1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */
28
29 /*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37 #define PSMI_1_7
38
39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_timer.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>
61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>
70 #if !defined(__xpv)
71 #include <sys/hpet.h>
72 #include <sys/clock.h>
73 #endif
74
75 /*
76 * Local Function Prototypes
77 */
78 static int apic_handle_defconf();
79 static int apic_parse_mpct(caddr_t mpct, int bypass);
80 static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
81 static int apic_checksum(caddr_t bptr, int len);
82 static int apic_find_bus_type(char *bus);
83 static int apic_find_bus(int busid);
84 static struct apic_io_intr *apic_find_io_intr(int irqno);
85 static int apic_find_free_irq(int start, int end);
86 struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
87 static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
88 static void apic_free_apic_cpus(void);
89 static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
90 static int apic_acpi_enter_apicmode(void);
91
92 int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
93 int child_ipin, struct apic_io_intr **intrp);
94 int apic_find_bus_id(int bustype);
95 int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97
98 int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */
99
100 /* ACPI SCI interrupt configuration; -1 if SCI not used */
101 int apic_sci_vect = -1;
102 iflag_t apic_sci_flags;
103
104 #if !defined(__xpv)
105 /* ACPI HPET interrupt configuration; -1 if HPET not used */
106 int apic_hpet_vect = -1;
107 iflag_t apic_hpet_flags;
108 #endif
109
110 /*
111 * psm name pointer
112 */
113 char *psm_name;
114
115 /* ACPI support routines */
116 static int acpi_probe(char *);
117 static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
118 int *pci_irqp, iflag_t *intr_flagp);
119
120 int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
121 int ipin, int *pci_irqp, iflag_t *intr_flagp);
122 uchar_t acpi_find_ioapic(int irq);
123 static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
124
125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 int apic_max_reps_clear_pending = 1000;
127
128 int apic_intr_policy = INTR_ROUND_ROBIN;
129
130 int apic_next_bind_cpu = 1; /* For round robin assignment */
131 /* start with cpu 1 */
132
133 /*
134 * If enabled, the distribution works as follows:
135 * On every interrupt entry, the current ipl for the CPU is set in cpu_info
136 * and the irq corresponding to the ipl is also set in the aci_current array.
137 * interrupt exit and setspl (due to soft interrupts) will cause the current
138 * ipl to be be changed. This is cache friendly as these frequently used
139 * paths write into a per cpu structure.
140 *
141 * Sampling is done by checking the structures for all CPUs and incrementing
142 * the busy field of the irq (if any) executing on each CPU and the busy field
143 * of the corresponding CPU.
144 * In periodic mode this is done on every clock interrupt.
145 * In one-shot mode, this is done thru a cyclic with an interval of
146 * apic_redistribute_sample_interval (default 10 milli sec).
147 *
148 * Every apic_sample_factor_redistribution times we sample, we do computations
149 * to decide which interrupt needs to be migrated (see comments
150 * before apic_intr_redistribute().
151 */
152
153 /*
154 * Following 3 variables start as % and can be patched or set using an
155 * API to be defined in future. They will be scaled to
156 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
157 * mode), or 101 in one-shot mode to stagger it away from one sec processing
158 */
159
160 int apic_int_busy_mark = 60;
161 int apic_int_free_mark = 20;
162 int apic_diff_for_redistribution = 10;
163
164 /* sampling interval for interrupt redistribution for dynamic migration */
165 int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
166
167 /*
168 * number of times we sample before deciding to redistribute interrupts
169 * for dynamic migration
170 */
171 int apic_sample_factor_redistribution = 101;
172
173 int apic_redist_cpu_skip = 0;
174 int apic_num_imbalance = 0;
175 int apic_num_rebind = 0;
176
177 /*
178 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
179 * allocation of CPU ids is disabled.
180 */
181 int apic_max_nproc = -1;
182 int apic_nproc = 0;
183 size_t apic_cpus_size = 0;
184 int apic_defconf = 0;
185 int apic_irq_translate = 0;
186 int apic_spec_rev = 0;
187 int apic_imcrp = 0;
188
189 int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */
190 int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */
191
192 /*
193 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
194 * will be assigned (via _SRS). If it is not set, use the current
195 * irq setting (via _CRS), but only if that irq is in the set of possible
196 * irqs (returned by _PRS) for the device.
197 */
198 int apic_unconditional_srs = 1;
199
200 /*
201 * For interrupt link devices, if apic_prefer_crs is set when we are
202 * assigning an IRQ resource to a device, prefer the current IRQ setting
203 * over other possible irq settings under same conditions.
204 */
205
206 int apic_prefer_crs = 1;
207
208 uchar_t apic_io_id[MAX_IO_APIC];
209 volatile uint32_t *apicioadr[MAX_IO_APIC];
210 uchar_t apic_io_ver[MAX_IO_APIC];
211 uchar_t apic_io_vectbase[MAX_IO_APIC];
212 uchar_t apic_io_vectend[MAX_IO_APIC];
213 uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
214 uint32_t apic_physaddr[MAX_IO_APIC];
215
216 boolean_t ioapic_mask_workaround[MAX_IO_APIC];
217
218 /*
219 * First available slot to be used as IRQ index into the apic_irq_table
220 * for those interrupts (like MSI/X) that don't have a physical IRQ.
221 */
222 int apic_first_avail_irq = APIC_FIRST_FREE_IRQ;
223
224 /*
225 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
226 * and bound elements of cpus_info and the temp_cpu element of irq_struct
227 */
228 lock_t apic_ioapic_lock;
229
230 int apic_io_max = 0; /* no. of i/o apics enabled */
231
232 struct apic_io_intr *apic_io_intrp = NULL;
233 static struct apic_bus *apic_busp;
234
235 uchar_t apic_resv_vector[MAXIPL+1];
236
237 char apic_level_intr[APIC_MAX_VECTOR+1];
238
239 uint32_t eisa_level_intr_mask = 0;
240 /* At least MSB will be set if EISA bus */
241
242 int apic_pci_bus_total = 0;
243 uchar_t apic_single_pci_busid = 0;
244
245 /*
246 * airq_mutex protects additions to the apic_irq_table - the first
247 * pointer and any airq_nexts off of that one. It also protects
248 * apic_max_device_irq & apic_min_device_irq. It also guarantees
249 * that share_id is unique as new ids are generated only when new
250 * irq_t structs are linked in. Once linked in the structs are never
251 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
252 * or allocated. Note that there is a slight gap between allocating in
253 * apic_introp_xlate and programming in addspl.
254 */
255 kmutex_t airq_mutex;
256 apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1];
257 int apic_max_device_irq = 0;
258 int apic_min_device_irq = APIC_MAX_VECTOR;
259
260 typedef struct prs_irq_list_ent {
261 int list_prio;
262 int32_t irq;
263 iflag_t intrflags;
264 acpi_prs_private_t prsprv;
265 struct prs_irq_list_ent *next;
266 } prs_irq_list_t;
267
268
269 /*
270 * ACPI variables
271 */
272 /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
273 int apic_enable_acpi = 0;
274
275 /* ACPI Multiple APIC Description Table ptr */
276 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
277
278 /* ACPI Interrupt Source Override Structure ptr */
279 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
280 int acpi_iso_cnt = 0;
281
282 /* ACPI Non-maskable Interrupt Sources ptr */
283 static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
284 static int acpi_nmi_scnt = 0;
285 static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
286 static int acpi_nmi_ccnt = 0;
287
288 /*
289 * The following added to identify a software poweroff method if available.
290 */
291
292 static struct {
293 int poweroff_method;
294 char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */
295 char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */
296 } apic_mps_ids[] = {
297 { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */
298 { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */
299 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */
300 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */
301 { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */
302 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */
303 { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */
304 };
305
306 int apic_poweroff_method = APIC_POWEROFF_NONE;
307
308 /*
309 * Auto-configuration routines
310 */
311
312 /*
313 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
314 * May work with 1.1 - but not guaranteed.
315 * According to the MP Spec, the MP floating pointer structure
316 * will be searched in the order described below:
317 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
318 * 2. Within the last kilobyte of system base memory
319 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
320 * Once we find the right signature with proper checksum, we call
321 * either handle_defconf or parse_mpct to get all info necessary for
322 * subsequent operations.
