xref: /onnv-gate/usr/src/uts/common/io/igb/igb_phy.c (revision 12111:a462ebfcbf99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 /* IntelVersion: 1.161 v3_3_14_3_BHSW1 */
31 
32 #include "igb_api.h"
33 
34 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
35 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
36 
37 /* Cable length tables */
38 static const u16 e1000_m88_cable_length_table[] =
39 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
40 
41 #define	M88E1000_CABLE_LENGTH_TABLE_SIZE \
42 	(sizeof (e1000_m88_cable_length_table) / \
43 	sizeof (e1000_m88_cable_length_table[0]))
44 
45 static const u16 e1000_igp_2_cable_length_table[] =
46 	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
47 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
48 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
49 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
50 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
51 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
52 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
53 	104, 109, 114, 118, 121, 124};
54 
55 #define	IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 	(sizeof (e1000_igp_2_cable_length_table) / \
57 	sizeof (e1000_igp_2_cable_length_table[0]))
58 
59 /*
60  * e1000_init_phy_ops_generic - Initialize PHY function pointers
61  * @hw: pointer to the HW structure
62  *
63  * Setups up the function pointers to no-op functions
64  */
65 void
e1000_init_phy_ops_generic(struct e1000_hw * hw)66 e1000_init_phy_ops_generic(struct e1000_hw *hw)
67 {
68 	struct e1000_phy_info *phy = &hw->phy;
69 	DEBUGFUNC("e1000_init_phy_ops_generic");
70 
71 	/* Initialize function pointers */
72 	phy->ops.init_params = e1000_null_ops_generic;
73 	phy->ops.acquire = e1000_null_ops_generic;
74 	phy->ops.check_polarity = e1000_null_ops_generic;
75 	phy->ops.check_reset_block = e1000_null_ops_generic;
76 	phy->ops.commit = e1000_null_ops_generic;
77 	phy->ops.force_speed_duplex = e1000_null_ops_generic;
78 	phy->ops.get_cfg_done = e1000_null_ops_generic;
79 	phy->ops.get_cable_length = e1000_null_ops_generic;
80 	phy->ops.get_info = e1000_null_ops_generic;
81 	phy->ops.read_reg = e1000_null_read_reg;
82 	phy->ops.read_reg_locked = e1000_null_read_reg;
83 	phy->ops.release = e1000_null_phy_generic;
84 	phy->ops.reset = e1000_null_ops_generic;
85 	phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
86 	phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
87 	phy->ops.write_reg = e1000_null_write_reg;
88 	phy->ops.write_reg_locked = e1000_null_write_reg;
89 	phy->ops.power_up = e1000_null_phy_generic;
90 	phy->ops.power_down = e1000_null_phy_generic;
91 }
92 
93 /*
94  * e1000_null_read_reg - No-op function, return 0
95  * @hw: pointer to the HW structure
96  */
97 s32
e1000_null_read_reg(struct e1000_hw * hw,u32 offset,u16 * data)98 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data)
99 {
100 	DEBUGFUNC("e1000_null_read_reg");
101 	UNREFERENCED_3PARAMETER(hw, offset, data);
102 	return (E1000_SUCCESS);
103 }
104 
105 /*
106  * e1000_null_phy_generic - No-op function, return void
107  * @hw: pointer to the HW structure
108  */
109 void
e1000_null_phy_generic(struct e1000_hw * hw)110 e1000_null_phy_generic(struct e1000_hw *hw)
111 {
112 	DEBUGFUNC("e1000_null_phy_generic");
113 	UNREFERENCED_1PARAMETER(hw);
114 }
115 
116 /*
117  * e1000_null_lplu_state - No-op function, return 0
118  * @hw: pointer to the HW structure
119  */
120 s32
e1000_null_lplu_state(struct e1000_hw * hw,bool active)121 e1000_null_lplu_state(struct e1000_hw *hw, bool active)
122 {
123 	DEBUGFUNC("e1000_null_lplu_state");
124 	UNREFERENCED_2PARAMETER(hw, active);
125 	return (E1000_SUCCESS);
126 }
127 
128 /*
129  * e1000_null_write_reg - No-op function, return 0
130  * @hw: pointer to the HW structure
131  */
132 s32
e1000_null_write_reg(struct e1000_hw * hw,u32 offset,u16 data)133 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
134 {
135 	DEBUGFUNC("e1000_null_write_reg");
136 	UNREFERENCED_3PARAMETER(hw, offset, data);
137 	return (E1000_SUCCESS);
138 }
139 
140 /*
141  * e1000_check_reset_block_generic - Check if PHY reset is blocked
142  * @hw: pointer to the HW structure
143  *
144  * Read the PHY management control register and check whether a PHY reset
145  * is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
146  * return E1000_BLK_PHY_RESET (12).
147  */
148 s32
e1000_check_reset_block_generic(struct e1000_hw * hw)149 e1000_check_reset_block_generic(struct e1000_hw *hw)
150 {
151 	u32 manc;
152 
153 	DEBUGFUNC("e1000_check_reset_block");
154 
155 	manc = E1000_READ_REG(hw, E1000_MANC);
156 
157 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
158 	    E1000_BLK_PHY_RESET : E1000_SUCCESS;
159 }
160 
161 /*
162  * e1000_get_phy_id - Retrieve the PHY ID and revision
163  * @hw: pointer to the HW structure
164  *
165  * Reads the PHY registers and stores the PHY ID and possibly the PHY
166  * revision in the hardware structure.
167  */
168 s32
e1000_get_phy_id(struct e1000_hw * hw)169 e1000_get_phy_id(struct e1000_hw *hw)
170 {
171 	struct e1000_phy_info *phy = &hw->phy;
172 	s32 ret_val = E1000_SUCCESS;
173 	u16 phy_id;
174 
175 	DEBUGFUNC("e1000_get_phy_id");
176 
177 	if (!(phy->ops.read_reg))
178 		goto out;
179 
180 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
181 	if (ret_val)
182 		goto out;
183 
184 	phy->id = (u32)(phy_id << 16);
185 	usec_delay(20);
186 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
187 	if (ret_val)
188 		goto out;
189 
190 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
191 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
192 
193 out:
194 	return (ret_val);
195 }
196 
197 /*
198  * e1000_phy_reset_dsp_generic - Reset PHY DSP
199  * @hw: pointer to the HW structure
200  *
201  * Reset the digital signal processor.
202  */
203 s32
e1000_phy_reset_dsp_generic(struct e1000_hw * hw)204 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
205 {
206 	s32 ret_val = E1000_SUCCESS;
207 
208 	DEBUGFUNC("e1000_phy_reset_dsp_generic");
209 
210 	if (!(hw->phy.ops.write_reg))
211 		goto out;
212 
213 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
214 	if (ret_val)
215 		goto out;
216 
217 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
218 
219 out:
220 	return (ret_val);
221 }
222 
223 /*
224  * e1000_read_phy_reg_mdic - Read MDI control register
225  * @hw: pointer to the HW structure
226  * @offset: register offset to be read
227  * @data: pointer to the read data
228  *
229  * Reads the MDI control register in the PHY at offset and stores the
230  * information read to data.
231  */
232 s32
e1000_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)233 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
234 {
235 	struct e1000_phy_info *phy = &hw->phy;
236 	u32 i, mdic = 0;
237 	s32 ret_val = E1000_SUCCESS;
238 
239 	DEBUGFUNC("e1000_read_phy_reg_mdic");
240 
241 	/*
242 	 * Set up Op-code, Phy Address, and register offset in the MDI
243 	 * Control register.  The MAC will take care of interfacing with the
244 	 * PHY to retrieve the desired data.
245 	 */
246 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
247 	    (phy->addr << E1000_MDIC_PHY_SHIFT) |
248 	    (E1000_MDIC_OP_READ));
249 
250 	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
251 
252 	/*
253 	 * Poll the ready bit to see if the MDI read completed
254 	 * Increasing the time out as testing showed failures with
255 	 * the lower time out
256 	 */
257 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
258 		usec_delay(50);
259 		mdic = E1000_READ_REG(hw, E1000_MDIC);
260 		if (mdic & E1000_MDIC_READY)
261 			break;
262 	}
263 	if (!(mdic & E1000_MDIC_READY)) {
264 		DEBUGOUT("MDI Read did not complete\n");
265 		ret_val = -E1000_ERR_PHY;
266 		goto out;
267 	}
268 	if (mdic & E1000_MDIC_ERROR) {
269 		DEBUGOUT("MDI Error\n");
270 		ret_val = -E1000_ERR_PHY;
271 		goto out;
272 	}
273 	*data = (u16) mdic;
274 
275 out:
276 	return (ret_val);
277 }
278 
279 /*
280  * e1000_write_phy_reg_mdic - Write MDI control register
281  * @hw: pointer to the HW structure
282  * @offset: register offset to write to
283  * @data: data to write to register at offset
284  *
285  * Writes data to MDI control register in the PHY at offset.
286  */
287 s32
e1000_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)288 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
289 {
290 	struct e1000_phy_info *phy = &hw->phy;
291 	u32 i, mdic = 0;
292 	s32 ret_val = E1000_SUCCESS;
293 
294 	DEBUGFUNC("e1000_write_phy_reg_mdic");
295 
296 	/*
297 	 * Set up Op-code, Phy Address, and register offset in the MDI
298 	 * Control register.  The MAC will take care of interfacing with the
299 	 * PHY to retrieve the desired data.
300 	 */
301 	mdic = (((u32)data) |
302 	    (offset << E1000_MDIC_REG_SHIFT) |
303 	    (phy->addr << E1000_MDIC_PHY_SHIFT) |
304 	    (E1000_MDIC_OP_WRITE));
305 
306 	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
307 
308 	/*
309 	 * Poll the ready bit to see if the MDI read completed
310 	 * Increasing the time out as testing showed failures with
311 	 * the lower time out
312 	 */
313 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
314 		usec_delay(50);
315 		mdic = E1000_READ_REG(hw, E1000_MDIC);
316 		if (mdic & E1000_MDIC_READY)
317 			break;
318 	}
319 	if (!(mdic & E1000_MDIC_READY)) {
320 		DEBUGOUT("MDI Write did not complete\n");
321 		ret_val = -E1000_ERR_PHY;
322 		goto out;
323 	}
324 	if (mdic & E1000_MDIC_ERROR) {
325 		DEBUGOUT("MDI Error\n");
326 		ret_val = -E1000_ERR_PHY;
327 		goto out;
328 	}
329 
330 out:
331 	return (ret_val);
332 }
333 
334 /*
335  * e1000_read_phy_reg_i2c - Read PHY register using i2c
336  * @hw: pointer to the HW structure
337  * @offset: register offset to be read
338  * @data: pointer to the read data
339  *
340  * Reads the PHY register at offset using the i2c interface and stores the
341  * retrieved information in data.
