 variables. They are necessary
2268 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2269 */
2270 char *_hs1107 = hw_serial;
2271 ulong_t _bdhs34;
2272
2273 void
post_startup(void)2274 post_startup(void)
2275 {
2276 extern void cpupm_init(cpu_t *);
2277 extern void cpu_event_init_cpu(cpu_t *);
2278
2279 /*
2280 * Set the system wide, processor-specific flags to be passed
2281 * to userland via the aux vector for performance hints and
2282 * instruction set extensions.
2283 */
2284 bind_hwcap();
2285
2286 #ifdef __xpv
2287 if (DOMAIN_IS_INITDOMAIN(xen_info))
2288 #endif
2289 {
2290 #if defined(__xpv)
2291 xpv_panic_init();
2292 #else
2293 /*
2294 * Startup the memory scrubber.
2295 * XXPV This should be running somewhere ..
2296 */
2297 if (get_hwenv() != HW_XEN_HVM)
2298 memscrub_init();
2299 #endif
2300 }
2301
2302 /*
2303 * Complete CPU module initialization
2304 */
2305 cmi_post_startup();
2306
2307 /*
2308 * Perform forceloading tasks for /etc/system.
2309 */
2310 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2311
2312 /*
2313 * ON4.0: Force /proc module in until clock interrupt handle fixed
2314 * ON4.0: This must be fixed or restated in /etc/systems.
2315 */
2316 (void) modload("fs", "procfs");
2317
2318 (void) i_ddi_attach_hw_nodes("pit_beep");
2319
2320 #if defined(__i386)
2321 /*
2322 * Check for required functional Floating Point hardware,
2323 * unless FP hardware explicitly disabled.
2324 */
2325 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2326 halt("No working FP hardware found");
2327 #endif
2328
2329 maxmem = freemem;
2330
2331 cpu_event_init_cpu(CPU);
2332 cpupm_init(CPU);
2333 (void) mach_cpu_create_device_node(CPU, NULL);
2334
2335 pg_init();
2336 }
2337
2338 static int
pp_in_range(page_t * pp,uint64_t low_addr,uint64_t high_addr)2339 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2340 {
2341 return ((pp->p_pagenum >= btop(low_addr)) &&
2342 (pp->p_pagenum < btopr(high_addr)));
2343 }
2344
2345 void
release_bootstrap(void)2346 release_bootstrap(void)
2347 {
2348 int root_is_ramdisk;
2349 page_t *pp;
2350 extern void kobj_boot_unmountroot(void);
2351 extern dev_t rootdev;
2352 #if !defined(__xpv)
2353 pfn_t pfn;
2354 #endif
2355
2356 /* unmount boot ramdisk and release kmem usage */
2357 kobj_boot_unmountroot();
2358
2359 /*
2360 * We're finished using the boot loader so free its pages.
2361 */
2362 PRM_POINT("Unmapping lower boot pages");
2363
2364 clear_boot_mappings(0, _userlimit);
2365
2366 postbootkernelbase = kernelbase;
2367
2368 /*
2369 * If root isn't on ramdisk, destroy the hardcoded
2370 * ramdisk node now and release the memory. Else,
2371 * ramdisk memory is kept in rd_pages.
2372 */
2373 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2374 if (!root_is_ramdisk) {
2375 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2376 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2377 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2378 (void) ddi_remove_child(dip, 0);
2379 }
2380
2381 PRM_POINT("Releasing boot pages");
2382 while (bootpages) {
2383 extern uint64_t ramdisk_start, ramdisk_end;
2384 pp = bootpages;
2385 bootpages = pp->p_next;
2386
2387
2388 /* Keep pages for the lower 64K */
2389 if (pp_in_range(pp, 0, 0x40000)) {
2390 pp->p_next = lower_pages;
2391 lower_pages = pp;
2392 lower_pages_count++;
2393 continue;
2394 }
2395
2396
2397 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2398 ramdisk_end)) {
2399 pp->p_next = rd_pages;
2400 rd_pages = pp;
2401 continue;
2402 }
2403 pp->p_next = (struct page *)0;
2404 pp->p_prev = (struct page *)0;
2405 PP_CLRBOOTPAGES(pp);
2406 page_free(pp, 1);
2407 }
2408 PRM_POINT("Boot pages released");
2409
2410 #if !defined(__xpv)
2411 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2412 /*
2413 * Find 1 page below 1 MB so that other processors can boot up or
2414 * so that any processor can resume.
