xref: /onnv-gate/usr/src/uts/common/os/msacct.c (revision 590:94ad906873b6)
10Sstevel@tonic-gate /*
20Sstevel@tonic-gate  * CDDL HEADER START
30Sstevel@tonic-gate  *
40Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
50Sstevel@tonic-gate  * Common Development and Distribution License, Version 1.0 only
60Sstevel@tonic-gate  * (the "License").  You may not use this file except in compliance
70Sstevel@tonic-gate  * with the License.
80Sstevel@tonic-gate  *
90Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
100Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
110Sstevel@tonic-gate  * See the License for the specific language governing permissions
120Sstevel@tonic-gate  * and limitations under the License.
130Sstevel@tonic-gate  *
140Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
150Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
160Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
170Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
180Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
190Sstevel@tonic-gate  *
200Sstevel@tonic-gate  * CDDL HEADER END
210Sstevel@tonic-gate  */
220Sstevel@tonic-gate /*
230Sstevel@tonic-gate  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
240Sstevel@tonic-gate  * Use is subject to license terms.
250Sstevel@tonic-gate  */
260Sstevel@tonic-gate 
270Sstevel@tonic-gate #pragma ident	"%Z%%M%	%I%	%E% SMI"
280Sstevel@tonic-gate 
290Sstevel@tonic-gate #include <sys/types.h>
300Sstevel@tonic-gate #include <sys/param.h>
310Sstevel@tonic-gate #include <sys/systm.h>
320Sstevel@tonic-gate #include <sys/user.h>
330Sstevel@tonic-gate #include <sys/proc.h>
340Sstevel@tonic-gate #include <sys/cpuvar.h>
350Sstevel@tonic-gate #include <sys/thread.h>
360Sstevel@tonic-gate #include <sys/debug.h>
370Sstevel@tonic-gate #include <sys/msacct.h>
380Sstevel@tonic-gate #include <sys/time.h>
390Sstevel@tonic-gate 
400Sstevel@tonic-gate /*
410Sstevel@tonic-gate  * Mega-theory block comment:
420Sstevel@tonic-gate  *
430Sstevel@tonic-gate  * Microstate accounting uses finite states and the transitions between these
440Sstevel@tonic-gate  * states to measure timing and accounting information.  The state information
450Sstevel@tonic-gate  * is presently tracked for threads (via microstate accounting) and cpus (via
460Sstevel@tonic-gate  * cpu microstate accounting).  In each case, these accounting mechanisms use
470Sstevel@tonic-gate  * states and transitions to measure time spent in each state instead of
480Sstevel@tonic-gate  * clock-based sampling methodologies.
490Sstevel@tonic-gate  *
500Sstevel@tonic-gate  * For microstate accounting:
510Sstevel@tonic-gate  * state transitions are accomplished by calling new_mstate() to switch between
520Sstevel@tonic-gate  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
530Sstevel@tonic-gate  * by calling restore_mstate() which restores a thread to its previously running
540Sstevel@tonic-gate  * state.  This code is primarialy executed by the dispatcher in disp() before
550Sstevel@tonic-gate  * running a process that was put to sleep.  If the thread was not in a sleeping
560Sstevel@tonic-gate  * state, this call has little effect other than to update the count of time the
570Sstevel@tonic-gate  * thread has spent waiting on run-queues in its lifetime.
580Sstevel@tonic-gate  *
590Sstevel@tonic-gate  * For cpu microstate accounting:
600Sstevel@tonic-gate  * Cpu microstate accounting is similar to the microstate accounting for threads
610Sstevel@tonic-gate  * but it tracks user, system, and idle time for cpus.  Cpu microstate
620Sstevel@tonic-gate  * accounting does not track interrupt times as there is a pre-existing
630Sstevel@tonic-gate  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
640Sstevel@tonic-gate  * tracks time that user threads have spent active, idle, or in the system on a
650Sstevel@tonic-gate  * given cpu.  Cpu microstate accounting has fewer states which allows it to
660Sstevel@tonic-gate  * have better defined transitions.  The states transition in the following
670Sstevel@tonic-gate  * order:
680Sstevel@tonic-gate  *
690Sstevel@tonic-gate  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
700Sstevel@tonic-gate  *
710Sstevel@tonic-gate  * In order to get to the idle state, the cpu microstate must first go through
720Sstevel@tonic-gate  * the system state, and vice-versa for the user state from idle.  The switching
730Sstevel@tonic-gate  * of the microstates from user to system is done as part of the regular thread
740Sstevel@tonic-gate  * microstate accounting code, except for the idle state which is switched by
750Sstevel@tonic-gate  * the dispatcher before it runs the idle loop.