342  */
343 s32
e1000_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)344 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
345 {
346 	struct e1000_phy_info *phy = &hw->phy;
347 	u32 i, i2ccmd = 0;
348 
349 	DEBUGFUNC("e1000_read_phy_reg_i2c");
350 
351 	/*
352 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
353 	 * register.  The MAC will take care of interfacing with the
354 	 * PHY to retrieve the desired data.
355 	 */
356 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
357 	    (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
358 	    (E1000_I2CCMD_OPCODE_READ));
359 
360 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
361 
362 	/* Poll the ready bit to see if the I2C read completed */
363 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
364 		usec_delay(50);
365 		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
366 		if (i2ccmd & E1000_I2CCMD_READY)
367 			break;
368 	}
369 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
370 		DEBUGOUT("I2CCMD Read did not complete\n");
371 		return (-E1000_ERR_PHY);
372 	}
373 	if (i2ccmd & E1000_I2CCMD_ERROR) {
374 		DEBUGOUT("I2CCMD Error bit set\n");
375 		return (-E1000_ERR_PHY);
376 	}
377 
378 	/* Need to byte-swap the 16-bit value. */
379 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
380 
381 	return (E1000_SUCCESS);
382 }
383 
384 /*
385  * e1000_write_phy_reg_i2c - Write PHY register using i2c
386  * @hw: pointer to the HW structure
387  * @offset: register offset to write to
388  * @data: data to write at register offset
389  *
390  * Writes the data to PHY register at the offset using the i2c interface.
391  */
392 s32
e1000_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)393 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
394 {
395 	struct e1000_phy_info *phy = &hw->phy;
396 	u32 i, i2ccmd = 0;
397 	u16 phy_data_swapped;
398 
399 	DEBUGFUNC("e1000_write_phy_reg_i2c");
400 
401 	/* Swap the data bytes for the I2C interface */
402 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
403 
404 	/*
405 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
406 	 * register.  The MAC will take care of interfacing with the
407 	 * PHY to retrieve the desired data.
408 	 */
409 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
410 	    (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
411 	    E1000_I2CCMD_OPCODE_WRITE |
412 	    phy_data_swapped);
413 
414 	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
415 
416 	/* Poll the ready bit to see if the I2C read completed */
417 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
418 		usec_delay(50);
419 		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
420 		if (i2ccmd & E1000_I2CCMD_READY)
421 			break;
422 	}
423 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
424 		DEBUGOUT("I2CCMD Write did not complete\n");
425 		return (-E1000_ERR_PHY);
426 	}
427 	if (i2ccmd & E1000_I2CCMD_ERROR) {
428 		DEBUGOUT("I2CCMD Error bit set\n");
429 		return (-E1000_ERR_PHY);
430 	}
431 
432 	return (E1000_SUCCESS);
433 }
434 
435 /*
436  * e1000_read_phy_reg_m88 - Read m88 PHY register
437  * @hw: pointer to the HW structure
438  * @offset: register offset to be read
439  * @data: pointer to the read data
440  *
441  * Acquires semaphore, if necessary, then reads the PHY register at offset
442  * and storing the retrieved information in data.  Release any acquired
443  * semaphores before exiting.
444  */
445 s32
e1000_read_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 * data)446 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
447 {
448 	s32 ret_val = E1000_SUCCESS;
449 
450 	DEBUGFUNC("e1000_read_phy_reg_m88");
451 
452 	if (!(hw->phy.ops.acquire))
453 		goto out;
454 
455 	ret_val = hw->phy.ops.acquire(hw);
456 	if (ret_val)
457 		goto out;
458 
459 	ret_val = e1000_read_phy_reg_mdic(hw,
460 	    MAX_PHY_REG_ADDRESS & offset, data);
461 
462 	hw->phy.ops.release(hw);
463 
464 out:
465 	return (ret_val);
466 }
467 
468 /*
469  * e1000_write_phy_reg_m88 - Write m88 PHY register
470  * @hw: pointer to the HW structure
471  * @offset: register offset to write to
472  * @data: data to write at register offset
473  *
474  * Acquires semaphore, if necessary, then writes the data to PHY register
475  * at the offset.  Release any acquired semaphores before exiting.
476  */
477 s32
e1000_write_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 data)478 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
479 {
480 	s32 ret_val = E1000_SUCCESS;
481 
482 	DEBUGFUNC("e1000_write_phy_reg_m88");
483 
484 	if (!(hw->phy.ops.acquire))
485 		goto out;
486 
487 	ret_val = hw->phy.ops.acquire(hw);
488 	if (ret_val)
489 		goto out;
490 
491 	ret_val = e1000_write_phy_reg_mdic(hw,
492 	    MAX_PHY_REG_ADDRESS & offset, data);
493 
494 	hw->phy.ops.release(hw);
495 
496 out:
497 	return (ret_val);
498 }
499 
500 /*
501  * __e1000_read_phy_reg_igp - Read igp PHY register
502  * @hw: pointer to the HW structure
503  * @offset: register offset to be read
504  * @data: pointer to the read data
505  * @locked: semaphore has already been acquired or not
506  *
507  * Acquires semaphore, if necessary, then reads the PHY register at offset
508  * and stores the retrieved information in data.  Release any acquired
509  * semaphores before exiting.
510  */
511 static s32
__e1000_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)512 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
513     bool locked)
514 {
515 	s32 ret_val = E1000_SUCCESS;
516 
517 	DEBUGFUNC("__e1000_read_phy_reg_igp");
518 
519 	if (!locked) {
520 		if (!(hw->phy.ops.acquire))
521 			goto out;
522 
523 		ret_val = hw->phy.ops.acquire(hw);
524 		if (ret_val)
525 			goto out;
526 	}
527 
528 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
529 		ret_val = e1000_write_phy_reg_mdic(hw,
530 		    IGP01E1000_PHY_PAGE_SELECT, (u16)offset);
531 		if (ret_val)
532 			goto release;
533 	}
534 
535 	ret_val = e1000_read_phy_reg_mdic(hw,
536 	    MAX_PHY_REG_ADDRESS & offset, data);
537 
538 release:
539 	if (!locked)
540 		hw->phy.ops.release(hw);
541 
542 out:
543 	return (ret_val);
544 }
545 
546 /*
547  * e1000_read_phy_reg_igp - Read igp PHY register
548  * @hw: pointer to the HW structure
549  * @offset: register offset to be read
550  * @data: pointer to the read data
551  *
552  * Acquires semaphore then reads the PHY register at offset and stores the
553  * retrieved information in data.
554  * Release the acquired semaphore before exiting.
555  */
556 s32
e1000_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)557 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
558 {
559 	return (__e1000_read_phy_reg_igp(hw, offset, data, false));
560 }
561 
562 /*
563  * e1000_read_phy_reg_igp_locked - Read igp PHY register
564  * @hw: pointer to the HW structure
565  * @offset: register offset to be read
566  * @data: pointer to the read data
567  *
568  * Reads the PHY register at offset and stores the retrieved information
569  * in data.  Assumes semaphore already acquired.
570  */
571 s32
e1000_read_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 * data)572 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
573 {
574 	return (__e1000_read_phy_reg_igp(hw, offset, data, true));
575 }
576 
577 /*
578  * __e1000_write_phy_reg_igp - Write igp PHY register
579  * @hw: pointer to the HW structure
580  * @offset: register offset to write to
581  * @data: data to write at register offset
582  * @locked: semaphore has already been acquired or not
583  *
584  * Acquires semaphore, if necessary, then writes the data to PHY register
585  * at the offset.  Release any acquired semaphores before exiting.
586  */
587 static s32
__e1000_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data,bool locked)588 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
589     bool locked)
590 {
591 	s32 ret_val = E1000_SUCCESS;
592 
593 	DEBUGFUNC("__e1000_write_phy_reg_igp");
594 
595 	if (!locked) {
596 		if (!(hw->phy.ops.acquire))
597 			goto out;
598 
599 		ret_val = hw->phy.ops.acquire(hw);
600 		if (ret_val)
601 			goto out;
602 	}
603 
604 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
605 		ret_val = e1000_write_phy_reg_mdic(hw,
606 		    IGP01E1000_PHY_PAGE_SELECT, (u16)offset);
607 		if (ret_val)
608 			goto release;
609 	}
610 
611 	ret_val = e1000_write_phy_reg_mdic(hw,
612 	    MAX_PHY_REG_ADDRESS & offset, data);
613 
614 release:
615 	if (!locked)
616 		hw->phy.ops.release(hw);
617 
618 out:
619 	return (ret_val);
620 }
621 
622 /*
623  * e1000_write_phy_reg_igp - Write igp PHY register
624  * @hw: pointer to the HW structure
625  * @offset: register offset to write to
626  * @data: data to write at register offset
627  *
628  * Acquires semaphore then writes the data to PHY register
629  * at the offset.  Release any acquired semaphores before exiting.
630  */
631 s32
e1000_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)632 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
633 {
634 	return (__e1000_write_phy_reg_igp(hw, offset, data, false));
635 }
636 
637 /*
638  * e1000_write_phy_reg_igp_locked - Write igp PHY register
639  * @hw: pointer to the HW structure
640  * @offset: register offset to write to
641  * @data: data to write at register offset
642  *
643  * Writes the data to PHY register at the offset.
644  * Assumes semaphore already acquired.
645  */
646 s32
e1000_write_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 data)647 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
648 {
649 	return (__e1000_write_phy_reg_igp(hw, offset, data, true));
650 }
651 
652 /*
653  * __e1000_read_kmrn_reg - Read kumeran register
654  * @hw: pointer to the HW structure
655  * @offset: register offset to be read
656  * @data: pointer to the read data
657  * @locked: semaphore has already been acquired or not
658  *
659  * Acquires semaphore, if necessary.  Then reads the PHY register at offset
660  * using the kumeran interface.  The information retrieved is stored in data.
661  * Release any acquired semaphores before exiting.
662  */
663 static s32
__e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)664 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, bool locked)
665 {
666 	u32 kmrnctrlsta;
667 	s32 ret_val = E1000_SUCCESS;
668 
669 	DEBUGFUNC("__e1000_read_kmrn_reg_generic");
670 
671 	if (!locked) {
672 		if (!(hw->phy.ops.acquire))
673 			goto out;
674 
675 		ret_val = hw->phy.ops.acquire(hw);
676 		if (ret_val)
677 			goto out;
678 	}
679 
680 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
681 	    E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
682 	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
683 
684 	usec_delay(2);
685 
686 	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
687 	*data = (u16)kmrnctrlsta;
688 
689 	if (!locked)
690 		hw->phy.ops.release(hw);
691 
692 out:
693 	return (ret_val);
694 }
695 
696 /*
697  * e1000_read_kmrn_reg_generic -  Read kumeran register
698  * @hw: pointer to the HW structure
699  * @offset: register offset to be read
700  * @data: pointer to the read data
701  *
702  * Acquires semaphore then reads the PHY register at offset using the
703  * kumeran interface.  The information retrieved is stored in data.