323 */
324 int
apic_probe_common(char * modname)325 apic_probe_common(char *modname)
326 {
327 uint32_t mpct_addr, ebda_start = 0, base_mem_end;
328 caddr_t biosdatap;
329 caddr_t mpct = 0;
330 caddr_t fptr;
331 int i, mpct_size, mapsize, retval = PSM_FAILURE;
332 ushort_t ebda_seg, base_mem_size;
333 struct apic_mpfps_hdr *fpsp;
334 struct apic_mp_cnf_hdr *hdrp;
335 int bypass_cpu_and_ioapics_in_mptables;
336 int acpi_user_options;
337
338 if (apic_forceload < 0)
339 return (retval);
340
341 /*
342 * Remember who we are
343 */
344 psm_name = modname;
345
346 /* Allow override for MADT-only mode */
347 acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
348 "acpi-user-options", 0);
349 apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
350
351 /* Allow apic_use_acpi to override MADT-only mode */
352 if (!apic_use_acpi)
353 apic_use_acpi_madt_only = 0;
354
355 retval = acpi_probe(modname);
356
357 /*
358 * mapin the bios data area 40:0
359 * 40:13h - two-byte location reports the base memory size
360 * 40:0Eh - two-byte location for the exact starting address of
361 * the EBDA segment for EISA
362 */
363 biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
364 if (!biosdatap)
365 goto apic_ret;
366 fpsp = (struct apic_mpfps_hdr *)NULL;
367 mapsize = MPFPS_RAM_WIN_LEN;
368 /*LINTED: pointer cast may result in improper alignment */
369 ebda_seg = *((ushort_t *)(biosdatap+0xe));
370 /* check the 1k of EBDA */
371 if (ebda_seg) {
372 ebda_start = ((uint32_t)ebda_seg) << 4;
373 fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
374 if (fptr) {
375 if (!(fpsp =
376 apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
377 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
378 }
379 }
380 /* If not in EBDA, check the last k of system base memory */
381 if (!fpsp) {
382 /*LINTED: pointer cast may result in improper alignment */
383 base_mem_size = *((ushort_t *)(biosdatap + 0x13));
384
385 if (base_mem_size > 512)
386 base_mem_end = 639 * 1024;
387 else
388 base_mem_end = 511 * 1024;
389 /* if ebda == last k of base mem, skip to check BIOS ROM */
390 if (base_mem_end != ebda_start) {
391
392 fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
393 PROT_READ);
394
395 if (fptr) {
396 if (!(fpsp = apic_find_fps_sig(fptr,
397 MPFPS_RAM_WIN_LEN)))
398 psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
399 }
400 }
401 }
402 psm_unmap_phys(biosdatap, 0x20);
403
404 /* If still cannot find it, check the BIOS ROM space */
405 if (!fpsp) {
406 mapsize = MPFPS_ROM_WIN_LEN;
407 fptr = psm_map_phys(MPFPS_ROM_WIN_START,
408 MPFPS_ROM_WIN_LEN, PROT_READ);
409 if (fptr) {
410 if (!(fpsp =
411 apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
412 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
413 goto apic_ret;
414 }
415 }
416 }
417
418 if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
419 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
420 goto apic_ret;
421 }
422
423 apic_spec_rev = fpsp->mpfps_spec_rev;
424 if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
425 psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
426 goto apic_ret;
427 }
428
429 /* check IMCR is present or not */
430 apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
431
432 /* check default configuration (dual CPUs) */
433 if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
434 psm_unmap_phys(fptr, mapsize);
435 if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
436 return (retval);
437
438 goto apic_ret;
439 }
440
441 /* MP Configuration Table */
442 mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
443
444 psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
445
446 /*
447 * Map in enough memory for the MP Configuration Table Header.
448 * Use this table to read the total length of the BIOS data and
449 * map in all the info
450 */
451 /*LINTED: pointer cast may result in improper alignment */
452 hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
453 sizeof (struct apic_mp_cnf_hdr), PROT_READ);
454 if (!hdrp)
455 goto apic_ret;
456
457 /* check mp configuration table signature PCMP */
458 if (hdrp->mpcnf_sig != 0x504d4350) {
459 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
460 goto apic_ret;
461 }
462 mpct_size = (int)hdrp->mpcnf_tbl_length;
463
464 apic_set_pwroff_method_from_mpcnfhdr(hdrp);
465
466 psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
467
468 if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
469 /* This is an ACPI machine No need for further checks */
470 goto apic_ret;
471 }
472
473 /*
474 * Map in the entries for this machine, ie. Processor
475 * Entry Tables, Bus Entry Tables, etc.
476 * They are in fixed order following one another
477 */
478 mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
479 if (!mpct)
480 goto apic_ret;
481
482 if (apic_checksum(mpct, mpct_size) != 0)
483 goto apic_fail1;
484
485 /*LINTED: pointer cast may result in improper alignment */
486 hdrp = (struct apic_mp_cnf_hdr *)mpct;
487 apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
488 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
489 if (!apicadr)
490 goto apic_fail1;
491
492 /* Parse all information in the tables */
493 bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
494 if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
495 PSM_SUCCESS) {
496 retval = PSM_SUCCESS;
497 goto apic_ret;
498 }
499
500 apic_fail1:
501 psm_unmap_phys(mpct, mpct_size);
502 mpct = NULL;
503
504 apic_ret:
505 if (retval == PSM_SUCCESS) {
506 extern int apic_ioapic_method_probe();
507
508 if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
509 return (PSM_SUCCESS);
510 }
511
512 for (i = 0; i < apic_io_max; i++)
513 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
514 if (apic_cpus) {
515 kmem_free(apic_cpus, apic_cpus_size);
516 apic_cpus = NULL;
517 }
518 if (apicadr) {
519 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
520 apicadr = NULL;
521 }
522 if (mpct)
523 psm_unmap_phys(mpct, mpct_size);
524
525 return (retval);
526 }
527
528 static void
apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr * hdrp)529 apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
530 {
531 int i;
532
533 for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
534 i++) {
535 if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
536 strlen(apic_mps_ids[i].oem_id)) == 0) &&
537 (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
538 strlen(apic_mps_ids[i].prod_id)) == 0)) {
539
540 apic_poweroff_method = apic_mps_ids[i].poweroff_method;
541 break;
542 }
543 }
544
545 if (apic_debug_mps_id != 0) {
546 cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
547 "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
548 psm_name,
549 hdrp->mpcnf_oem_str[0],
550 hdrp->mpcnf_oem_str[1],
551 hdrp->mpcnf_oem_str[2],
552 hdrp->mpcnf_oem_str[3],
553 hdrp->mpcnf_oem_str[4],
554 hdrp->mpcnf_oem_str[5],
555 hdrp->mpcnf_oem_str[6],
556 hdrp->mpcnf_oem_str[7],
557 hdrp->mpcnf_prod_str[0],
558 hdrp->mpcnf_prod_str[1],
559 hdrp->mpcnf_prod_str[2],
560 hdrp->mpcnf_prod_str[3],
561 hdrp->mpcnf_prod_str[4],
562 hdrp->mpcnf_prod_str[5],
563 hdrp->mpcnf_prod_str[6],
564 hdrp->mpcnf_prod_str[7],
565 hdrp->mpcnf_prod_str[8],
566 hdrp->mpcnf_prod_str[9],
567 hdrp->mpcnf_prod_str[10],
568 hdrp->mpcnf_prod_str[11]);
569 }
570 }
571
572 static void
apic_free_apic_cpus(void)573 apic_free_apic_cpus(void)
574 {
575 if (apic_cpus != NULL) {
576 kmem_free(apic_cpus, apic_cpus_size);
577 apic_cpus = NULL;
578 apic_cpus_size = 0;
579 }
580 }
581
582 static int
acpi_probe(char * modname)583 acpi_probe(char *modname)
584 {
585 int i, intmax, index;
586 uint32_t id, ver;
587 int acpi_verboseflags = 0;
588 int madt_seen, madt_size;
589 ACPI_SUBTABLE_HEADER *ap;
590 ACPI_MADT_LOCAL_APIC *mpa;
591 ACPI_MADT_LOCAL_X2APIC *mpx2a;
592 ACPI_MADT_IO_APIC *mia;
593 ACPI_MADT_IO_SAPIC *misa;
594 ACPI_MADT_INTERRUPT_OVERRIDE *mio;
595 ACPI_MADT_NMI_SOURCE *mns;
596 ACPI_MADT_INTERRUPT_SOURCE *mis;
597 ACPI_MADT_LOCAL_APIC_NMI *mlan;
598 ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan;
599 ACPI_MADT_LOCAL_APIC_OVERRIDE *mao;
600 int sci;
601 iflag_t sci_flags;
602 volatile uint32_t *ioapic;
603 int ioapic_ix;
604 uint32_t *local_ids;
605 uint32_t *proc_ids;
606 uchar_t hid;
607 int warned = 0;
608
609 if (!apic_use_acpi)
610 return (PSM_FAILURE);
611
612 if (AcpiGetTable(ACPI_SIG_MADT, 1,
613 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
614 return (PSM_FAILURE);
615
616 apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
617 APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
618 if (!apicadr)
619 return (PSM_FAILURE);
620
621 if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
622 KM_NOSLEEP)) == NULL)
623 return (PSM_FAILURE);
624
625 if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
626 KM_NOSLEEP)) == NULL) {
627 kmem_free(local_ids, NCPU * sizeof (uint32_t));
628 return (PSM_FAILURE);
629 }
630
631 id = apic_reg_ops->apic_read(APIC_LID_REG);
632 local_ids[0] = (uchar_t)(id >> 24);
633 apic_nproc = index = 1;
634 apic_io_max = 0;
635
636 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
637 madt_size = acpi_mapic_dtp->Header.Length;
638 madt_seen = sizeof (*acpi_mapic_dtp);
639
640 while (madt_seen < madt_size) {
641 switch (ap->Type) {
642 case ACPI_MADT_TYPE_LOCAL_APIC:
643 mpa = (ACPI_MADT_LOCAL_APIC *) ap;
