xref: /onnv-gate/usr/src/uts/common/io/igb/igb_mac.c (revision 12111:a462ebfcbf99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 /* IntelVersion: 1.108 v3_3_14_3_BHSW1 */
31 
32 #include "igb_api.h"
33 
34 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
35 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
36 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
37 static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
38 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
39 
40 /*
41  * e1000_init_mac_ops_generic - Initialize MAC function pointers
42  * @hw: pointer to the HW structure
43  *
44  * Setups up the function pointers to no-op functions
45  */
46 void
e1000_init_mac_ops_generic(struct e1000_hw * hw)47 e1000_init_mac_ops_generic(struct e1000_hw *hw)
48 {
49 	struct e1000_mac_info *mac = &hw->mac;
50 	DEBUGFUNC("e1000_init_mac_ops_generic");
51 
52 	/* General Setup */
53 	mac->ops.init_params = e1000_null_ops_generic;
54 	mac->ops.init_hw = e1000_null_ops_generic;
55 	mac->ops.reset_hw = e1000_null_ops_generic;
56 	mac->ops.setup_physical_interface = e1000_null_ops_generic;
57 	mac->ops.get_bus_info = e1000_null_ops_generic;
58 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
59 	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
60 	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
61 	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
62 	/* LED */
63 	mac->ops.cleanup_led = e1000_null_ops_generic;
64 	mac->ops.setup_led = e1000_null_ops_generic;
65 	mac->ops.blink_led = e1000_null_ops_generic;
66 	mac->ops.led_on = e1000_null_ops_generic;
67 	mac->ops.led_off = e1000_null_ops_generic;
68 	/* LINK */
69 	mac->ops.setup_link = e1000_null_ops_generic;
70 	mac->ops.get_link_up_info = e1000_null_link_info;
71 	mac->ops.check_for_link = e1000_null_ops_generic;
72 	mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
73 	/* Management */
74 	mac->ops.check_mng_mode = e1000_null_mng_mode;
75 	mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
76 	mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
77 	mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
78 	/* VLAN, MC, etc. */
79 	mac->ops.update_mc_addr_list = e1000_null_update_mc;
80 	mac->ops.clear_vfta = e1000_null_mac_generic;
81 	mac->ops.write_vfta = e1000_null_write_vfta;
82 	mac->ops.mta_set = e1000_null_mta_set;
83 	mac->ops.rar_set = e1000_rar_set_generic;
84 	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
85 }
86 
87 /*
88  * e1000_null_ops_generic - No-op function, returns 0
89  * @hw: pointer to the HW structure
90  */
91 s32
e1000_null_ops_generic(struct e1000_hw * hw)92 e1000_null_ops_generic(struct e1000_hw *hw)
93 {
94 	DEBUGFUNC("e1000_null_ops_generic");
95 	UNREFERENCED_1PARAMETER(hw);
96 	return (E1000_SUCCESS);
97 }
98 
99 /*
100  * e1000_null_mac_generic - No-op function, return void
101  * @hw: pointer to the HW structure
102  */
103 void
e1000_null_mac_generic(struct e1000_hw * hw)104 e1000_null_mac_generic(struct e1000_hw *hw)
105 {
106 	DEBUGFUNC("e1000_null_mac_generic");
107 	UNREFERENCED_1PARAMETER(hw);
108 }
109 
110 /*
111  * e1000_null_link_info - No-op function, return 0
112  * @hw: pointer to the HW structure
113  */
114 s32
e1000_null_link_info(struct e1000_hw * hw,u16 * s,u16 * d)115 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
116 {
117 	DEBUGFUNC("e1000_null_link_info");
118 	UNREFERENCED_3PARAMETER(hw, s, d);
119 	return (E1000_SUCCESS);
120 }
121 
122 /*
123  * e1000_null_mng_mode - No-op function, return false
124  * @hw: pointer to the HW structure
125  */
126 bool
e1000_null_mng_mode(struct e1000_hw * hw)127 e1000_null_mng_mode(struct e1000_hw *hw)
128 {
129 	DEBUGFUNC("e1000_null_mng_mode");
130 	UNREFERENCED_1PARAMETER(hw);
131 	return (false);
132 }
133 
134 /*
135  * e1000_null_update_mc - No-op function, return void
136  * @hw: pointer to the HW structure
137  */
138 void
e1000_null_update_mc(struct e1000_hw * hw,u8 * h,u32 a)139 e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
140 {