704  * Release the acquired semaphore before exiting.
705  */
706 s32
e1000_read_kmrn_reg_generic(struct e1000_hw * hw,u32 offset,u16 * data)707 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
708 {
709 	return (__e1000_read_kmrn_reg(hw, offset, data, false));
710 }
711 
712 /*
713  * e1000_read_kmrn_reg_locked -  Read kumeran register
714  * @hw: pointer to the HW structure
715  * @offset: register offset to be read
716  * @data: pointer to the read data
717  *
718  * Reads the PHY register at offset using the kumeran interface.  The
719  * information retrieved is stored in data.
720  * Assumes semaphore already acquired.
721  */
722 s32
e1000_read_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 * data)723 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
724 {
725 	return (__e1000_read_kmrn_reg(hw, offset, data, true));
726 }
727 
728 /*
729  * __e1000_write_kmrn_reg - Write kumeran register
730  * @hw: pointer to the HW structure
731  * @offset: register offset to write to
732  * @data: data to write at register offset
733  * @locked: semaphore has already been acquired or not
734  *
735  * Acquires semaphore, if necessary.  Then write the data to PHY register
736  * at the offset using the kumeran interface.  Release any acquired semaphores
737  * before exiting.
738  */
739 static s32
__e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data,bool locked)740 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, bool locked)
741 {
742 	u32 kmrnctrlsta;
743 	s32 ret_val = E1000_SUCCESS;
744 
745 	DEBUGFUNC("e1000_write_kmrn_reg_generic");
746 
747 	if (!locked) {
748 		if (!(hw->phy.ops.acquire))
749 			goto out;
750 
751 		ret_val = hw->phy.ops.acquire(hw);
752 		if (ret_val)
753 			goto out;
754 	}
755 
756 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
757 	    E1000_KMRNCTRLSTA_OFFSET) | data;
758 	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
759 
760 	usec_delay(2);
761 
762 	if (!locked)
763 		hw->phy.ops.release(hw);
764 
765 out:
766 	return (ret_val);
767 }
768 
769 /*
770  * e1000_write_kmrn_reg_generic -  Write kumeran register
771  * @hw: pointer to the HW structure
772  * @offset: register offset to write to
773  * @data: data to write at register offset
774  *
775  * Acquires semaphore then writes the data to the PHY register at the offset
776  * using the kumeran interface.  Release the acquired semaphore before exiting.
777  */
778 s32
e1000_write_kmrn_reg_generic(struct e1000_hw * hw,u32 offset,u16 data)779 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
780 {
781 	return (__e1000_write_kmrn_reg(hw, offset, data, false));
782 }
783 
784 /*
785  * e1000_write_kmrn_reg_locked -  Write kumeran register
786  * @hw: pointer to the HW structure
787  * @offset: register offset to write to
788  * @data: data to write at register offset
789  *
790  * Write the data to PHY register at the offset using the kumeran interface.
791  * Assumes semaphore already acquired.
792  */
793 s32
e1000_write_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 data)794 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
795 {
796 	return (__e1000_write_kmrn_reg(hw, offset, data, true));
797 }
798 
799 /*
800  * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
801  * @hw: pointer to the HW structure
802  *
803  * Sets up Carrier-sense on Transmit and downshift values.
804  */
805 s32
e1000_copper_link_setup_82577(struct e1000_hw * hw)806 e1000_copper_link_setup_82577(struct e1000_hw *hw)
807 {
808 	struct e1000_phy_info *phy = &hw->phy;
809 	s32 ret_val;
810 	u16 phy_data;
811 
812 	DEBUGFUNC("e1000_copper_link_setup_82577");
813 
814 	if (phy->reset_disable) {
815 		ret_val = E1000_SUCCESS;
816 		goto out;
817 	}
818 
819 	if (phy->type == e1000_phy_82580) {
820 		ret_val = hw->phy.ops.reset(hw);
821 		if (ret_val) {
822 			DEBUGOUT("Error resetting the PHY.\n");
823 			goto out;
824 		}
825 	}
826 
827 	/* Enable CRS on TX. This must be set for half-duplex operation. */
828 	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
829 	if (ret_val)
830 		goto out;
831 
832 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
833 
834 	/* Enable downshift */
835 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
836 
837 	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
838 
839 out:
840 	return (ret_val);
841 }
842 
843 /*
844  * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
845  * @hw: pointer to the HW structure
846  *
847  * Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
848  * and downshift values are set also.
849  */
850 s32
e1000_copper_link_setup_m88(struct e1000_hw * hw)851 e1000_copper_link_setup_m88(struct e1000_hw *hw)
852 {
853 	struct e1000_phy_info *phy = &hw->phy;
854 	s32 ret_val;
855 	u16 phy_data;
856 
857 	DEBUGFUNC("e1000_copper_link_setup_m88");
858 
859 	if (phy->reset_disable) {
860 		ret_val = E1000_SUCCESS;
861 		goto out;
862 	}
863 
864 	/* Enable CRS on TX. This must be set for half-duplex operation. */
865 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
866 	if (ret_val)
867 		goto out;
868 
869 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
870 
871 	/*
872 	 * Options:
873 	 *   MDI/MDI-X = 0 (default)
874 	 *   0 - Auto for all speeds
875 	 *   1 - MDI mode
876 	 *   2 - MDI-X mode
877 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
878 	 */
879 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
880 
881 	switch (phy->mdix) {
882 		case 1:
883 			phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
884 			break;
885 		case 2:
886 			phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
887 			break;
888 		case 3:
889 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
890 			break;
891 		case 0:
892 		default:
893 			phy_data |= M88E1000_PSCR_AUTO_X_MODE;
894 			break;
895 	}
896 
897 	/*
898 	 * Options:
899 	 *   disable_polarity_correction = 0 (default)
900 	 *	Automatic Correction for Reversed Cable Polarity
901 	 *   0 - Disabled
902 	 *   1 - Enabled
903 	 */
904 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
905 	if (phy->disable_polarity_correction == 1)
906 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
907 
908 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
909 	if (ret_val)
910 		goto out;
911 
912 	if (phy->revision < E1000_REVISION_4) {
913 		/*
914 		 * Force TX_CLK in the Extended PHY Specific Control Register
915 		 * to 25MHz clock.
916 		 */
917 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
918 		    &phy_data);
919 		if (ret_val)
920 			goto out;
921 
922 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
923 
924 		if ((phy->revision == E1000_REVISION_2) &&
925 		    (phy->id == M88E1111_I_PHY_ID)) {
926 			/* 82573L PHY - set the downshift counter to 5x. */
927 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
928 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
929 		} else {
930 			/* Configure Master and Slave downshift values */
931 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
932 			    M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
933 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
934 			    M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
935 		}
936 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
937 		    phy_data);
938 		if (ret_val)
939 			goto out;
940 	}
941 
942 	/* Commit the changes. */
943 	ret_val = phy->ops.commit(hw);
944 	if (ret_val) {
945 		DEBUGOUT("Error committing the PHY changes\n");
946 		goto out;
947 	}
948 
949 out:
950 	return (ret_val);
951 }
952 
953 /*
954  * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
955  * @hw: pointer to the HW structure
956  *
957  * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
958  * igp PHY's.
959  */
960 s32
e1000_copper_link_setup_igp(struct e1000_hw * hw)961 e1000_copper_link_setup_igp(struct e1000_hw *hw)
962 {
963 	struct e1000_phy_info *phy = &hw->phy;
964 	s32 ret_val;
965 	u16 data;
966 
967 	DEBUGFUNC("e1000_copper_link_setup_igp");
968 
969 	if (phy->reset_disable) {
970 		ret_val = E1000_SUCCESS;
971 		goto out;
972 	}
973 
974 	ret_val = hw->phy.ops.reset(hw);
975 	if (ret_val) {
976 		DEBUGOUT("Error resetting the PHY.\n");
977 		goto out;
978 	}
979 
980 	/*
981 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
982 	 * timeout issues when LFS is enabled.
983 	 */
984 	msec_delay(100);
985 
986 	/*
987 	 * The NVM settings will configure LPLU in D3 for
988 	 * non-IGP1 PHYs.
989 	 */
990 	if (phy->type == e1000_phy_igp) {
991 		/* disable lplu d3 during driver init */
992 		ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
993 		if (ret_val) {
994 			DEBUGOUT("Error Disabling LPLU D3\n");
995 			goto out;
996 		}
997 	}
998 
999 	/* disable lplu d0 during driver init */
1000 	if (hw->phy.ops.set_d0_lplu_state) {
1001 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
1002 		if (ret_val) {
1003 			DEBUGOUT("Error Disabling LPLU D0\n");
1004 			goto out;
1005 		}
1006 	}
1007 	/* Configure mdi-mdix settings */
1008 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
1009 	if (ret_val)
1010 		goto out;
1011 
1012 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1013 
1014 	switch (phy->mdix) {
1015 	case 1:
1016 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1017 		break;
1018 	case 2:
1019 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1020 		break;
1021 	case 0:
1022 	default:
1023 		data |= IGP01E1000_PSCR_AUTO_MDIX;
1024 		break;
1025 	}
1026 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
1027 	if (ret_val)
1028 		goto out;
1029 
1030 	/* set auto-master slave resolution settings */
1031 	if (hw->mac.autoneg) {
1032 		/*
1033 		 * when autonegotiation advertisement is only 1000Mbps then we
1034 		 * should disable SmartSpeed and enable Auto MasterSlave
1035 		 * resolution as hardware default.
1036 		 */
1037 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1038 			/* Disable SmartSpeed */
1039 			ret_val = phy->ops.read_reg(hw,
1040 			    IGP01E1000_PHY_PORT_CONFIG, &data);
1041 			if (ret_val)
1042 				goto out;
1043 
1044 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1045 			ret_val = phy->ops.write_reg(hw,
1046 			    IGP01E1000_PHY_PORT_CONFIG, data);
1047 			if (ret_val)
1048 				goto out;
1049 
1050 			/* Set auto Master/Slave resolution process */
1051 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1052 			if (ret_val)
1053 				goto out;
1054 
1055 			data &= ~CR_1000T_MS_ENABLE;
1056 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1057 			if (ret_val)
1058 				goto out;
1059 		}
1060 
1061 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1062 		if (ret_val)
1063 			goto out;
1064 
1065 		/* load defaults for future use */
1066 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
1067 		    ((data & CR_1000T_MS_VALUE) ?