644 if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
645 if (mpa->Id == local_ids[0]) {
646 ASSERT(index == 1);
647 proc_ids[0] = mpa->ProcessorId;
648 } else if (apic_nproc < NCPU && use_mp &&
649 apic_nproc < boot_ncpus) {
650 local_ids[index] = mpa->Id;
651 proc_ids[index] = mpa->ProcessorId;
652 index++;
653 apic_nproc++;
654 } else if (apic_nproc == NCPU && !warned) {
655 cmn_err(CE_WARN, "%s: CPU limit "
656 "exceeded"
657 #if !defined(__amd64)
658 " for 32-bit mode"
659 #endif
660 "; Solaris will use %d CPUs.",
661 psm_name, NCPU);
662 warned = 1;
663 }
664 }
665 break;
666
667 case ACPI_MADT_TYPE_IO_APIC:
668 mia = (ACPI_MADT_IO_APIC *) ap;
669 if (apic_io_max < MAX_IO_APIC) {
670 ioapic_ix = apic_io_max;
671 apic_io_id[apic_io_max] = mia->Id;
672 apic_io_vectbase[apic_io_max] =
673 mia->GlobalIrqBase;
674 apic_physaddr[apic_io_max] =
675 (uint32_t)mia->Address;
676 ioapic = apicioadr[apic_io_max] =
677 mapin_ioapic((uint32_t)mia->Address,
678 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
679 if (!ioapic)
680 goto cleanup;
681 ioapic_mask_workaround[apic_io_max] =
682 apic_is_ioapic_AMD_813x(mia->Address);
683 apic_io_max++;
684 }
685 break;
686
687 case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
688 mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
689 if (acpi_isop == NULL)
690 acpi_isop = mio;
691 acpi_iso_cnt++;
692 break;
693
694 case ACPI_MADT_TYPE_NMI_SOURCE:
695 /* UNIMPLEMENTED */
696 mns = (ACPI_MADT_NMI_SOURCE *) ap;
697 if (acpi_nmi_sp == NULL)
698 acpi_nmi_sp = mns;
699 acpi_nmi_scnt++;
700
701 cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
702 mns->GlobalIrq, mns->IntiFlags);
703 break;
704
705 case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
706 /* UNIMPLEMENTED */
707 mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
708 if (acpi_nmi_cp == NULL)
709 acpi_nmi_cp = mlan;
710 acpi_nmi_ccnt++;
711
712 cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
713 mlan->ProcessorId, mlan->IntiFlags,
714 mlan->Lint);
715 break;
716
717 case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
718 /* UNIMPLEMENTED */
719 mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
720 cmn_err(CE_NOTE, "!apic: address override: %lx\n",
721 (long)mao->Address);
722 break;
723
724 case ACPI_MADT_TYPE_IO_SAPIC:
725 /* UNIMPLEMENTED */
726 misa = (ACPI_MADT_IO_SAPIC *) ap;
727
728 cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
729 misa->Id, misa->GlobalIrqBase,
730 (long)misa->Address);
731 break;
732
733 case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
734 /* UNIMPLEMENTED */
735 mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
736
737 cmn_err(CE_NOTE,
738 "!apic: irq source: %d %d %d 0x%x %d %d\n",
739 mis->Id, mis->Eid, mis->GlobalIrq,
740 mis->IntiFlags, mis->Type,
741 mis->IoSapicVector);
742 break;
743
744 case ACPI_MADT_TYPE_LOCAL_X2APIC:
745 mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
746
747 /*
748 * All logical processors with APIC ID values
749 * of 255 and greater will have their APIC
750 * reported through Processor X2APIC structure.
751 * All logical processors with APIC ID less than
752 * 255 will have their APIC reported through
753 * Processor Local APIC.
754 */
755 if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
756 (mpx2a->LocalApicId >> 8)) {
757 if (apic_nproc < NCPU && use_mp &&
758 apic_nproc < boot_ncpus) {
759 local_ids[index] = mpx2a->LocalApicId;
760 proc_ids[index] = mpa->ProcessorId;
761 index++;
762 apic_nproc++;
763 } else if (apic_nproc == NCPU && !warned) {
764 cmn_err(CE_WARN, "%s: CPU limit "
765 "exceeded"
766 #if !defined(__amd64)
767 " for 32-bit mode"
768 #endif
769 "; Solaris will use %d CPUs.",
770 psm_name, NCPU);
771 warned = 1;
772 }
773 }
774
775 break;
776
777 case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
778 /* UNIMPLEMENTED */
779 mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
780 if (mx2alan->Uid >> 8)
781 acpi_nmi_ccnt++;
782
783 #ifdef DEBUG
784 cmn_err(CE_NOTE,
785 "!apic: local x2apic nmi: %d 0x%x %d\n",
786 mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
787 #endif
788
789 break;
790
791 case ACPI_MADT_TYPE_RESERVED:
792 default:
793 break;
794 }
795
796 /* advance to next entry */
797 madt_seen += ap->Length;
798 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
799 }
800
801 /*
802 * allocate enough space for possible hot-adding of CPUs.
803 * max_ncpus may be less than apic_nproc if it's set by user.
804 */
805 if (plat_dr_support_cpu()) {
806 apic_max_nproc = max_ncpus;
807 }
808 apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
809 if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
810 goto cleanup;
811
812 /*
813 * ACPI doesn't provide the local apic ver, get it directly from the
814 * local apic
815 */
816 ver = apic_reg_ops->apic_read(APIC_VERS_REG);
817 for (i = 0; i < apic_nproc; i++) {
818 apic_cpus[i].aci_local_id = local_ids[i];
819 apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
820 apic_cpus[i].aci_processor_id = proc_ids[i];
821 /* Only build mapping info for CPUs present at boot. */
822 if (i < boot_ncpus)
823 (void) acpica_map_cpu(i, proc_ids[i]);
824 }
825
826 /*
827 * To support CPU dynamic reconfiguration, the apic CPU info structure
828 * for each possible CPU will be pre-allocated at boot time.
829 * The state for each apic CPU info structure will be assigned according
830 * to the following rules:
831 * Rule 1:
832 * Slot index range: [0, min(apic_nproc, boot_ncpus))
833 * State flags: 0
834 * Note: cpu exists and will be configured/enabled at boot time
835 * Rule 2:
836 * Slot index range: [boot_ncpus, apic_nproc)
837 * State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
838 * Note: cpu exists but won't be configured/enabled at boot time
839 * Rule 3:
840 * Slot index range: [apic_nproc, boot_ncpus)
841 * State flags: APIC_CPU_FREE
842 * Note: cpu doesn't exist at boot time
843 * Rule 4:
844 * Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
845 * State flags: APIC_CPU_FREE
846 * Note: cpu doesn't exist at boot time
847 */
848 CPUSET_ZERO(apic_cpumask);
849 for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
850 CPUSET_ADD(apic_cpumask, i);
851 apic_cpus[i].aci_status = 0;
852 }
853 for (i = boot_ncpus; i < apic_nproc; i++) {
854 apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
855 }
856 for (i = apic_nproc; i < boot_ncpus; i++) {
857 apic_cpus[i].aci_status = APIC_CPU_FREE;
858 }
859 for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
860 apic_cpus[i].aci_status = APIC_CPU_FREE;
861 }
862
863 for (i = 0; i < apic_io_max; i++) {
864 ioapic_ix = i;
865
866 /*
867 * need to check Sitka on the following acpi problem
868 * On the Sitka, the ioapic's apic_id field isn't reporting
869 * the actual io apic id. We have reported this problem
870 * to Intel. Until they fix the problem, we will get the
871 * actual id directly from the ioapic.
872 */
873 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
874 hid = (uchar_t)(id >> 24);
875
876 if (hid != apic_io_id[i]) {
877 if (apic_io_id[i] == 0)
878 apic_io_id[i] = hid;
879 else { /* set ioapic id to whatever reported by ACPI */
880 id = ((uint32_t)apic_io_id[i]) << 24;
881 ioapic_write(ioapic_ix, APIC_ID_CMD, id);
882 }
883 }
884 ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
885 apic_io_ver[i] = (uchar_t)(ver & 0xff);
886 intmax = (ver >> 16) & 0xff;
887 apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
888 if (apic_first_avail_irq <= apic_io_vectend[i])
889 apic_first_avail_irq = apic_io_vectend[i] + 1;
890 }
891
892
893 /*
894 * Process SCI configuration here
895 * An error may be returned here if
896 * acpi-user-options specifies legacy mode
897 * (no SCI, no ACPI mode)
898 */
899 if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
900 sci = -1;
901
902 /*
903 * Now call acpi_init() to generate namespaces
904 * If this fails, we don't attempt to use ACPI
905 * even if we were able to get a MADT above
906 */
907 if (acpica_init() != AE_OK)
908 goto cleanup;
909
910 /*
911 * Call acpica_build_processor_map() now that we have
912 * ACPI namesspace access
913 */
914 (void) acpica_build_processor_map();
915
916 /*
917 * Squirrel away the SCI and flags for later on
918 * in apic_picinit() when we're ready
919 */
920 apic_sci_vect = sci;
921 apic_sci_flags = sci_flags;
922
923 if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
924 acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
925
926 if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
927 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
928
929 if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
930 acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
931
932 if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
933 goto cleanup;
934
935 /* Enable ACPI APIC interrupt routing */
936 if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
937 build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
938 apic_enable_acpi = 1;
939 if (apic_sci_vect > 0) {
940 acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
941 }
942 if (apic_use_acpi_madt_only) {
943 cmn_err(CE_CONT,
944 "?Using ACPI for CPU/IOAPIC information ONLY\n");
945 }
946
947 #if !defined(__xpv)
948 /*
949 * probe ACPI for hpet information here which is used later
950 * in apic_picinit().
