1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/user.h>
30 #include <sys/proc.h>
31 #include <sys/cpuvar.h>
32 #include <sys/thread.h>
33 #include <sys/debug.h>
34 #include <sys/msacct.h>
35 #include <sys/time.h>
36
37 /*
38 * Mega-theory block comment:
39 *
40 * Microstate accounting uses finite states and the transitions between these
41 * states to measure timing and accounting information. The state information
42 * is presently tracked for threads (via microstate accounting) and cpus (via
43 * cpu microstate accounting). In each case, these accounting mechanisms use
44 * states and transitions to measure time spent in each state instead of
45 * clock-based sampling methodologies.
46 *
47 * For microstate accounting:
48 * state transitions are accomplished by calling new_mstate() to switch between
49 * states. Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
50 * by calling restore_mstate() which restores a thread to its previously running
51 * state. This code is primarialy executed by the dispatcher in disp() before
52 * running a process that was put to sleep. If the thread was not in a sleeping
53 * state, this call has little effect other than to update the count of time the
54 * thread has spent waiting on run-queues in its lifetime.
55 *
56 * For cpu microstate accounting:
57 * Cpu microstate accounting is similar to the microstate accounting for threads
58 * but it tracks user, system, and idle time for cpus. Cpu microstate
59 * accounting does not track interrupt times as there is a pre-existing
60 * interrupt accounting mechanism for this purpose. Cpu microstate accounting
61 * tracks time that user threads have spent active, idle, or in the system on a
62 * given cpu. Cpu microstate accounting has fewer states which allows it to
63 * have better defined transitions. The states transition in the following
64 * order:
65 *
66 * CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
67 *
68 * In order to get to the idle state, the cpu microstate must first go through
69 * the system state, and vice-versa for the user state from idle. The switching
70 * of the microstates from user to system is done as part of the regular thread
71 * microstate accounting code, except for the idle state which is switched by
72 * the dispatcher before it runs the idle loop.
73 *
74 * Cpu percentages:
75 * Cpu percentages are now handled by and based upon microstate accounting
76 * information (the same is true for load averages). The routines which handle
77 * the growing/shrinking and exponentiation of cpu percentages have been moved
78 * here as it now makes more sense for them to be generated from the microstate
79 * code. Cpu percentages are generated similarly to the way they were before;
80 * however, now they are based upon high-resolution timestamps and the
81 * timestamps are modified at various state changes instead of during a clock()
82 * interrupt. This allows us to generate more accurate cpu percentages which
83 * are also in-sync with microstate data.
84 */
85
86 /*
87 * Initialize the microstate level and the
88 * associated accounting information for an LWP.
89 */
90 void
init_mstate(kthread_t * t,int init_state)91 init_mstate(
92 kthread_t *t,
93 int init_state)
94 {
95 struct mstate *ms;
96 klwp_t *lwp;
97 hrtime_t curtime;
98
99 ASSERT(init_state != LMS_WAIT_CPU);
100 ASSERT((unsigned)init_state < NMSTATES);
101
102 if ((lwp = ttolwp(t)) != NULL) {
103 ms = &lwp->lwp_mstate;
104 curtime = gethrtime_unscaled();
105 ms->ms_prev = LMS_SYSTEM;
106 ms->ms_start = curtime;
107 ms->ms_term = 0;
108 ms->ms_state_start = curtime;
109 t->t_mstate = init_state;
110 t->t_waitrq = 0;
111 t->t_hrtime = curtime;
112 if ((t->t_proc_flag & TP_MSACCT) == 0)
113 t->t_proc_flag |= TP_MSACCT;
114 bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
115 }
116 }
117
118 /*
119 * Initialize the microstate level and associated accounting information
120 * for the specified cpu
121 */
122
123 void
init_cpu_mstate(cpu_t * cpu,int init_state)124 init_cpu_mstate(
125 cpu_t *cpu,
126 int init_state)
127 {
128 ASSERT(init_state != CMS_DISABLED);
129
130 cpu->cpu_mstate = init_state;
131 cpu->cpu_mstate_start = gethrtime_unscaled();
132 cpu->cpu_waitrq = 0;
133 bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
134 }
135
136 /*
137 * sets cpu state to OFFLINE. We don't actually track this time,
138 * but it serves as a useful placeholder state for when we're not
139 * doing anything.
