1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Portions Copyright 2009 Advanced Micro Devices, Inc.
29 */
30
31 /*
32 * Support functions that interpret CPUID and similar information.
33 * These should not be used from anywhere other than cpuid.c and
34 * cmi_hw.c - as such we will not list them in any header file
35 * such as x86_archext.h.
36 *
37 * In cpuid.c we process CPUID information for each cpu_t instance
38 * we're presented with, and stash this raw information and material
39 * derived from it in per-cpu_t structures.
40 *
41 * If we are virtualized then the CPUID information derived from CPUID
42 * instructions executed in the guest is based on whatever the hypervisor
43 * wanted to make things look like, and the cpu_t are not necessarily in 1:1
44 * or fixed correspondence with real processor execution resources. In cmi_hw.c
45 * we are interested in the native properties of a processor - for fault
46 * management (and potentially other, such as power management) purposes;
47 * it will tunnel through to real hardware information, and use the
48 * functionality provided in this file to process it.
49 */
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53 #include <sys/bitmap.h>
54 #include <sys/x86_archext.h>
55 #include <sys/pci_cfgspace.h>
56 #ifdef __xpv
57 #include <sys/hypervisor.h>
58 #endif
59
60 /*
61 * AMD socket types.
62 * First index :
63 * 0 for family 0xf, revs B thru E
64 * 1 for family 0xf, revs F and G
65 * 2 for family 0x10
66 * 3 for family 0x11
67 * Second index by (model & 0x3) for family 0fh
68 * or CPUID bits for later families
69 */
70 static uint32_t amd_skts[4][8] = {
71 /*
72 * Family 0xf revisions B through E
73 */
74 #define A_SKTS_0 0
75 {
76 X86_SOCKET_754, /* 0b000 */
77 X86_SOCKET_940, /* 0b001 */
78 X86_SOCKET_754, /* 0b010 */
79 X86_SOCKET_939, /* 0b011 */
80 X86_SOCKET_UNKNOWN, /* 0b100 */
81 X86_SOCKET_UNKNOWN, /* 0b101 */
82 X86_SOCKET_UNKNOWN, /* 0b110 */
83 X86_SOCKET_UNKNOWN /* 0b111 */
84 },
85 /*
86 * Family 0xf revisions F and G
87 */
88 #define A_SKTS_1 1
89 {
90 X86_SOCKET_S1g1, /* 0b000 */
91 X86_SOCKET_F1207, /* 0b001 */
92 X86_SOCKET_UNKNOWN, /* 0b010 */
93 X86_SOCKET_AM2, /* 0b011 */
94 X86_SOCKET_UNKNOWN, /* 0b100 */
95 X86_SOCKET_UNKNOWN, /* 0b101 */
96 X86_SOCKET_UNKNOWN, /* 0b110 */
97 X86_SOCKET_UNKNOWN /* 0b111 */
98 },
99 /*
100 * Family 0x10
101 */
102 #define A_SKTS_2 2
103 {
104 X86_SOCKET_F1207, /* 0b000 */
105 X86_SOCKET_AM, /* 0b001 */
106 X86_SOCKET_S1g3, /* 0b010 */
107 X86_SOCKET_G34, /* 0b011 */
108 X86_SOCKET_ASB2, /* 0b100 */
109 X86_SOCKET_C32, /* 0b101 */
110 X86_SOCKET_UNKNOWN, /* 0b110 */
111 X86_SOCKET_UNKNOWN /* 0b111 */
112 },
113
114 /*
115 * Family 0x11
116 */
117 #define A_SKTS_3 3
118 {
119 X86_SOCKET_UNKNOWN, /* 0b000 */
120 X86_SOCKET_UNKNOWN, /* 0b001 */
121 X86_SOCKET_S1g2, /* 0b010 */
122 X86_SOCKET_UNKNOWN, /* 0b011 */
123 X86_SOCKET_UNKNOWN, /* 0b100 */
124 X86_SOCKET_UNKNOWN, /* 0b101 */
125 X86_SOCKET_UNKNOWN, /* 0b110 */
126 X86_SOCKET_UNKNOWN /* 0b111 */
127 }
128 };
129
130 struct amd_sktmap_s {
131 uint32_t skt_code;
132 char sktstr[16];
133 };
134 static struct amd_sktmap_s amd_sktmap[15] = {
135 { X86_SOCKET_754, "754" },
136 { X86_SOCKET_939, "939" },
137 { X86_SOCKET_940, "940" },
138 { X86_SOCKET_S1g1, "S1g1" },
139 { X86_SOCKET_AM2, "AM2" },
140 { X86_SOCKET_F1207, "F(1207)" },
141 { X86_SOCKET_S1g2, "S1g2" },
142 { X86_SOCKET_S1g3, "S1g3" },
143 { X86_SOCKET_AM, "AM" },
144 { X86_SOCKET_AM2R2, "AM2r2" },
145 { X86_SOCKET_AM3, "AM3" },
146 { X86_SOCKET_G34, "G34" },
147 { X86_SOCKET_ASB2, "ASB2" },
148 { X86_SOCKET_C32, "C32" },
149 { X86_SOCKET_UNKNOWN, "Unknown" }
150 };
151
152 /*
153 * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping
154 * combination to chip "revision" and socket type.