2415 * Make sure it has a kernel VA as well as a 1:1 mapping.
2416 * We should have just free'd one up.
2417 */
2418
2419 /*
2420 * 0x10 pages is 64K. Leave the bottom 64K alone
2421 * for BIOS.
2422 */
2423 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2424 if (page_numtopp_alloc(pfn) == NULL)
2425 continue;
2426 rm_platter_va = i86devmap(pfn, 1,
2427 PROT_READ | PROT_WRITE | PROT_EXEC);
2428 rm_platter_pa = ptob(pfn);
2429 break;
2430 }
2431 if (pfn == btop(1*1024*1024) && use_mp)
2432 panic("No page below 1M available for starting "
2433 "other processors or for resuming from system-suspend");
2434 #endif /* !__xpv */
2435 }
2436
2437 /*
2438 * Initialize the platform-specific parts of a page_t.
2439 */
2440 void
add_physmem_cb(page_t * pp,pfn_t pnum)2441 add_physmem_cb(page_t *pp, pfn_t pnum)
2442 {
2443 pp->p_pagenum = pnum;
2444 pp->p_mapping = NULL;
2445 pp->p_embed = 0;
2446 pp->p_share = 0;
2447 pp->p_mlentry = 0;
2448 }
2449
2450 /*
2451 * kphysm_init() initializes physical memory.
2452 */
2453 static pgcnt_t
kphysm_init(page_t * pp,pgcnt_t npages)2454 kphysm_init(
2455 page_t *pp,
2456 pgcnt_t npages)
2457 {
2458 struct memlist *pmem;
2459 struct memseg *cur_memseg;
2460 pfn_t base_pfn;
2461 pfn_t end_pfn;
2462 pgcnt_t num;
2463 pgcnt_t pages_done = 0;
2464 uint64_t addr;
2465 uint64_t size;
2466 extern pfn_t ddiphysmin;
2467 extern int mnode_xwa;
2468 int ms = 0, me = 0;
2469
2470 ASSERT(page_hash != NULL && page_hashsz != 0);
2471
2472 cur_memseg = memseg_base;
2473 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2474 /*
2475 * In a 32 bit kernel can't use higher memory if we're
2476 * not booting in PAE mode. This check takes care of that.
2477 */
2478 addr = pmem->ml_address;
2479 size = pmem->ml_size;
2480 if (btop(addr) > physmax)
2481 continue;
2482
2483 /*
2484 * align addr and size - they may not be at page boundaries
2485 */
2486 if ((addr & MMU_PAGEOFFSET) != 0) {
2487 addr += MMU_PAGEOFFSET;
2488 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2489 size -= addr - pmem->ml_address;
2490 }
2491
2492 /* only process pages below or equal to physmax */
2493 if ((btop(addr + size) - 1) > physmax)
2494 size = ptob(physmax - btop(addr) + 1);
2495
2496 num = btop(size);
2497 if (num == 0)
2498 continue;
2499
2500 if (num > npages)
2501 num = npages;
2502
2503 npages -= num;
2504 pages_done += num;
2505 base_pfn = btop(addr);
2506
2507 if (prom_debug)
2508 prom_printf("MEMSEG addr=0x%" PRIx64
2509 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2510 addr, num, base_pfn, base_pfn + num);
2511
2512 /*
2513 * Ignore pages below ddiphysmin to simplify ddi memory
2514 * allocation with non-zero addr_lo requests.