140 */
141
142 void
term_cpu_mstate(struct cpu * cpu)143 term_cpu_mstate(struct cpu *cpu)
144 {
145 ASSERT(cpu->cpu_mstate != CMS_DISABLED);
146 cpu->cpu_mstate = CMS_DISABLED;
147 cpu->cpu_mstate_start = 0;
148 }
149
150 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
151
152 #define NEW_CPU_MSTATE(state) \
153 gen = cpu->cpu_mstate_gen; \
154 cpu->cpu_mstate_gen = 0; \
155 /* Need membar_producer() here if stores not ordered / TSO */ \
156 cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
157 cpu->cpu_mstate = state; \
158 cpu->cpu_mstate_start = curtime; \
159 /* Need membar_producer() here if stores not ordered / TSO */ \
160 cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
161
162 void
new_cpu_mstate(int cmstate,hrtime_t curtime)163 new_cpu_mstate(int cmstate, hrtime_t curtime)
164 {
165 cpu_t *cpu = CPU;
166 uint16_t gen;
167
168 ASSERT(cpu->cpu_mstate != CMS_DISABLED);
169 ASSERT(cmstate < NCMSTATES);
170 ASSERT(cmstate != CMS_DISABLED);
171
172 /*
173 * This function cannot be re-entrant on a given CPU. As such,
174 * we ASSERT and panic if we are called on behalf of an interrupt.
175 * The one exception is for an interrupt which has previously
176 * blocked. Such an interrupt is being scheduled by the dispatcher
177 * just like a normal thread, and as such cannot arrive here
178 * in a re-entrant manner.
179 */
180
181 ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
182 ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
183
184 /*
185 * LOCKING, or lack thereof:
186 *
187 * Updates to CPU mstate can only be made by the CPU
188 * itself, and the above check to ignore interrupts
189 * should prevent recursion into this function on a given
190 * processor. i.e. no possible write contention.
191 *
192 * However, reads of CPU mstate can occur at any time
193 * from any CPU. Any locking added to this code path
194 * would seriously impact syscall performance. So,
195 * instead we have a best-effort protection for readers.
196 * The reader will want to account for any time between
197 * cpu_mstate_start and the present time. This requires
198 * some guarantees that the reader is getting coherent
199 * information.
200 *
201 * We use a generation counter, which is set to 0 before
202 * we start making changes, and is set to a new value
203 * after we're done. Someone reading the CPU mstate
204 * should check for the same non-zero value of this
205 * counter both before and after reading all state. The
206 * important point is that the reader is not a
207 * performance-critical path, but this function is.
208 *
209 * The ordering of writes is critical. cpu_mstate_gen must
210 * be visibly zero on all CPUs before we change cpu_mstate
211 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
212 * not be restored to oldgen+1 until after all of the other
213 * writes have become visible.
214 *
215 * Normally one puts membar_producer() calls to accomplish
216 * this. Unfortunately this routine is extremely performance
217 * critical (esp. in syscall_mstate below) and we cannot
218 * afford the additional time, particularly on some x86
219 * architectures with extremely slow sfence calls. On a
220 * CPU which guarantees write ordering (including sparc, x86,
221 * and amd64) this is not a problem. The compiler could still
222 * reorder the writes, so we make the four cpu fields
223 * volatile to prevent this.
224 *
225 * TSO warning: should we port to a non-TSO (or equivalent)
226 * CPU, this will break.
227 *
228 * The reader stills needs the membar_consumer() calls because,
229 * although the volatiles prevent the compiler from reordering
230 * loads, the CPU can still do so.