155 *
156 * The first member of this array that matches a given family, extended model
157 * plus model range, and stepping range will be considered a match.
158 */
159 static const struct amd_rev_mapent {
160 uint_t rm_family;
161 uint_t rm_modello;
162 uint_t rm_modelhi;
163 uint_t rm_steplo;
164 uint_t rm_stephi;
165 uint32_t rm_chiprev;
166 const char *rm_chiprevstr;
167 int rm_sktidx;
168 } amd_revmap[] = {
169 /*
170 * =============== AuthenticAMD Family 0xf ===============
171 */
172
173 /*
174 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
175 */
176 { 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
177 { 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
178 /*
179 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
180 */
181 { 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 },
182 /*
183 * Rev CG is the rest of extended model 0x0 - i.e., everything
184 * but the rev B and C0 combinations covered above.
185 */
186 { 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 },
187 /*
188 * Rev D has extended model 0x1.
189 */
190 { 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 },
191 /*
192 * Rev E has extended model 0x2.
193 * Extended model 0x3 is unused but available to grow into.
194 */
195 { 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 },
196 /*
197 * Rev F has extended models 0x4 and 0x5.
198 */
199 { 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 },
200 /*
201 * Rev G has extended model 0x6.
202 */
203 { 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 },
204
205 /*
206 * =============== AuthenticAMD Family 0x10 ===============
207 */
208
209 /*
210 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}.
211 * Give all of model 0 stepping range to rev A.
212 */
213 { 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 },
214
215 /*
216 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}.
217 * Give all of model 2 stepping range to rev B.
218 */
219 { 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 },
220
221 /*
222 * Rev C has models 4-6 (depending on L3 cache configuration)
223 * Give all of models 4-6 stepping range to rev C.
224 */
225 { 0x10, 0x04, 0x06, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_C, "C", A_SKTS_2 },
226
227 /*
228 * Rev D has models 8 and 9
229 * Give all of model 8 and 9 stepping range to rev D.
230 */
231 { 0x10, 0x08, 0x09, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_D, "D", A_SKTS_2 },
232
233 /*
234 * =============== AuthenticAMD Family 0x11 ===============
235 */
236 { 0x11, 0x03, 0x3, 0x0, 0xf, X86_CHIPREV_AMD_11, "B", A_SKTS_3 },
237 };
238
239 static void
synth_amd_info(uint_t family,uint_t model,uint_t step,uint32_t * skt_p,uint32_t * chiprev_p,const char ** chiprevstr_p)240 synth_amd_info(uint_t family, uint_t model, uint_t step,
241 uint32_t *skt_p, uint32_t *chiprev_p, const char **chiprevstr_p)
242 {
243 const struct amd_rev_mapent *rmp;
244 int found = 0;
245 int i;
246
247 if (family < 0xf)
248 return;
249
250 for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
251 i++, rmp++) {
252 if (family == rmp->rm_family &&
253 model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
254 step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
255 found = 1;
256 break;
257 }
258 }
259
260 if (!found)
261 return;
262
263 if (chiprev_p != NULL)
264 *chiprev_p = rmp->rm_chiprev;
265 if (chiprevstr_p != NULL)
266 *chiprevstr_p = rmp->rm_chiprevstr;
267
268 if (skt_p != NULL) {
269 int platform;
270
271 #ifdef __xpv
272 /* PV guest */
273 if (!is_controldom()) {
274 *skt_p = X86_SOCKET_UNKNOWN;
275 return;
276 }
277 #endif
278 platform = get_hwenv();
279
280 if ((platform == HW_XEN_HVM) || (platform == HW_VMWARE)) {
281 *skt_p = X86_SOCKET_UNKNOWN;
282 } else if (family == 0xf) {
283 *skt_p = amd_skts[rmp->rm_sktidx][model & 0x3];
284 } else {
285 /*
286 * Starting with family 10h, socket type is stored in
287 * CPUID Fn8000_0001_EBX
288 */
289 struct cpuid_regs cp;
290 int idx;
291
292 cp.cp_eax = 0x80000001;
293 (void) __cpuid_insn(&cp);
294
295 /* PkgType bits */
296 idx = BITX(cp.cp_ebx, 31, 28);
297
298 if (idx > 7) {
299 /* Reserved bits */
300 *skt_p = X86_SOCKET_UNKNOWN;
301 } else if (family == 0x10 &&
302 amd_skts[rmp->rm_sktidx][idx] ==
303 X86_SOCKET_AM) {
304 /*
305 * Look at Ddr3Mode bit of DRAM Configuration
306 * High Register to decide whether this is
307 * AM2r2 (aka AM2+) or AM3.