760Sstevel@tonic-gate  *
770Sstevel@tonic-gate  * Cpu percentages:
780Sstevel@tonic-gate  * Cpu percentages are now handled by and based upon microstate accounting
790Sstevel@tonic-gate  * information (the same is true for load averages).  The routines which handle
800Sstevel@tonic-gate  * the growing/shrinking and exponentiation of cpu percentages have been moved
810Sstevel@tonic-gate  * here as it now makes more sense for them to be generated from the microstate
820Sstevel@tonic-gate  * code.  Cpu percentages are generated similarly to the way they were before;
830Sstevel@tonic-gate  * however, now they are based upon high-resolution timestamps and the
840Sstevel@tonic-gate  * timestamps are modified at various state changes instead of during a clock()
850Sstevel@tonic-gate  * interrupt.  This allows us to generate more accurate cpu percentages which
860Sstevel@tonic-gate  * are also in-sync with microstate data.
870Sstevel@tonic-gate  */
880Sstevel@tonic-gate 
890Sstevel@tonic-gate /*
900Sstevel@tonic-gate  * Initialize the microstate level and the
910Sstevel@tonic-gate  * associated accounting information for an LWP.
920Sstevel@tonic-gate  */
930Sstevel@tonic-gate void
940Sstevel@tonic-gate init_mstate(
950Sstevel@tonic-gate 	kthread_t	*t,
960Sstevel@tonic-gate 	int		init_state)
970Sstevel@tonic-gate {
980Sstevel@tonic-gate 	struct mstate *ms;
990Sstevel@tonic-gate 	klwp_t *lwp;
1000Sstevel@tonic-gate 	hrtime_t curtime;
1010Sstevel@tonic-gate 
1020Sstevel@tonic-gate 	ASSERT(init_state != LMS_WAIT_CPU);
1030Sstevel@tonic-gate 	ASSERT((unsigned)init_state < NMSTATES);
1040Sstevel@tonic-gate 
1050Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) != NULL) {
1060Sstevel@tonic-gate 		ms = &lwp->lwp_mstate;
1070Sstevel@tonic-gate 		curtime = gethrtime_unscaled();
1080Sstevel@tonic-gate 		ms->ms_prev = LMS_SYSTEM;
1090Sstevel@tonic-gate 		ms->ms_start = curtime;
1100Sstevel@tonic-gate 		ms->ms_term = 0;
1110Sstevel@tonic-gate 		ms->ms_state_start = curtime;
1120Sstevel@tonic-gate 		t->t_mstate = init_state;
1130Sstevel@tonic-gate 		t->t_waitrq = 0;
1140Sstevel@tonic-gate 		t->t_hrtime = curtime;
1150Sstevel@tonic-gate 		if ((t->t_proc_flag & TP_MSACCT) == 0)
1160Sstevel@tonic-gate 			t->t_proc_flag |= TP_MSACCT;
1170Sstevel@tonic-gate 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
1180Sstevel@tonic-gate 	}
1190Sstevel@tonic-gate }
1200Sstevel@tonic-gate 
1210Sstevel@tonic-gate /*
1220Sstevel@tonic-gate  * Initialize the microstate level and associated accounting information
1230Sstevel@tonic-gate  * for the specified cpu
1240Sstevel@tonic-gate  */
1250Sstevel@tonic-gate 
1260Sstevel@tonic-gate void
1270Sstevel@tonic-gate init_cpu_mstate(
1280Sstevel@tonic-gate 	cpu_t *cpu,
1290Sstevel@tonic-gate 	int init_state)
1300Sstevel@tonic-gate {
1310Sstevel@tonic-gate 	ASSERT(init_state != CMS_DISABLED);
1320Sstevel@tonic-gate 
1330Sstevel@tonic-gate 	cpu->cpu_mstate = init_state;
1340Sstevel@tonic-gate 	cpu->cpu_mstate_start = gethrtime_unscaled();
1350Sstevel@tonic-gate 	cpu->cpu_waitrq = 0;
1360Sstevel@tonic-gate 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
1370Sstevel@tonic-gate }
1380Sstevel@tonic-gate 
1390Sstevel@tonic-gate /*
1400Sstevel@tonic-gate  * sets cpu state to OFFLINE.  We don't actually track this time,
1410Sstevel@tonic-gate  * but it serves as a useful placeholder state for when we're not
1420Sstevel@tonic-gate  * doing anything.
1430Sstevel@tonic-gate  */
1440Sstevel@tonic-gate 
1450Sstevel@tonic-gate void
1460Sstevel@tonic-gate term_cpu_mstate(struct cpu *cpu)
1470Sstevel@tonic-gate {
1480Sstevel@tonic-gate 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
1490Sstevel@tonic-gate 	cpu->cpu_mstate = CMS_DISABLED;
1500Sstevel@tonic-gate 	cpu->cpu_mstate_start = 0;
1510Sstevel@tonic-gate }
1520Sstevel@tonic-gate 
1530Sstevel@tonic-gate void
154*590Sesolom new_cpu_mstate(int cmstate, hrtime_t curtime)
1550Sstevel@tonic-gate {
156*590Sesolom 	cpu_t *cpu = CPU;
157*590Sesolom 	uint16_t gen;
1580Sstevel@tonic-gate 
1590Sstevel@tonic-gate 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
1600Sstevel@tonic-gate 	ASSERT(cmstate < NCMSTATES);
1610Sstevel@tonic-gate 	ASSERT(cmstate != CMS_DISABLED);
162*590Sesolom 
163*590Sesolom 	/*
164*590Sesolom 	 * This function cannot be re-entrant on a given CPU. As such,
165*590Sesolom 	 * we ASSERT and panic if we are called on behalf of an interrupt.