231 */
232
233 NEW_CPU_MSTATE(cmstate);
234 }
235
236 /*
237 * Return an aggregation of user and system CPU time consumed by
238 * the specified thread in scaled nanoseconds.
239 */
240 hrtime_t
mstate_thread_onproc_time(kthread_t * t)241 mstate_thread_onproc_time(kthread_t *t)
242 {
243 hrtime_t aggr_time;
244 hrtime_t now;
245 hrtime_t waitrq;
246 hrtime_t state_start;
247 struct mstate *ms;
248 klwp_t *lwp;
249 int mstate;
250
251 ASSERT(THREAD_LOCK_HELD(t));
252
253 if ((lwp = ttolwp(t)) == NULL)
254 return (0);
255
256 mstate = t->t_mstate;
257 waitrq = t->t_waitrq;
258 ms = &lwp->lwp_mstate;
259 state_start = ms->ms_state_start;
260
261 aggr_time = ms->ms_acct[LMS_USER] +
262 ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
263
264 now = gethrtime_unscaled();
265
266 /*
267 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
268 * inconsistent, so it is possible that now < state_start.
269 */
270 if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
271 /* if waitrq is zero, count all of the time. */
272 if (waitrq == 0) {
273 waitrq = now;
274 }
275
276 if (waitrq > state_start) {
277 aggr_time += waitrq - state_start;
278 }
279 }
280
281 scalehrtime(&aggr_time);
282 return (aggr_time);
283 }
284
285 /*
286 * Return the amount of onproc and runnable time this thread has experienced.
287 *
288 * Because the fields we read are not protected by locks when updated
289 * by the thread itself, this is an inherently racey interface. In
290 * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
291 * as it might appear to.
292 *
293 * The implication for users of this interface is that onproc and runnable
294 * are *NOT* monotonically increasing; they may temporarily be larger than
295 * they should be.
296 */
297 void
mstate_systhread_times(kthread_t * t,hrtime_t * onproc,hrtime_t * runnable)298 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
299 {
300 struct mstate *const ms = &ttolwp(t)->lwp_mstate;
301
302 int mstate;
303 hrtime_t now;
304 hrtime_t state_start;
305 hrtime_t waitrq;
306 hrtime_t aggr_onp;
307 hrtime_t aggr_run;
308
309 ASSERT(THREAD_LOCK_HELD(t));
310 ASSERT(t->t_procp->p_flag & SSYS);
311 ASSERT(ttolwp(t) != NULL);
312
313 /* shouldn't be any non-SYSTEM on-CPU time */
314 ASSERT(ms->ms_acct[LMS_USER] == 0);
315 ASSERT(ms->ms_acct[LMS_TRAP] == 0);
316
317 mstate = t->t_mstate;
318 waitrq = t->t_waitrq;
319 state_start = ms->ms_state_start;
320
321 aggr_onp = ms->ms_acct[LMS_SYSTEM];
322 aggr_run = ms->ms_acct[LMS_WAIT_CPU];
323
324 now = gethrtime_unscaled();
325
326 /* if waitrq == 0, then there is no time to account to TS_RUN */
327 if (waitrq == 0)
328 waitrq = now;
329
330 /* If there is system time to accumulate, do so */
331 if (mstate == LMS_SYSTEM && state_start < waitrq)
332 aggr_onp += waitrq - state_start;
333
334 if (waitrq < now)
335 aggr_run += now - waitrq;
336
337 scalehrtime(&aggr_onp);
338 scalehrtime(&aggr_run);
339
340 *onproc = aggr_onp;
341 *runnable = aggr_run;
342 }
343
344 /*
345 * Return an aggregation of microstate times in scaled nanoseconds (high-res
346 * time). This keeps in mind that p_acct is already scaled, and ms_acct is
347 * not.
