xref: /onnv-gate/usr/src/uts/common/io/igb/igb_mac.c (revision 10319:0355b7a83c0d)
1 /*
2  * CDDL HEADER START
3  *
4  * Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at:
10  *	http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When using or redistributing this file, you may do so under the
15  * License only. No other modification of this header is permitted.
16  *
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms of the CDDL.
27  */
28 
29 /* IntelVersion: 1.104 v2-9-8_2009-6-12 */
30 
31 #include "igb_api.h"
32 
33 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
34 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
35 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
36 static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
37 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
38 
39 /*
40  * e1000_init_mac_ops_generic - Initialize MAC function pointers
41  * @hw: pointer to the HW structure
42  *
43  * Setups up the function pointers to no-op functions
44  */
45 void
46 e1000_init_mac_ops_generic(struct e1000_hw *hw)
47 {
48 	struct e1000_mac_info *mac = &hw->mac;
49 	DEBUGFUNC("e1000_init_mac_ops_generic");
50 
51 	/* General Setup */
52 	mac->ops.init_params = e1000_null_ops_generic;
53 	mac->ops.init_hw = e1000_null_ops_generic;
54 	mac->ops.reset_hw = e1000_null_ops_generic;
55 	mac->ops.setup_physical_interface = e1000_null_ops_generic;
56 	mac->ops.get_bus_info = e1000_null_ops_generic;
57 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
58 	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
59 	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
60 	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
61 	/* LED */
62 	mac->ops.cleanup_led = e1000_null_ops_generic;
63 	mac->ops.setup_led = e1000_null_ops_generic;
64 	mac->ops.blink_led = e1000_null_ops_generic;
65 	mac->ops.led_on = e1000_null_ops_generic;
66 	mac->ops.led_off = e1000_null_ops_generic;
67 	/* LINK */
68 	mac->ops.setup_link = e1000_null_ops_generic;
69 	mac->ops.get_link_up_info = e1000_null_link_info;
70 	mac->ops.check_for_link = e1000_null_ops_generic;
71 	mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
72 	/* Management */
73 	mac->ops.check_mng_mode = e1000_null_mng_mode;
74 	mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
75 	mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
76 	mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
77 	/* VLAN, MC, etc. */
78 	mac->ops.update_mc_addr_list = e1000_null_update_mc;
79 	mac->ops.clear_vfta = e1000_null_mac_generic;
80 	mac->ops.write_vfta = e1000_null_write_vfta;
81 	mac->ops.mta_set = e1000_null_mta_set;
82 	mac->ops.rar_set = e1000_rar_set_generic;
83 	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
84 }
85 
86 /*
87  * e1000_null_ops_generic - No-op function, returns 0
88  * @hw: pointer to the HW structure
89  */
90 s32
91 e1000_null_ops_generic(struct e1000_hw *hw)
92 {
93 	DEBUGFUNC("e1000_null_ops_generic");
94 	UNREFERENCED_1PARAMETER(hw);
95 	return (E1000_SUCCESS);
96 }
97 
98 /*
99  * e1000_null_mac_generic - No-op function, return void
100  * @hw: pointer to the HW structure
101  */
102 void
103 e1000_null_mac_generic(struct e1000_hw *hw)
104 {
105 	DEBUGFUNC("e1000_null_mac_generic");
106 	UNREFERENCED_1PARAMETER(hw);
107 }
108 
109 /*
110  * e1000_null_link_info - No-op function, return 0
111  * @hw: pointer to the HW structure
112  */
113 s32
114 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
115 {
116 	DEBUGFUNC("e1000_null_link_info");
117 	UNREFERENCED_3PARAMETER(hw, s, d);
118 	return (E1000_SUCCESS);
119 }
120 
121 /*
122  * e1000_null_mng_mode - No-op function, return false
123  * @hw: pointer to the HW structure
124  */
125 bool
126 e1000_null_mng_mode(struct e1000_hw *hw)
127 {
128 	DEBUGFUNC("e1000_null_mng_mode");
129 	UNREFERENCED_1PARAMETER(hw);
130 	return (false);
131 }
132 
133 /*
134  * e1000_null_update_mc - No-op function, return void
135  * @hw: pointer to the HW structure
136  */
137 void
138 e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
139 {
140 	DEBUGFUNC("e1000_null_update_mc");
141 	UNREFERENCED_3PARAMETER(hw, h, a);
142 }
143 
144 /*
145  * e1000_null_write_vfta - No-op function, return void
146  * @hw: pointer to the HW structure
147  */
148 void
149 e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
150 {
151 	DEBUGFUNC("e1000_null_write_vfta");
152 	UNREFERENCED_3PARAMETER(hw, a, b);
153 }
154 
155 /*
156  * e1000_null_set_mta - No-op function, return void
157  * @hw: pointer to the HW structure
158  */
159 void
160 e1000_null_mta_set(struct e1000_hw *hw, u32 a)
161 {
162 	DEBUGFUNC("e1000_null_mta_set");
163 	UNREFERENCED_2PARAMETER(hw, a);
164 }
165 
166 /*
167  * e1000_null_rar_set - No-op function, return void
168  * @hw: pointer to the HW structure
169  */
170 void
171 e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
172 {
173 	DEBUGFUNC("e1000_null_rar_set");
174 	UNREFERENCED_3PARAMETER(hw, h, a);
175 }
176 
177 /*
178  * e1000_get_bus_info_pcie_generic - Get PCIe bus information
179  * @hw: pointer to the HW structure
180  *
181  * Determines and stores the system bus information for a particular
182  * network interface.  The following bus information is determined and stored:
183  * bus speed, bus width, type (PCIe), and PCIe function.
184  */
185 s32
186 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
187 {
188 	struct e1000_mac_info *mac = &hw->mac;
189 	struct e1000_bus_info *bus = &hw->bus;
190 	s32 ret_val;
191 	u16 pcie_link_status;
192 
193 	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
194 
195 	bus->type = e1000_bus_type_pci_express;
196 	bus->speed = e1000_bus_speed_2500;
197 
198 	ret_val = e1000_read_pcie_cap_reg(hw,
199 	    PCIE_LINK_STATUS, &pcie_link_status);
200 	if (ret_val)
201 		bus->width = e1000_bus_width_unknown;
202 	else
203 		bus->width = (enum e1000_bus_width)((pcie_link_status &
204 		    PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
205 
206 	mac->ops.set_lan_id(hw);
207 
208 	return (E1000_SUCCESS);
209 }
210 
211 /*
212  * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
213  *
214  * @hw: pointer to the HW structure
215  *
216  * Determines the LAN function id by reading memory-mapped registers
217  * and swaps the port value if requested.
218  */
219 static void
220 e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
221 {
222 	struct e1000_bus_info *bus = &hw->bus;
223 	u32 reg;
224 
225 	/*
226 	 * The status register reports the correct function number
227 	 * for the device regardless of function swap state.
228 	 */
229 	reg = E1000_READ_REG(hw, E1000_STATUS);
230 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
231 }
232 
233 /*
234  * e1000_set_lan_id_single_port - Set LAN id for a single port device
235  * @hw: pointer to the HW structure
236  *
237  * Sets the LAN function id to zero for a single port device.
238  */
239 void
240 e1000_set_lan_id_single_port(struct e1000_hw *hw)
241 {
242 	struct e1000_bus_info *bus = &hw->bus;
243 
244 	bus->func = 0;
245 }
246 
247 /*
248  * e1000_clear_vfta_generic - Clear VLAN filter table
249  * @hw: pointer to the HW structure
250  *
251  * Clears the register array which contains the VLAN filter table by
252  * setting all the values to 0.
253  */
254 void
255 e1000_clear_vfta_generic(struct e1000_hw *hw)
256 {
257 	u32 offset;
258 
259 	DEBUGFUNC("e1000_clear_vfta_generic");
260 
261 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
262 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
263 		E1000_WRITE_FLUSH(hw);
264 	}
265 }
266 
267 /*
268  * e1000_write_vfta_generic - Write value to VLAN filter table
269  * @hw: pointer to the HW structure
270  * @offset: register offset in VLAN filter table
271  * @value: register value written to VLAN filter table
272  *
273  * Writes value at the given offset in the register array which stores
274  * the VLAN filter table.