2515 */
2516 if (base_pfn < ddiphysmin) {
2517 if (base_pfn + num <= ddiphysmin)
2518 continue;
2519 pp += (ddiphysmin - base_pfn);
2520 num -= (ddiphysmin - base_pfn);
2521 base_pfn = ddiphysmin;
2522 }
2523
2524 /*
2525 * mnode_xwa is greater than 1 when large pages regions can
2526 * cross memory node boundaries. To prevent the formation
2527 * of these large pages, configure the memsegs based on the
2528 * memory node ranges which had been made non-contiguous.
2529 */
2530 if (mnode_xwa > 1) {
2531
2532 end_pfn = base_pfn + num - 1;
2533 ms = PFN_2_MEM_NODE(base_pfn);
2534 me = PFN_2_MEM_NODE(end_pfn);
2535
2536 if (ms != me) {
2537 /*
2538 * current range spans more than 1 memory node.
2539 * Set num to only the pfn range in the start
2540 * memory node.
2541 */
2542 num = mem_node_config[ms].physmax - base_pfn
2543 + 1;
2544 ASSERT(end_pfn > mem_node_config[ms].physmax);
2545 }
2546 }
2547
2548 for (;;) {
2549 /*
2550 * Build the memsegs entry
2551 */
2552 cur_memseg->pages = pp;
2553 cur_memseg->epages = pp + num;
2554 cur_memseg->pages_base = base_pfn;
2555 cur_memseg->pages_end = base_pfn + num;
2556
2557 /*
2558 * Insert into memseg list in decreasing pfn range
2559 * order. Low memory is typically more fragmented such
2560 * that this ordering keeps the larger ranges at the
2561 * front of the list for code that searches memseg.
2562 * This ASSERTS that the memsegs coming in from boot
2563 * are in increasing physical address order and not
2564 * contiguous.
2565 */
2566 if (memsegs != NULL) {
2567 ASSERT(cur_memseg->pages_base >=
2568 memsegs->pages_end);
2569 cur_memseg->next = memsegs;
2570 }
2571 memsegs = cur_memseg;
2572
2573 /*
2574 * add_physmem() initializes the PSM part of the page
2575 * struct by calling the PSM back with add_physmem_cb().
2576 * In addition it coalesces pages into larger pages as
2577 * it initializes them.
2578 */
2579 add_physmem(pp, num, base_pfn);
2580 cur_memseg++;
2581 availrmem_initial += num;
2582 availrmem += num;
2583
2584 pp += num;
2585 if (ms >= me)
2586 break;
2587
2588 /* process next memory node range */
2589 ms++;
2590 base_pfn = mem_node_config[ms].physbase;
2591 num = MIN(mem_node_config[ms].physmax,
2592 end_pfn) - base_pfn + 1;
2593 }
2594 }
2595
2596 PRM_DEBUG(availrmem_initial);
2597 PRM_DEBUG(availrmem);
2598 PRM_DEBUG(freemem);
2599 build_pfn_hash();
2600 return (pages_done);
2601 }
2602
2603 /*
2604 * Kernel VM initialization.
2605 */
2606 static void
kvm_init(void)2607 kvm_init(void)
2608 {
2609 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2610
2611 /*
2612 * Put the kernel segments in kernel address space.
2613 */
2614 rw_enter(&kas.a_lock, RW_WRITER);
2615 as_avlinit(&kas);
2616
2617 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2618 (void) segkmem_create(&ktextseg);
2619
2620 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2621 (void) segkmem_create(&kvalloc);
2622
2623 (void) seg_attach(&kas, kernelheap,
2624 ekernelheap - kernelheap, &kvseg);
2625 (void) segkmem_create(&kvseg);
2626
2627 if (core_size > 0) {
2628 PRM_POINT("attaching kvseg_core");
2629 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2630 &kvseg_core);
2631 (void) segkmem_create(&kvseg_core);
2632 }
2633
2634 if (segziosize > 0) {
2635 PRM_POINT("attaching segzio");
2636 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2637 &kzioseg);
2638 (void) segkmem_zio_create(&kzioseg);
2639
2640 /* create zio area covering new segment */
2641 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2642 }
2643
2644 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2645 (void) segkmem_create(&kdebugseg);
2646
2647 rw_exit(&kas.a_lock);
2648
2649 /*
2650 * Ensure that the red zone at kernelbase is never accessible.