348 */
349 hrtime_t
mstate_aggr_state(proc_t * p,int a_state)350 mstate_aggr_state(proc_t *p, int a_state)
351 {
352 struct mstate *ms;
353 kthread_t *t;
354 klwp_t *lwp;
355 hrtime_t aggr_time;
356 hrtime_t scaledtime;
357
358 ASSERT(MUTEX_HELD(&p->p_lock));
359 ASSERT((unsigned)a_state < NMSTATES);
360
361 aggr_time = p->p_acct[a_state];
362 if (a_state == LMS_SYSTEM)
363 aggr_time += p->p_acct[LMS_TRAP];
364
365 t = p->p_tlist;
366 if (t == NULL)
367 return (aggr_time);
368
369 do {
370 if (t->t_proc_flag & TP_LWPEXIT)
371 continue;
372
373 lwp = ttolwp(t);
374 ms = &lwp->lwp_mstate;
375 scaledtime = ms->ms_acct[a_state];
376 scalehrtime(&scaledtime);
377 aggr_time += scaledtime;
378 if (a_state == LMS_SYSTEM) {
379 scaledtime = ms->ms_acct[LMS_TRAP];
380 scalehrtime(&scaledtime);
381 aggr_time += scaledtime;
382 }
383 } while ((t = t->t_forw) != p->p_tlist);
384
385 return (aggr_time);
386 }
387
388
389 void
syscall_mstate(int fromms,int toms)390 syscall_mstate(int fromms, int toms)
391 {
392 kthread_t *t = curthread;
393 struct mstate *ms;
394 hrtime_t *mstimep;
395 hrtime_t curtime;
396 klwp_t *lwp;
397 hrtime_t newtime;
398 cpu_t *cpu;
399 uint16_t gen;
400
401 if ((lwp = ttolwp(t)) == NULL)
402 return;
403
404 ASSERT(fromms < NMSTATES);
405 ASSERT(toms < NMSTATES);
406
407 ms = &lwp->lwp_mstate;
408 mstimep = &ms->ms_acct[fromms];
409 curtime = gethrtime_unscaled();
410 newtime = curtime - ms->ms_state_start;
411 while (newtime < 0) {
412 curtime = gethrtime_unscaled();
413 newtime = curtime - ms->ms_state_start;
414 }
415 *mstimep += newtime;
416 t->t_mstate = toms;
417 ms->ms_state_start = curtime;
418 ms->ms_prev = fromms;
419 kpreempt_disable(); /* don't change CPU while changing CPU's state */
420 cpu = CPU;
421 ASSERT(cpu == t->t_cpu);
422 if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
423 NEW_CPU_MSTATE(CMS_SYSTEM);
424 } else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
425 NEW_CPU_MSTATE(CMS_USER);
426 }
427 kpreempt_enable();
428 }
429
430 #undef NEW_CPU_MSTATE
431
432 /*
433 * The following is for computing the percentage of cpu time used recently
434 * by an lwp. The function cpu_decay() is also called from /proc code.
435 *
436 * exp_x(x):
437 * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
438 * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
439 *
440 * Scaling for 64-bit scaled integer:
441 * The binary point is to the right of the high-order bit
442 * of the low-order 32-bit word.
443 */
444
445 #define LSHIFT 31
446 #define LSI_ONE ((uint32_t)1 << LSHIFT) /* 32-bit scaled integer 1 */
447
448 #ifdef DEBUG
449 uint_t expx_cnt = 0; /* number of calls to exp_x() */
450 uint_t expx_mul = 0; /* number of long multiplies in exp_x() */
451 #endif
452
453 static uint64_t
exp_x(uint64_t x)454 exp_x(uint64_t x)
455 {
456 int i;
457 uint64_t ull;
458 uint32_t ui;
459
460 #ifdef DEBUG
461 expx_cnt++;
462 #endif
463 /*
464 * By the formula:
465 * exp(-x) = exp(-x/2) * exp(-x/2)
466 * we keep halving x until it becomes small enough for
467 * the following approximation to be accurate enough:
468 * exp(-x) = 1 - x
469 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
470 * Our final error will be smaller than 4% .