275  */
276 void
277 e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
278 {
279 	DEBUGFUNC("e1000_write_vfta_generic");
280 
281 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
282 	E1000_WRITE_FLUSH(hw);
283 }
284 
285 /*
286  * e1000_init_rx_addrs_generic - Initialize receive address's
287  * @hw: pointer to the HW structure
288  * @rar_count: receive address registers
289  *
290  * Setups the receive address registers by setting the base receive address
291  * register to the devices MAC address and clearing all the other receive
292  * address registers to 0.
293  */
294 void
295 e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
296 {
297 	u32 i;
298 	u8 mac_addr[ETH_ADDR_LEN] = {0};
299 
300 	DEBUGFUNC("e1000_init_rx_addrs_generic");
301 
302 	/* Setup the receive address */
303 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
304 
305 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
306 
307 	/* Zero out the other (rar_entry_count - 1) receive addresses */
308 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
309 	for (i = 1; i < rar_count; i++)
310 		hw->mac.ops.rar_set(hw, mac_addr, i);
311 }
312 
313 /*
314  * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
315  * @hw: pointer to the HW structure
316  *
317  * Checks the nvm for an alternate MAC address.  An alternate MAC address
318  * can be setup by pre-boot software and must be treated like a permanent
319  * address and must override the actual permanent MAC address.  If an
320  * alternate MAC address is found it is programmed into RAR0, replacing
321  * the permanent address that was installed into RAR0 by the Si on reset.
322  * This function will return SUCCESS unless it encounters an error while
323  * reading the EEPROM.
324  */
325 s32
326 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
327 {
328 	u32 i;
329 	s32 ret_val = E1000_SUCCESS;
330 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
331 	u8 alt_mac_addr[ETH_ADDR_LEN];
332 
333 	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
334 
335 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
336 	    &nvm_alt_mac_addr_offset);
337 	if (ret_val) {
338 		DEBUGOUT("NVM Read Error\n");
339 		goto out;
340 	}
341 
342 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
343 		/* There is no Alternate MAC Address */
344 		goto out;
345 	}
346 
347 	if (hw->bus.func == E1000_FUNC_1)
348 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
349 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
350 		offset = nvm_alt_mac_addr_offset + (i >> 1);
351 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
352 		if (ret_val) {
353 			DEBUGOUT("NVM Read Error\n");
354 			goto out;
355 		}
356 
357 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
358 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
359 	}
360 
361 	/* if multicast bit is set, the alternate address will not be used */
362 	if (alt_mac_addr[0] & 0x01) {
363 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
364 		goto out;
365 	}
366 
367 	/*
368 	 * We have a valid alternate MAC address, and we want to treat it the
369 	 * same as the normal permanent MAC address stored by the HW into the
370 	 * RAR. Do this by mapping this address into RAR0.
371 	 */
372 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
373 
374 out:
375 	return (ret_val);
376 }
377 
378 /*
379  * e1000_rar_set_generic - Set receive address register
380  * @hw: pointer to the HW structure
381  * @addr: pointer to the receive address
382  * @index: receive address array register
383  *
384  * Sets the receive address array register at index to the address passed
385  * in by addr.
386  */
387 void
388 e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
389 {
390 	u32 rar_low, rar_high;
391 
392 	DEBUGFUNC("e1000_rar_set_generic");
393 
394 	/*
395 	 * HW expects these in little endian so we reverse the byte order
396 	 * from network order (big endian) to little endian
397 	 */
398 	rar_low = ((u32) addr[0] |
399 	    ((u32) addr[1] << 8) |
400 	    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
401 
402 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
403 
404 	/* If MAC address zero, no need to set the AV bit */
405 	if (rar_low || rar_high)
406 		rar_high |= E1000_RAH_AV;
407 
408 	/*
409 	 * Some bridges will combine consecutive 32-bit writes into
410 	 * a single burst write, which will malfunction on some parts.
411 	 * The flushes avoid this.
412 	 */
413 	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
414 	E1000_WRITE_FLUSH(hw);
415 	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
416 	E1000_WRITE_FLUSH(hw);
417 }
418 
419 /*
420  * e1000_mta_set_generic - Set multicast filter table address
421  * @hw: pointer to the HW structure
422  * @hash_value: determines the MTA register and bit to set
423  *
424  * The multicast table address is a register array of 32-bit registers.
425  * The hash_value is used to determine what register the bit is in, the
426  * current value is read, the new bit is OR'd in and the new value is
427  * written back into the register.
428  */
429 void
430 e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
431 {
432 	u32 hash_bit, hash_reg, mta;
433 
434 	DEBUGFUNC("e1000_mta_set_generic");
435 	/*
436 	 * The MTA is a register array of 32-bit registers. It is
437 	 * treated like an array of (32*mta_reg_count) bits.  We want to
438 	 * set bit BitArray[hash_value]. So we figure out what register
439 	 * the bit is in, read it, OR in the new bit, then write
440 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
441 	 * mask to bits 31:5 of the hash value which gives us the
442 	 * register we're modifying.  The hash bit within that register
443 	 * is determined by the lower 5 bits of the hash value.
444 	 */
445 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
446 	hash_bit = hash_value & 0x1F;
447 
448 	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
449 
450 	mta |= (1 << hash_bit);
451 
452 	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
453 	E1000_WRITE_FLUSH(hw);
454 }
455 
456 /*
457  * e1000_update_mc_addr_list_generic - Update Multicast addresses
458  * @hw: pointer to the HW structure
459  * @mc_addr_list: array of multicast addresses to program
460  * @mc_addr_count: number of multicast addresses to program
461  *
462  * Updates the Multicast Table Array.
463  * The caller must have a packed mc_addr_list of multicast addresses.
464  */
465 void
466 e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
467     u8 *mc_addr_list, u32 mc_addr_count)
468 {
469 	u32 hash_value, hash_bit, hash_reg;
470 	int i;
471 
472 	DEBUGFUNC("e1000_update_mc_addr_list_generic");
473 
474 	/* clear mta_shadow */
475 	memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow));
476 
477 	/* update mta_shadow from mc_addr_list */
478 	for (i = 0; (u32) i < mc_addr_count; i++) {
479 		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
480 
481 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
482 		hash_bit = hash_value & 0x1F;
483 
484 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
485 		mc_addr_list += (ETH_ADDR_LEN);
486 	}
487 
488 	/* replace the entire MTA table */
489 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
490 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
491 	E1000_WRITE_FLUSH(hw);
492 }
493 
494 /*
495  * e1000_hash_mc_addr_generic - Generate a multicast hash value
496  * @hw: pointer to the HW structure
497  * @mc_addr: pointer to a multicast address
498  *
499  * Generates a multicast address hash value which is used to determine
500  * the multicast filter table array address and new table value.  See
501  * e1000_mta_set_generic()
502  */
503 u32
504 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
505 {
506 	u32 hash_value, hash_mask;
507 	u8 bit_shift = 0;
508 
509 	DEBUGFUNC("e1000_hash_mc_addr_generic");
510 
511 	/* Register count multiplied by bits per register */
512 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
513 
514 	/*
515 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
516 	 * where 0xFF would still fall within the hash mask.
517 	 */
518 	while (hash_mask >> bit_shift != 0xFF)
519 		bit_shift++;
520 
521 	/*
522 	 * The portion of the address that is used for the hash table
523 	 * is determined by the mc_filter_type setting.
524 	 * The algorithm is such that there is a total of 8 bits of shifting.
525 	 * The bit_shift for a mc_filter_type of 0 represents the number of
526 	 * left-shifts where the MSB of mc_addr[5] would still fall within
527 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
528 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
529 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
530 	 * cases are a variation of this algorithm...essentially raising the
531 	 * number of bits to shift mc_addr[5] left, while still keeping the
532 	 * 8-bit shifting total.
533 	 *
534 	 * For example, given the following Destination MAC Address and an
535 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
536 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
537 	 * values resulting from each mc_filter_type...
538 	 * [0] [1] [2] [3] [4] [5]
539 	 * 01  AA  00  12  34  56
540 	 * LSB			MSB
541 	 *
542 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
543 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
544 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
545 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
546 	 */
547 	switch (hw->mac.mc_filter_type) {
548 		default:
549 		case 0:
550 			break;
551 		case 1:
552 			bit_shift += 1;
553 			break;
554 		case 2:
555 			bit_shift += 2;
556 			break;
557 		case 3:
558 			bit_shift += 4;
559 			break;
560 	}
561 
562 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
563 	    (((u16) mc_addr[5]) << bit_shift)));
564 
565 	return (hash_value);
566 }
567 
568 /*
569  * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
570  * @hw: pointer to the HW structure
571  *
572  * Clears the base hardware counters by reading the counter registers.