951 */
952 if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
953 cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
954 }
955 #endif
956
957 kmem_free(local_ids, NCPU * sizeof (uint32_t));
958 kmem_free(proc_ids, NCPU * sizeof (uint32_t));
959 return (PSM_SUCCESS);
960 }
961 /* if setting APIC mode failed above, we fall through to cleanup */
962
963 cleanup:
964 apic_free_apic_cpus();
965 if (apicadr != NULL) {
966 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
967 apicadr = NULL;
968 }
969 apic_max_nproc = -1;
970 apic_nproc = 0;
971 for (i = 0; i < apic_io_max; i++) {
972 mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
973 apicioadr[i] = NULL;
974 }
975 apic_io_max = 0;
976 acpi_isop = NULL;
977 acpi_iso_cnt = 0;
978 acpi_nmi_sp = NULL;
979 acpi_nmi_scnt = 0;
980 acpi_nmi_cp = NULL;
981 acpi_nmi_ccnt = 0;
982 kmem_free(local_ids, NCPU * sizeof (uint32_t));
983 kmem_free(proc_ids, NCPU * sizeof (uint32_t));
984 return (PSM_FAILURE);
985 }
986
987 /*
988 * Handle default configuration. Fill in reqd global variables & tables
989 * Fill all details as MP table does not give any more info
990 */
991 static int
apic_handle_defconf()992 apic_handle_defconf()
993 {
994 uint_t lid;
995
996 /* Failed to probe ACPI MADT tables, disable CPU DR. */
997 apic_max_nproc = -1;
998 apic_free_apic_cpus();
999 plat_dr_disable_cpu();
1000
1001 apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1002 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1003 apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1004 APIC_LOCAL_MEMLEN, PROT_READ);
1005 apic_cpus_size = 2 * sizeof (*apic_cpus);
1006 apic_cpus = (apic_cpus_info_t *)
1007 kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1008 if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1009 goto apic_handle_defconf_fail;
1010 CPUSET_ONLY(apic_cpumask, 0);
1011 CPUSET_ADD(apic_cpumask, 1);
1012 apic_nproc = 2;
1013 lid = apic_reg_ops->apic_read(APIC_LID_REG);
1014 apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1015 /*
1016 * According to the PC+MP spec 1.1, the local ids
1017 * for the default configuration has to be 0 or 1
1018 */
1019 if (apic_cpus[0].aci_local_id == 1)
1020 apic_cpus[1].aci_local_id = 0;
1021 else if (apic_cpus[0].aci_local_id == 0)
1022 apic_cpus[1].aci_local_id = 1;
1023 else
1024 goto apic_handle_defconf_fail;
1025
1026 apic_io_id[0] = 2;
1027 apic_io_max = 1;
1028 if (apic_defconf >= 5) {
1029 apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1030 apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1031 apic_io_ver[0] = APIC_INTEGRATED_VERS;
1032 } else {
1033 apic_cpus[0].aci_local_ver = 0; /* 82489 DX */
1034 apic_cpus[1].aci_local_ver = 0;
1035 apic_io_ver[0] = 0;
1036 }
1037 if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1038 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1039 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1040 return (PSM_SUCCESS);
1041
1042 apic_handle_defconf_fail:
1043 if (apicadr)
1044 mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1045 if (apicioadr[0])
1046 mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1047 return (PSM_FAILURE);
1048 }
1049
1050 /* Parse the entries in MP configuration table and collect info that we need */
1051 static int
apic_parse_mpct(caddr_t mpct,int bypass_cpus_and_ioapics)1052 apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1053 {
1054 struct apic_procent *procp;
1055 struct apic_bus *busp;
1056 struct apic_io_entry *ioapicp;
1057 struct apic_io_intr *intrp;
1058 int ioapic_ix;
1059 uint_t lid;
1060 uint32_t id;
1061 uchar_t hid;
1062 int warned = 0;
1063
1064 /*LINTED: pointer cast may result in improper alignment */
1065 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1066
1067 /* No need to count cpu entries if we won't use them */
1068 if (!bypass_cpus_and_ioapics) {
1069
1070 /* Find max # of CPUS and allocate structure accordingly */
1071 apic_nproc = 0;
1072 CPUSET_ZERO(apic_cpumask);
1073 while (procp->proc_entry == APIC_CPU_ENTRY) {
1074 if (procp->proc_cpuflags & CPUFLAGS_EN) {
1075 if (apic_nproc < NCPU && use_mp &&
1076 apic_nproc < boot_ncpus) {
1077 CPUSET_ADD(apic_cpumask, apic_nproc);
1078 apic_nproc++;
1079 } else if (apic_nproc == NCPU && !warned) {
1080 cmn_err(CE_WARN, "%s: CPU limit "
1081 "exceeded"
1082 #if !defined(__amd64)
1083 " for 32-bit mode"
1084 #endif
1085 "; Solaris will use %d CPUs.",
1086 psm_name, NCPU);
1087 warned = 1;
1088 }
1089
1090 }
1091 procp++;
1092 }
1093 apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1094 if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1095 kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1096 return (PSM_FAILURE);
1097 }
1098
1099 /*LINTED: pointer cast may result in improper alignment */
1100 procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1101
1102 /*
1103 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1104 * if we're bypassing this information, it has already been filled
1105 * in by acpi_probe(), so don't overwrite it.
1106 */
1107 if (!bypass_cpus_and_ioapics)
1108 apic_nproc = 1;
1109
1110 while (procp->proc_entry == APIC_CPU_ENTRY) {
1111 /* check whether the cpu exists or not */
1112 if (!bypass_cpus_and_ioapics &&
1113 procp->proc_cpuflags & CPUFLAGS_EN) {
1114 if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1115 lid = apic_reg_ops->apic_read(APIC_LID_REG);
1116 apic_cpus[0].aci_local_id = procp->proc_apicid;
1117 if (apic_cpus[0].aci_local_id !=
1118 (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1119 return (PSM_FAILURE);
1120 }
1121 apic_cpus[0].aci_local_ver =
1122 procp->proc_version;
1123 } else if (apic_nproc < NCPU && use_mp &&
1124 apic_nproc < boot_ncpus) {
1125 apic_cpus[apic_nproc].aci_local_id =
1126 procp->proc_apicid;
1127
1128 apic_cpus[apic_nproc].aci_local_ver =
1129 procp->proc_version;
1130 apic_nproc++;
1131
1132 }
1133 }
1134 procp++;
1135 }
1136
1137 /*
1138 * Save start of bus entries for later use.
1139 * Get EISA level cntrl if EISA bus is present.
1140 * Also get the CPI bus id for single CPI bus case
1141 */
1142 apic_busp = busp = (struct apic_bus *)procp;
1143 while (busp->bus_entry == APIC_BUS_ENTRY) {
1144 lid = apic_find_bus_type((char *)&busp->bus_str1);
1145 if (lid == BUS_EISA) {
1146 eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1147 inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1148 } else if (lid == BUS_PCI) {
1149 /*
1150 * apic_single_pci_busid will be used only if
1151 * apic_pic_bus_total is equal to 1
1152 */
1153 apic_pci_bus_total++;
1154 apic_single_pci_busid = busp->bus_id;
1155 }
1156 busp++;
1157 }
1158
1159 ioapicp = (struct apic_io_entry *)busp;
1160
1161 if (!bypass_cpus_and_ioapics)
1162 apic_io_max = 0;
1163 do {
1164 if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1165 if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1166 apic_io_id[apic_io_max] = ioapicp->io_apicid;
1167 apic_io_ver[apic_io_max] = ioapicp->io_version;
1168 apicioadr[apic_io_max] =
1169 (void *)mapin_ioapic(
1170 (uint32_t)ioapicp->io_apic_addr,
1171 APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1172
1173 if (!apicioadr[apic_io_max])
1174 return (PSM_FAILURE);
1175
1176 ioapic_mask_workaround[apic_io_max] =
1177 apic_is_ioapic_AMD_813x(
1178 ioapicp->io_apic_addr);
1179
1180 ioapic_ix = apic_io_max;
1181 id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1182 hid = (uchar_t)(id >> 24);
1183
1184 if (hid != apic_io_id[apic_io_max]) {
1185 if (apic_io_id[apic_io_max] == 0)
1186 apic_io_id[apic_io_max] = hid;
1187 else {
1188 /*
1189 * set ioapic id to whatever
1190 * reported by MPS
1191 *
1192 * may not need to set index
1193 * again ???
1194 * take it out and try
1195 */
1196
1197 id = ((uint32_t)
1198 apic_io_id[apic_io_max]) <<
1199 24;
1200
1201 ioapic_write(ioapic_ix,
1202 APIC_ID_CMD, id);
1203 }
1204 }
1205 apic_io_max++;
1206 }
1207 }
1208 ioapicp++;
1209 } while (ioapicp->io_entry == APIC_IO_ENTRY);
1210
1211 apic_io_intrp = (struct apic_io_intr *)ioapicp;
1212
1213 intrp = apic_io_intrp;
1214 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1215 if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1216 (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1217 apic_irq_translate = 1;
1218 break;
1219 }
1220 intrp++;
1221 }
1222
1223 return (PSM_SUCCESS);
1224 }
1225
1226 boolean_t
apic_cpu_in_range(int cpu)1227 apic_cpu_in_range(int cpu)
1228 {
1229 cpu &= ~IRQ_USER_BOUND;
1230 /* Check whether cpu id is in valid range. */
1231 if (cpu < 0 || cpu >= apic_nproc) {
1232 return (B_FALSE);
1233 } else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1234 /*
1235 * Check whether cpuid is in valid range if CPU DR is enabled.