2651 */
2652 PRM_POINT("protecting redzone");
2653 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2654
2655 /*
2656 * Make the text writable so that it can be hot patched by DTrace.
2657 */
2658 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2659 PROT_READ | PROT_WRITE | PROT_EXEC);
2660
2661 /*
2662 * Make data writable until end.
2663 */
2664 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2665 PROT_READ | PROT_WRITE | PROT_EXEC);
2666 }
2667
2668 #ifndef __xpv
2669 /*
2670 * Solaris adds an entry for Write Combining caching to the PAT
2671 */
2672 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2673
2674 void
pat_sync(void)2675 pat_sync(void)
2676 {
2677 ulong_t cr0, cr0_orig, cr4;
2678
2679 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2680 return;
2681 cr0_orig = cr0 = getcr0();
2682 cr4 = getcr4();
2683
2684 /* disable caching and flush all caches and TLBs */
2685 cr0 |= CR0_CD;
2686 cr0 &= ~CR0_NW;
2687 setcr0(cr0);
2688 invalidate_cache();
2689 if (cr4 & CR4_PGE) {
2690 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2691 setcr4(cr4);
2692 } else {
2693 reload_cr3();
2694 }
2695
2696 /* add our entry to the PAT */
2697 wrmsr(REG_PAT, pat_attr_reg);
2698
2699 /* flush TLBs and cache again, then reenable cr0 caching */
2700 if (cr4 & CR4_PGE) {
2701 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2702 setcr4(cr4);
2703 } else {
2704 reload_cr3();
2705 }
2706 invalidate_cache();
2707 setcr0(cr0_orig);
2708 }
2709
2710 #endif /* !__xpv */
2711
2712 #if defined(_SOFT_HOSTID)
2713 /*
2714 * On platforms that do not have a hardware serial number, attempt
2715 * to set one based on the contents of /etc/hostid. If this file does
2716 * not exist, assume that we are to generate a new hostid and set
2717 * it in the kernel, for subsequent saving by a userland process
2718 * once the system is up and the root filesystem is mounted r/w.
2719 *
2720 * In order to gracefully support upgrade on OpenSolaris, if
2721 * /etc/hostid does not exist, we will attempt to get a serial number
2722 * using the legacy method (/kernel/misc/sysinit).
2723 *
2724 * In an attempt to make the hostid less prone to abuse
2725 * (for license circumvention, etc), we store it in /etc/hostid
2726 * in rot47 format.
2727 */
2728 extern volatile unsigned long tenmicrodata;
2729 static int atoi(char *);
2730
2731 static int32_t
set_soft_hostid(void)2732 set_soft_hostid(void)
2733 {
2734 struct _buf *file;
2735 char tokbuf[MAXNAMELEN];
2736 token_t token;
2737 int done = 0;
2738 u_longlong_t tmp;
2739 int i;
2740 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2741 unsigned char *c;
2742 hrtime_t tsc;
2743
2744 /*
2745 * If /etc/hostid file not found, we'd like to get a pseudo
2746 * random number to use at the hostid. A nice way to do this
2747 * is to read the real time clock. To remain xen-compatible,
2748 * we can't poke the real hardware, so we use tsc_read() to
2749 * read the real time clock. However, there is an ominous
2750 * warning in tsc_read that says it can return zero, so we
2751 * deal with that possibility by falling back to using the
2752 * (hopefully random enough) value in tenmicrodata.