573  */
574 void
575 e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
576 {
577 	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
578 
579 	(void) E1000_READ_REG(hw, E1000_CRCERRS);
580 	(void) E1000_READ_REG(hw, E1000_SYMERRS);
581 	(void) E1000_READ_REG(hw, E1000_MPC);
582 	(void) E1000_READ_REG(hw, E1000_SCC);
583 	(void) E1000_READ_REG(hw, E1000_ECOL);
584 	(void) E1000_READ_REG(hw, E1000_MCC);
585 	(void) E1000_READ_REG(hw, E1000_LATECOL);
586 	(void) E1000_READ_REG(hw, E1000_COLC);
587 	(void) E1000_READ_REG(hw, E1000_DC);
588 	(void) E1000_READ_REG(hw, E1000_SEC);
589 	(void) E1000_READ_REG(hw, E1000_RLEC);
590 	(void) E1000_READ_REG(hw, E1000_XONRXC);
591 	(void) E1000_READ_REG(hw, E1000_XONTXC);
592 	(void) E1000_READ_REG(hw, E1000_XOFFRXC);
593 	(void) E1000_READ_REG(hw, E1000_XOFFTXC);
594 	(void) E1000_READ_REG(hw, E1000_FCRUC);
595 	(void) E1000_READ_REG(hw, E1000_GPRC);
596 	(void) E1000_READ_REG(hw, E1000_BPRC);
597 	(void) E1000_READ_REG(hw, E1000_MPRC);
598 	(void) E1000_READ_REG(hw, E1000_GPTC);
599 	(void) E1000_READ_REG(hw, E1000_GORCL);
600 	(void) E1000_READ_REG(hw, E1000_GORCH);
601 	(void) E1000_READ_REG(hw, E1000_GOTCL);
602 	(void) E1000_READ_REG(hw, E1000_GOTCH);
603 	(void) E1000_READ_REG(hw, E1000_RNBC);
604 	(void) E1000_READ_REG(hw, E1000_RUC);
605 	(void) E1000_READ_REG(hw, E1000_RFC);
606 	(void) E1000_READ_REG(hw, E1000_ROC);
607 	(void) E1000_READ_REG(hw, E1000_RJC);
608 	(void) E1000_READ_REG(hw, E1000_TORL);
609 	(void) E1000_READ_REG(hw, E1000_TORH);
610 	(void) E1000_READ_REG(hw, E1000_TOTL);
611 	(void) E1000_READ_REG(hw, E1000_TOTH);
612 	(void) E1000_READ_REG(hw, E1000_TPR);
613 	(void) E1000_READ_REG(hw, E1000_TPT);
614 	(void) E1000_READ_REG(hw, E1000_MPTC);
615 	(void) E1000_READ_REG(hw, E1000_BPTC);
616 }
617 
618 /*
619  * e1000_check_for_copper_link_generic - Check for link (Copper)
620  * @hw: pointer to the HW structure
621  *
622  * Checks to see of the link status of the hardware has changed.  If a
623  * change in link status has been detected, then we read the PHY registers
624  * to get the current speed/duplex if link exists.
625  */
626 s32
627 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
628 {
629 	struct e1000_mac_info *mac = &hw->mac;
630 	s32 ret_val;
631 	bool link;
632 
633 	DEBUGFUNC("e1000_check_for_copper_link");
634 
635 	/*
636 	 * We only want to go out to the PHY registers to see if Auto-Neg
637 	 * has completed and/or if our link status has changed.  The
638 	 * get_link_status flag is set upon receiving a Link Status
639 	 * Change or Rx Sequence Error interrupt.
640 	 */
641 	if (!mac->get_link_status) {
642 		ret_val = E1000_SUCCESS;
643 		goto out;
644 	}
645 
646 	/*
647 	 * First we want to see if the MII Status Register reports
648 	 * link.  If so, then we want to get the current speed/duplex
649 	 * of the PHY.
650 	 */
651 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
652 	if (ret_val)
653 		goto out;
654 
655 	if (!link)
656 		goto out; /* No link detected */
657 
658 	mac->get_link_status = false;
659 
660 	/*
661 	 * Check if there was DownShift, must be checked
662 	 * immediately after link-up
663 	 */
664 	(void) e1000_check_downshift_generic(hw);
665 
666 	/*
667 	 * If we are forcing speed/duplex, then we simply return since
668 	 * we have already determined whether we have link or not.
669 	 */
670 	if (!mac->autoneg) {
671 		ret_val = -E1000_ERR_CONFIG;
672 		goto out;
673 	}
674 
675 	/*
676 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
677 	 * of MAC speed/duplex configuration.  So we only need to
678 	 * configure Collision Distance in the MAC.
679 	 */
680 	e1000_config_collision_dist_generic(hw);
681 
682 	/*
683 	 * Configure Flow Control now that Auto-Neg has completed.
684 	 * First, we need to restore the desired flow control
685 	 * settings because we may have had to re-autoneg with a
686 	 * different link partner.
687 	 */
688 	ret_val = e1000_config_fc_after_link_up_generic(hw);
689 	if (ret_val)
690 		DEBUGOUT("Error configuring flow control\n");
691 
692 out:
693 	return (ret_val);
694 }
695 
696 /*
697  * e1000_check_for_fiber_link_generic - Check for link (Fiber)
698  * @hw: pointer to the HW structure
699  *
700  * Checks for link up on the hardware.  If link is not up and we have
701  * a signal, then we need to force link up.
702  */
703 s32
704 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
705 {
706 	struct e1000_mac_info *mac = &hw->mac;
707 	u32 rxcw;
708 	u32 ctrl;
709 	u32 status;
710 	s32 ret_val = E1000_SUCCESS;
711 
712 	DEBUGFUNC("e1000_check_for_fiber_link_generic");
713 
714 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
715 	status = E1000_READ_REG(hw, E1000_STATUS);
716 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
717 
718 	/*
719 	 * If we don't have link (auto-negotiation failed or link partner
720 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
721 	 * and our link partner is not trying to auto-negotiate with us (we
722 	 * are receiving idles or data), we need to force link up. We also
723 	 * need to give auto-negotiation time to complete, in case the cable
724 	 * was just plugged in. The autoneg_failed flag does this.
725 	 */
726 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
727 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
728 	    (!(rxcw & E1000_RXCW_C))) {
729 		if (mac->autoneg_failed == 0) {
730 			mac->autoneg_failed = 1;
731 			goto out;
732 		}
733 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
734 
735 		/* Disable auto-negotiation in the TXCW register */
736 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
737 
738 		/* Force link-up and also force full-duplex. */
739 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
740 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
741 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
742 
743 		/* Configure Flow Control after forcing link up. */
744 		ret_val = e1000_config_fc_after_link_up_generic(hw);
745 		if (ret_val) {
746 			DEBUGOUT("Error configuring flow control\n");
747 			goto out;
748 		}
749 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
750 		/*
751 		 * If we are forcing link and we are receiving /C/ ordered
752 		 * sets, re-enable auto-negotiation in the TXCW register
753 		 * and disable forced link in the Device Control register
754 		 * in an attempt to auto-negotiate with our link partner.
755 		 */
756 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
757 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
758 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
759 
760 		mac->serdes_has_link = true;
761 	}
762 
763 out:
764 	return (ret_val);
765 }
766 
767 /*
768  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
769  * @hw: pointer to the HW structure
770  *
771  * Checks for link up on the hardware.  If link is not up and we have
772  * a signal, then we need to force link up.
773  */
774 s32
775 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
776 {
777 	struct e1000_mac_info *mac = &hw->mac;
778 	u32 rxcw;
779 	u32 ctrl;
780 	u32 status;
781 	s32 ret_val = E1000_SUCCESS;
782 
783 	DEBUGFUNC("e1000_check_for_serdes_link_generic");
784 
785 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
786 	status = E1000_READ_REG(hw, E1000_STATUS);
787 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
788 
789 	/*
790 	 * If we don't have link (auto-negotiation failed or link partner
791 	 * cannot auto-negotiate), and our link partner is not trying to
792 	 * auto-negotiate with us (we are receiving idles or data),
793 	 * we need to force link up. We also need to give auto-negotiation
794 	 * time to complete.