1236 */
1237 return (B_FALSE);
1238 } else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1239 return (B_FALSE);
1240 }
1241
1242 return (B_TRUE);
1243 }
1244
1245 processorid_t
apic_get_next_bind_cpu(void)1246 apic_get_next_bind_cpu(void)
1247 {
1248 int i, count;
1249 processorid_t cpuid = 0;
1250
1251 for (count = 0; count < apic_nproc; count++) {
1252 if (apic_next_bind_cpu >= apic_nproc) {
1253 apic_next_bind_cpu = 0;
1254 }
1255 i = apic_next_bind_cpu++;
1256 if (apic_cpu_in_range(i)) {
1257 cpuid = i;
1258 break;
1259 }
1260 }
1261
1262 return (cpuid);
1263 }
1264
1265 uint16_t
apic_get_apic_version()1266 apic_get_apic_version()
1267 {
1268 int i;
1269 uchar_t min_io_apic_ver = 0;
1270 static uint16_t version; /* Cache as value is constant */
1271 static boolean_t found = B_FALSE; /* Accomodate zero version */
1272
1273 if (found == B_FALSE) {
1274 found = B_TRUE;
1275
1276 /*
1277 * Don't assume all IO APICs in the system are the same.
1278 *
1279 * Set to the minimum version.
1280 */
1281 for (i = 0; i < apic_io_max; i++) {
1282 if ((apic_io_ver[i] != 0) &&
1283 ((min_io_apic_ver == 0) ||
1284 (min_io_apic_ver >= apic_io_ver[i])))
1285 min_io_apic_ver = apic_io_ver[i];
1286 }
1287
1288 /* Assume all local APICs are of the same version. */
1289 version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1290 }
1291 return (version);
1292 }
1293
1294 static struct apic_mpfps_hdr *
apic_find_fps_sig(caddr_t cptr,int len)1295 apic_find_fps_sig(caddr_t cptr, int len)
1296 {
1297 int i;
1298
1299 /* Look for the pattern "_MP_" */
1300 for (i = 0; i < len; i += 16) {
1301 if ((*(cptr+i) == '_') &&
1302 (*(cptr+i+1) == 'M') &&
1303 (*(cptr+i+2) == 'P') &&
1304 (*(cptr+i+3) == '_'))
1305 /*LINTED: pointer cast may result in improper alignment */
1306 return ((struct apic_mpfps_hdr *)(cptr + i));
1307 }
1308 return (NULL);
1309 }
1310
1311 static int
apic_checksum(caddr_t bptr,int len)1312 apic_checksum(caddr_t bptr, int len)
1313 {
1314 int i;
1315 uchar_t cksum;
1316
1317 cksum = 0;
1318 for (i = 0; i < len; i++)
1319 cksum += *bptr++;
1320 return ((int)cksum);
1321 }
1322
1323 /*
1324 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1325 * needs special handling. We may need to chase up the device tree,
1326 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1327 * to find the IPIN at the root bus that relates to the IPIN on the
1328 * subsidiary bus (for ACPI or MP). We may, however, have an entry
1329 * in the MP table or the ACPI namespace for this device itself.
1330 * We handle both cases in the search below.
1331 */
1332 /* this is the non-acpi version */
1333 int
apic_handle_pci_pci_bridge(dev_info_t * idip,int child_devno,int child_ipin,struct apic_io_intr ** intrp)1334 apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1335 struct apic_io_intr **intrp)
1336 {
1337 dev_info_t *dipp, *dip;
1338 int pci_irq;
1339 ddi_acc_handle_t cfg_handle;
1340 int bridge_devno, bridge_bus;
1341 int ipin;
1342
1343 dip = idip;
1344
1345 /*CONSTCOND*/
1346 while (1) {
1347 if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1348 (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1349 return (-1);
1350 if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1351 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1352 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1353 pci_config_teardown(&cfg_handle);
1354 if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1355 NULL) != 0)
1356 return (-1);
1357 /*
1358 * This is the rotating scheme documented in the
1359 * PCI-to-PCI spec. If the PCI-to-PCI bridge is
1360 * behind another PCI-to-PCI bridge, then it needs
1361 * to keep ascending until an interrupt entry is
1362 * found or the root is reached.
1363 */
1364 ipin = (child_devno + child_ipin) % PCI_INTD;
1365 if (bridge_bus == 0 && apic_pci_bus_total == 1)
1366 bridge_bus = (int)apic_single_pci_busid;
1367 pci_irq = ((bridge_devno & 0x1f) << 2) |
1368 (ipin & 0x3);
1369 if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1370 bridge_bus)) != NULL) {
1371 return (pci_irq);
1372 }
1373 dip = dipp;
1374 child_devno = bridge_devno;
1375 child_ipin = ipin;
1376 } else {
1377 pci_config_teardown(&cfg_handle);
1378 return (-1);
1379 }
1380 }
1381 /*LINTED: function will not fall off the bottom */
1382 }
1383
1384 uchar_t
acpi_find_ioapic(int irq)1385 acpi_find_ioapic(int irq)
1386 {
1387 int i;
1388
1389 for (i = 0; i < apic_io_max; i++) {
1390 if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1391 return ((uchar_t)i);
1392 }
1393 return (0xFF); /* shouldn't happen */
1394 }
1395
1396 /*
1397 * See if two irqs are compatible for sharing a vector.
1398 * Currently we only support sharing of PCI devices.
1399 */
1400 static int
acpi_intr_compatible(iflag_t iflag1,iflag_t iflag2)1401 acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1402 {
1403 uint_t level1, po1;
1404 uint_t level2, po2;
1405
1406 /* Assume active high by default */
1407 po1 = 0;
1408 po2 = 0;
1409
1410 if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1411 return (0);
1412
1413 if (iflag1.intr_el == INTR_EL_CONFORM)
1414 level1 = AV_LEVEL;
1415 else
1416 level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1417
1418 if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1419 (iflag1.intr_po == INTR_PO_CONFORM)))
1420 po1 = AV_ACTIVE_LOW;
1421
1422 if (iflag2.intr_el == INTR_EL_CONFORM)
1423 level2 = AV_LEVEL;
1424 else
1425 level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1426
1427 if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1428 (iflag2.intr_po == INTR_PO_CONFORM)))
1429 po2 = AV_ACTIVE_LOW;
1430
1431 if ((level1 == level2) && (po1 == po2))
1432 return (1);
1433
1434 return (0);
1435 }
1436
1437 struct apic_io_intr *
apic_find_io_intr_w_busid(int irqno,int busid)1438 apic_find_io_intr_w_busid(int irqno, int busid)
1439 {
1440 struct apic_io_intr *intrp;
1441
1442 /*
1443 * It can have more than 1 entry with same source bus IRQ,
1444 * but unique with the source bus id
1445 */
1446 intrp = apic_io_intrp;
1447 if (intrp != NULL) {
1448 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1449 if (intrp->intr_irq == irqno &&
1450 intrp->intr_busid == busid &&
1451 intrp->intr_type == IO_INTR_INT)
1452 return (intrp);
1453 intrp++;
1454 }
1455 }
1456 APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1457 "busid %x:%x\n", irqno, busid));
1458 return ((struct apic_io_intr *)NULL);
1459 }
1460
1461
1462 struct mps_bus_info {
1463 char *bus_name;
1464 int bus_id;
1465 } bus_info_array[] = {
1466 "ISA ", BUS_ISA,
1467 "PCI ", BUS_PCI,
1468 "EISA ", BUS_EISA,
1469 "XPRESS", BUS_XPRESS,
1470 "PCMCIA", BUS_PCMCIA,
1471 "VL ", BUS_VL,
1472 "CBUS ", BUS_CBUS,
1473 "CBUSII", BUS_CBUSII,
1474 "FUTURE", BUS_FUTURE,
1475 "INTERN", BUS_INTERN,
1476 "MBI ", BUS_MBI,
1477 "MBII ", BUS_MBII,
1478 "MPI ", BUS_MPI,
1479 "MPSA ", BUS_MPSA,
1480 "NUBUS ", BUS_NUBUS,
1481 "TC ", BUS_TC,
1482 "VME ", BUS_VME,
1483 "PCI-E ", BUS_PCIE
1484 };
1485
1486 static int
apic_find_bus_type(char * bus)1487 apic_find_bus_type(char *bus)
1488 {
1489 int i = 0;
1490
1491 for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1492 if (strncmp(bus, bus_info_array[i].bus_name,
1493 strlen(bus_info_array[i].bus_name)) == 0)
1494 return (bus_info_array[i].bus_id);
1495 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1496 return (0);
1497 }
1498
1499 static int
apic_find_bus(int busid)1500 apic_find_bus(int busid)
1501 {
1502 struct apic_bus *busp;
1503
1504 busp = apic_busp;
1505 while (busp->bus_entry == APIC_BUS_ENTRY) {
1506 if (busp->bus_id == busid)
1507 return (apic_find_bus_type((char *)&busp->bus_str1));
1508 busp++;
1509 }
1510 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1511 return (0);
1512 }
1513
1514 int
apic_find_bus_id(int bustype)1515 apic_find_bus_id(int bustype)
1516 {
1517 struct apic_bus *busp;
1518
1519 busp = apic_busp;
1520 while (busp->bus_entry == APIC_BUS_ENTRY) {
1521 if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1522 return (busp->bus_id);
1523 busp++;
1524 }
1525 APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1526 bustype));
1527 return (-1);
1528 }
1529
1530 /*
1531 * Check if a particular irq need to be reserved for any io_intr
1532 */
1533 static struct apic_io_intr *
apic_find_io_intr(int irqno)1534 apic_find_io_intr(int irqno)
1535 {
1536 struct apic_io_intr *intrp;
1537
1538 intrp = apic_io_intrp;
1539 if (intrp != NULL) {
1540 while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1541 if (intrp->intr_irq == irqno &&
1542 intrp->intr_type == IO_INTR_INT)
1543 return (intrp);
1544 intrp++;
1545 }
1546 }
1547 return ((struct apic_io_intr *)NULL);
1548 }
1549
1550 /*