2753 */
2754
2755 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2756 /*
2757 * hostid file not found - try to load sysinit module
2758 * and see if it has a nonzero hostid value...use that
2759 * instead of generating a new hostid here if so.
2760 */
2761 if ((i = modload("misc", "sysinit")) != -1) {
2762 if (strlen(hw_serial) > 0)
2763 hostid = (int32_t)atoi(hw_serial);
2764 (void) modunload(i);
2765 }
2766 if (hostid == HW_INVALID_HOSTID) {
2767 tsc = tsc_read();
2768 if (tsc == 0) /* tsc_read can return zero sometimes */
2769 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2770 else
2771 hostid = (int32_t)tsc & 0x0CFFFFF;
2772 }
2773 } else {
2774 /* hostid file found */
2775 while (!done) {
2776 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2777
2778 switch (token) {
2779 case POUND:
2780 /*
2781 * skip comments
2782 */
2783 kobj_find_eol(file);
2784 break;
2785 case STRING:
2786 /*
2787 * un-rot47 - obviously this
2788 * nonsense is ascii-specific
2789 */
2790 for (c = (unsigned char *)tokbuf;
2791 *c != '\0'; c++) {
2792 *c += 47;
2793 if (*c > '~')
2794 *c -= 94;
2795 else if (*c < '!')
2796 *c += 94;
2797 }
2798 /*
2799 * now we should have a real number
2800 */
2801
2802 if (kobj_getvalue(tokbuf, &tmp) != 0)
2803 kobj_file_err(CE_WARN, file,
2804 "Bad value %s for hostid",
2805 tokbuf);
2806 else
2807 hostid = (int32_t)tmp;
2808
2809 break;
2810 case EOF:
2811 done = 1;
2812 /* FALLTHROUGH */
2813 case NEWLINE:
2814 kobj_newline(file);
2815 break;
2816 default:
2817 break;
2818
2819 }
2820 }
2821 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2822 kobj_file_err(CE_WARN, file,
2823 "hostid missing or corrupt");
2824
2825 kobj_close_file(file);
2826 }
2827 /*
2828 * hostid is now the value read from /etc/hostid, or the
2829 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2830 * set.
2831 */
2832 return (hostid);
2833 }
2834
2835 static int
atoi(char * p)2836 atoi(char *p)
2837 {
2838 int i = 0;
2839
2840 while (*p != '\0')
2841 i = 10 * i + (*p++ - '0');
2842
2843 return (i);
2844 }
2845
2846 #endif /* _SOFT_HOSTID */
2847
2848 void
get_system_configuration(void)2849 get_system_configuration(void)
2850 {
2851 char prop[32];
2852 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2853
2854 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2855 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2856 kobj_getvalue(prop, &nodes_ll) == -1 ||
2857 nodes_ll > MAXNODES ||
2858 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2859 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2860 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2861 system_hardware.hd_nodes = 1;
2862 system_hardware.hd_cpus_per_node = 0;
2863 } else {
2864 system_hardware.hd_nodes = (int)nodes_ll;
2865 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2866 }
2867
2868 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2869 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2870 kobj_getvalue(prop, &lvalue) == -1)
2871 eprom_kernelbase = NULL;
2872 else
2873 eprom_kernelbase = (uintptr_t)lvalue;
2874
2875 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2876 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2877 kobj_getvalue(prop, &lvalue) == -1)
2878 segmapsize = SEGMAPDEFAULT;
2879 else
2880 segmapsize = (uintptr_t)lvalue;
2881
2882 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2883 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2884 kobj_getvalue(prop, &lvalue) == -1)
2885 segmapfreelists = 0; /* use segmap driver default */
2886 else
2887 segmapfreelists = (int)lvalue;
2888
2889 /* physmem used to be here, but moved much earlier to fakebop.c */
2890 }
2891
2892 /*
2893 * Add to a memory list.