795 	 */
796 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
797 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
798 		if (mac->autoneg_failed == 0) {
799 			mac->autoneg_failed = 1;
800 			goto out;
801 		}
802 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
803 
804 		/* Disable auto-negotiation in the TXCW register */
805 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
806 
807 		/* Force link-up and also force full-duplex. */
808 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
809 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
810 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
811 
812 		/* Configure Flow Control after forcing link up. */
813 		ret_val = e1000_config_fc_after_link_up_generic(hw);
814 		if (ret_val) {
815 			DEBUGOUT("Error configuring flow control\n");
816 			goto out;
817 		}
818 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
819 		/*
820 		 * If we are forcing link and we are receiving /C/ ordered
821 		 * sets, re-enable auto-negotiation in the TXCW register
822 		 * and disable forced link in the Device Control register
823 		 * in an attempt to auto-negotiate with our link partner.
824 		 */
825 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
826 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
827 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
828 
829 		mac->serdes_has_link = true;
830 	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
831 		/*
832 		 * If we force link for non-auto-negotiation switch, check
833 		 * link status based on MAC synchronization for internal
834 		 * serdes media type.
835 		 */
836 		/* SYNCH bit and IV bit are sticky. */
837 		usec_delay(10);
838 		rxcw = E1000_READ_REG(hw, E1000_RXCW);
839 		if (rxcw & E1000_RXCW_SYNCH) {
840 			if (!(rxcw & E1000_RXCW_IV)) {
841 				mac->serdes_has_link = true;
842 				DEBUGOUT("SERDES: Link up - forced.\n");
843 			}
844 		} else {
845 			mac->serdes_has_link = false;
846 			DEBUGOUT("SERDES: Link down - force failed.\n");
847 		}
848 	}
849 
850 	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
851 		status = E1000_READ_REG(hw, E1000_STATUS);
852 		if (status & E1000_STATUS_LU) {
853 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
854 			usec_delay(10);
855 			rxcw = E1000_READ_REG(hw, E1000_RXCW);
856 			if (rxcw & E1000_RXCW_SYNCH) {
857 				if (!(rxcw & E1000_RXCW_IV)) {
858 					mac->serdes_has_link = true;
859 					DEBUGOUT("SERDES: Link up - autoneg "
860 					    "completed sucessfully.\n");
861 				} else {
862 					mac->serdes_has_link = false;
863 					DEBUGOUT("SERDES: Link down - invalid"
864 					    "codewords detected in autoneg.\n");
865 				}
866 			} else {
867 				mac->serdes_has_link = false;
868 				DEBUGOUT("SERDES: Link down - no sync.\n");
869 			}
870 		} else {
871 			mac->serdes_has_link = false;
872 			DEBUGOUT("SERDES: Link down - autoneg failed\n");
873 		}
874 	}
875 
876 out:
877 	return (ret_val);
878 }
879 
880 /*
881  * e1000_setup_link_generic - Setup flow control and link settings
882  * @hw: pointer to the HW structure
883  *
884  * Determines which flow control settings to use, then configures flow
885  * control.  Calls the appropriate media-specific link configuration
886  * function.  Assuming the adapter has a valid link partner, a valid link
887  * should be established.  Assumes the hardware has previously been reset
888  * and the transmitter and receiver are not enabled.
889  */
890 s32
891 e1000_setup_link_generic(struct e1000_hw *hw)
892 {
893 	s32 ret_val = E1000_SUCCESS;
894 
895 	DEBUGFUNC("e1000_setup_link_generic");
896 
897 	/*
898 	 * In the case of the phy reset being blocked, we already have a link.
899 	 * We do not need to set it up again.
900 	 */
901 	if (hw->phy.ops.check_reset_block)
902 		if (hw->phy.ops.check_reset_block(hw))
903 			goto out;
904 
905 	/*
906 	 * If requested flow control is set to default, set flow control
907 	 * based on the EEPROM flow control settings.
908 	 */
909 	if (hw->fc.requested_mode == e1000_fc_default) {
910 		ret_val = e1000_set_default_fc_generic(hw);
911 		if (ret_val)
912 			goto out;
913 	}
914 
915 	/*
916 	 * Save off the requested flow control mode for use later.  Depending
917 	 * on the link partner's capabilities, we may or may not use this mode.
918 	 */
919 	hw->fc.current_mode = hw->fc.requested_mode;
920 
921 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
922 	    hw->fc.current_mode);
923 
924 	/* Call the necessary media_type subroutine to configure the link. */
925 	ret_val = hw->mac.ops.setup_physical_interface(hw);
926 	if (ret_val)
927 		goto out;
928 
929 	/*
930 	 * Initialize the flow control address, type, and PAUSE timer
931 	 * registers to their default values.  This is done even if flow
932 	 * control is disabled, because it does not hurt anything to
933 	 * initialize these registers.
934 	 */
935 	DEBUGOUT("Initializing the Flow Control address,type and timer regs\n");
936 	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
937 	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
938 	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
939 
940 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
941 
942 	ret_val = e1000_set_fc_watermarks_generic(hw);
943 
944 out:
945 	return (ret_val);
946 }
947 
948 /*
949  * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
950  * @hw: pointer to the HW structure
951  *
952  * Configures collision distance and flow control for fiber and serdes
953  * links.  Upon successful setup, poll for link.
954  */
955 s32
956 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
957 {
958 	u32 ctrl;
959 	s32 ret_val = E1000_SUCCESS;
960 
961 	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
962 
963 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
964 
965 	/* Take the link out of reset */
966 	ctrl &= ~E1000_CTRL_LRST;
967 
968 	e1000_config_collision_dist_generic(hw);
969 
970 	ret_val = e1000_commit_fc_settings_generic(hw);
971 	if (ret_val)
972 		goto out;
973 
974 	/*
975 	 * Since auto-negotiation is enabled, take the link out of reset (the
976 	 * link will be in reset, because we previously reset the chip). This
977 	 * will restart auto-negotiation.  If auto-negotiation is successful
978 	 * then the link-up status bit will be set and the flow control enable
979 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
980 	 */
981 	DEBUGOUT("Auto-negotiation enabled\n");
982 
983 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
984 	E1000_WRITE_FLUSH(hw);
985 	msec_delay(1);
986 
987 	/*
988 	 * For these adapters, the SW definable pin 1 is set when the optics
989 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
990 	 * indication.
991 	 */
992 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
993 	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
994 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
995 	} else {
996 		DEBUGOUT("No signal detected\n");
997 	}
998 
999 out:
1000 	return (ret_val);
1001 }
1002 
1003 /*
1004  * e1000_config_collision_dist_generic - Configure collision distance
1005  * @hw: pointer to the HW structure
1006  *
1007  * Configures the collision distance to the default value and is used
1008  * during link setup. Currently no func pointer exists and all
1009  * implementations are handled in the generic version of this function.
1010  */
1011 void
1012 e1000_config_collision_dist_generic(struct e1000_hw *hw)
1013 {
1014 	u32 tctl;
1015 
1016 	DEBUGFUNC("e1000_config_collision_dist_generic");
1017 
1018 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1019 
1020 	tctl &= ~E1000_TCTL_COLD;
1021 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1022 
1023 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1024 	E1000_WRITE_FLUSH(hw);
1025 }
1026 
1027 /*
1028  * e1000_poll_fiber_serdes_link_generic - Poll for link up
1029  * @hw: pointer to the HW structure
1030  *
1031  * Polls for link up by reading the status register, if link fails to come
1032  * up with auto-negotiation, then the link is forced if a signal is detected.
1033  */
1034 s32
1035 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1036 {
1037 	struct e1000_mac_info *mac = &hw->mac;
1038 	u32 i, status;
1039 	s32 ret_val = E1000_SUCCESS;
1040 
1041 	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1042 
1043 	/*
1044 	 * If we have a signal (the cable is plugged in, or assumed true for
1045 	 * serdes media) then poll for a "Link-Up" indication in the Device
1046 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1047 	 * seconds (Auto-negotiation should complete in less than 500
1048 	 * milliseconds even if the other end is doing it in SW).
1049 	 */
1050 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1051 		msec_delay(10);
1052 		status = E1000_READ_REG(hw, E1000_STATUS);
1053 		if (status & E1000_STATUS_LU)
1054 			break;
1055 	}
1056 	if (i == FIBER_LINK_UP_LIMIT) {
1057 		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1058 		mac->autoneg_failed = 1;
1059 		/*
1060 		 * AutoNeg failed to achieve a link, so we'll call
1061 		 * mac->check_for_link. This routine will force the
1062 		 * link up if we detect a signal. This will allow us to
1063 		 * communicate with non-autonegotiating link partners.