1551 * Check if the given ioapicindex intin combination has already been assigned
1552 * an irq. If so return irqno. Else -1
1553 */
1554 int
apic_find_intin(uchar_t ioapic,uchar_t intin)1555 apic_find_intin(uchar_t ioapic, uchar_t intin)
1556 {
1557 apic_irq_t *irqptr;
1558 int i;
1559
1560 /* find ioapic and intin in the apic_irq_table[] and return the index */
1561 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1562 irqptr = apic_irq_table[i];
1563 while (irqptr) {
1564 if ((irqptr->airq_mps_intr_index >= 0) &&
1565 (irqptr->airq_intin_no == intin) &&
1566 (irqptr->airq_ioapicindex == ioapic)) {
1567 APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1568 "entry for ioapic:intin %x:%x "
1569 "shared interrupts ?", ioapic, intin));
1570 return (i);
1571 }
1572 irqptr = irqptr->airq_next;
1573 }
1574 }
1575 return (-1);
1576 }
1577
1578 int
apic_allocate_irq(int irq)1579 apic_allocate_irq(int irq)
1580 {
1581 int freeirq, i;
1582
1583 if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1584 if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1585 (irq - 1))) == -1) {
1586 /*
1587 * if BIOS really defines every single irq in the mps
1588 * table, then don't worry about conflicting with
1589 * them, just use any free slot in apic_irq_table
1590 */
1591 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1592 if ((apic_irq_table[i] == NULL) ||
1593 apic_irq_table[i]->airq_mps_intr_index ==
1594 FREE_INDEX) {
1595 freeirq = i;
1596 break;
1597 }
1598 }
1599 if (freeirq == -1) {
1600 /* This shouldn't happen, but just in case */
1601 cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1602 return (-1);
1603 }
1604 }
1605 if (apic_irq_table[freeirq] == NULL) {
1606 apic_irq_table[freeirq] =
1607 kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1608 if (apic_irq_table[freeirq] == NULL) {
1609 cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1610 psm_name);
1611 return (-1);
1612 }
1613 apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1614 apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1615 }
1616 return (freeirq);
1617 }
1618
1619 static int
apic_find_free_irq(int start,int end)1620 apic_find_free_irq(int start, int end)
1621 {
1622 int i;
1623
1624 for (i = start; i <= end; i++)
1625 /* Check if any I/O entry needs this IRQ */
1626 if (apic_find_io_intr(i) == NULL) {
1627 /* Then see if it is free */
1628 if ((apic_irq_table[i] == NULL) ||
1629 (apic_irq_table[i]->airq_mps_intr_index ==
1630 FREE_INDEX)) {
1631 return (i);
1632 }
1633 }
1634 return (-1);
1635 }
1636
1637 /*
1638 * compute the polarity, trigger mode and vector for programming into
1639 * the I/O apic and record in airq_rdt_entry.
1640 */
1641 void
apic_record_rdt_entry(apic_irq_t * irqptr,int irq)1642 apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1643 {
1644 int ioapicindex, bus_type, vector;
1645 short intr_index;
1646 uint_t level, po, io_po;
1647 struct apic_io_intr *iointrp;
1648
1649 intr_index = irqptr->airq_mps_intr_index;
1650 DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1651 "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1652 (void *)irqptr->airq_dip, irqptr->airq_vector));
1653
1654 if (intr_index == RESERVE_INDEX) {
1655 apic_error |= APIC_ERR_INVALID_INDEX;
1656 return;
1657 } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1658 return;
1659 }
1660
1661 vector = irqptr->airq_vector;
1662 ioapicindex = irqptr->airq_ioapicindex;
1663 /* Assume edge triggered by default */
1664 level = 0;
1665 /* Assume active high by default */
1666 po = 0;
1667
1668 if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1669 ASSERT(irq < 16);
1670 if (eisa_level_intr_mask & (1 << irq))
1671 level = AV_LEVEL;
1672 if (intr_index == FREE_INDEX && apic_defconf == 0)
1673 apic_error |= APIC_ERR_INVALID_INDEX;
1674 } else if (intr_index == ACPI_INDEX) {
1675 bus_type = irqptr->airq_iflag.bustype;
1676 if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1677 if (bus_type == BUS_PCI)
1678 level = AV_LEVEL;
1679 } else
1680 level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1681 AV_LEVEL : 0;
1682 if (level &&
1683 ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1684 (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1685 bus_type == BUS_PCI)))
1686 po = AV_ACTIVE_LOW;
1687 } else {
1688 iointrp = apic_io_intrp + intr_index;
1689 bus_type = apic_find_bus(iointrp->intr_busid);
1690 if (iointrp->intr_el == INTR_EL_CONFORM) {
1691 if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1692 level = AV_LEVEL;
1693 else if (bus_type == BUS_PCI)
1694 level = AV_LEVEL;
1695 } else
1696 level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1697 AV_LEVEL : 0;
1698 if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1699 (iointrp->intr_po == INTR_PO_CONFORM &&
1700 bus_type == BUS_PCI)))
1701 po = AV_ACTIVE_LOW;
1702 }
1703 if (level)
1704 apic_level_intr[irq] = 1;
1705 /*
1706 * The 82489DX External APIC cannot do active low polarity interrupts.
1707 */
1708 if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1709 io_po = po;
1710 else
1711 io_po = 0;
1712
1713 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1714 prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1715 "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1716 irqptr->airq_intin_no, level, io_po, vector,
1717 irqptr->airq_cpu);
1718
1719 irqptr->airq_rdt_entry = level|io_po|vector;
1720 }
1721
1722 int
apic_acpi_translate_pci_irq(dev_info_t * dip,int busid,int devid,int ipin,int * pci_irqp,iflag_t * intr_flagp)1723 apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1724 int ipin, int *pci_irqp, iflag_t *intr_flagp)
1725 {
1726
1727 int status;
1728 acpi_psm_lnk_t acpipsmlnk;
1729
1730 if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1731 intr_flagp)) == ACPI_PSM_SUCCESS) {
1732 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1733 "from cache for device %s, instance #%d\n", psm_name,
1734 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1735 return (status);
1736 }
1737
1738 bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1739
1740 if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1741 &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1742 APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1743 " acpi_translate_pci_irq failed for device %s, instance"
1744 " #%d", psm_name, ddi_get_name(dip),
1745 ddi_get_instance(dip)));
1746 return (status);
1747 }
1748
1749 if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1750 status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1751 intr_flagp);
1752 if (status != ACPI_PSM_SUCCESS) {
1753 status = acpi_get_current_irq_resource(&acpipsmlnk,
1754 pci_irqp, intr_flagp);
1755 }
1756 }
1757
1758 if (status == ACPI_PSM_SUCCESS) {
1759 acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1760 intr_flagp, &acpipsmlnk);
1761
1762 APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1763 "new irq %d for device %s, instance #%d\n", psm_name,
1764 *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1765 }
1766
1767 return (status);
1768 }
1769
1770 /*
1771 * Adds an entry to the irq list passed in, and returns the new list.
1772 * Entries are added in priority order (lower numerical priorities are
1773 * placed closer to the head of the list)
1774 */
1775 static prs_irq_list_t *
acpi_insert_prs_irq_ent(prs_irq_list_t * listp,int priority,int irq,iflag_t * iflagp,acpi_prs_private_t * prsprvp)1776 acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1777 iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1778 {
1779 struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1780
1781 newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1782
1783 newent->list_prio = priority;
1784 newent->irq = irq;
1785 newent->intrflags = *iflagp;
1786 newent->prsprv = *prsprvp;
1787 /* ->next is NULL from kmem_zalloc */
1788
1789 /*
1790 * New list -- return the new entry as the list.
1791 */
1792 if (listp == NULL)
1793 return (newent);
1794
1795 /*
1796 * Save original list pointer for return (since we're not modifying
1797 * the head)
1798 */
1799 origlistp = listp;
1800
1801 /*
1802 * Insertion sort, with entries with identical keys stored AFTER
1803 * existing entries (the less-than-or-equal test of priority does
1804 * this for us).
1805 */
1806 while (listp != NULL && listp->list_prio <= priority) {
1807 prevp = listp;
1808 listp = listp->next;
1809 }
1810
1811 newent->next = listp;
1812
1813 if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1814 return (newent);
1815 } else {
1816 prevp->next = newent;
1817 return (origlistp);
1818 }
1819 }
1820
1821 /*
1822 * Frees the list passed in, deallocating all memory and leaving *listpp
1823 * set to NULL.