1068 		    e1000_ms_force_master :
1069 		    e1000_ms_force_slave) :
1070 		    e1000_ms_auto;
1071 
1072 		switch (phy->ms_type) {
1073 		case e1000_ms_force_master:
1074 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1075 			break;
1076 		case e1000_ms_force_slave:
1077 			data |= CR_1000T_MS_ENABLE;
1078 			data &= ~(CR_1000T_MS_VALUE);
1079 			break;
1080 		case e1000_ms_auto:
1081 			data &= ~CR_1000T_MS_ENABLE;
1082 		default:
1083 			break;
1084 		}
1085 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1086 		if (ret_val)
1087 			goto out;
1088 	}
1089 
1090 out:
1091 	return (ret_val);
1092 }
1093 
1094 /*
1095  * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1096  * @hw: pointer to the HW structure
1097  *
1098  * Performs initial bounds checking on autoneg advertisement parameter, then
1099  * configure to advertise the full capability.  Setup the PHY to autoneg
1100  * and restart the negotiation process between the link partner.  If
1101  * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1102  */
1103 static s32
e1000_copper_link_autoneg(struct e1000_hw * hw)1104 e1000_copper_link_autoneg(struct e1000_hw *hw)
1105 {
1106 	struct e1000_phy_info *phy = &hw->phy;
1107 	s32 ret_val;
1108 	u16 phy_ctrl;
1109 
1110 	DEBUGFUNC("e1000_copper_link_autoneg");
1111 
1112 	/*
1113 	 * Perform some bounds checking on the autoneg advertisement
1114 	 * parameter.
1115 	 */
1116 	phy->autoneg_advertised &= phy->autoneg_mask;
1117 
1118 	/*
1119 	 * If autoneg_advertised is zero, we assume it was not defaulted
1120 	 * by the calling code so we set to advertise full capability.
1121 	 */
1122 	if (phy->autoneg_advertised == 0)
1123 		phy->autoneg_advertised = phy->autoneg_mask;
1124 
1125 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1126 	ret_val = e1000_phy_setup_autoneg(hw);
1127 	if (ret_val) {
1128 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1129 		goto out;
1130 	}
1131 	DEBUGOUT("Restarting Auto-Neg\n");
1132 
1133 	/*
1134 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1135 	 * the Auto Neg Restart bit in the PHY control register.
1136 	 */
1137 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1138 	if (ret_val)
1139 		goto out;
1140 
1141 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1142 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1143 	if (ret_val)
1144 		goto out;
1145 
1146 	/*
1147 	 * Does the user want to wait for Auto-Neg to complete here, or
1148 	 * check at a later time (for example, callback routine).
1149 	 */
1150 	if (phy->autoneg_wait_to_complete) {
1151 		ret_val = hw->mac.ops.wait_autoneg(hw);
1152 		if (ret_val) {
1153 			DEBUGOUT("Error while waiting for "
1154 			    "autoneg to complete\n");
1155 			goto out;
1156 		}
1157 	}
1158 
1159 	hw->mac.get_link_status = true;
1160 
1161 out:
1162 	return (ret_val);
1163 }
1164 
1165 /*
1166  * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
1167  * @hw: pointer to the HW structure
1168  *
1169  * Reads the MII auto-neg advertisement register and/or the 1000T control
1170  * register and if the PHY is already setup for auto-negotiation, then
1171  * return successful.  Otherwise, setup advertisement and flow control to
1172  * the appropriate values for the wanted auto-negotiation.
1173  */
1174 static s32
e1000_phy_setup_autoneg(struct e1000_hw * hw)1175 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1176 {
1177 	struct e1000_phy_info *phy = &hw->phy;
1178 	s32 ret_val;
1179 	u16 mii_autoneg_adv_reg;
1180 	u16 mii_1000t_ctrl_reg = 0;
1181 
1182 	DEBUGFUNC("e1000_phy_setup_autoneg");
1183 
1184 	phy->autoneg_advertised &= phy->autoneg_mask;
1185 
1186 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1187 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1188 	if (ret_val)
1189 		goto out;
1190 
1191 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1192 		/* Read the MII 1000Base-T Control Register (Address 9). */
1193 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1194 		    &mii_1000t_ctrl_reg);
1195 		if (ret_val)
1196 			goto out;
1197 	}
1198 
1199 	/*
1200 	 * Need to parse both autoneg_advertised and fc and set up
1201 	 * the appropriate PHY registers.  First we will parse for
1202 	 * autoneg_advertised software override.  Since we can advertise
1203 	 * a plethora of combinations, we need to check each bit
1204 	 * individually.
1205 	 */
1206 
1207 	/*
1208 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
1209 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1210 	 * the  1000Base-T Control Register (Address 9).
1211 	 */
1212 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1213 	    NWAY_AR_100TX_HD_CAPS |
1214 	    NWAY_AR_10T_FD_CAPS   |
1215 	    NWAY_AR_10T_HD_CAPS);
1216 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1217 
1218 	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1219 
1220 	/* Do we want to advertise 10 Mb Half Duplex? */
1221 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1222 		DEBUGOUT("Advertise 10mb Half duplex\n");
1223 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1224 	}
1225 
1226 	/* Do we want to advertise 10 Mb Full Duplex? */
1227 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1228 		DEBUGOUT("Advertise 10mb Full duplex\n");
1229 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1230 	}
1231 
1232 	/* Do we want to advertise 100 Mb Half Duplex? */
1233 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1234 		DEBUGOUT("Advertise 100mb Half duplex\n");
1235 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1236 	}
1237 
1238 	/* Do we want to advertise 100 Mb Full Duplex? */
1239 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1240 		DEBUGOUT("Advertise 100mb Full duplex\n");
1241 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1242 	}
1243 
1244 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1245 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1246 		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1247 
1248 	/* Do we want to advertise 1000 Mb Full Duplex? */
1249 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1250 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1251 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1252 	}
1253 
1254 	/*
1255 	 * Check for a software override of the flow control settings, and
1256 	 * setup the PHY advertisement registers accordingly.  If
1257 	 * auto-negotiation is enabled, then software will have to set the
1258 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1259 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1260 	 * negotiation.
1261 	 *
1262 	 * The possible values of the "fc" parameter are:
1263 	 * 0:	Flow control is completely disabled
1264 	 * 1:	Rx flow control is enabled (we can receive pause frames
1265 	 *	but not send pause frames).
1266 	 * 2:	Tx flow control is enabled (we can send pause frames
1267 	 *	but we do not support receiving pause frames).
1268 	 * 3:	Both Rx and Tx flow control (symmetric) are enabled.
1269 	 * other: No software override.  The flow control configuration
1270 	 *	in the EEPROM is used.
1271 	 */
1272 	switch (hw->fc.current_mode) {
1273 	case e1000_fc_none:
1274 		/*
1275 		 * Flow control (Rx & Tx) is completely disabled by a
1276 		 * software over-ride.
1277 		 */
1278 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1279 		break;
1280 	case e1000_fc_rx_pause:
1281 		/*
1282 		 * Rx Flow control is enabled, and Tx Flow control is
1283 		 * disabled, by a software over-ride.
1284 		 *
1285 		 * Since there really isn't a way to advertise that we are
1286 		 * capable of Rx Pause ONLY, we will advertise that we
1287 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1288 		 * (in e1000_config_fc_after_link_up) we will disable the
1289 		 * hw's ability to send PAUSE frames.
1290 		 */
1291 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1292 		break;
1293 	case e1000_fc_tx_pause:
1294 		/*
1295 		 * Tx Flow control is enabled, and Rx Flow control is
1296 		 * disabled, by a software over-ride.
1297 		 */
1298 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1299 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1300 		break;
1301 	case e1000_fc_full:
1302 		/*
1303 		 * Flow control (both Rx and Tx) is enabled by a software
1304 		 * over-ride.
1305 		 */
1306 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1307 		break;
1308 	default:
1309 		DEBUGOUT("Flow control param set incorrectly\n");
1310 		ret_val = -E1000_ERR_CONFIG;
1311 		goto out;
1312 	}
1313 
1314 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1315 	if (ret_val)
1316 		goto out;
1317 
1318 	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1319 
1320 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1321 		ret_val = phy->ops.write_reg(hw,
1322 		    PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1323 		if (ret_val)
1324 			goto out;
1325 	}
1326 
1327 out:
1328 	return (ret_val);
1329 }
1330 
1331 /*
1332  * e1000_setup_copper_link_generic - Configure copper link settings
1333  * @hw: pointer to the HW structure
1334  *
1335  * Calls the appropriate function to configure the link for auto-neg or forced
1336  * speed and duplex.  Then we check for link, once link is established calls
1337  * to configure collision distance and flow control are called.  If link is
1338  * not established, we return -E1000_ERR_PHY (-2).
1339  */
1340 s32
e1000_setup_copper_link_generic(struct e1000_hw * hw)1341 e1000_setup_copper_link_generic(struct e1000_hw *hw)
1342 {
1343 	s32 ret_val;
1344 	bool link;
1345 
1346 	DEBUGFUNC("e1000_setup_copper_link_generic");
1347 
1348 	if (hw->mac.autoneg) {
1349 		/*
1350 		 * Setup autoneg and flow control advertisement and perform
1351 		 * autonegotiation.
1352 		 */
1353 		ret_val = e1000_copper_link_autoneg(hw);
1354 		if (ret_val)
1355 			goto out;
1356 	} else {
1357 		/*
1358 		 * PHY will be set to 10H, 10F, 100H or 100F
1359 		 * depending on user settings.
1360 		 */
1361 		DEBUGOUT("Forcing Speed and Duplex\n");
1362 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1363 		if (ret_val) {
1364 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1365 			goto out;
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * Check link status. Wait up to 100 microseconds for link to become
1371 	 * valid.
1372 	 */
1373 	ret_val = e1000_phy_has_link_generic(hw,
1374 	    COPPER_LINK_UP_LIMIT,
1375 	    10,
1376 	    &link);
1377 	if (ret_val)
1378 		goto out;
1379 
1380 	if (link) {
1381 		DEBUGOUT("Valid link established!!!\n");
1382 		e1000_config_collision_dist_generic(hw);
1383 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1384 	} else {
1385 		DEBUGOUT("Unable to establish link!!!\n");
1386 	}
1387 
1388 out:
1389 	return (ret_val);
1390 }
1391 
1392 /*
1393  * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1394  * @hw: pointer to the HW structure
1395  *
1396  * Calls the PHY setup function to force speed and duplex.  Clears the
1397  * auto-crossover to force MDI manually.  Waits for link and returns
1398  * successful if link up is successful, else -E1000_ERR_PHY (-2).
1399  */
1400 s32
e1000_phy_force_speed_duplex_igp(struct e1000_hw * hw)1401 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1402 {
1403 	struct e1000_phy_info *phy = &hw->phy;
1404 	s32 ret_val;
1405 	u16 phy_data;
1406 	bool link;
1407 
1408 	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1409 
1410 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1411 	if (ret_val)
1412 		goto out;
1413 
1414 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1415 
1416 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1417 	if (ret_val)
1418 		goto out;
1419 
1420 	/*
1421 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1422 	 * forced whenever speed and duplex are forced.