1064 		 */
1065 		ret_val = hw->mac.ops.check_for_link(hw);
1066 		if (ret_val) {
1067 			DEBUGOUT("Error while checking for link\n");
1068 			goto out;
1069 		}
1070 		mac->autoneg_failed = 0;
1071 	} else {
1072 		mac->autoneg_failed = 0;
1073 		DEBUGOUT("Valid Link Found\n");
1074 	}
1075 
1076 out:
1077 	return (ret_val);
1078 }
1079 
1080 /*
1081  * e1000_commit_fc_settings_generic - Configure flow control
1082  * @hw: pointer to the HW structure
1083  *
1084  * Write the flow control settings to the Transmit Config Word Register (TXCW)
1085  * base on the flow control settings in e1000_mac_info.
1086  */
1087 s32
1088 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1089 {
1090 	struct e1000_mac_info *mac = &hw->mac;
1091 	u32 txcw;
1092 	s32 ret_val = E1000_SUCCESS;
1093 
1094 	DEBUGFUNC("e1000_commit_fc_settings_generic");
1095 
1096 	/*
1097 	 * Check for a software override of the flow control settings, and
1098 	 * setup the device accordingly.  If auto-negotiation is enabled, then
1099 	 * software will have to set the "PAUSE" bits to the correct value in
1100 	 * the Transmit Config Word Register (TXCW) and re-start auto-
1101 	 * negotiation.  However, if auto-negotiation is disabled, then
1102 	 * software will have to manually configure the two flow control enable
1103 	 * bits in the CTRL register.
1104 	 *
1105 	 * The possible values of the "fc" parameter are:
1106 	 *	0:  Flow control is completely disabled
1107 	 *	1:  Rx flow control is enabled (we can receive pause frames,
1108 	 *	    but not send pause frames).
1109 	 *	2:  Tx flow control is enabled (we can send pause frames but we
1110 	 *	    do not support receiving pause frames).
1111 	 *	3:  Both Rx and Tx flow control (symmetric) are enabled.
1112 	 */
1113 	switch (hw->fc.current_mode) {
1114 	case e1000_fc_none:
1115 		/* Flow control completely disabled by a software over-ride. */
1116 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1117 		break;
1118 	case e1000_fc_rx_pause:
1119 		/*
1120 		 * Rx Flow control is enabled and Tx Flow control is disabled
1121 		 * by a software over-ride. Since there really isn't a way to
1122 		 * advertise that we are capable of Rx Pause ONLY, we will
1123 		 * advertise that we support both symmetric and asymmetric RX
1124 		 * PAUSE.  Later, we will disable the adapter's ability to send
1125 		 * PAUSE frames.
1126 		 */
1127 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1128 		break;
1129 	case e1000_fc_tx_pause:
1130 		/*
1131 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
1132 		 * by a software over-ride.
1133 		 */
1134 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1135 		break;
1136 	case e1000_fc_full:
1137 		/*
1138 		 * Flow control (both Rx and Tx) is enabled by a software
1139 		 * over-ride.
1140 		 */
1141 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1142 		break;
1143 	default:
1144 		DEBUGOUT("Flow control param set incorrectly\n");
1145 		ret_val = -E1000_ERR_CONFIG;
1146 		goto out;
1147 	}
1148 
1149 	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1150 	mac->txcw = txcw;
1151 
1152 out:
1153 	return (ret_val);
1154 }
1155 
1156 /*
1157  * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1158  * @hw: pointer to the HW structure
1159  *
1160  * Sets the flow control high/low threshold (watermark) registers.  If
1161  * flow control XON frame transmission is enabled, then set XON frame
1162  * transmission as well.
1163  */
1164 s32
1165 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1166 {
1167 	s32 ret_val = E1000_SUCCESS;
1168 	u32 fcrtl = 0, fcrth = 0;
1169 
1170 	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1171 
1172 	/*
1173 	 * Set the flow control receive threshold registers.  Normally,
1174 	 * these registers will be set to a default threshold that may be
1175 	 * adjusted later by the driver's runtime code.  However, if the
1176 	 * ability to transmit pause frames is not enabled, then these
1177 	 * registers will be set to 0.
1178 	 */
1179 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1180 		/*
1181 		 * We need to set up the Receive Threshold high and low water
1182 		 * marks as well as (optionally) enabling the transmission of
1183 		 * XON frames.
1184 		 */
1185 		fcrtl = hw->fc.low_water;
1186 		if (hw->fc.send_xon)
1187 			fcrtl |= E1000_FCRTL_XONE;
1188 
1189 		fcrth = hw->fc.high_water;
1190 	}
1191 	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1192 	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1193 
1194 	return (ret_val);
1195 }
1196 
1197 /*
1198  * e1000_set_default_fc_generic - Set flow control default values
1199  * @hw: pointer to the HW structure
1200  *
1201  * Read the EEPROM for the default values for flow control and store the
1202  * values.
1203  */
1204 s32
1205 e1000_set_default_fc_generic(struct e1000_hw *hw)
1206 {
1207 	s32 ret_val = E1000_SUCCESS;
1208 	u16 nvm_data;
1209 
1210 	DEBUGFUNC("e1000_set_default_fc_generic");
1211 
1212 	/*
1213 	 * Read and store word 0x0F of the EEPROM. This word contains bits
1214 	 * that determine the hardware's default PAUSE (flow control) mode,
1215 	 * a bit that determines whether the HW defaults to enabling or
1216 	 * disabling auto-negotiation, and the direction of the
1217 	 * SW defined pins. If there is no SW over-ride of the flow
1218 	 * control setting, then the variable hw->fc will
1219 	 * be initialized based on a value in the EEPROM.
1220 	 */
1221 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
1222 
1223 	if (ret_val) {
1224 		DEBUGOUT("NVM Read Error\n");
1225 		goto out;
1226 	}
1227 
1228 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
1229 		hw->fc.requested_mode = e1000_fc_none;
1230 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
1231 	    NVM_WORD0F_ASM_DIR)
1232 		hw->fc.requested_mode = e1000_fc_tx_pause;
1233 	else
1234 		hw->fc.requested_mode = e1000_fc_full;
1235 
1236 out:
1237 	return (ret_val);
1238 }
1239 
1240 /*
1241  * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1242  * @hw: pointer to the HW structure
1243  *
1244  * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1245  * device control register to reflect the adapter settings.  TFCE and RFCE
1246  * need to be explicitly set by software when a copper PHY is used because
1247  * autonegotiation is managed by the PHY rather than the MAC.  Software must
1248  * also configure these bits when link is forced on a fiber connection.
1249  */
1250 s32
1251 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1252 {
1253 	u32 ctrl;
1254 	s32 ret_val = E1000_SUCCESS;
1255 
1256 	DEBUGFUNC("e1000_force_mac_fc_generic");
1257 
1258 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1259 
1260 	/*
1261 	 * Because we didn't get link via the internal auto-negotiation
1262 	 * mechanism (we either forced link or we got link via PHY
1263 	 * auto-neg), we have to manually enable/disable transmit an
1264 	 * receive flow control.
1265 	 *
1266 	 * The "Case" statement below enables/disable flow control
1267 	 * according to the "hw->fc.current_mode" parameter.
1268 	 *
1269 	 * The possible values of the "fc" parameter are:
1270 	 *	0:  Flow control is completely disabled
1271 	 *	1:  Rx flow control is enabled (we can receive pause
1272 	 *	    frames but not send pause frames).
1273 	 *	2:  Tx flow control is enabled (we can send pause frames
1274 	 *	    frames but we do not receive pause frames).
1275 	 *	3:  Both Rx and Tx flow control (symmetric) is enabled.
1276 	 *  other:  No other values should be possible at this point.
1277 	 */
1278 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1279 
1280 	switch (hw->fc.current_mode) {
1281 	case e1000_fc_none:
1282 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1283 		break;
1284 	case e1000_fc_rx_pause:
1285 		ctrl &= (~E1000_CTRL_TFCE);
1286 		ctrl |= E1000_CTRL_RFCE;
1287 		break;
1288 	case e1000_fc_tx_pause:
1289 		ctrl &= (~E1000_CTRL_RFCE);
1290 		ctrl |= E1000_CTRL_TFCE;
1291 		break;
1292 	case e1000_fc_full:
1293 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1294 		break;
1295 	default:
1296 		DEBUGOUT("Flow control param set incorrectly\n");
1297 		ret_val = -E1000_ERR_CONFIG;
1298 		goto out;
1299 	}
1300 
1301 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1302 
1303 out:
1304 	return (ret_val);
1305 }
1306 
1307 /*
1308  * e1000_config_fc_after_link_up_generic - Configures flow control after link
1309  * @hw: pointer to the HW structure
1310  *
1311  * Checks the status of auto-negotiation after link up to ensure that the
1312  * speed and duplex were not forced.  If the link needed to be forced, then
1313  * flow control needs to be forced also.  If auto-negotiation is enabled
1314  * and did not fail, then we configure flow control based on our link
1315  * partner.