166*590Sesolom 	 * The one exception is for an interrupt which has previously
167*590Sesolom 	 * blocked. Such an interrupt is being scheduled by the dispatcher
168*590Sesolom 	 * just like a normal thread, and as such cannot arrive here
169*590Sesolom 	 * in a re-entrant manner.
170*590Sesolom 	 */
171*590Sesolom 
172*590Sesolom 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
1730Sstevel@tonic-gate 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
1740Sstevel@tonic-gate 
175*590Sesolom 	/*
176*590Sesolom 	 * LOCKING, or lack thereof:
177*590Sesolom 	 *
178*590Sesolom 	 * Updates to CPU mstate can only be made by the CPU
179*590Sesolom 	 * itself, and the above check to ignore interrupts
180*590Sesolom 	 * should prevent recursion into this function on a given
181*590Sesolom 	 * processor. i.e. no possible write contention.
182*590Sesolom 	 *
183*590Sesolom 	 * However, reads of CPU mstate can occur at any time
184*590Sesolom 	 * from any CPU. Any locking added to this code path
185*590Sesolom 	 * would seriously impact syscall performance. So,
186*590Sesolom 	 * instead we have a best-effort protection for readers.
187*590Sesolom 	 * The reader will want to account for any time between
188*590Sesolom 	 * cpu_mstate_start and the present time. This requires
189*590Sesolom 	 * some guarantees that the reader is getting coherent
190*590Sesolom 	 * information.
191*590Sesolom 	 *
192*590Sesolom 	 * We use a generation counter, which is set to 0 before
193*590Sesolom 	 * we start making changes, and is set to a new value
194*590Sesolom 	 * after we're done. Someone reading the CPU mstate
195*590Sesolom 	 * should check for the same non-zero value of this
196*590Sesolom 	 * counter both before and after reading all state. The
197*590Sesolom 	 * important point is that the reader is not a
198*590Sesolom 	 * performance-critical path, but this function is.
199*590Sesolom 	 */
200*590Sesolom 
201*590Sesolom 	gen = cpu->cpu_mstate_gen;
202*590Sesolom 	cpu->cpu_mstate_gen = 0;
203*590Sesolom 
204*590Sesolom 	membar_producer();
205*590Sesolom 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start;
206*590Sesolom 	cpu->cpu_mstate = cmstate;
207*590Sesolom 	cpu->cpu_mstate_start = curtime;
208*590Sesolom 	membar_producer();
209*590Sesolom 
210*590Sesolom 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
2110Sstevel@tonic-gate }
2120Sstevel@tonic-gate 
2130Sstevel@tonic-gate /*
2140Sstevel@tonic-gate  * Return an aggregation of microstate times in scaled nanoseconds (high-res
2150Sstevel@tonic-gate  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
2160Sstevel@tonic-gate  * not.
2170Sstevel@tonic-gate  */
2180Sstevel@tonic-gate hrtime_t
2190Sstevel@tonic-gate mstate_aggr_state(proc_t *p, int a_state)
2200Sstevel@tonic-gate {
2210Sstevel@tonic-gate 	struct mstate *ms;
2220Sstevel@tonic-gate 	kthread_t *t;
2230Sstevel@tonic-gate 	klwp_t *lwp;
2240Sstevel@tonic-gate 	hrtime_t aggr_time;
2250Sstevel@tonic-gate 	hrtime_t scaledtime;
2260Sstevel@tonic-gate 
2270Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&p->p_lock));
2280Sstevel@tonic-gate 	ASSERT((unsigned)a_state < NMSTATES);
2290Sstevel@tonic-gate 
2300Sstevel@tonic-gate 	aggr_time = p->p_acct[a_state];
2310Sstevel@tonic-gate 	if (a_state == LMS_SYSTEM)
2320Sstevel@tonic-gate 		aggr_time += p->p_acct[LMS_TRAP];
2330Sstevel@tonic-gate 
2340Sstevel@tonic-gate 	t = p->p_tlist;
2350Sstevel@tonic-gate 	if (t == NULL)
2360Sstevel@tonic-gate 		return (aggr_time);
2370Sstevel@tonic-gate 
2380Sstevel@tonic-gate 	do {
2390Sstevel@tonic-gate 		if (t->t_proc_flag & TP_LWPEXIT)
2400Sstevel@tonic-gate 			continue;
2410Sstevel@tonic-gate 
2420Sstevel@tonic-gate 		lwp = ttolwp(t);
2430Sstevel@tonic-gate 		ms = &lwp->lwp_mstate;
2440Sstevel@tonic-gate 		scaledtime = ms->ms_acct[a_state];
2450Sstevel@tonic-gate 		scalehrtime(&scaledtime);
2460Sstevel@tonic-gate 		aggr_time += scaledtime;
2470Sstevel@tonic-gate 		if (a_state == LMS_SYSTEM) {
2480Sstevel@tonic-gate 			scaledtime = ms->ms_acct[LMS_TRAP];