1423 	 */
1424 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1425 	if (ret_val)
1426 		goto out;
1427 
1428 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1429 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1430 
1431 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1432 	if (ret_val)
1433 		goto out;
1434 
1435 	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1436 
1437 	usec_delay(1);
1438 
1439 	if (phy->autoneg_wait_to_complete) {
1440 		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1441 
1442 		ret_val = e1000_phy_has_link_generic(hw,
1443 		    PHY_FORCE_LIMIT,
1444 		    100000,
1445 		    &link);
1446 		if (ret_val)
1447 			goto out;
1448 
1449 		if (!link)
1450 			DEBUGOUT("Link taking longer than expected.\n");
1451 
1452 		/* Try once more */
1453 		ret_val = e1000_phy_has_link_generic(hw,
1454 		    PHY_FORCE_LIMIT,
1455 		    100000,
1456 		    &link);
1457 		if (ret_val)
1458 			goto out;
1459 	}
1460 
1461 out:
1462 	return (ret_val);
1463 }
1464 
1465 /*
1466  * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1467  * @hw: pointer to the HW structure
1468  *
1469  * Calls the PHY setup function to force speed and duplex.  Clears the
1470  * auto-crossover to force MDI manually.  Resets the PHY to commit the
1471  * changes.  If time expires while waiting for link up, we reset the DSP.
1472  * After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1473  * successful completion, else return corresponding error code.
1474  */
1475 s32
e1000_phy_force_speed_duplex_m88(struct e1000_hw * hw)1476 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1477 {
1478 	struct e1000_phy_info *phy = &hw->phy;
1479 	s32 ret_val;
1480 	u16 phy_data;
1481 	bool link;
1482 
1483 	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1484 
1485 	/*
1486 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1487 	 * forced whenever speed and duplex are forced.
1488 	 */
1489 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1490 	if (ret_val)
1491 		goto out;
1492 
1493 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1494 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1495 	if (ret_val)
1496 		goto out;
1497 
1498 	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1499 
1500 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1501 	if (ret_val)
1502 		goto out;
1503 
1504 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1505 
1506 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1507 	if (ret_val)
1508 		goto out;
1509 
1510 	/* Reset the phy to commit changes. */
1511 	ret_val = hw->phy.ops.commit(hw);
1512 	if (ret_val)
1513 		goto out;
1514 
1515 	if (phy->autoneg_wait_to_complete) {
1516 		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1517 
1518 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1519 		    100000, &link);
1520 		if (ret_val)
1521 			goto out;
1522 
1523 		if (!link) {
1524 			/*
1525 			 * We didn't get link.
1526 			 * Reset the DSP and cross our fingers.
1527 			 */
1528 			ret_val = phy->ops.write_reg(hw,
1529 			    M88E1000_PHY_PAGE_SELECT,
1530 			    0x001d);
1531 			if (ret_val)
1532 				goto out;
1533 			ret_val = e1000_phy_reset_dsp_generic(hw);
1534 			if (ret_val)
1535 				goto out;
1536 		}
1537 
1538 		/* Try once more */
1539 		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1540 		    100000, &link);
1541 		if (ret_val)
1542 			goto out;
1543 	}
1544 
1545 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1546 	if (ret_val)
1547 		goto out;
1548 
1549 	/*
1550 	 * Resetting the phy means we need to re-force TX_CLK in the
1551 	 * Extended PHY Specific Control Register to 25MHz clock from
1552 	 * the reset value of 2.5MHz.
1553 	 */
1554 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1555 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1556 	if (ret_val)
1557 		goto out;
1558 
1559 	/*
1560 	 * In addition, we must re-enable CRS on Tx for both half and full
1561 	 * duplex.
1562 	 */
1563 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1564 	if (ret_val)
1565 		goto out;
1566 
1567 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1568 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1569 
1570 out:
1571 	return (ret_val);
1572 }
1573 
1574 /*
1575  * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1576  * @hw: pointer to the HW structure
1577  *
1578  * Forces the speed and duplex settings of the PHY.
1579  * This is a function pointer entry point only called by
1580  * PHY setup routines.
1581  */
1582 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw * hw)1583 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1584 {
1585 	struct e1000_phy_info *phy = &hw->phy;
1586 	s32 ret_val;
1587 	u16 data;
1588 	bool link;
1589 
1590 	DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1591 
1592 	if (phy->type != e1000_phy_ife) {
1593 		ret_val = e1000_phy_force_speed_duplex_igp(hw);
1594 		goto out;
1595 	}
1596 
1597 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1598 	if (ret_val)
1599 		goto out;
1600 
1601 	e1000_phy_force_speed_duplex_setup(hw, &data);
1602 
1603 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1604 	if (ret_val)
1605 		goto out;
1606 
1607 	/* Disable MDI-X support for 10/100 */
1608 	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1609 	if (ret_val)
1610 		goto out;
1611 
1612 	data &= ~IFE_PMC_AUTO_MDIX;
1613 	data &= ~IFE_PMC_FORCE_MDIX;
1614 
1615 	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1616 	if (ret_val)
1617 		goto out;
1618 
1619 	DEBUGOUT1("IFE PMC: %X\n", data);
1620 
1621 	usec_delay(1);
1622 
1623 	if (phy->autoneg_wait_to_complete) {
1624 		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1625 
1626 		ret_val = e1000_phy_has_link_generic(hw,
1627 		    PHY_FORCE_LIMIT, 100000, &link);
1628 		if (ret_val)
1629 			goto out;
1630 
1631 		if (!link)
1632 			DEBUGOUT("Link taking longer than expected.\n");
1633 
1634 		/* Try once more */
1635 		ret_val = e1000_phy_has_link_generic(hw,
1636 		    PHY_FORCE_LIMIT, 100000, &link);
1637 		if (ret_val)
1638 			goto out;
1639 	}
1640 
1641 out:
1642 	return (ret_val);
1643 }
1644 /*
1645  * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1646  * @hw: pointer to the HW structure
1647  * @phy_ctrl: pointer to current value of PHY_CONTROL
1648  *
1649  * Forces speed and duplex on the PHY by doing the following: disable flow
1650  * control, force speed/duplex on the MAC, disable auto speed detection,
1651  * disable auto-negotiation, configure duplex, configure speed, configure
1652  * the collision distance, write configuration to CTRL register.  The
1653  * caller must write to the PHY_CONTROL register for these settings to
1654  * take affect.
1655  */
1656 void
e1000_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1657 e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1658 {
1659 	struct e1000_mac_info *mac = &hw->mac;
1660 	u32 ctrl;
1661 
1662 	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
1663 
1664 	/* Turn off flow control when forcing speed/duplex */
1665 	hw->fc.current_mode = e1000_fc_none;
1666 
1667 	/* Force speed/duplex on the mac */
1668 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1669 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1670 	ctrl &= ~E1000_CTRL_SPD_SEL;
1671 
1672 	/* Disable Auto Speed Detection */
1673 	ctrl &= ~E1000_CTRL_ASDE;
1674 
1675 	/* Disable autoneg on the phy */
1676 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1677 
1678 	/* Forcing Full or Half Duplex? */
1679 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1680 		ctrl &= ~E1000_CTRL_FD;
1681 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1682 		DEBUGOUT("Half Duplex\n");
1683 	} else {
1684 		ctrl |= E1000_CTRL_FD;
1685 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1686 		DEBUGOUT("Full Duplex\n");
1687 	}
1688 
1689 	/* Forcing 10mb or 100mb? */
1690 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1691 		ctrl |= E1000_CTRL_SPD_100;
1692 		*phy_ctrl |= MII_CR_SPEED_100;
1693 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1694 		DEBUGOUT("Forcing 100mb\n");
1695 	} else {
1696 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1697 		/* LINTED */
1698 		*phy_ctrl |= MII_CR_SPEED_10;
1699 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1700 		DEBUGOUT("Forcing 10mb\n");
1701 	}
1702 
1703 	e1000_config_collision_dist_generic(hw);
1704 
1705 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1706 }
1707 
1708 /*
1709  * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
1710  * @hw: pointer to the HW structure
1711  * @active: boolean used to enable/disable lplu
1712  *
1713  * Success returns 0, Failure returns 1
1714  *
1715  * The low power link up (lplu) state is set to the power management level D3
1716  * and SmartSpeed is disabled when active is true, else clear lplu for D3
1717  * and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1718  * is used during Dx states where the power conservation is most important.
1719  * During driver activity, SmartSpeed should be enabled so performance is
1720  * maintained.
1721  */
1722 s32
e1000_set_d3_lplu_state_generic(struct e1000_hw * hw,bool active)1723 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
1724 {
1725 	struct e1000_phy_info *phy = &hw->phy;
1726 	s32 ret_val = E1000_SUCCESS;
1727 	u16 data;
1728 
1729 	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
1730 
1731 	if (!(hw->phy.ops.read_reg))
1732 		goto out;
1733 
1734 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1735 	if (ret_val)
1736 		goto out;
1737 
1738 	if (!active) {
1739 		data &= ~IGP02E1000_PM_D3_LPLU;
1740 		ret_val = phy->ops.write_reg(hw,
1741 		    IGP02E1000_PHY_POWER_MGMT,
1742 		    data);
1743 		if (ret_val)
1744 			goto out;
1745 		/*
1746 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1747 		 * during Dx states where the power conservation is most
1748 		 * important.  During driver activity we should enable
1749 		 * SmartSpeed, so performance is maintained.
1750 		 */
1751 		if (phy->smart_speed == e1000_smart_speed_on) {
1752 			ret_val = phy->ops.read_reg(hw,
1753 			    IGP01E1000_PHY_PORT_CONFIG,
1754 			    &data);
1755 			if (ret_val)
1756 				goto out;
1757 
1758 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1759 			ret_val = phy->ops.write_reg(hw,
1760 			    IGP01E1000_PHY_PORT_CONFIG,
1761 			    data);
1762 			if (ret_val)
1763 				goto out;
1764 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1765 			ret_val = phy->ops.read_reg(hw,
1766 			    IGP01E1000_PHY_PORT_CONFIG,
1767 			    &data);
1768 			if (ret_val)
1769 				goto out;
1770 
1771 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1772 			ret_val = phy->ops.write_reg(hw,
1773 			    IGP01E1000_PHY_PORT_CONFIG,
1774 			    data);
1775 			if (ret_val)
1776 				goto out;
1777 		}
1778 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1779 	    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1780 	    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1781 		data |= IGP02E1000_PM_D3_LPLU;
1782 		ret_val = phy->ops.write_reg(hw,
1783 		    IGP02E1000_PHY_POWER_MGMT,
1784 		    data);
1785 		if (ret_val)
1786 			goto out;
1787 
1788 		/* When LPLU is enabled, we should disable SmartSpeed */
1789 		ret_val = phy->ops.read_reg(hw,
1790 		    IGP01E1000_PHY_PORT_CONFIG,
1791 		    &data);
1792 		if (ret_val)
1793 			goto out;
1794 
1795 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1796 		ret_val = phy->ops.write_reg(hw,
1797 		    IGP01E1000_PHY_PORT_CONFIG,
1798 		    data);
1799 	}
1800 
1801 out:
1802 	return (ret_val);
1803 }
1804 
1805 /*
1806  * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
1807  * @hw: pointer to the HW structure
1808  *
1809  * Success returns 0, Failure returns 1
1810  *
1811  * A downshift is detected by querying the PHY link health.