1824 */
1825 static void
acpi_destroy_prs_irq_list(prs_irq_list_t ** listpp)1826 acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1827 {
1828 struct prs_irq_list_ent *nextp;
1829
1830 ASSERT(listpp != NULL);
1831
1832 while (*listpp != NULL) {
1833 nextp = (*listpp)->next;
1834 kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1835 *listpp = nextp;
1836 }
1837 }
1838
1839 /*
1840 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1841 * irqs returned by the link device's _PRS method. The irqs are chosen
1842 * to minimize contention in situations where the interrupt link device
1843 * can be programmed to steer interrupts to different interrupt controller
1844 * inputs (some of which may already be in use). The list is sorted in order
1845 * of irqs to use, with the highest priority given to interrupt controller
1846 * inputs that are not shared. When an interrupt controller input
1847 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1848 * returned list in the order that minimizes sharing (thereby ensuring lowest
1849 * possible latency from interrupt trigger time to ISR execution time).
1850 */
1851 static prs_irq_list_t *
apic_choose_irqs_from_prs(acpi_irqlist_t * irqlistent,dev_info_t * dip,int crs_irq)1852 apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1853 int crs_irq)
1854 {
1855 int32_t irq;
1856 int i;
1857 prs_irq_list_t *prsirqlistp = NULL;
1858 iflag_t iflags;
1859
1860 while (irqlistent != NULL) {
1861 irqlistent->intr_flags.bustype = BUS_PCI;
1862
1863 for (i = 0; i < irqlistent->num_irqs; i++) {
1864
1865 irq = irqlistent->irqs[i];
1866
1867 if (irq <= 0) {
1868 /* invalid irq number */
1869 continue;
1870 }
1871
1872 if ((irq < 16) && (apic_reserved_irqlist[irq]))
1873 continue;
1874
1875 if ((apic_irq_table[irq] == NULL) ||
1876 (apic_irq_table[irq]->airq_dip == dip)) {
1877
1878 prsirqlistp = acpi_insert_prs_irq_ent(
1879 prsirqlistp, 0 /* Highest priority */, irq,
1880 &irqlistent->intr_flags,
1881 &irqlistent->acpi_prs_prv);
1882
1883 /*
1884 * If we do not prefer the current irq from _CRS
1885 * or if we do and this irq is the same as the
1886 * current irq from _CRS, this is the one
1887 * to pick.
1888 */
1889 if (!(apic_prefer_crs) || (irq == crs_irq)) {
1890 return (prsirqlistp);
1891 }
1892 continue;
1893 }
1894
1895 /*
1896 * Edge-triggered interrupts cannot be shared
1897 */
1898 if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1899 continue;
1900
1901 /*
1902 * To work around BIOSes that contain incorrect
1903 * interrupt polarity information in interrupt
1904 * descriptors returned by _PRS, we assume that
1905 * the polarity of the other device sharing this
1906 * interrupt controller input is compatible.
1907 * If it's not, the caller will catch it when
1908 * the caller invokes the link device's _CRS method
1909 * (after invoking its _SRS method).
1910 */
1911 iflags = irqlistent->intr_flags;
1912 iflags.intr_po =
1913 apic_irq_table[irq]->airq_iflag.intr_po;
1914
1915 if (!acpi_intr_compatible(iflags,
1916 apic_irq_table[irq]->airq_iflag)) {
1917 APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1918 "not compatible [%x:%x:%x !~ %x:%x:%x]",
1919 psm_name, irq,
1920 iflags.intr_po,
1921 iflags.intr_el,
1922 iflags.bustype,
1923 apic_irq_table[irq]->airq_iflag.intr_po,
1924 apic_irq_table[irq]->airq_iflag.intr_el,
1925 apic_irq_table[irq]->airq_iflag.bustype));
1926 continue;
1927 }
1928
1929 /*
1930 * If we prefer the irq from _CRS, no need
1931 * to search any further (and make sure
1932 * to add this irq with the highest priority
1933 * so it's tried first).
1934 */
1935 if (crs_irq == irq && apic_prefer_crs) {
1936
1937 return (acpi_insert_prs_irq_ent(
1938 prsirqlistp,
1939 0 /* Highest priority */,
1940 irq, &iflags,
1941 &irqlistent->acpi_prs_prv));
1942 }
1943
1944 /*
1945 * Priority is equal to the share count (lower
1946 * share count is higher priority). Note that
1947 * the intr flags passed in here are the ones we
1948 * changed above -- if incorrect, it will be
1949 * caught by the caller's _CRS flags comparison.
1950 */
1951 prsirqlistp = acpi_insert_prs_irq_ent(
1952 prsirqlistp,
1953 apic_irq_table[irq]->airq_share, irq,
1954 &iflags, &irqlistent->acpi_prs_prv);
1955 }
1956
1957 /* Go to the next irqlist entry */
1958 irqlistent = irqlistent->next;
1959 }
1960
1961 return (prsirqlistp);
1962 }
1963
1964 /*
1965 * Configures the irq for the interrupt link device identified by
1966 * acpipsmlnkp.
1967 *
1968 * Gets the current and the list of possible irq settings for the
1969 * device. If apic_unconditional_srs is not set, and the current
1970 * resource setting is in the list of possible irq settings,
1971 * current irq resource setting is passed to the caller.
1972 *
1973 * Otherwise, picks an irq number from the list of possible irq
1974 * settings, and sets the irq of the device to this value.
1975 * If prefer_crs is set, among a set of irq numbers in the list that have
1976 * the least number of devices sharing the interrupt, we pick current irq
1977 * resource setting if it is a member of this set.
1978 *
1979 * Passes the irq number in the value pointed to by pci_irqp, and
1980 * polarity and sensitivity in the structure pointed to by dipintrflagp
1981 * to the caller.
1982 *
1983 * Note that if setting the irq resource failed, but successfuly obtained
1984 * the current irq resource settings, passes the current irq resources
1985 * and considers it a success.
1986 *
1987 * Returns:
1988 * ACPI_PSM_SUCCESS on success.
1989 *
1990 * ACPI_PSM_FAILURE if an error occured during the configuration or
1991 * if a suitable irq was not found for this device, or if setting the
1992 * irq resource and obtaining the current resource fails.
1993 *
1994 */
1995 static int
apic_acpi_irq_configure(acpi_psm_lnk_t * acpipsmlnkp,dev_info_t * dip,int * pci_irqp,iflag_t * dipintr_flagp)1996 apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
1997 int *pci_irqp, iflag_t *dipintr_flagp)
1998 {
1999 int32_t irq;
2000 int cur_irq = -1;
2001 acpi_irqlist_t *irqlistp;
2002 prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2003 boolean_t found_irq = B_FALSE;
2004
2005 dipintr_flagp->bustype = BUS_PCI;
2006
2007 if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2008 == ACPI_PSM_FAILURE) {
2009 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2010 "or assign IRQ for device %s, instance #%d: The system was "
2011 "unable to get the list of potential IRQs from ACPI.",
2012 psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2013
2014 return (ACPI_PSM_FAILURE);
2015 }
2016
2017 if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2018 dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2019 (cur_irq > 0)) {
2020 /*
2021 * If an IRQ is set in CRS and that IRQ exists in the set
2022 * returned from _PRS, return that IRQ, otherwise print
2023 * a warning
2024 */
2025
2026 if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2027 == ACPI_PSM_SUCCESS) {
2028
2029 ASSERT(pci_irqp != NULL);
2030 *pci_irqp = cur_irq;
2031 acpi_free_irqlist(irqlistp);
2032 return (ACPI_PSM_SUCCESS);
2033 }
2034
2035 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2036 "current irq %d for device %s, instance #%d in ACPI's "
2037 "list of possible irqs for this device. Picking one from "
2038 " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2039 ddi_get_instance(dip)));
2040 }
2041
2042 if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2043 cur_irq)) == NULL) {
2044
2045 APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2046 "suitable irq from the list of possible irqs for device "
2047 "%s, instance #%d in ACPI's list of possible irqs",
2048 psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049
2050 acpi_free_irqlist(irqlistp);
2051 return (ACPI_PSM_FAILURE);
2052 }
2053
2054 acpi_free_irqlist(irqlistp);
2055
2056 for (prs_irq_entp = prs_irq_listp;
2057 prs_irq_entp != NULL && found_irq == B_FALSE;
2058 prs_irq_entp = prs_irq_entp->next) {
2059
2060 acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2061 irq = prs_irq_entp->irq;
2062
2063 APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2064 "device %s instance #%d\n", psm_name, irq,
2065 ddi_get_name(dip), ddi_get_instance(dip)));
2066
2067 if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2068 == ACPI_PSM_SUCCESS) {
2069 /*
2070 * setting irq was successful, check to make sure CRS
2071 * reflects that. If CRS does not agree with what we
2072 * set, return the irq that was set.
2073 */
2074
2075 if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2076 dipintr_flagp) == ACPI_PSM_SUCCESS) {
2077
2078 if (cur_irq != irq)
2079 APIC_VERBOSE_IRQ((CE_WARN,
2080 "!%s: IRQ resource set "
2081 "(irqno %d) for device %s "
2082 "instance #%d, differs from "
2083 "current setting irqno %d",
2084 psm_name, irq, ddi_get_name(dip),
2085 ddi_get_instance(dip), cur_irq));
2086 } else {
2087 /*
2088 * On at least one system, there was a bug in
2089 * a DSDT method called by _STA, causing _STA to
2090 * indicate that the link device was disabled
2091 * (when, in fact, it was enabled). Since _SRS
2092 * succeeded, assume that _CRS is lying and use
2093 * the iflags from this _PRS interrupt choice.