2490Sstevel@tonic-gate 			scalehrtime(&scaledtime);
2500Sstevel@tonic-gate 			aggr_time += scaledtime;
2510Sstevel@tonic-gate 		}
2520Sstevel@tonic-gate 	} while ((t = t->t_forw) != p->p_tlist);
2530Sstevel@tonic-gate 
2540Sstevel@tonic-gate 	return (aggr_time);
2550Sstevel@tonic-gate }
2560Sstevel@tonic-gate 
2570Sstevel@tonic-gate void
2580Sstevel@tonic-gate syscall_mstate(int fromms, int toms)
2590Sstevel@tonic-gate {
2600Sstevel@tonic-gate 	kthread_t *t = curthread;
2610Sstevel@tonic-gate 	struct mstate *ms;
2620Sstevel@tonic-gate 	hrtime_t *mstimep;
2630Sstevel@tonic-gate 	hrtime_t curtime;
2640Sstevel@tonic-gate 	klwp_t *lwp;
2650Sstevel@tonic-gate 	hrtime_t newtime;
2660Sstevel@tonic-gate 
2670Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL)
2680Sstevel@tonic-gate 		return;
2690Sstevel@tonic-gate 
2700Sstevel@tonic-gate 	ASSERT(fromms < NMSTATES);
2710Sstevel@tonic-gate 	ASSERT(toms < NMSTATES);
2720Sstevel@tonic-gate 
2730Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
2740Sstevel@tonic-gate 	mstimep = &ms->ms_acct[fromms];
2750Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
2760Sstevel@tonic-gate 	newtime = curtime - ms->ms_state_start;
2770Sstevel@tonic-gate 	while (newtime < 0) {
2780Sstevel@tonic-gate 		curtime = gethrtime_unscaled();
2790Sstevel@tonic-gate 		newtime = curtime - ms->ms_state_start;
2800Sstevel@tonic-gate 	}
2810Sstevel@tonic-gate 	*mstimep += newtime;
2820Sstevel@tonic-gate 	t->t_mstate = toms;
2830Sstevel@tonic-gate 	ms->ms_state_start = curtime;
2840Sstevel@tonic-gate 	ms->ms_prev = fromms;
285*590Sesolom 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
286*590Sesolom 	ASSERT(CPU == t->t_cpu);
287*590Sesolom 	if ((toms != LMS_USER) && (t->t_cpu->cpu_mstate != CMS_SYSTEM))
288*590Sesolom 		new_cpu_mstate(CMS_SYSTEM, curtime);
289*590Sesolom 	else if ((toms == LMS_USER) && (t->t_cpu->cpu_mstate != CMS_USER))
290*590Sesolom 		new_cpu_mstate(CMS_USER, curtime);
2910Sstevel@tonic-gate 	kpreempt_enable();
2920Sstevel@tonic-gate }
2930Sstevel@tonic-gate 
2940Sstevel@tonic-gate /*
2950Sstevel@tonic-gate  * The following is for computing the percentage of cpu time used recently
2960Sstevel@tonic-gate  * by an lwp.  The function cpu_decay() is also called from /proc code.
2970Sstevel@tonic-gate  *
2980Sstevel@tonic-gate  * exp_x(x):
2990Sstevel@tonic-gate  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
3000Sstevel@tonic-gate  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
3010Sstevel@tonic-gate  *
3020Sstevel@tonic-gate  * Scaling for 64-bit scaled integer:
3030Sstevel@tonic-gate  * The binary point is to the right of the high-order bit
3040Sstevel@tonic-gate  * of the low-order 32-bit word.
3050Sstevel@tonic-gate  */
3060Sstevel@tonic-gate 
3070Sstevel@tonic-gate #define	LSHIFT	31
3080Sstevel@tonic-gate #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
3090Sstevel@tonic-gate 
3100Sstevel@tonic-gate #ifdef DEBUG
3110Sstevel@tonic-gate uint_t expx_cnt = 0;	/* number of calls to exp_x() */
3120Sstevel@tonic-gate uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
3130Sstevel@tonic-gate #endif
3140Sstevel@tonic-gate 
3150Sstevel@tonic-gate static uint64_t
3160Sstevel@tonic-gate exp_x(uint64_t x)
3170Sstevel@tonic-gate {
3180Sstevel@tonic-gate 	int i;
3190Sstevel@tonic-gate 	uint64_t ull;
3200Sstevel@tonic-gate 	uint32_t ui;
3210Sstevel@tonic-gate 
3220Sstevel@tonic-gate #ifdef DEBUG
3230Sstevel@tonic-gate 	expx_cnt++;
3240Sstevel@tonic-gate #endif
3250Sstevel@tonic-gate 	/*
3260Sstevel@tonic-gate 	 * By the formula:
3270Sstevel@tonic-gate 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
3280Sstevel@tonic-gate 	 * we keep halving x until it becomes small enough for
3290Sstevel@tonic-gate 	 * the following approximation to be accurate enough:
3300Sstevel@tonic-gate 	 *	exp(-x) = 1 - x
3310Sstevel@tonic-gate 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
3320Sstevel@tonic-gate 	 * Our final error will be smaller than 4% .