1812  */
1813 s32
e1000_check_downshift_generic(struct e1000_hw * hw)1814 e1000_check_downshift_generic(struct e1000_hw *hw)
1815 {
1816 	struct e1000_phy_info *phy = &hw->phy;
1817 	s32 ret_val;
1818 	u16 phy_data, offset, mask;
1819 
1820 	DEBUGFUNC("e1000_check_downshift_generic");
1821 
1822 	switch (phy->type) {
1823 	case e1000_phy_m88:
1824 	case e1000_phy_gg82563:
1825 		offset	= M88E1000_PHY_SPEC_STATUS;
1826 		mask	= M88E1000_PSSR_DOWNSHIFT;
1827 		break;
1828 	case e1000_phy_igp_2:
1829 	case e1000_phy_igp:
1830 	case e1000_phy_igp_3:
1831 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1832 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1833 		break;
1834 	default:
1835 		/* speed downshift not supported */
1836 		phy->speed_downgraded = false;
1837 		ret_val = E1000_SUCCESS;
1838 		goto out;
1839 	}
1840 
1841 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1842 
1843 	if (!ret_val)
1844 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1845 
1846 out:
1847 	return (ret_val);
1848 }
1849 
1850 /*
1851  * e1000_check_polarity_m88 - Checks the polarity.
1852  * @hw: pointer to the HW structure
1853  *
1854  * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1855  *
1856  * Polarity is determined based on the PHY specific status register.
1857  */
1858 s32
e1000_check_polarity_m88(struct e1000_hw * hw)1859 e1000_check_polarity_m88(struct e1000_hw *hw)
1860 {
1861 	struct e1000_phy_info *phy = &hw->phy;
1862 	s32 ret_val;
1863 	u16 data;
1864 
1865 	DEBUGFUNC("e1000_check_polarity_m88");
1866 
1867 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1868 
1869 	if (!ret_val)
1870 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1871 		    ? e1000_rev_polarity_reversed
1872 		    : e1000_rev_polarity_normal;
1873 
1874 	return (ret_val);
1875 }
1876 
1877 /*
1878  * e1000_check_polarity_igp - Checks the polarity.
1879  * @hw: pointer to the HW structure
1880  *
1881  * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1882  *
1883  * Polarity is determined based on the PHY port status register, and the
1884  * current speed (since there is no polarity at 100Mbps).
1885  */
1886 s32
e1000_check_polarity_igp(struct e1000_hw * hw)1887 e1000_check_polarity_igp(struct e1000_hw *hw)
1888 {
1889 	struct e1000_phy_info *phy = &hw->phy;
1890 	s32 ret_val;
1891 	u16 data, offset, mask;
1892 
1893 	DEBUGFUNC("e1000_check_polarity_igp");
1894 
1895 	/*
1896 	 * Polarity is determined based on the speed of
1897 	 * our connection.
1898 	 */
1899 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1900 	if (ret_val)
1901 		goto out;
1902 
1903 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1904 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1905 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1906 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1907 	} else {
1908 		/*
1909 		 * This really only applies to 10Mbps since
1910 		 * there is no polarity for 100Mbps (always 0).
1911 		 */
1912 		offset	= IGP01E1000_PHY_PORT_STATUS;
1913 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1914 	}
1915 
1916 	ret_val = phy->ops.read_reg(hw, offset, &data);
1917 
1918 	if (!ret_val)
1919 		phy->cable_polarity = (data & mask)
1920 		    ? e1000_rev_polarity_reversed
1921 		    : e1000_rev_polarity_normal;
1922 
1923 out:
1924 	return (ret_val);
1925 }
1926 
1927 /*
1928  * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1929  * @hw: pointer to the HW structure
1930  *
1931  * Polarity is determined on the polarity reversal feature being enabled.
1932  */
1933 s32
e1000_check_polarity_ife(struct e1000_hw * hw)1934 e1000_check_polarity_ife(struct e1000_hw *hw)
1935 {
1936 	struct e1000_phy_info *phy = &hw->phy;
1937 	s32 ret_val;
1938 	u16 phy_data, offset, mask;
1939 
1940 	DEBUGFUNC("e1000_check_polarity_ife");
1941 
1942 	/*
1943 	 * Polarity is determined based on the reversal feature being enabled.
1944 	 */
1945 	if (phy->polarity_correction) {
1946 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1947 		mask = IFE_PESC_POLARITY_REVERSED;
1948 	} else {
1949 		offset = IFE_PHY_SPECIAL_CONTROL;
1950 		mask = IFE_PSC_FORCE_POLARITY;
1951 	}
1952 
1953 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1954 
1955 	if (!ret_val)
1956 		phy->cable_polarity = (phy_data & mask)
1957 		    ? e1000_rev_polarity_reversed
1958 		    : e1000_rev_polarity_normal;
1959 
1960 	return (ret_val);
1961 }
1962 /*
1963  * e1000_wait_autoneg_generic - Wait for auto-neg completion
1964  * @hw: pointer to the HW structure
1965  *
1966  * Waits for auto-negotiation to complete or for the auto-negotiation time
1967  * limit to expire, which ever happens first.
1968  */
1969 s32
e1000_wait_autoneg_generic(struct e1000_hw * hw)1970 e1000_wait_autoneg_generic(struct e1000_hw *hw)
1971 {
1972 	s32 ret_val = E1000_SUCCESS;
1973 	u16 i, phy_status;
1974 
1975 	DEBUGFUNC("e1000_wait_autoneg_generic");
1976 
1977 	if (!(hw->phy.ops.read_reg))
1978 		return (E1000_SUCCESS);
1979 
1980 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1981 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1982 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1983 		if (ret_val)
1984 			break;
1985 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1986 		if (ret_val)
1987 			break;
1988 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1989 			break;
1990 		msec_delay(100);
1991 	}
1992 
1993 	/*
1994 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1995 	 * has completed.
1996 	 */
1997 	return (ret_val);
1998 }
1999 
2000 /*
2001  * e1000_phy_has_link_generic - Polls PHY for link
2002  * @hw: pointer to the HW structure
2003  * @iterations: number of times to poll for link
2004  * @usec_interval: delay between polling attempts
2005  * @success: pointer to whether polling was successful or not
2006  *
2007  * Polls the PHY status register for link, 'iterations' number of times.
2008  */
2009 s32
e1000_phy_has_link_generic(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)2010 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
2011     u32 usec_interval, bool *success)
2012 {
2013 	s32 ret_val = E1000_SUCCESS;
2014 	u16 i, phy_status;
2015 
2016 	DEBUGFUNC("e1000_phy_has_link_generic");
2017 
2018 	if (!(hw->phy.ops.read_reg))
2019 		return (E1000_SUCCESS);
2020 
2021 	for (i = 0; i < iterations; i++) {
2022 		/*
2023 		 * Some PHYs require the PHY_STATUS register to be read
2024 		 * twice due to the link bit being sticky.  No harm doing
2025 		 * it across the board.
2026 		 */
2027 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2028 		if (ret_val) {
2029 			/*
2030 			 * If the first read fails, another entity may have
2031 			 * ownership of the resources, wait and try again to
2032 			 * see if they have relinquished the resources yet.
2033 			 */
2034 			usec_delay(usec_interval);
2035 		}
2036 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2037 		if (ret_val)
2038 			break;
2039 		if (phy_status & MII_SR_LINK_STATUS)
2040 			break;
2041 		if (usec_interval >= 1000)
2042 			msec_delay_irq(usec_interval/1000);
2043 		else
2044 			usec_delay(usec_interval);
2045 	}
2046 
2047 	*success = (i < iterations) ? true : false;
2048 
2049 	return (ret_val);
2050 }
2051 
2052 /*
2053  * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
2054  * @hw: pointer to the HW structure
2055  *
2056  * Reads the PHY specific status register to retrieve the cable length
2057  * information.  The cable length is determined by averaging the minimum and
2058  * maximum values to get the "average" cable length.  The m88 PHY has four
2059  * possible cable length values, which are:
2060  *	Register Value		Cable Length
2061  *	0			< 50 meters
2062  *	1			50 - 80 meters
2063  *	2			80 - 110 meters
2064  *	3			110 - 140 meters
2065  *	4			> 140 meters
2066  */
2067 s32
e1000_get_cable_length_m88(struct e1000_hw * hw)2068 e1000_get_cable_length_m88(struct e1000_hw *hw)
2069 {
2070 	struct e1000_phy_info *phy = &hw->phy;
2071 	s32 ret_val;
2072 	u16 phy_data, index;
2073 
2074 	DEBUGFUNC("e1000_get_cable_length_m88");
2075 
2076 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2077 	if (ret_val)
2078 		goto out;
2079 
2080 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2081 	    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2082 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
2083 		ret_val = -E1000_ERR_PHY;
2084 		goto out;
2085 	}
2086 
2087 	phy->min_cable_length = e1000_m88_cable_length_table[index];
2088 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2089 
2090 	phy->cable_length = (phy->min_cable_length +
2091 	    phy->max_cable_length) / 2;
2092 
2093 out:
2094 	return (ret_val);
2095 }
2096 
2097 /*
2098  * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2099  * @hw: pointer to the HW structure
2100  *
2101  * The automatic gain control (agc) normalizes the amplitude of the
2102  * received signal, adjusting for the attenuation produced by the
2103  * cable.  By reading the AGC registers, which represent the
2104  * combination of coarse and fine gain value, the value can be put
2105  * into a lookup table to obtain the approximate cable length
2106  * for each channel.
2107  */
2108 s32
e1000_get_cable_length_igp_2(struct e1000_hw * hw)2109 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
2110 {
2111 	struct e1000_phy_info *phy = &hw->phy;
2112 	s32 ret_val = E1000_SUCCESS;
2113 	u16 phy_data, i, agc_value = 0;
2114 	u16 cur_agc_index, max_agc_index = 0;
2115 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
2116 	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
2117 		{IGP02E1000_PHY_AGC_A,
2118 		IGP02E1000_PHY_AGC_B,
2119 		IGP02E1000_PHY_AGC_C,
2120 		IGP02E1000_PHY_AGC_D};
2121 
2122 	DEBUGFUNC("e1000_get_cable_length_igp_2");
2123 
2124 	/* Read the AGC registers for all channels */
2125 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
2126 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2127 		if (ret_val)
2128 			goto out;
2129 
2130 		/*
2131 		 * Getting bits 15:9, which represent the combination of
2132 		 * coarse and fine gain values.  The result is a number
2133 		 * that can be put into the lookup table to obtain the
2134 		 * approximate cable length.