2094 * If we're wrong about the flags, the polarity
2095 * will be incorrect and we may get an interrupt
2096 * storm, but there's not much else we can do
2097 * at this point.
2098 */
2099 *dipintr_flagp = prs_irq_entp->intrflags;
2100 }
2101
2102 /*
2103 * Return the irq that was set, and not what _CRS
2104 * reports, since _CRS has been seen to return
2105 * different IRQs than what was passed to _SRS on some
2106 * systems (and just not return successfully on others).
2107 */
2108 cur_irq = irq;
2109 found_irq = B_TRUE;
2110 } else {
2111 APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2112 "irq %d failed for device %s instance #%d",
2113 psm_name, irq, ddi_get_name(dip),
2114 ddi_get_instance(dip)));
2115
2116 if (cur_irq == -1) {
2117 acpi_destroy_prs_irq_list(&prs_irq_listp);
2118 return (ACPI_PSM_FAILURE);
2119 }
2120 }
2121 }
2122
2123 acpi_destroy_prs_irq_list(&prs_irq_listp);
2124
2125 if (!found_irq)
2126 return (ACPI_PSM_FAILURE);
2127
2128 ASSERT(pci_irqp != NULL);
2129 *pci_irqp = cur_irq;
2130 return (ACPI_PSM_SUCCESS);
2131 }
2132
2133 void
ioapic_disable_redirection()2134 ioapic_disable_redirection()
2135 {
2136 int ioapic_ix;
2137 int intin_max;
2138 int intin_ix;
2139
2140 /* Disable the I/O APIC redirection entries */
2141 for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2142
2143 /* Bits 23-16 define the maximum redirection entries */
2144 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2145 & 0xff;
2146
2147 for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2148 /*
2149 * The assumption here is that this is safe, even for
2150 * systems with IOAPICs that suffer from the hardware
2151 * erratum because all devices have been quiesced before
2152 * this function is called from apic_shutdown()
2153 * (or equivalent). If that assumption turns out to be
2154 * false, this mask operation can induce the same
2155 * erratum result we're trying to avoid.
2156 */
2157 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2158 AV_MASK);
2159 }
2160 }
2161 }
2162
2163 /*
2164 * Looks for an IOAPIC with the specified physical address in the /ioapics
2165 * node in the device tree (created by the PCI enumerator).
2166 */
2167 static boolean_t
apic_is_ioapic_AMD_813x(uint32_t physaddr)2168 apic_is_ioapic_AMD_813x(uint32_t physaddr)
2169 {
2170 /*
2171 * Look in /ioapics, for the ioapic with
2172 * the physical address given
2173 */
2174 dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2175 dev_info_t *ioapic_child;
2176 boolean_t rv = B_FALSE;
2177 int vid, did;
2178 uint64_t ioapic_paddr;
2179 boolean_t done = B_FALSE;
2180
2181 if (ioapicsnode == NULL)
2182 return (B_FALSE);
2183
2184 /* Load first child: */
2185 ioapic_child = ddi_get_child(ioapicsnode);
2186 while (!done && ioapic_child != 0) { /* Iterate over children */
2187
2188 if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2189 ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2190 != 0 && physaddr == ioapic_paddr) {
2191
2192 vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2193 DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2194
2195 if (vid == VENID_AMD) {
2196
2197 did = ddi_prop_get_int(DDI_DEV_T_ANY,
2198 ioapic_child, DDI_PROP_DONTPASS,
2199 IOAPICS_PROP_DEVID, 0);
2200
2201 if (did == DEVID_8131_IOAPIC ||
2202 did == DEVID_8132_IOAPIC) {
2203 rv = B_TRUE;
2204 done = B_TRUE;
2205 }
2206 }
2207 }
2208
2209 if (!done)
2210 ioapic_child = ddi_get_next_sibling(ioapic_child);
2211 }
2212
2213 /* The ioapics node was held by ddi_find_devinfo, so release it */
2214 ndi_rele_devi(ioapicsnode);
2215 return (rv);
2216 }
2217
2218 struct apic_state {
2219 int32_t as_task_reg;
2220 int32_t as_dest_reg;
2221 int32_t as_format_reg;
2222 int32_t as_local_timer;
2223 int32_t as_pcint_vect;
2224 int32_t as_int_vect0;
2225 int32_t as_int_vect1;
2226 int32_t as_err_vect;
2227 int32_t as_init_count;
2228 int32_t as_divide_reg;
2229 int32_t as_spur_int_reg;
2230 uint32_t as_ioapic_ids[MAX_IO_APIC];
2231 };
2232
2233
2234 static int
apic_acpi_enter_apicmode(void)2235 apic_acpi_enter_apicmode(void)
2236 {
2237 ACPI_OBJECT_LIST arglist;
2238 ACPI_OBJECT arg;
2239 ACPI_STATUS status;
2240
2241 /* Setup parameter object */
2242 arglist.Count = 1;
2243 arglist.Pointer = &arg;
2244 arg.Type = ACPI_TYPE_INTEGER;
2245 arg.Integer.Value = ACPI_APIC_MODE;
2246
2247 status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2248 if (ACPI_FAILURE(status))
2249 return (PSM_FAILURE);
2250 else
2251 return (PSM_SUCCESS);
2252 }
2253
2254
2255 static void
apic_save_state(struct apic_state * sp)2256 apic_save_state(struct apic_state *sp)
2257 {
2258 int i, cpuid;
2259 ulong_t iflag;
2260
2261 PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2262 /*
2263 * First the local APIC.
2264 */
2265 sp->as_task_reg = apic_reg_ops->apic_get_pri();
2266 sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG);
2267 if (apic_mode == LOCAL_APIC)
2268 sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2269 sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2270 sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2271 sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2272 sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2273 sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2274 sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2275 sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2276 sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2277
2278 /*
2279 * If on the boot processor then save the IOAPICs' IDs
2280 */
2281 if ((cpuid = psm_get_cpu_id()) == 0) {
2282
2283 iflag = intr_clear();
2284 lock_set(&apic_ioapic_lock);
2285
2286 for (i = 0; i < apic_io_max; i++)
2287 sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2288
2289 lock_clear(&apic_ioapic_lock);
2290 intr_restore(iflag);
2291 }
2292
2293 /* apic_state() is currently invoked only in Suspend/Resume */
2294 apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2295 }
2296
2297 static void
apic_restore_state(struct apic_state * sp)2298 apic_restore_state(struct apic_state *sp)
2299 {
2300 int i;
2301 ulong_t iflag;
2302
2303 /*
2304 * First the local APIC.
2305 */
2306 apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2307 if (apic_mode == LOCAL_APIC) {
2308 apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2309 apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2310 }
2311 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2312 apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2313 apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2314 apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2315 apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2316 apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2317 apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2318 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2319
2320 /*
2321 * the following only needs to be done once, so we do it on the
2322 * boot processor, since we know that we only have one of those
2323 */
2324 if (psm_get_cpu_id() == 0) {
2325
2326 iflag = intr_clear();
2327 lock_set(&apic_ioapic_lock);
2328
2329 /* Restore IOAPICs' APIC IDs */
2330 for (i = 0; i < apic_io_max; i++) {
2331 ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2332 }
2333
2334 lock_clear(&apic_ioapic_lock);
2335 intr_restore(iflag);
2336
2337 /*
2338 * Reenter APIC mode before restoring LNK devices
2339 */
2340 (void) apic_acpi_enter_apicmode();
2341
2342 /*
2343 * restore acpi link device mappings
2344 */
2345 acpi_restore_link_devices();
2346 }
2347 }
2348
2349 /*
2350 * Returns 0 on success
2351 */
2352 int
apic_state(psm_state_request_t * rp)2353 apic_state(psm_state_request_t *rp)
2354 {
2355 PMD(PMD_SX, ("apic_state "))
2356 switch (rp->psr_cmd) {
2357 case PSM_STATE_ALLOC:
2358 rp->req.psm_state_req.psr_state =
2359 kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2360 if (rp->req.psm_state_req.psr_state == NULL)
2361 return (ENOMEM);
2362 rp->req.psm_state_req.psr_state_size =
2363 sizeof (struct apic_state);
2364 PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2365 rp->req.psm_state_req.psr_state,
2366 rp->req.psm_state_req.psr_state_size))
2367 return (0);
2368
2369 case PSM_STATE_FREE:
2370 kmem_free(rp->req.psm_state_req.psr_state,
2371 rp->req.psm_state_req.psr_state_size);
2372 PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2373 rp->req.psm_state_req.psr_state,
2374 rp->req.psm_state_req.psr_state_size))
2375 return (0);
2376
2377 case PSM_STATE_SAVE:
2378 PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2379 rp->req.psm_state_req.psr_state,
2380 rp->req.psm_state_req.psr_state_size))
2381 apic_save_state(rp->req.psm_state_req.psr_state);
2382 return (0);
2383
2384 case PSM_STATE_RESTORE:
2385 apic_restore_state(rp->req.psm_state_req.psr_state);
2386 PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2387 rp->req.psm_state_req.psr_state,
2388 rp->req.psm_state_req.psr_state_size))
2389 return (0);
2390
2391 default:
2392 return (EINVAL);
2393 }
2394 }
2395