2894 * start = start of new memory segment
2895 * len = length of new memory segment in bytes
2896 * new = pointer to a new struct memlist
2897 * memlistp = memory list to which to add segment.
2898 */
2899 void
memlist_add(uint64_t start,uint64_t len,struct memlist * new,struct memlist ** memlistp)2900 memlist_add(
2901 uint64_t start,
2902 uint64_t len,
2903 struct memlist *new,
2904 struct memlist **memlistp)
2905 {
2906 struct memlist *cur;
2907 uint64_t end = start + len;
2908
2909 new->ml_address = start;
2910 new->ml_size = len;
2911
2912 cur = *memlistp;
2913
2914 while (cur) {
2915 if (cur->ml_address >= end) {
2916 new->ml_next = cur;
2917 *memlistp = new;
2918 new->ml_prev = cur->ml_prev;
2919 cur->ml_prev = new;
2920 return;
2921 }
2922 ASSERT(cur->ml_address + cur->ml_size <= start);
2923 if (cur->ml_next == NULL) {
2924 cur->ml_next = new;
2925 new->ml_prev = cur;
2926 new->ml_next = NULL;
2927 return;
2928 }
2929 memlistp = &cur->ml_next;
2930 cur = cur->ml_next;
2931 }
2932 }
2933
2934 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)2935 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2936 {
2937 size_t tsize = e_modtext - modtext;
2938 size_t dsize = e_moddata - moddata;
2939
2940 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2941 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2942 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2943 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2944 }
2945
2946 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)2947 kobj_text_alloc(vmem_t *arena, size_t size)
2948 {
2949 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2950 }
2951
2952 /*ARGSUSED*/
2953 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)2954 kobj_texthole_alloc(caddr_t addr, size_t size)
2955 {
2956 panic("unexpected call to kobj_texthole_alloc()");
2957 /*NOTREACHED*/
2958 return (0);
2959 }
2960
2961 /*ARGSUSED*/
2962 void
kobj_texthole_free(caddr_t addr,size_t size)2963 kobj_texthole_free(caddr_t addr, size_t size)
2964 {
2965 panic("unexpected call to kobj_texthole_free()");
2966 }
2967
2968 /*
2969 * This is called just after configure() in startup().
2970 *
2971 * The ISALIST concept is a bit hopeless on Intel, because
2972 * there's no guarantee of an ever-more-capable processor
2973 * given that various parts of the instruction set may appear
2974 * and disappear between different implementations.
2975 *
2976 * While it would be possible to correct it and even enhance
2977 * it somewhat, the explicit hardware capability bitmask allows
2978 * more flexibility.
2979 *
2980 * So, we just leave this alone.
2981 */
2982 void
setx86isalist(void)2983 setx86isalist(void)
2984 {
2985 char *tp;
2986 size_t len;
2987 extern char *isa_list;
2988
2989 #define TBUFSIZE 1024
2990
2991 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2992 *tp = '\0';
2993
2994 #if defined(__amd64)
2995 (void) strcpy(tp, "amd64 ");
2996 #endif
2997
2998 switch (x86_vendor) {
2999 case X86_VENDOR_Intel:
3000 case X86_VENDOR_AMD:
3001 case X86_VENDOR_TM:
3002 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3003 /*
3004 * Pentium Pro or later
3005 */
3006 (void) strcat(tp, "pentium_pro");
3007 (void) strcat(tp,
3008 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3009 "+mmx pentium_pro " : " ");
3010 }
3011 /*FALLTHROUGH*/
3012 case X86_VENDOR_Cyrix:
3013 /*
3014 * The Cyrix 6x86 does not have any Pentium features
3015 * accessible while not at privilege level 0.