2135 		 */
2136 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
2137 		    IGP02E1000_AGC_LENGTH_MASK;
2138 
2139 		/* Array index bound check. */
2140 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
2141 		    (cur_agc_index == 0)) {
2142 			ret_val = -E1000_ERR_PHY;
2143 			goto out;
2144 		}
2145 
2146 		/* Remove min & max AGC values from calculation. */
2147 		if (e1000_igp_2_cable_length_table[min_agc_index] >
2148 		    e1000_igp_2_cable_length_table[cur_agc_index])
2149 			min_agc_index = cur_agc_index;
2150 		if (e1000_igp_2_cable_length_table[max_agc_index] <
2151 		    e1000_igp_2_cable_length_table[cur_agc_index])
2152 			max_agc_index = cur_agc_index;
2153 
2154 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2155 	}
2156 
2157 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2158 	    e1000_igp_2_cable_length_table[max_agc_index]);
2159 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2160 
2161 	/* Calculate cable length with the error range of +/- 10 meters. */
2162 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2163 	    (agc_value - IGP02E1000_AGC_RANGE) : 0;
2164 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2165 
2166 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2167 
2168 out:
2169 	return (ret_val);
2170 }
2171 
2172 /*
2173  * e1000_get_phy_info_m88 - Retrieve PHY information
2174  * @hw: pointer to the HW structure
2175  *
2176  * Valid for only copper links.  Read the PHY status register (sticky read)
2177  * to verify that link is up.  Read the PHY special control register to
2178  * determine the polarity and 10base-T extended distance.  Read the PHY
2179  * special status register to determine MDI/MDIx and current speed.  If
2180  * speed is 1000, then determine cable length, local and remote receiver.
2181  */
2182 s32
e1000_get_phy_info_m88(struct e1000_hw * hw)2183 e1000_get_phy_info_m88(struct e1000_hw *hw)
2184 {
2185 	struct e1000_phy_info *phy = &hw->phy;
2186 	s32  ret_val;
2187 	u16 phy_data;
2188 	bool link;
2189 
2190 	DEBUGFUNC("e1000_get_phy_info_m88");
2191 
2192 	if (phy->media_type != e1000_media_type_copper) {
2193 		DEBUGOUT("Phy info is only valid for copper media\n");
2194 		ret_val = -E1000_ERR_CONFIG;
2195 		goto out;
2196 	}
2197 
2198 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2199 	if (ret_val)
2200 		goto out;
2201 
2202 	if (!link) {
2203 		DEBUGOUT("Phy info is only valid if link is up\n");
2204 		ret_val = -E1000_ERR_CONFIG;
2205 		goto out;
2206 	}
2207 
2208 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2209 	if (ret_val)
2210 		goto out;
2211 
2212 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2213 	    ? true : false;
2214 
2215 	ret_val = e1000_check_polarity_m88(hw);
2216 	if (ret_val)
2217 		goto out;
2218 
2219 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2220 	if (ret_val)
2221 		goto out;
2222 
2223 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2224 
2225 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2226 		ret_val = hw->phy.ops.get_cable_length(hw);
2227 		if (ret_val)
2228 			goto out;
2229 
2230 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2231 		if (ret_val)
2232 			goto out;
2233 
2234 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2235 		    ? e1000_1000t_rx_status_ok
2236 		    : e1000_1000t_rx_status_not_ok;
2237 
2238 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2239 		    ? e1000_1000t_rx_status_ok
2240 		    : e1000_1000t_rx_status_not_ok;
2241 	} else {
2242 		/* Set values to "undefined" */
2243 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2244 		phy->local_rx = e1000_1000t_rx_status_undefined;
2245 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2246 	}
2247 
2248 out:
2249 	return (ret_val);
2250 }
2251 
2252 /*
2253  * e1000_get_phy_info_igp - Retrieve igp PHY information
2254  * @hw: pointer to the HW structure
2255  *
2256  * Read PHY status to determine if link is up.  If link is up, then
2257  * set/determine 10base-T extended distance and polarity correction.  Read
2258  * PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2259  * determine on the cable length, local and remote receiver.
2260  */
2261 s32
e1000_get_phy_info_igp(struct e1000_hw * hw)2262 e1000_get_phy_info_igp(struct e1000_hw *hw)
2263 {
2264 	struct e1000_phy_info *phy = &hw->phy;
2265 	s32 ret_val;
2266 	u16 data;
2267 	bool link;
2268 
2269 	DEBUGFUNC("e1000_get_phy_info_igp");
2270 
2271 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2272 	if (ret_val)
2273 		goto out;
2274 
2275 	if (!link) {
2276 		DEBUGOUT("Phy info is only valid if link is up\n");
2277 		ret_val = -E1000_ERR_CONFIG;
2278 		goto out;
2279 	}
2280 
2281 	phy->polarity_correction = true;
2282 
2283 	ret_val = e1000_check_polarity_igp(hw);
2284 	if (ret_val)
2285 		goto out;
2286 
2287 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2288 	if (ret_val)
2289 		goto out;
2290 
2291 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2292 
2293 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2294 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2295 		ret_val = phy->ops.get_cable_length(hw);
2296 		if (ret_val)
2297 			goto out;
2298 
2299 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2300 		if (ret_val)
2301 			goto out;
2302 
2303 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2304 		    ? e1000_1000t_rx_status_ok
2305 		    : e1000_1000t_rx_status_not_ok;
2306 
2307 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2308 		    ? e1000_1000t_rx_status_ok
2309 		    : e1000_1000t_rx_status_not_ok;
2310 	} else {
2311 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2312 		phy->local_rx = e1000_1000t_rx_status_undefined;
2313 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2314 	}
2315 
2316 out:
2317 	return (ret_val);
2318 }
2319 
2320 /*
2321  * e1000_phy_sw_reset_generic - PHY software reset
2322  * @hw: pointer to the HW structure
2323  *
2324  * Does a software reset of the PHY by reading the PHY control register and
2325  * setting/write the control register reset bit to the PHY.
2326  */
2327 s32
e1000_phy_sw_reset_generic(struct e1000_hw * hw)2328 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
2329 {
2330 	s32 ret_val = E1000_SUCCESS;
2331 	u16 phy_ctrl;
2332 
2333 	DEBUGFUNC("e1000_phy_sw_reset_generic");
2334 
2335 	if (!(hw->phy.ops.read_reg))
2336 		goto out;
2337 
2338 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2339 	if (ret_val)
2340 		goto out;
2341 
2342 	phy_ctrl |= MII_CR_RESET;
2343 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2344 	if (ret_val)
2345 		goto out;
2346 
2347 	usec_delay(1);
2348 
2349 out:
2350 	return (ret_val);
2351 }
2352 
2353 /*
2354  * e1000_phy_hw_reset_generic - PHY hardware reset
2355  * @hw: pointer to the HW structure
2356  *
2357  * Verify the reset block is not blocking us from resetting.  Acquire
2358  * semaphore (if necessary) and read/set/write the device control reset
2359  * bit in the PHY.  Wait the appropriate delay time for the device to
2360  * reset and release the semaphore (if necessary).
2361  */
2362 s32
e1000_phy_hw_reset_generic(struct e1000_hw * hw)2363 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
2364 {
2365 	struct e1000_phy_info *phy = &hw->phy;
2366 	s32 ret_val = E1000_SUCCESS;
2367 	u32 ctrl;
2368 
2369 	DEBUGFUNC("e1000_phy_hw_reset_generic");
2370 
2371 	ret_val = phy->ops.check_reset_block(hw);
2372 	if (ret_val) {
2373 		ret_val = E1000_SUCCESS;
2374 		goto out;
2375 	}
2376 
2377 	ret_val = phy->ops.acquire(hw);
2378 	if (ret_val)
2379 		goto out;
2380 
2381 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2382 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2383 	E1000_WRITE_FLUSH(hw);
2384 
2385 	usec_delay(phy->reset_delay_us);
2386 
2387 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2388 	E1000_WRITE_FLUSH(hw);
2389 
2390 	usec_delay(150);
2391 
2392 	phy->ops.release(hw);
2393 
2394 	ret_val = phy->ops.get_cfg_done(hw);
2395 
2396 out:
2397 	return (ret_val);
2398 }
2399 
2400 /*
2401  * e1000_get_cfg_done_generic - Generic configuration done
2402  * @hw: pointer to the HW structure
2403  *
2404  * Generic function to wait 10 milli-seconds for configuration to complete
2405  * and return success.
2406  */
2407 s32
e1000_get_cfg_done_generic(struct e1000_hw * hw)2408 e1000_get_cfg_done_generic(struct e1000_hw *hw)
2409 {
2410 	DEBUGFUNC("e1000_get_cfg_done_generic");
2411 	UNREFERENCED_1PARAMETER(hw);
2412 
2413 	msec_delay_irq(10);
2414 
2415 	return (E1000_SUCCESS);
2416 }
2417 
2418 /*
2419  * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2420  * @hw: pointer to the HW structure
2421  *
2422  * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2423  */
2424 s32
e1000_phy_init_script_igp3(struct e1000_hw * hw)2425 e1000_phy_init_script_igp3(struct e1000_hw *hw)
2426 {
2427 	DEBUGOUT("Running IGP 3 PHY init script\n");
2428 
2429 	/* PHY init IGP 3 */
2430 	/* Enable rise/fall, 10-mode work in class-A */
2431 	(void) hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2432 	/* Remove all caps from Replica path filter */
2433 	(void) hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2434 	/* Bias trimming for ADC, AFE and Driver (Default) */
2435 	(void) hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2436 	/* Increase Hybrid poly bias */
2437 	(void) hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2438 	/* Add 4% to Tx amplitude in Gig mode */
2439 	(void) hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2440 	/* Disable trimming (TTT) */
2441 	(void) hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2442 	/* Poly DC correction to 94.6% + 2% for all channels */
2443 	(void) hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2444 	/* ABS DC correction to 95.9% */
2445 	(void) hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2446 	/* BG temp curve trim */
2447 	(void) hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2448 	/* Increasing ADC OPAMP stage 1 currents to max */
2449 	(void) hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2450 	/* Force 1000 ( required for enabling PHY regs configuration) */
2451 	(void) hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2452 	/* Set upd_freq to 6 */
2453 	(void) hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2454 	/* Disable NPDFE */
2455 	(void) hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2456 	/* Disable adaptive fixed FFE (Default) */
2457 	(void) hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2458 	/* Enable FFE hysteresis */
2459 	(void) hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2460 	/* Fixed FFE for short cable lengths */
2461 	(void) hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2462 	/* Fixed FFE for medium cable lengths */
2463 	(void) hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2464 	/* Fixed FFE for long cable lengths */
2465 	(void) hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2466 	/* Enable Adaptive Clip Threshold */
2467 	(void) hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2468 	/* AHT reset limit to 1 */
2469 	(void) hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2470 	/* Set AHT master delay to 127 msec */
2471 	(void) hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2472 	/* Set scan bits for AHT */
2473 	(void) hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2474 	/* Set AHT Preset bits */
2475 	(void) hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2476 	/* Change integ_factor of channel A to 3 */
2477 	(void) hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2478 	/* Change prop_factor of channels BCD to 8 */
2479 	(void) hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2480 	/* Change cg_icount + enable integbp for channels BCD */
2481 	(void) hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2482 	/*
2483 	 * Change cg_icount + enable integbp + change prop_factor_master
2484 	 * to 8 for channel A
2485 	 */
2486 	(void) hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2487 	/* Disable AHT in Slave mode on channel A */
2488 	(void) hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2489 	/*
2490 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2491 	 * Enable SPD+B2B
2492 	 */
2493 	(void) hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2494 	/* Enable restart AN on an1000_dis change */
2495 	(void) hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2496 	/* Enable wh_fifo read clock in 10/100 modes */
2497 	(void) hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2498 	/* Restart AN, Speed selection is 1000 */
2499 	(void) hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2500 
2501 	return (E1000_SUCCESS);
2502 }
2503 
2504 /*
2505  * e1000_get_phy_type_from_id - Get PHY type from id
2506  * @phy_id: phy_id read from the phy
2507  *
2508  * Returns the phy type from the id.