3330Sstevel@tonic-gate 	 */
3340Sstevel@tonic-gate 
3350Sstevel@tonic-gate 	/*
3360Sstevel@tonic-gate 	 * Use a uint64_t for the initial shift calculation.
3370Sstevel@tonic-gate 	 */
3380Sstevel@tonic-gate 	ull = x >> (LSHIFT-2);
3390Sstevel@tonic-gate 
3400Sstevel@tonic-gate 	/*
3410Sstevel@tonic-gate 	 * Short circuit:
3420Sstevel@tonic-gate 	 * A number this large produces effectively 0 (actually .005).
3430Sstevel@tonic-gate 	 * This way, we will never do more than 5 multiplies.
3440Sstevel@tonic-gate 	 */
3450Sstevel@tonic-gate 	if (ull >= (1 << 5))
3460Sstevel@tonic-gate 		return (0);
3470Sstevel@tonic-gate 
3480Sstevel@tonic-gate 	ui = ull;	/* OK.  Now we can use a uint_t. */
3490Sstevel@tonic-gate 	for (i = 0; ui != 0; i++)
3500Sstevel@tonic-gate 		ui >>= 1;
3510Sstevel@tonic-gate 
3520Sstevel@tonic-gate 	if (i != 0) {
3530Sstevel@tonic-gate #ifdef DEBUG
3540Sstevel@tonic-gate 		expx_mul += i;	/* seldom happens */
3550Sstevel@tonic-gate #endif
3560Sstevel@tonic-gate 		x >>= i;
3570Sstevel@tonic-gate 	}
3580Sstevel@tonic-gate 
3590Sstevel@tonic-gate 	/*
3600Sstevel@tonic-gate 	 * Now we compute 1 - x and square it the number of times
3610Sstevel@tonic-gate 	 * that we halved x above to produce the final result:
3620Sstevel@tonic-gate 	 */
3630Sstevel@tonic-gate 	x = LSI_ONE - x;
3640Sstevel@tonic-gate 	while (i--)
3650Sstevel@tonic-gate 		x = (x * x) >> LSHIFT;
3660Sstevel@tonic-gate 
3670Sstevel@tonic-gate 	return (x);
3680Sstevel@tonic-gate }
3690Sstevel@tonic-gate 
3700Sstevel@tonic-gate /*
3710Sstevel@tonic-gate  * Given the old percent cpu and a time delta in nanoseconds,
3720Sstevel@tonic-gate  * return the new decayed percent cpu:  pct * exp(-tau),
3730Sstevel@tonic-gate  * where 'tau' is the time delta multiplied by a decay factor.
3740Sstevel@tonic-gate  * We have chosen the decay factor (cpu_decay_factor in param.c)
3750Sstevel@tonic-gate  * to make the decay over five seconds be approximately 20%.
3760Sstevel@tonic-gate  *
3770Sstevel@tonic-gate  * 'pct' is a 32-bit scaled integer <= 1
3780Sstevel@tonic-gate  * The binary point is to the right of the high-order bit
3790Sstevel@tonic-gate  * of the 32-bit word.
3800Sstevel@tonic-gate  */
3810Sstevel@tonic-gate static uint32_t
3820Sstevel@tonic-gate cpu_decay(uint32_t pct, hrtime_t nsec)
3830Sstevel@tonic-gate {
3840Sstevel@tonic-gate 	uint64_t delta = (uint64_t)nsec;
3850Sstevel@tonic-gate 
3860Sstevel@tonic-gate 	delta /= cpu_decay_factor;
3870Sstevel@tonic-gate 	return ((pct * exp_x(delta)) >> LSHIFT);
3880Sstevel@tonic-gate }
3890Sstevel@tonic-gate 
3900Sstevel@tonic-gate /*
3910Sstevel@tonic-gate  * Given the old percent cpu and a time delta in nanoseconds,
3920Sstevel@tonic-gate  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
3930Sstevel@tonic-gate  */
3940Sstevel@tonic-gate static uint32_t
3950Sstevel@tonic-gate cpu_grow(uint32_t pct, hrtime_t nsec)
3960Sstevel@tonic-gate {
3970Sstevel@tonic-gate 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
3980Sstevel@tonic-gate }
3990Sstevel@tonic-gate 
4000Sstevel@tonic-gate 
4010Sstevel@tonic-gate /*
4020Sstevel@tonic-gate  * Defined to determine whether a lwp is still on a processor.