471 */
472
473 /*
474 * Use a uint64_t for the initial shift calculation.
475 */
476 ull = x >> (LSHIFT-2);
477
478 /*
479 * Short circuit:
480 * A number this large produces effectively 0 (actually .005).
481 * This way, we will never do more than 5 multiplies.
482 */
483 if (ull >= (1 << 5))
484 return (0);
485
486 ui = ull; /* OK. Now we can use a uint_t. */
487 for (i = 0; ui != 0; i++)
488 ui >>= 1;
489
490 if (i != 0) {
491 #ifdef DEBUG
492 expx_mul += i; /* seldom happens */
493 #endif
494 x >>= i;
495 }
496
497 /*
498 * Now we compute 1 - x and square it the number of times
499 * that we halved x above to produce the final result:
500 */
501 x = LSI_ONE - x;
502 while (i--)
503 x = (x * x) >> LSHIFT;
504
505 return (x);
506 }
507
508 /*
509 * Given the old percent cpu and a time delta in nanoseconds,
510 * return the new decayed percent cpu: pct * exp(-tau),
511 * where 'tau' is the time delta multiplied by a decay factor.
512 * We have chosen the decay factor (cpu_decay_factor in param.c)
513 * to make the decay over five seconds be approximately 20%.
514 *
515 * 'pct' is a 32-bit scaled integer <= 1
516 * The binary point is to the right of the high-order bit
517 * of the 32-bit word.
518 */
519 static uint32_t
cpu_decay(uint32_t pct,hrtime_t nsec)520 cpu_decay(uint32_t pct, hrtime_t nsec)
521 {
522 uint64_t delta = (uint64_t)nsec;
523
524 delta /= cpu_decay_factor;
525 return ((pct * exp_x(delta)) >> LSHIFT);
526 }
527
528 /*
529 * Given the old percent cpu and a time delta in nanoseconds,
530 * return the new grown percent cpu: 1 - ( 1 - pct ) * exp(-tau)
531 */
532 static uint32_t
cpu_grow(uint32_t pct,hrtime_t nsec)533 cpu_grow(uint32_t pct, hrtime_t nsec)
534 {
535 return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
536 }
537
538
539 /*
540 * Defined to determine whether a lwp is still on a processor.
541 */
542
543 #define T_ONPROC(kt) \
544 ((kt)->t_mstate < LMS_SLEEP)
545 #define T_OFFPROC(kt) \
546 ((kt)->t_mstate >= LMS_SLEEP)
547
548 uint_t
cpu_update_pct(kthread_t * t,hrtime_t newtime)549 cpu_update_pct(kthread_t *t, hrtime_t newtime)
550 {
551 hrtime_t delta;
552 hrtime_t hrlb;
553 uint_t pctcpu;
554 uint_t npctcpu;
555
556 /*
557 * This routine can get called at PIL > 0, this *has* to be
558 * done atomically. Holding locks here causes bad things to happen.
559 * (read: deadlock).
560 */
561
562 do {
563 if (T_ONPROC(t) && t->t_waitrq == 0) {
564 hrlb = t->t_hrtime;
565 delta = newtime - hrlb;
566 if (delta < 0) {
567 newtime = gethrtime_unscaled();
568 delta = newtime - hrlb;
569 }
570 t->t_hrtime = newtime;
571 scalehrtime(&delta);
572 pctcpu = t->t_pctcpu;
573 npctcpu = cpu_grow(pctcpu, delta);
574 } else {
575 hrlb = t->t_hrtime;
576 delta = newtime - hrlb;
577 if (delta < 0) {
578 newtime = gethrtime_unscaled();
579 delta = newtime - hrlb;
580 }
581 t->t_hrtime = newtime;
582 scalehrtime(&delta);
583 pctcpu = t->t_pctcpu;
584 npctcpu = cpu_decay(pctcpu, delta);
585 }
586 } while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
587
588 return (npctcpu);
589 }
590
591 /*
592 * Change the microstate level for the LWP and update the
593 * associated accounting information. Return the previous
594 * LWP state.