2509  */
2510 enum e1000_phy_type
e1000_get_phy_type_from_id(u32 phy_id)2511 e1000_get_phy_type_from_id(u32 phy_id)
2512 {
2513 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2514 
2515 	switch (phy_id)	{
2516 	case M88E1000_I_PHY_ID:
2517 	case M88E1000_E_PHY_ID:
2518 	case M88E1111_I_PHY_ID:
2519 	case M88E1011_I_PHY_ID:
2520 		phy_type = e1000_phy_m88;
2521 		break;
2522 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2523 		phy_type = e1000_phy_igp_2;
2524 		break;
2525 	case GG82563_E_PHY_ID:
2526 		phy_type = e1000_phy_gg82563;
2527 		break;
2528 	case IGP03E1000_E_PHY_ID:
2529 		phy_type = e1000_phy_igp_3;
2530 		break;
2531 	case IFE_E_PHY_ID:
2532 	case IFE_PLUS_E_PHY_ID:
2533 	case IFE_C_E_PHY_ID:
2534 		phy_type = e1000_phy_ife;
2535 		break;
2536 	case I82580_I_PHY_ID:
2537 		phy_type = e1000_phy_82580;
2538 		break;
2539 	default:
2540 		phy_type = e1000_phy_unknown;
2541 		break;
2542 	}
2543 	return (phy_type);
2544 }
2545 
2546 /*
2547  * e1000_determine_phy_address - Determines PHY address.
2548  * @hw: pointer to the HW structure
2549  *
2550  * This uses a trial and error method to loop through possible PHY
2551  * addresses. It tests each by reading the PHY ID registers and
2552  * checking for a match.
2553  */
2554 s32
e1000_determine_phy_address(struct e1000_hw * hw)2555 e1000_determine_phy_address(struct e1000_hw *hw)
2556 {
2557 	s32 ret_val = -E1000_ERR_PHY_TYPE;
2558 	u32 phy_addr = 0;
2559 	u32 i;
2560 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2561 
2562 	hw->phy.id = phy_type;
2563 
2564 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2565 		hw->phy.addr = phy_addr;
2566 		i = 0;
2567 
2568 		do {
2569 			(void) e1000_get_phy_id(hw);
2570 			phy_type = e1000_get_phy_type_from_id(hw->phy.id);
2571 
2572 			/*
2573 			 * If phy_type is valid, break - we found our
2574 			 * PHY address
2575 			 */
2576 			if (phy_type  != e1000_phy_unknown) {
2577 				ret_val = E1000_SUCCESS;
2578 				goto out;
2579 			}
2580 			msec_delay(1);
2581 			i++;
2582 		} while (i < 10);
2583 	}
2584 
2585 out:
2586 	return (ret_val);
2587 }
2588 /*
2589  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2590  * @hw: pointer to the HW structure
2591  *
2592  * In the case of a PHY power down to save power, or to turn off link during a
2593  * driver unload, or wake on lan is not enabled, restore the link to previous
2594  * settings.
2595  */
2596 void
e1000_power_up_phy_copper(struct e1000_hw * hw)2597 e1000_power_up_phy_copper(struct e1000_hw *hw)
2598 {
2599 	u16 mii_reg = 0;
2600 
2601 	/* The PHY will retain its settings across a power down/up cycle */
2602 	(void) hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2603 	mii_reg &= ~MII_CR_POWER_DOWN;
2604 	(void) hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2605 }
2606 
2607 /*
2608  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2609  * @hw: pointer to the HW structure
2610  *
2611  * In the case of a PHY power down to save power, or to turn off link during a
2612  * driver unload, or wake on lan is not enabled, restore the link to previous
2613  * settings.
2614  */
2615 void
e1000_power_down_phy_copper(struct e1000_hw * hw)2616 e1000_power_down_phy_copper(struct e1000_hw *hw)
2617 {
2618 	u16 mii_reg = 0;
2619 
2620 	/* The PHY will retain its settings across a power down/up cycle */
2621 	(void) hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2622 	mii_reg |= MII_CR_POWER_DOWN;
2623 	(void) hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2624 	msec_delay(1);
2625 }
2626 
2627 /*
2628  * e1000_check_polarity_82577 - Checks the polarity.
2629  * @hw: pointer to the HW structure
2630  *
2631  * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2632  *
2633  * Polarity is determined based on the PHY specific status register.
2634  */
2635 s32
e1000_check_polarity_82577(struct e1000_hw * hw)2636 e1000_check_polarity_82577(struct e1000_hw *hw)
2637 {
2638 	struct e1000_phy_info *phy = &hw->phy;
2639 	s32 ret_val;
2640 	u16 data;
2641 
2642 	DEBUGFUNC("e1000_check_polarity_82577");
2643 
2644 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
2645 
2646 	if (!ret_val)
2647 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
2648 		    ? e1000_rev_polarity_reversed
2649 		    : e1000_rev_polarity_normal;
2650 
2651 	return (ret_val);
2652 }
2653 
2654 /*
2655  * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
2656  * @hw: pointer to the HW structure
2657  *
2658  * Calls the PHY setup function to force speed and duplex.  Clears the
2659  * auto-crossover to force MDI manually.  Waits for link and returns
2660  * successful if link up is successful, else -E1000_ERR_PHY (-2).
2661  */
2662 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw * hw)2663 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
2664 {
2665 	struct e1000_phy_info *phy = &hw->phy;
2666 	s32 ret_val;
2667 	u16 phy_data;
2668 	bool link;
2669 
2670 	DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
2671 
2672 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2673 	if (ret_val)
2674 		goto out;
2675 
2676 	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
2677 
2678 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2679 	if (ret_val)
2680 		goto out;
2681 
2682 	/*
2683 	 * Clear Auto-Crossover to force MDI manually.  82577 requires MDI
2684 	 * forced whenever speed and duplex are forced.
2685 	 */
2686 	ret_val = phy->ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
2687 	if (ret_val)
2688 		goto out;
2689 
2690 	phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX;
2691 	phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX;
2692 
2693 	ret_val = phy->ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
2694 	if (ret_val)
2695 		goto out;
2696 
2697 	DEBUGOUT1("I82577_PHY_CTRL_2: %X\n", phy_data);
2698 
2699 	usec_delay(1);
2700 
2701 	if (phy->autoneg_wait_to_complete) {
2702 		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
2703 
2704 		ret_val = e1000_phy_has_link_generic(hw,
2705 		    PHY_FORCE_LIMIT,
2706 		    100000,
2707 		    &link);
2708 		if (ret_val)
2709 			goto out;
2710 
2711 		if (!link)
2712 			DEBUGOUT("Link taking longer than expected.\n");
2713 
2714 		/* Try once more */
2715 		ret_val = e1000_phy_has_link_generic(hw,
2716 		    PHY_FORCE_LIMIT,
2717 		    100000,
2718 		    &link);
2719 		if (ret_val)
2720 			goto out;
2721 	}
2722 
2723 out:
2724 	return (ret_val);
2725 }
2726 
2727 /*
2728  * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
2729  * @hw: pointer to the HW structure
2730  *
2731  * Read PHY status to determine if link is up.  If link is up, then
2732  * set/determine 10base-T extended distance and polarity correction.  Read
2733  * PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2734  * determine on the cable length, local and remote receiver.
2735  */
2736 s32
e1000_get_phy_info_82577(struct e1000_hw * hw)2737 e1000_get_phy_info_82577(struct e1000_hw *hw)
2738 {
2739 	struct e1000_phy_info *phy = &hw->phy;
2740 	s32 ret_val;
2741 	u16 data;
2742 	bool link;
2743 
2744 	DEBUGFUNC("e1000_get_phy_info_82577");
2745 
2746 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2747 	if (ret_val)
2748 		goto out;
2749 
2750 	if (!link) {
2751 		DEBUGOUT("Phy info is only valid if link is up\n");
2752 		ret_val = -E1000_ERR_CONFIG;
2753 		goto out;
2754 	}
2755 
2756 	phy->polarity_correction = true;
2757 
2758 	ret_val = e1000_check_polarity_82577(hw);
2759 	if (ret_val)
2760 		goto out;
2761 
2762 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
2763 	if (ret_val)
2764 		goto out;
2765 
2766 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
2767 
2768 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
2769 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
2770 		ret_val = hw->phy.ops.get_cable_length(hw);
2771 		if (ret_val)
2772 			goto out;
2773 
2774 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2775 		if (ret_val)
2776 			goto out;
2777 
2778 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2779 		    ? e1000_1000t_rx_status_ok
2780 		    : e1000_1000t_rx_status_not_ok;
2781 
2782 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2783 		    ? e1000_1000t_rx_status_ok
2784 		    : e1000_1000t_rx_status_not_ok;
2785 	} else {
2786 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2787 		phy->local_rx = e1000_1000t_rx_status_undefined;
2788 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2789 	}
2790 
2791 out:
2792 	return (ret_val);
2793 }
2794 
2795 /*
2796  * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
2797  * @hw: pointer to the HW structure
2798  *
2799  * Reads the diagnostic status register and verifies result is valid before
2800  * placing it in the phy_cable_length field.
2801  */
2802 s32
e1000_get_cable_length_82577(struct e1000_hw * hw)2803 e1000_get_cable_length_82577(struct e1000_hw *hw)
2804 {
2805 	struct e1000_phy_info *phy = &hw->phy;
2806 	s32 ret_val;
2807 	u16 phy_data, length;
2808 
2809 	DEBUGFUNC("e1000_get_cable_length_82577");
2810 
2811 	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
2812 	if (ret_val)
2813 		goto out;
2814 
2815 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
2816 	    I82577_DSTATUS_CABLE_LENGTH_SHIFT;
2817 
2818 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2819 		ret_val = -E1000_ERR_PHY;
2820 
2821 	phy->cable_length = length;
2822 
2823 out:
2824 
2825 	return (ret_val);
2826 }
2827