4030Sstevel@tonic-gate  */
4040Sstevel@tonic-gate 
4050Sstevel@tonic-gate #define	T_ONPROC(kt)	\
4060Sstevel@tonic-gate 	((kt)->t_mstate < LMS_SLEEP)
4070Sstevel@tonic-gate #define	T_OFFPROC(kt)	\
4080Sstevel@tonic-gate 	((kt)->t_mstate >= LMS_SLEEP)
4090Sstevel@tonic-gate 
4100Sstevel@tonic-gate uint_t
4110Sstevel@tonic-gate cpu_update_pct(kthread_t *t, hrtime_t newtime)
4120Sstevel@tonic-gate {
4130Sstevel@tonic-gate 	hrtime_t delta;
4140Sstevel@tonic-gate 	hrtime_t hrlb;
4150Sstevel@tonic-gate 	uint_t pctcpu;
4160Sstevel@tonic-gate 	uint_t npctcpu;
4170Sstevel@tonic-gate 
4180Sstevel@tonic-gate 	/*
4190Sstevel@tonic-gate 	 * This routine can get called at PIL > 0, this *has* to be
4200Sstevel@tonic-gate 	 * done atomically. Holding locks here causes bad things to happen.
4210Sstevel@tonic-gate 	 * (read: deadlock).
4220Sstevel@tonic-gate 	 */
4230Sstevel@tonic-gate 
4240Sstevel@tonic-gate 	do {
4250Sstevel@tonic-gate 		if (T_ONPROC(t) && t->t_waitrq == 0) {
4260Sstevel@tonic-gate 			hrlb = t->t_hrtime;
4270Sstevel@tonic-gate 			delta = newtime - hrlb;
4280Sstevel@tonic-gate 			if (delta < 0) {
4290Sstevel@tonic-gate 				newtime = gethrtime_unscaled();
4300Sstevel@tonic-gate 				delta = newtime - hrlb;
4310Sstevel@tonic-gate 			}
4320Sstevel@tonic-gate 			t->t_hrtime = newtime;
4330Sstevel@tonic-gate 			scalehrtime(&delta);
4340Sstevel@tonic-gate 			pctcpu = t->t_pctcpu;
4350Sstevel@tonic-gate 			npctcpu = cpu_grow(pctcpu, delta);
4360Sstevel@tonic-gate 		} else {
4370Sstevel@tonic-gate 			hrlb = t->t_hrtime;
4380Sstevel@tonic-gate 			delta = newtime - hrlb;
4390Sstevel@tonic-gate 			if (delta < 0) {
4400Sstevel@tonic-gate 				newtime = gethrtime_unscaled();
4410Sstevel@tonic-gate 				delta = newtime - hrlb;
4420Sstevel@tonic-gate 			}
4430Sstevel@tonic-gate 			t->t_hrtime = newtime;
4440Sstevel@tonic-gate 			scalehrtime(&delta);
4450Sstevel@tonic-gate 			pctcpu = t->t_pctcpu;
4460Sstevel@tonic-gate 			npctcpu = cpu_decay(pctcpu, delta);
4470Sstevel@tonic-gate 		}
4480Sstevel@tonic-gate 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
4490Sstevel@tonic-gate 
4500Sstevel@tonic-gate 	return (npctcpu);
4510Sstevel@tonic-gate }
4520Sstevel@tonic-gate 
4530Sstevel@tonic-gate /*
4540Sstevel@tonic-gate  * Change the microstate level for the LWP and update the
4550Sstevel@tonic-gate  * associated accounting information.  Return the previous
4560Sstevel@tonic-gate  * LWP state.
4570Sstevel@tonic-gate  */
4580Sstevel@tonic-gate int
4590Sstevel@tonic-gate new_mstate(kthread_t *t, int new_state)
4600Sstevel@tonic-gate {
4610Sstevel@tonic-gate 	struct mstate *ms;
4620Sstevel@tonic-gate 	unsigned state;
4630Sstevel@tonic-gate 	hrtime_t *mstimep;
4640Sstevel@tonic-gate 	hrtime_t curtime;
4650Sstevel@tonic-gate 	hrtime_t newtime;
4660Sstevel@tonic-gate 	hrtime_t oldtime;
4670Sstevel@tonic-gate 	klwp_t *lwp;
4680Sstevel@tonic-gate 
4690Sstevel@tonic-gate 	ASSERT(new_state != LMS_WAIT_CPU);
4700Sstevel@tonic-gate 	ASSERT((unsigned)new_state < NMSTATES);
4710Sstevel@tonic-gate 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
4720Sstevel@tonic-gate 
4730Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL)
4740Sstevel@tonic-gate 		return (LMS_SYSTEM);
4750Sstevel@tonic-gate 
4760Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
4770Sstevel@tonic-gate 
4780Sstevel@tonic-gate 	/* adjust cpu percentages before we go any further */
4790Sstevel@tonic-gate 	(void) cpu_update_pct(t, curtime);
4800Sstevel@tonic-gate 
4810Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
4820Sstevel@tonic-gate 	state = t->t_mstate;
4830Sstevel@tonic-gate 	do {
4840Sstevel@tonic-gate 		switch (state) {
4850Sstevel@tonic-gate 		case LMS_TFAULT:
4860Sstevel@tonic-gate 		case LMS_DFAULT:
4870Sstevel@tonic-gate 		case LMS_KFAULT:
4880Sstevel@tonic-gate 		case LMS_USER_LOCK:
4890Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_SYSTEM];
4900Sstevel@tonic-gate 			break;
4910Sstevel@tonic-gate 		default:
4920Sstevel@tonic-gate 			mstimep = &ms->ms_acct[state];
4930Sstevel@tonic-gate 			break;
4940Sstevel@tonic-gate 		}
4950Sstevel@tonic-gate 		newtime = curtime - ms->ms_state_start;
4960Sstevel@tonic-gate 		if (newtime < 0) {
4970Sstevel@tonic-gate 			curtime = gethrtime_unscaled();
4980Sstevel@tonic-gate 			oldtime = *mstimep - 1; /* force CAS to fail */
4990Sstevel@tonic-gate 			continue;
5000Sstevel@tonic-gate 		}
5010Sstevel@tonic-gate 		oldtime = *mstimep;
5020Sstevel@tonic-gate 		newtime += oldtime;
5030Sstevel@tonic-gate 		t->t_mstate = new_state;
5040Sstevel@tonic-gate 		ms->ms_state_start = curtime;
5050Sstevel@tonic-gate 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
5060Sstevel@tonic-gate 	/*
5070Sstevel@tonic-gate 	 * Remember the previous running microstate.