1316  */
1317 s32
1318 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1319 {
1320 	struct e1000_mac_info *mac = &hw->mac;
1321 	s32 ret_val = E1000_SUCCESS;
1322 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1323 	u16 speed, duplex;
1324 
1325 	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1326 
1327 	/*
1328 	 * Check for the case where we have fiber media and auto-neg failed
1329 	 * so we had to force link.  In this case, we need to force the
1330 	 * configuration of the MAC to match the "fc" parameter.
1331 	 */
1332 	if (mac->autoneg_failed) {
1333 		if (hw->phy.media_type == e1000_media_type_fiber ||
1334 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1335 			ret_val = e1000_force_mac_fc_generic(hw);
1336 	} else {
1337 		if (hw->phy.media_type == e1000_media_type_copper)
1338 			ret_val = e1000_force_mac_fc_generic(hw);
1339 	}
1340 
1341 	if (ret_val) {
1342 		DEBUGOUT("Error forcing flow control settings\n");
1343 		goto out;
1344 	}
1345 
1346 	/*
1347 	 * Check for the case where we have copper media and auto-neg is
1348 	 * enabled.  In this case, we need to check and see if Auto-Neg
1349 	 * has completed, and if so, how the PHY and link partner has
1350 	 * flow control configured.
1351 	 */
1352 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1353 		/*
1354 		 * Read the MII Status Register and check to see if AutoNeg
1355 		 * has completed.  We read this twice because this reg has
1356 		 * some "sticky" (latched) bits.
1357 		 */
1358 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1359 		if (ret_val)
1360 			goto out;
1361 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1362 		if (ret_val)
1363 			goto out;
1364 
1365 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1366 			DEBUGOUT("Copper PHY and Auto Neg "
1367 			    "has not completed.\n");
1368 			goto out;
1369 		}
1370 
1371 		/*
1372 		 * The AutoNeg process has completed, so we now need to
1373 		 * read both the Auto Negotiation Advertisement
1374 		 * Register (Address 4) and the Auto_Negotiation Base
1375 		 * Page Ability Register (Address 5) to determine how
1376 		 * flow control was negotiated.
1377 		 */
1378 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1379 		    &mii_nway_adv_reg);
1380 		if (ret_val)
1381 			goto out;
1382 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1383 		    &mii_nway_lp_ability_reg);
1384 		if (ret_val)
1385 			goto out;
1386 
1387 		/*
1388 		 * Two bits in the Auto Negotiation Advertisement Register
1389 		 * (Address 4) and two bits in the Auto Negotiation Base
1390 		 * Page Ability Register (Address 5) determine flow control
1391 		 * for both the PHY and the link partner.  The following
1392 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1393 		 * 1999, describes these PAUSE resolution bits and how flow
1394 		 * control is determined based upon these settings.
1395 		 * NOTE:  DC = Don't Care
1396 		 *
1397 		 *   LOCAL DEVICE  |   LINK PARTNER
1398 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1399 		 * ------|---------|-------|---------|--------------------
1400 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1401 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1402 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1403 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1404 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1405 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1406 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1407 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1408 		 *
1409 		 * Are both PAUSE bits set to 1?  If so, this implies
1410 		 * Symmetric Flow Control is enabled at both ends.  The
1411 		 * ASM_DIR bits are irrelevant per the spec.
1412 		 *
1413 		 * For Symmetric Flow Control:
1414 		 *
1415 		 *   LOCAL DEVICE  |   LINK PARTNER
1416 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1417 		 * ------|---------|-------|---------|--------------------
1418 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1419 		 *
1420 		 */
1421 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1422 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1423 			/*
1424 			 * Now we need to check if the user selected Rx ONLY
1425 			 * of pause frames.  In this case, we had to advertise
1426 			 * FULL flow control because we could not advertise RX
1427 			 * ONLY. Hence, we must now check to see if we need to
1428 			 * turn OFF  the TRANSMISSION of PAUSE frames.
1429 			 */
1430 			if (hw->fc.requested_mode == e1000_fc_full) {
1431 				hw->fc.current_mode = e1000_fc_full;
1432 				DEBUGOUT("Flow Control = FULL.\r\n");
1433 			} else {
1434 				hw->fc.current_mode = e1000_fc_rx_pause;
1435 				DEBUGOUT("Flow Control = "
1436 				    "RX PAUSE frames only.\r\n");
1437 			}
1438 		}
1439 		/*
1440 		 * For receiving PAUSE frames ONLY.
1441 		 *
1442 		 *   LOCAL DEVICE  |   LINK PARTNER
1443 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1444 		 * ------|---------|-------|---------|--------------------
1445 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1446 		 */
1447 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1448 		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1449 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1450 		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1451 			hw->fc.current_mode = e1000_fc_tx_pause;
1452 			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1453 		}
1454 		/*
1455 		 * For transmitting PAUSE frames ONLY.
1456 		 *
1457 		 *   LOCAL DEVICE  |   LINK PARTNER
1458 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1459 		 * ------|---------|-------|---------|--------------------
1460 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1461 		 */
1462 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1463 		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1464 		    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1465 		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1466 			hw->fc.current_mode = e1000_fc_rx_pause;
1467 			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1468 		} else {
1469 			/*
1470 			 * Per the IEEE spec, at this point flow control
1471 			 * should be disabled.
1472 			 */
1473 			hw->fc.current_mode = e1000_fc_none;
1474 			DEBUGOUT("Flow Control = NONE.\r\n");
1475 		}
1476 
1477 		/*
1478 		 * Now we need to do one last check...  If we auto-
1479 		 * negotiated to HALF DUPLEX, flow control should not be
1480 		 * enabled per IEEE 802.3 spec.
1481 		 */
1482 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1483 		if (ret_val) {
1484 			DEBUGOUT("Error getting link speed and duplex\n");
1485 			goto out;
1486 		}
1487 
1488 		if (duplex == HALF_DUPLEX)
1489 			hw->fc.current_mode = e1000_fc_none;
1490 
1491 		/*
1492 		 * Now we call a subroutine to actually force the MAC
1493 		 * controller to use the correct flow control settings.
1494 		 */
1495 		ret_val = e1000_force_mac_fc_generic(hw);
1496 		if (ret_val) {
1497 			DEBUGOUT("Error forcing flow control settings\n");
1498 			goto out;
1499 		}
1500 	}
1501 
1502 out:
1503 	return (ret_val);
1504 }
1505 
1506 /*
1507  * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1508  * @hw: pointer to the HW structure
1509  * @speed: stores the current speed
1510  * @duplex: stores the current duplex
1511  *
1512  * Read the status register for the current speed/duplex and store the current
1513  * speed and duplex for copper connections.
1514  */
1515 s32
1516 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1517     u16 *duplex)
1518 {
1519 	u32 status;
1520 
1521 	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1522 
1523 	status = E1000_READ_REG(hw, E1000_STATUS);
1524 	if (status & E1000_STATUS_SPEED_1000) {
1525 		*speed = SPEED_1000;
1526 		DEBUGOUT("1000 Mbs, ");
1527 	} else if (status & E1000_STATUS_SPEED_100) {
1528 		*speed = SPEED_100;
1529 		DEBUGOUT("100 Mbs, ");
1530 	} else {
1531 		*speed = SPEED_10;
1532 		DEBUGOUT("10 Mbs, ");
1533 	}
1534 
1535 	if (status & E1000_STATUS_FD) {
1536 		*duplex = FULL_DUPLEX;
1537 		DEBUGOUT("Full Duplex\n");
1538 	} else {
1539 		*duplex = HALF_DUPLEX;
1540 		DEBUGOUT("Half Duplex\n");
1541 	}
1542 
1543 	return (E1000_SUCCESS);
1544 }
1545 
1546 /*
1547  * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1548  * @hw: pointer to the HW structure
1549  * @speed: stores the current speed
1550  * @duplex: stores the current duplex
1551  *
1552  * Sets the speed and duplex to gigabit full duplex (the only possible option)
1553  * for fiber/serdes links.