595 */
596 int
new_mstate(kthread_t * t,int new_state)597 new_mstate(kthread_t *t, int new_state)
598 {
599 struct mstate *ms;
600 unsigned state;
601 hrtime_t *mstimep;
602 hrtime_t curtime;
603 hrtime_t newtime;
604 hrtime_t oldtime;
605 klwp_t *lwp;
606
607 ASSERT(new_state != LMS_WAIT_CPU);
608 ASSERT((unsigned)new_state < NMSTATES);
609 ASSERT(t == curthread || THREAD_LOCK_HELD(t));
610
611 /*
612 * Don't do microstate processing for threads without a lwp (kernel
613 * threads). Also, if we're an interrupt thread that is pinning another
614 * thread, our t_mstate hasn't been initialized. We'd be modifying the
615 * microstate of the underlying lwp which doesn't realize that it's
616 * pinned. In this case, also don't change the microstate.
617 */
618 if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
619 return (LMS_SYSTEM);
620
621 curtime = gethrtime_unscaled();
622
623 /* adjust cpu percentages before we go any further */
624 (void) cpu_update_pct(t, curtime);
625
626 ms = &lwp->lwp_mstate;
627 state = t->t_mstate;
628 do {
629 switch (state) {
630 case LMS_TFAULT:
631 case LMS_DFAULT:
632 case LMS_KFAULT:
633 case LMS_USER_LOCK:
634 mstimep = &ms->ms_acct[LMS_SYSTEM];
635 break;
636 default:
637 mstimep = &ms->ms_acct[state];
638 break;
639 }
640 newtime = curtime - ms->ms_state_start;
641 if (newtime < 0) {
642 curtime = gethrtime_unscaled();
643 oldtime = *mstimep - 1; /* force CAS to fail */
644 continue;
645 }
646 oldtime = *mstimep;
647 newtime += oldtime;
648 t->t_mstate = new_state;
649 ms->ms_state_start = curtime;
650 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
651 /*
652 * Remember the previous running microstate.
653 */
654 if (state != LMS_SLEEP && state != LMS_STOPPED)
655 ms->ms_prev = state;
656
657 /*
658 * Switch CPU microstate if appropriate
659 */
660
661 kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
662 ASSERT(t->t_cpu == CPU);
663 if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
664 if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
665 new_cpu_mstate(CMS_USER, curtime);
666 else if (new_state != LMS_USER &&
667 t->t_cpu->cpu_mstate != CMS_SYSTEM)
668 new_cpu_mstate(CMS_SYSTEM, curtime);
669 }
670 kpreempt_enable();
671
672 return (ms->ms_prev);
673 }
674
675 /*
676 * Restore the LWP microstate to the previous runnable state.
677 * Called from disp() with the newly selected lwp.
678 */
679 void
restore_mstate(kthread_t * t)680 restore_mstate(kthread_t *t)
681 {
682 struct mstate *ms;
683 hrtime_t *mstimep;
684 klwp_t *lwp;
685 hrtime_t curtime;
686 hrtime_t waitrq;
687 hrtime_t newtime;
688 hrtime_t oldtime;
689
690 /*
691 * Don't call restore mstate of threads without lwps. (Kernel threads)
692 *
693 * threads with t_intr set shouldn't be in the dispatcher, so assert
694 * that nobody here has t_intr.
695 */
696 ASSERT(t->t_intr == NULL);
697
698 if ((lwp = ttolwp(t)) == NULL)
699 return;
700
701 curtime = gethrtime_unscaled();
702 (void) cpu_update_pct(t, curtime);
703 ms = &lwp->lwp_mstate;
704 ASSERT((unsigned)t->t_mstate < NMSTATES);
705 do {
706 switch (t->t_mstate) {
707 case LMS_SLEEP:
708 /*
709 * Update the timer for the current sleep state.