5080Sstevel@tonic-gate 	 */
5090Sstevel@tonic-gate 	if (state != LMS_SLEEP && state != LMS_STOPPED)
5100Sstevel@tonic-gate 		ms->ms_prev = state;
5110Sstevel@tonic-gate 
5120Sstevel@tonic-gate 	/*
5130Sstevel@tonic-gate 	 * Switch CPU microstate if appropriate
5140Sstevel@tonic-gate 	 */
515*590Sesolom 
5160Sstevel@tonic-gate 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
517*590Sesolom 	ASSERT(t->t_cpu == CPU);
518*590Sesolom 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
519*590Sesolom 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
520*590Sesolom 			new_cpu_mstate(CMS_USER, curtime);
521*590Sesolom 		else if (new_state != LMS_USER &&
522*590Sesolom 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
523*590Sesolom 			new_cpu_mstate(CMS_SYSTEM, curtime);
5240Sstevel@tonic-gate 	}
5250Sstevel@tonic-gate 	kpreempt_enable();
5260Sstevel@tonic-gate 
5270Sstevel@tonic-gate 	return (ms->ms_prev);
5280Sstevel@tonic-gate }
5290Sstevel@tonic-gate 
5300Sstevel@tonic-gate static long waitrqis0 = 0;
5310Sstevel@tonic-gate 
5320Sstevel@tonic-gate /*
5330Sstevel@tonic-gate  * Restore the LWP microstate to the previous runnable state.
5340Sstevel@tonic-gate  * Called from disp() with the newly selected lwp.
5350Sstevel@tonic-gate  */
5360Sstevel@tonic-gate void
5370Sstevel@tonic-gate restore_mstate(kthread_t *t)
5380Sstevel@tonic-gate {
5390Sstevel@tonic-gate 	struct mstate *ms;
5400Sstevel@tonic-gate 	hrtime_t *mstimep;
5410Sstevel@tonic-gate 	klwp_t *lwp;
5420Sstevel@tonic-gate 	hrtime_t curtime;
5430Sstevel@tonic-gate 	hrtime_t waitrq;
5440Sstevel@tonic-gate 	hrtime_t newtime;
5450Sstevel@tonic-gate 	hrtime_t oldtime;
5460Sstevel@tonic-gate 
5470Sstevel@tonic-gate 	if ((lwp = ttolwp(t)) == NULL)
5480Sstevel@tonic-gate 		return;
5490Sstevel@tonic-gate 
5500Sstevel@tonic-gate 	curtime = gethrtime_unscaled();
5510Sstevel@tonic-gate 	(void) cpu_update_pct(t, curtime);
5520Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
5530Sstevel@tonic-gate 	ASSERT((unsigned)t->t_mstate < NMSTATES);
5540Sstevel@tonic-gate 	do {
5550Sstevel@tonic-gate 		switch (t->t_mstate) {
5560Sstevel@tonic-gate 		case LMS_SLEEP:
5570Sstevel@tonic-gate 			/*
5580Sstevel@tonic-gate 			 * Update the timer for the current sleep state.
5590Sstevel@tonic-gate 			 */
5600Sstevel@tonic-gate 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
5610Sstevel@tonic-gate 			switch (ms->ms_prev) {
5620Sstevel@tonic-gate 			case LMS_TFAULT:
5630Sstevel@tonic-gate 			case LMS_DFAULT:
5640Sstevel@tonic-gate 			case LMS_KFAULT:
5650Sstevel@tonic-gate 			case LMS_USER_LOCK:
5660Sstevel@tonic-gate 				mstimep = &ms->ms_acct[ms->ms_prev];
5670Sstevel@tonic-gate 				break;
5680Sstevel@tonic-gate 			default:
5690Sstevel@tonic-gate 				mstimep = &ms->ms_acct[LMS_SLEEP];
5700Sstevel@tonic-gate 				break;
5710Sstevel@tonic-gate 			}
5720Sstevel@tonic-gate 			/*
5730Sstevel@tonic-gate 			 * Return to the previous run state.