1554  */
1555 s32
1556 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
1557     u16 *speed, u16 *duplex)
1558 {
1559 	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1560 	UNREFERENCED_1PARAMETER(hw);
1561 
1562 	*speed = SPEED_1000;
1563 	*duplex = FULL_DUPLEX;
1564 
1565 	return (E1000_SUCCESS);
1566 }
1567 
1568 /*
1569  * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1570  * @hw: pointer to the HW structure
1571  *
1572  * Acquire the HW semaphore to access the PHY or NVM
1573  */
1574 s32
1575 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1576 {
1577 	u32 swsm;
1578 	s32 ret_val = E1000_SUCCESS;
1579 	s32 timeout = hw->nvm.word_size + 1;
1580 	s32 i = 0;
1581 
1582 	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1583 
1584 	/* Get the SW semaphore */
1585 	while (i < timeout) {
1586 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1587 		if (!(swsm & E1000_SWSM_SMBI))
1588 			break;
1589 
1590 		usec_delay(50);
1591 		i++;
1592 	}
1593 
1594 	if (i == timeout) {
1595 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1596 		ret_val = -E1000_ERR_NVM;
1597 		goto out;
1598 	}
1599 
1600 	/* Get the FW semaphore. */
1601 	for (i = 0; i < timeout; i++) {
1602 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1603 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1604 
1605 		/* Semaphore acquired if bit latched */
1606 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1607 			break;
1608 
1609 		usec_delay(50);
1610 	}
1611 
1612 	if (i == timeout) {
1613 		/* Release semaphores */
1614 		e1000_put_hw_semaphore_generic(hw);
1615 		DEBUGOUT("Driver can't access the NVM\n");
1616 		ret_val = -E1000_ERR_NVM;
1617 		goto out;
1618 	}
1619 
1620 out:
1621 	return (ret_val);
1622 }
1623 
1624 /*
1625  * e1000_put_hw_semaphore_generic - Release hardware semaphore
1626  * @hw: pointer to the HW structure
1627  *
1628  * Release hardware semaphore used to access the PHY or NVM
1629  */
1630 void
1631 e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1632 {
1633 	u32 swsm;
1634 
1635 	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1636 
1637 	swsm = E1000_READ_REG(hw, E1000_SWSM);
1638 
1639 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1640 
1641 	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1642 }
1643 
1644 /*
1645  * e1000_get_auto_rd_done_generic - Check for auto read completion
1646  * @hw: pointer to the HW structure
1647  *
1648  * Check EEPROM for Auto Read done bit.
1649  */
1650 s32
1651 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1652 {
1653 	s32 i = 0;
1654 	s32 ret_val = E1000_SUCCESS;
1655 
1656 	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1657 
1658 	while (i < AUTO_READ_DONE_TIMEOUT) {
1659 		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1660 			break;
1661 		msec_delay(1);
1662 		i++;
1663 	}
1664 
1665 	if (i == AUTO_READ_DONE_TIMEOUT) {
1666 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1667 		ret_val = -E1000_ERR_RESET;
1668 		goto out;
1669 	}
1670 
1671 out:
1672 	return (ret_val);
1673 }
1674 
1675 /*
1676  * e1000_valid_led_default_generic - Verify a valid default LED config
1677  * @hw: pointer to the HW structure
1678  * @data: pointer to the NVM (EEPROM)
1679  *
1680  * Read the EEPROM for the current default LED configuration.  If the
1681  * LED configuration is not valid, set to a valid LED configuration.
1682  */
1683 s32
1684 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1685 {
1686 	s32 ret_val;
1687 
1688 	DEBUGFUNC("e1000_valid_led_default_generic");
1689 
1690 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1691 	if (ret_val) {
1692 		DEBUGOUT("NVM Read Error\n");
1693 		goto out;
1694 	}
1695 
1696 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1697 		*data = ID_LED_DEFAULT;
1698 
1699 out:
1700 	return (ret_val);
1701 }
1702 
1703 /*
1704  * e1000_id_led_init_generic -
1705  * @hw: pointer to the HW structure
1706  *
1707  */
1708 s32
1709 e1000_id_led_init_generic(struct e1000_hw *hw)
1710 {
1711 	struct e1000_mac_info *mac = &hw->mac;
1712 	s32 ret_val;
1713 	const u32 ledctl_mask = 0x000000FF;
1714 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1715 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1716 	u16 data, i, temp;
1717 	const u16 led_mask = 0x0F;
1718 
1719 	DEBUGFUNC("e1000_id_led_init_generic");
1720 
1721 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1722 	if (ret_val)
1723 		goto out;
1724 
1725 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1726 	mac->ledctl_mode1 = mac->ledctl_default;
1727 	mac->ledctl_mode2 = mac->ledctl_default;
1728 
1729 	for (i = 0; i < 4; i++) {
1730 		temp = (data >> (i << 2)) & led_mask;
1731 		switch (temp) {
1732 		case ID_LED_ON1_DEF2:
1733 		case ID_LED_ON1_ON2:
1734 		case ID_LED_ON1_OFF2:
1735 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1736 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1737 			break;
1738 		case ID_LED_OFF1_DEF2:
1739 		case ID_LED_OFF1_ON2:
1740 		case ID_LED_OFF1_OFF2:
1741 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1742 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1743 			break;
1744 		default:
1745 			/* Do nothing */
1746 			break;
1747 		}
1748 		switch (temp) {
1749 		case ID_LED_DEF1_ON2:
1750 		case ID_LED_ON1_ON2:
1751 		case ID_LED_OFF1_ON2:
1752 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1753 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1754 			break;
1755 		case ID_LED_DEF1_OFF2:
1756 		case ID_LED_ON1_OFF2:
1757 		case ID_LED_OFF1_OFF2:
1758 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1759 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1760 			break;
1761 		default:
1762 			/* Do nothing */
1763 			break;
1764 		}
1765 	}
1766 
1767 out:
1768 	return (ret_val);
1769 }
1770 
1771 /*
1772  * e1000_setup_led_generic - Configures SW controllable LED
1773  * @hw: pointer to the HW structure
1774  *
1775  * This prepares the SW controllable LED for use and saves the current state
1776  * of the LED so it can be later restored.
1777  */
1778 s32
1779 e1000_setup_led_generic(struct e1000_hw *hw)
1780 {
1781 	u32 ledctl;
1782 	s32 ret_val = E1000_SUCCESS;
1783 
1784 	DEBUGFUNC("e1000_setup_led_generic");
1785 
1786 	if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
1787 		ret_val = -E1000_ERR_CONFIG;
1788 		goto out;
1789 	}
1790 
1791 	if (hw->phy.media_type == e1000_media_type_fiber) {
1792 		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1793 		hw->mac.ledctl_default = ledctl;
1794 		/* Turn off LED0 */
1795 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1796 		    E1000_LEDCTL_LED0_BLINK |
1797 		    E1000_LEDCTL_LED0_MODE_MASK);
1798 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1799 		    E1000_LEDCTL_LED0_MODE_SHIFT);
1800 		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1801 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1802 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1803 	}
1804 
1805 out:
1806 	return (ret_val);
1807 }
1808 
1809 /*
1810  * e1000_cleanup_led_generic - Set LED config to default operation
1811  * @hw: pointer to the HW structure
1812  *
1813  * Remove the current LED configuration and set the LED configuration
1814  * to the default value, saved from the EEPROM.
1815  */
1816 s32
1817 e1000_cleanup_led_generic(struct e1000_hw *hw)
1818 {
1819 	s32 ret_val = E1000_SUCCESS;
1820 
1821 	DEBUGFUNC("e1000_cleanup_led_generic");
1822 
1823 	if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) {
1824 		ret_val = -E1000_ERR_CONFIG;
1825 		goto out;
1826 	}
1827 
1828 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1829 
1830 out:
1831 	return (ret_val);
1832 }
1833 
1834 /*
1835  * e1000_blink_led_generic - Blink LED
1836  * @hw: pointer to the HW structure
1837  *
1838  * Blink the LEDs which are set to be on.