3016 */
3017 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3018 (void) strcat(tp, "pentium");
3019 (void) strcat(tp,
3020 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3021 "+mmx pentium " : " ");
3022 }
3023 break;
3024 default:
3025 break;
3026 }
3027 (void) strcat(tp, "i486 i386 i86");
3028 len = strlen(tp) + 1; /* account for NULL at end of string */
3029 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3030 kmem_free(tp, TBUFSIZE);
3031
3032 #undef TBUFSIZE
3033 }
3034
3035
3036 #ifdef __amd64
3037
3038 void *
device_arena_alloc(size_t size,int vm_flag)3039 device_arena_alloc(size_t size, int vm_flag)
3040 {
3041 return (vmem_alloc(device_arena, size, vm_flag));
3042 }
3043
3044 void
device_arena_free(void * vaddr,size_t size)3045 device_arena_free(void *vaddr, size_t size)
3046 {
3047 vmem_free(device_arena, vaddr, size);
3048 }
3049
3050 #else /* __i386 */
3051
3052 void *
device_arena_alloc(size_t size,int vm_flag)3053 device_arena_alloc(size_t size, int vm_flag)
3054 {
3055 caddr_t vaddr;
3056 uintptr_t v;
3057 size_t start;
3058 size_t end;
3059
3060 vaddr = vmem_alloc(heap_arena, size, vm_flag);
3061 if (vaddr == NULL)
3062 return (NULL);
3063
3064 v = (uintptr_t)vaddr;
3065 ASSERT(v >= kernelbase);
3066 ASSERT(v + size <= valloc_base);
3067
3068 start = btop(v - kernelbase);
3069 end = btop(v + size - 1 - kernelbase);
3070 ASSERT(start < toxic_bit_map_len);
3071 ASSERT(end < toxic_bit_map_len);
3072
3073 while (start <= end) {
3074 BT_ATOMIC_SET(toxic_bit_map, start);
3075 ++start;
3076 }
3077 return (vaddr);
3078 }
3079
3080 void
device_arena_free(void * vaddr,size_t size)3081 device_arena_free(void *vaddr, size_t size)
3082 {
3083 uintptr_t v = (uintptr_t)vaddr;
3084 size_t start;
3085 size_t end;
3086
3087 ASSERT(v >= kernelbase);
3088 ASSERT(v + size <= valloc_base);
3089
3090 start = btop(v - kernelbase);
3091 end = btop(v + size - 1 - kernelbase);
3092 ASSERT(start < toxic_bit_map_len);
3093 ASSERT(end < toxic_bit_map_len);
3094
3095 while (start <= end) {
3096 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3097 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3098 ++start;
3099 }
3100 vmem_free(heap_arena, vaddr, size);
3101 }
3102
3103 /*
3104 * returns 1st address in range that is in device arena, or NULL
3105 * if len is not NULL it returns the length of the toxic range
3106 */
3107 void *
device_arena_contains(void * vaddr,size_t size,size_t * len)3108 device_arena_contains(void *vaddr, size_t size, size_t *len)
3109 {
3110 uintptr_t v = (uintptr_t)vaddr;
3111 uintptr_t eaddr = v + size;
3112 size_t start;
3113 size_t end;
3114
3115 /*
3116 * if called very early by kmdb, just return NULL
3117 */
3118 if (toxic_bit_map == NULL)
3119 return (NULL);
3120
3121 /*
3122 * First check if we're completely outside the bitmap range.
3123 */
3124 if (v >= valloc_base || eaddr < kernelbase)
3125 return (NULL);
3126
3127 /*
3128 * Trim ends of search to look at only what the bitmap covers.
3129 */
3130 if (v < kernelbase)
3131 v = kernelbase;
3132 start = btop(v - kernelbase);
3133 end = btop(eaddr - kernelbase);
3134 if (end >= toxic_bit_map_len)
3135 end = toxic_bit_map_len;
3136
3137 if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3138 return (NULL);
3139
3140 v = kernelbase + ptob(start);
3141 if (len != NULL)
3142 *len = ptob(end - start);
3143 return ((void *)v);
3144 }
3145
3146 #endif /* __i386 */
3147