5740Sstevel@tonic-gate 			 */
5750Sstevel@tonic-gate 			t->t_mstate = ms->ms_prev;
5760Sstevel@tonic-gate 			break;
5770Sstevel@tonic-gate 		case LMS_STOPPED:
5780Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_STOPPED];
5790Sstevel@tonic-gate 			/*
5800Sstevel@tonic-gate 			 * Return to the previous run state.
5810Sstevel@tonic-gate 			 */
5820Sstevel@tonic-gate 			t->t_mstate = ms->ms_prev;
5830Sstevel@tonic-gate 			break;
5840Sstevel@tonic-gate 		case LMS_TFAULT:
5850Sstevel@tonic-gate 		case LMS_DFAULT:
5860Sstevel@tonic-gate 		case LMS_KFAULT:
5870Sstevel@tonic-gate 		case LMS_USER_LOCK:
5880Sstevel@tonic-gate 			mstimep = &ms->ms_acct[LMS_SYSTEM];
5890Sstevel@tonic-gate 			break;
5900Sstevel@tonic-gate 		default:
5910Sstevel@tonic-gate 			mstimep = &ms->ms_acct[t->t_mstate];
5920Sstevel@tonic-gate 			break;
5930Sstevel@tonic-gate 		}
5940Sstevel@tonic-gate 		waitrq = t->t_waitrq;	/* hopefully atomic */
5950Sstevel@tonic-gate 		t->t_waitrq = 0;
5960Sstevel@tonic-gate 		if (waitrq == 0) {	/* should only happen during boot */
5970Sstevel@tonic-gate 			waitrq = curtime;
5980Sstevel@tonic-gate 			waitrqis0++;
5990Sstevel@tonic-gate 		}
6000Sstevel@tonic-gate 		newtime = waitrq - ms->ms_state_start;
6010Sstevel@tonic-gate 		if (newtime < 0) {
6020Sstevel@tonic-gate 			curtime = gethrtime_unscaled();
6030Sstevel@tonic-gate 			oldtime = *mstimep - 1; /* force CAS to fail */
6040Sstevel@tonic-gate 			continue;
6050Sstevel@tonic-gate 		}
6060Sstevel@tonic-gate 		oldtime = *mstimep;
6070Sstevel@tonic-gate 		newtime += oldtime;
6080Sstevel@tonic-gate 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
6090Sstevel@tonic-gate 	/*
6100Sstevel@tonic-gate 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
6110Sstevel@tonic-gate 	 */
6120Sstevel@tonic-gate 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
613477Smishra 	CPU->cpu_waitrq += (curtime - waitrq);
6140Sstevel@tonic-gate 	ms->ms_state_start = curtime;
6150Sstevel@tonic-gate }
6160Sstevel@tonic-gate 
6170Sstevel@tonic-gate /*
6180Sstevel@tonic-gate  * Copy lwp microstate accounting and resource usage information
6190Sstevel@tonic-gate  * to the process.  (lwp is terminating)
6200Sstevel@tonic-gate  */
6210Sstevel@tonic-gate void
6220Sstevel@tonic-gate term_mstate(kthread_t *t)
6230Sstevel@tonic-gate {
6240Sstevel@tonic-gate 	struct mstate *ms;
6250Sstevel@tonic-gate 	proc_t *p = ttoproc(t);
6260Sstevel@tonic-gate 	klwp_t *lwp = ttolwp(t);
6270Sstevel@tonic-gate 	int i;
6280Sstevel@tonic-gate 	hrtime_t tmp;
6290Sstevel@tonic-gate 
6300Sstevel@tonic-gate 	ASSERT(MUTEX_HELD(&p->p_lock));
6310Sstevel@tonic-gate 
6320Sstevel@tonic-gate 	ms = &lwp->lwp_mstate;
6330Sstevel@tonic-gate 	(void) new_mstate(t, LMS_STOPPED);
6340Sstevel@tonic-gate 	ms->ms_term = ms->ms_state_start;
6350Sstevel@tonic-gate 	tmp = ms->ms_term - ms->ms_start;
6360Sstevel@tonic-gate 	scalehrtime(&tmp);
6370Sstevel@tonic-gate 	p->p_mlreal += tmp;
6380Sstevel@tonic-gate 	for (i = 0; i < NMSTATES; i++) {
6390Sstevel@tonic-gate 		tmp = ms->ms_acct[i];
6400Sstevel@tonic-gate 		scalehrtime(&tmp);
6410Sstevel@tonic-gate 		p->p_acct[i] += tmp;
6420Sstevel@tonic-gate 	}
6430Sstevel@tonic-gate 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
6440Sstevel@tonic-gate 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
6450Sstevel@tonic-gate 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
6460Sstevel@tonic-gate 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
6470Sstevel@tonic-gate 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
6480Sstevel@tonic-gate 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
6490Sstevel@tonic-gate 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
6500Sstevel@tonic-gate 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
6510Sstevel@tonic-gate 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
6520Sstevel@tonic-gate 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
6530Sstevel@tonic-gate 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
6540Sstevel@tonic-gate 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
6550Sstevel@tonic-gate 	p->p_defunct++;
6560Sstevel@tonic-gate }
657