1839  */
1840 s32
1841 e1000_blink_led_generic(struct e1000_hw *hw)
1842 {
1843 	u32 ledctl_blink = 0;
1844 	u32 i;
1845 
1846 	DEBUGFUNC("e1000_blink_led_generic");
1847 
1848 	if (hw->phy.media_type == e1000_media_type_fiber) {
1849 		/* always blink LED0 for PCI-E fiber */
1850 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1851 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1852 	} else {
1853 		/*
1854 		 * set the blink bit for each LED that's "on" (0x0E)
1855 		 * in ledctl_mode2
1856 		 */
1857 		ledctl_blink = hw->mac.ledctl_mode2;
1858 		for (i = 0; i < 4; i++)
1859 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1860 			    E1000_LEDCTL_MODE_LED_ON)
1861 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1862 				    (i * 8));
1863 	}
1864 
1865 	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1866 
1867 	return (E1000_SUCCESS);
1868 }
1869 
1870 /*
1871  * e1000_led_on_generic - Turn LED on
1872  * @hw: pointer to the HW structure
1873  *
1874  * Turn LED on.
1875  */
1876 s32
1877 e1000_led_on_generic(struct e1000_hw *hw)
1878 {
1879 	u32 ctrl;
1880 
1881 	DEBUGFUNC("e1000_led_on_generic");
1882 
1883 	switch (hw->phy.media_type) {
1884 	case e1000_media_type_fiber:
1885 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1886 		ctrl &= ~E1000_CTRL_SWDPIN0;
1887 		ctrl |= E1000_CTRL_SWDPIO0;
1888 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1889 		break;
1890 	case e1000_media_type_copper:
1891 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
1892 		break;
1893 	default:
1894 		break;
1895 	}
1896 
1897 	return (E1000_SUCCESS);
1898 }
1899 
1900 /*
1901  * e1000_led_off_generic - Turn LED off
1902  * @hw: pointer to the HW structure
1903  *
1904  * Turn LED off.
1905  */
1906 s32
1907 e1000_led_off_generic(struct e1000_hw *hw)
1908 {
1909 	u32 ctrl;
1910 
1911 	DEBUGFUNC("e1000_led_off_generic");
1912 
1913 	switch (hw->phy.media_type) {
1914 	case e1000_media_type_fiber:
1915 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1916 		ctrl |= E1000_CTRL_SWDPIN0;
1917 		ctrl |= E1000_CTRL_SWDPIO0;
1918 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1919 		break;
1920 	case e1000_media_type_copper:
1921 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1922 		break;
1923 	default:
1924 		break;
1925 	}
1926 
1927 	return (E1000_SUCCESS);
1928 }
1929 
1930 /*
1931  * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
1932  * @hw: pointer to the HW structure
1933  * @no_snoop: bitmap of snoop events
1934  *
1935  * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1936  */
1937 void
1938 e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
1939 {
1940 	u32 gcr;
1941 
1942 	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
1943 
1944 	if (hw->bus.type != e1000_bus_type_pci_express)
1945 		return;
1946 
1947 	if (no_snoop) {
1948 		gcr = E1000_READ_REG(hw, E1000_GCR);
1949 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1950 		gcr |= no_snoop;
1951 		E1000_WRITE_REG(hw, E1000_GCR, gcr);
1952 	}
1953 }
1954 
1955 /*
1956  * e1000_disable_pcie_master_generic - Disables PCI-express master access
1957  * @hw: pointer to the HW structure
1958  *
1959  * Returns 0 (E1000_SUCCESS) if successful, else returns -10
1960  * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1961  * the master requests to be disabled.
1962  *
1963  * Disables PCI-Express master access and verifies there are no pending
1964  * requests.
1965  */
1966 s32
1967 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
1968 {
1969 	u32 ctrl;
1970 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1971 	s32 ret_val = E1000_SUCCESS;
1972 
1973 	DEBUGFUNC("e1000_disable_pcie_master_generic");
1974 
1975 	if (hw->bus.type != e1000_bus_type_pci_express)
1976 		goto out;
1977 
1978 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1979 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1980 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1981 
1982 	while (timeout) {
1983 		if (!(E1000_READ_REG(hw, E1000_STATUS) &
1984 		    E1000_STATUS_GIO_MASTER_ENABLE))
1985 			break;
1986 		usec_delay(100);
1987 		timeout--;
1988 	}
1989 
1990 	if (!timeout) {
1991 		DEBUGOUT("Master requests are pending.\n");
1992 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1993 		goto out;
1994 	}
1995 
1996 out:
1997 	return (ret_val);
1998 }
1999 
2000 /*
2001  * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2002  * @hw: pointer to the HW structure
2003  *
2004  * Reset the Adaptive Interframe Spacing throttle to default values.
2005  */
2006 void
2007 e1000_reset_adaptive_generic(struct e1000_hw *hw)
2008 {
2009 	struct e1000_mac_info *mac = &hw->mac;
2010 
2011 	DEBUGFUNC("e1000_reset_adaptive_generic");
2012 
2013 	if (!mac->adaptive_ifs) {
2014 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2015 		return;
2016 	}
2017 
2018 	mac->current_ifs_val = 0;
2019 	mac->ifs_min_val = IFS_MIN;
2020 	mac->ifs_max_val = IFS_MAX;
2021 	mac->ifs_step_size = IFS_STEP;
2022 	mac->ifs_ratio = IFS_RATIO;
2023 
2024 	mac->in_ifs_mode = false;
2025 	E1000_WRITE_REG(hw, E1000_AIT, 0);
2026 }
2027 
2028 /*
2029  * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2030  * @hw: pointer to the HW structure
2031  *
2032  * Update the Adaptive Interframe Spacing Throttle value based on the
2033  * time between transmitted packets and time between collisions.
2034  */
2035 void
2036 e1000_update_adaptive_generic(struct e1000_hw *hw)
2037 {
2038 	struct e1000_mac_info *mac = &hw->mac;
2039 
2040 	DEBUGFUNC("e1000_update_adaptive_generic");
2041 
2042 	if (!mac->adaptive_ifs) {
2043 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2044 		return;
2045 	}
2046 
2047 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2048 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2049 			mac->in_ifs_mode = true;
2050 			if (mac->current_ifs_val < mac->ifs_max_val) {
2051 				if (!mac->current_ifs_val)
2052 					mac->current_ifs_val = mac->ifs_min_val;
2053 				else
2054 					mac->current_ifs_val +=
2055 					    mac->ifs_step_size;
2056 				E1000_WRITE_REG(hw, E1000_AIT,
2057 				    mac->current_ifs_val);
2058 			}
2059 		}
2060 	} else {
2061 		if (mac->in_ifs_mode &&
2062 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2063 			mac->current_ifs_val = 0;
2064 			mac->in_ifs_mode = false;
2065 			E1000_WRITE_REG(hw, E1000_AIT, 0);
2066 		}
2067 	}
2068 }
2069 
2070 /*
2071  * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2072  * @hw: pointer to the HW structure
2073  *
2074  * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2075  * set, which is forced to MDI mode only.
2076  */
2077 s32
2078 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2079 {
2080 	s32 ret_val = E1000_SUCCESS;
2081 
2082 	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2083 
2084 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2085 		DEBUGOUT("Invalid MDI setting detected\n");
2086 		hw->phy.mdix = 1;
2087 		ret_val = -E1000_ERR_CONFIG;
2088 		goto out;
2089 	}
2090 
2091 out:
2092 	return (ret_val);
2093 }
2094 
2095 /*
2096  * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2097  * @hw: pointer to the HW structure
2098  * @reg: 32bit register offset such as E1000_SCTL
2099  * @offset: register offset to write to
2100  * @data: data to write at register offset
2101  *
2102  * Writes an address/data control type register.  There are several of these
2103  * and they all have the format address << 8 | data and bit 31 is polled for
2104  * completion.
2105  */
2106 s32
2107 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2108     u32 offset, u8 data)
2109 {
2110 	u32 i, regvalue = 0;
2111 	s32 ret_val = E1000_SUCCESS;
2112 
2113 	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2114 
2115 	/* Set up the address and data */
2116 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2117 	E1000_WRITE_REG(hw, reg, regvalue);
2118 
2119 	/* Poll the ready bit to see if the MDI read completed */
2120 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2121 		usec_delay(5);
2122 		regvalue = E1000_READ_REG(hw, reg);
2123 		if (regvalue & E1000_GEN_CTL_READY)
2124 			break;
2125 	}
2126 	if (!(regvalue & E1000_GEN_CTL_READY)) {
2127 		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2128 		ret_val = -E1000_ERR_PHY;
2129 		goto out;
2130 	}
2131 
2132 out:
2133 	return (ret_val);
2134 }
2135