308 */
309 uint32_t val;
310
311 val = pci_getl_func(0, 24, 2, 0x94);
312 if (BITX(val, 8, 8))
313 *skt_p = X86_SOCKET_AM3;
314 else
315 *skt_p = X86_SOCKET_AM2R2;
316 } else {
317 *skt_p = amd_skts[rmp->rm_sktidx][idx];
318 }
319 }
320 }
321 }
322
323 uint32_t
_cpuid_skt(uint_t vendor,uint_t family,uint_t model,uint_t step)324 _cpuid_skt(uint_t vendor, uint_t family, uint_t model, uint_t step)
325 {
326 uint32_t skt = X86_SOCKET_UNKNOWN;
327
328 switch (vendor) {
329 case X86_VENDOR_AMD:
330 synth_amd_info(family, model, step, &skt, NULL, NULL);
331 break;
332
333 default:
334 break;
335
336 }
337
338 return (skt);
339 }
340
341 const char *
_cpuid_sktstr(uint_t vendor,uint_t family,uint_t model,uint_t step)342 _cpuid_sktstr(uint_t vendor, uint_t family, uint_t model, uint_t step)
343 {
344 const char *sktstr = "Unknown";
345 struct amd_sktmap_s *sktmapp;
346 uint32_t skt = X86_SOCKET_UNKNOWN;
347
348 switch (vendor) {
349 case X86_VENDOR_AMD:
350 synth_amd_info(family, model, step, &skt, NULL, NULL);
351
352 sktmapp = amd_sktmap;
353 while (sktmapp->skt_code != X86_SOCKET_UNKNOWN) {
354 if (sktmapp->skt_code == skt)
355 break;
356 sktmapp++;
357 }
358 sktstr = sktmapp->sktstr;
359 break;
360
361 default:
362 break;
363
364 }
365
366 return (sktstr);
367 }
368
369 uint32_t
_cpuid_chiprev(uint_t vendor,uint_t family,uint_t model,uint_t step)370 _cpuid_chiprev(uint_t vendor, uint_t family, uint_t model, uint_t step)
371 {
372 uint32_t chiprev = X86_CHIPREV_UNKNOWN;
373
374 switch (vendor) {
375 case X86_VENDOR_AMD:
376 synth_amd_info(family, model, step, NULL, &chiprev, NULL);
377 break;
378
379 default:
380 break;
381
382 }
383
384 return (chiprev);
385 }
386
387 const char *
_cpuid_chiprevstr(uint_t vendor,uint_t family,uint_t model,uint_t step)388 _cpuid_chiprevstr(uint_t vendor, uint_t family, uint_t model, uint_t step)
389 {
390 const char *revstr = "Unknown";
391
392 switch (vendor) {
393 case X86_VENDOR_AMD:
394 synth_amd_info(family, model, step, NULL, NULL, &revstr);
395 break;
396
397 default:
398 break;
399
400 }
401
402 return (revstr);
403
404 }
405
406 /*
407 * CyrixInstead is a variable used by the Cyrix detection code
408 * in locore.
409 */
410 const char CyrixInstead[] = X86_VENDORSTR_CYRIX;
411
412 /*
413 * Map the vendor string to a type code
414 */
415 uint_t
_cpuid_vendorstr_to_vendorcode(char * vendorstr)416 _cpuid_vendorstr_to_vendorcode(char *vendorstr)
417 {
418 if (strcmp(vendorstr, X86_VENDORSTR_Intel) == 0)
419 return (X86_VENDOR_Intel);
420 else if (strcmp(vendorstr, X86_VENDORSTR_AMD) == 0)
421 return (X86_VENDOR_AMD);
422 else if (strcmp(vendorstr, X86_VENDORSTR_TM) == 0)
423 return (X86_VENDOR_TM);
424 else if (strcmp(vendorstr, CyrixInstead) == 0)
425 return (X86_VENDOR_Cyrix);
426 else if (strcmp(vendorstr, X86_VENDORSTR_UMC) == 0)
427 return (X86_VENDOR_UMC);
428 else if (strcmp(vendorstr, X86_VENDORSTR_NexGen) == 0)
429 return (X86_VENDOR_NexGen);
430 else if (strcmp(vendorstr, X86_VENDORSTR_Centaur) == 0)
431 return (X86_VENDOR_Centaur);
432 else if (strcmp(vendorstr, X86_VENDORSTR_Rise) == 0)
433 return (X86_VENDOR_Rise);
434 else if (strcmp(vendorstr, X86_VENDORSTR_SiS) == 0)
435 return (X86_VENDOR_SiS);
436 else if (strcmp(vendorstr, X86_VENDORSTR_NSC) == 0)
437 return (X86_VENDOR_NSC);
438 else
439 return (X86_VENDOR_IntelClone);
440 }
441