710 */
711 ASSERT((unsigned)ms->ms_prev < NMSTATES);
712 switch (ms->ms_prev) {
713 case LMS_TFAULT:
714 case LMS_DFAULT:
715 case LMS_KFAULT:
716 case LMS_USER_LOCK:
717 mstimep = &ms->ms_acct[ms->ms_prev];
718 break;
719 default:
720 mstimep = &ms->ms_acct[LMS_SLEEP];
721 break;
722 }
723 /*
724 * Return to the previous run state.
725 */
726 t->t_mstate = ms->ms_prev;
727 break;
728 case LMS_STOPPED:
729 mstimep = &ms->ms_acct[LMS_STOPPED];
730 /*
731 * Return to the previous run state.
732 */
733 t->t_mstate = ms->ms_prev;
734 break;
735 case LMS_TFAULT:
736 case LMS_DFAULT:
737 case LMS_KFAULT:
738 case LMS_USER_LOCK:
739 mstimep = &ms->ms_acct[LMS_SYSTEM];
740 break;
741 default:
742 mstimep = &ms->ms_acct[t->t_mstate];
743 break;
744 }
745 waitrq = t->t_waitrq; /* hopefully atomic */
746 if (waitrq == 0) {
747 waitrq = curtime;
748 }
749 t->t_waitrq = 0;
750 newtime = waitrq - ms->ms_state_start;
751 if (newtime < 0) {
752 curtime = gethrtime_unscaled();
753 oldtime = *mstimep - 1; /* force CAS to fail */
754 continue;
755 }
756 oldtime = *mstimep;
757 newtime += oldtime;
758 } while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
759 /*
760 * Update the WAIT_CPU timer and per-cpu waitrq total.
761 */
762 ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
763 CPU->cpu_waitrq += (curtime - waitrq);
764 ms->ms_state_start = curtime;
765 }
766
767 /*
768 * Copy lwp microstate accounting and resource usage information
769 * to the process. (lwp is terminating)
770 */
771 void
term_mstate(kthread_t * t)772 term_mstate(kthread_t *t)
773 {
774 struct mstate *ms;
775 proc_t *p = ttoproc(t);
776 klwp_t *lwp = ttolwp(t);
777 int i;
778 hrtime_t tmp;
779
780 ASSERT(MUTEX_HELD(&p->p_lock));
781
782 ms = &lwp->lwp_mstate;
783 (void) new_mstate(t, LMS_STOPPED);
784 ms->ms_term = ms->ms_state_start;
785 tmp = ms->ms_term - ms->ms_start;
786 scalehrtime(&tmp);
787 p->p_mlreal += tmp;
788 for (i = 0; i < NMSTATES; i++) {
789 tmp = ms->ms_acct[i];
790 scalehrtime(&tmp);
791 p->p_acct[i] += tmp;
792 }
793 p->p_ru.minflt += lwp->lwp_ru.minflt;
794 p->p_ru.majflt += lwp->lwp_ru.majflt;
795 p->p_ru.nswap += lwp->lwp_ru.nswap;
796 p->p_ru.inblock += lwp->lwp_ru.inblock;
797 p->p_ru.oublock += lwp->lwp_ru.oublock;
798 p->p_ru.msgsnd += lwp->lwp_ru.msgsnd;
799 p->p_ru.msgrcv += lwp->lwp_ru.msgrcv;
800 p->p_ru.nsignals += lwp->lwp_ru.nsignals;
801 p->p_ru.nvcsw += lwp->lwp_ru.nvcsw;
802 p->p_ru.nivcsw += lwp->lwp_ru.nivcsw;
803 p->p_ru.sysc += lwp->lwp_ru.sysc;
804 p->p_ru.ioch += lwp->lwp_ru.ioch;
805 p->p_defunct++;
806 }
807