141 	DEBUGFUNC("e1000_null_update_mc");
142 	UNREFERENCED_3PARAMETER(hw, h, a);
143 }
144 
145 /*
146  * e1000_null_write_vfta - No-op function, return void
147  * @hw: pointer to the HW structure
148  */
149 void
e1000_null_write_vfta(struct e1000_hw * hw,u32 a,u32 b)150 e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
151 {
152 	DEBUGFUNC("e1000_null_write_vfta");
153 	UNREFERENCED_3PARAMETER(hw, a, b);
154 }
155 
156 /*
157  * e1000_null_set_mta - No-op function, return void
158  * @hw: pointer to the HW structure
159  */
160 void
e1000_null_mta_set(struct e1000_hw * hw,u32 a)161 e1000_null_mta_set(struct e1000_hw *hw, u32 a)
162 {
163 	DEBUGFUNC("e1000_null_mta_set");
164 	UNREFERENCED_2PARAMETER(hw, a);
165 }
166 
167 /*
168  * e1000_null_rar_set - No-op function, return void
169  * @hw: pointer to the HW structure
170  */
171 void
e1000_null_rar_set(struct e1000_hw * hw,u8 * h,u32 a)172 e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
173 {
174 	DEBUGFUNC("e1000_null_rar_set");
175 	UNREFERENCED_3PARAMETER(hw, h, a);
176 }
177 
178 /*
179  * e1000_get_bus_info_pcie_generic - Get PCIe bus information
180  * @hw: pointer to the HW structure
181  *
182  * Determines and stores the system bus information for a particular
183  * network interface.  The following bus information is determined and stored:
184  * bus speed, bus width, type (PCIe), and PCIe function.
185  */
186 s32
e1000_get_bus_info_pcie_generic(struct e1000_hw * hw)187 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
188 {
189 	struct e1000_mac_info *mac = &hw->mac;
190 	struct e1000_bus_info *bus = &hw->bus;
191 	s32 ret_val;
192 	u16 pcie_link_status;
193 
194 	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
195 
196 	bus->type = e1000_bus_type_pci_express;
197 	bus->speed = e1000_bus_speed_2500;
198 
199 	ret_val = e1000_read_pcie_cap_reg(hw,
200 	    PCIE_LINK_STATUS, &pcie_link_status);
201 	if (ret_val)
202 		bus->width = e1000_bus_width_unknown;
203 	else
204 		bus->width = (enum e1000_bus_width)((pcie_link_status &
205 		    PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
206 
207 	mac->ops.set_lan_id(hw);
208 
209 	return (E1000_SUCCESS);
210 }
211 
212 /*
213  * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
214  *
215  * @hw: pointer to the HW structure
216  *
217  * Determines the LAN function id by reading memory-mapped registers
218  * and swaps the port value if requested.
219  */
220 static void
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)221 e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
222 {
223 	struct e1000_bus_info *bus = &hw->bus;
224 	u32 reg;
225 
226 	/*
227 	 * The status register reports the correct function number
228 	 * for the device regardless of function swap state.
229 	 */
230 	reg = E1000_READ_REG(hw, E1000_STATUS);
231 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
232 }
233 
234 /*
235  * e1000_set_lan_id_single_port - Set LAN id for a single port device
236  * @hw: pointer to the HW structure
237  *
238  * Sets the LAN function id to zero for a single port device.
239  */
240 void
e1000_set_lan_id_single_port(struct e1000_hw * hw)241 e1000_set_lan_id_single_port(struct e1000_hw *hw)
242 {
243 	struct e1000_bus_info *bus = &hw->bus;
244 
245 	bus->func = 0;
246 }
247 
248 /*
249  * e1000_clear_vfta_generic - Clear VLAN filter table
250  * @hw: pointer to the HW structure
251  *
252  * Clears the register array which contains the VLAN filter table by
253  * setting all the values to 0.
254  */
255 void
e1000_clear_vfta_generic(struct e1000_hw * hw)256 e1000_clear_vfta_generic(struct e1000_hw *hw)
257 {
258 	u32 offset;
259 
260 	DEBUGFUNC("e1000_clear_vfta_generic");
261 
262 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
263 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
264 		E1000_WRITE_FLUSH(hw);
265 	}
266 }
267 
268 /*
269  * e1000_write_vfta_generic - Write value to VLAN filter table
270  * @hw: pointer to the HW structure
271  * @offset: register offset in VLAN filter table
272  * @value: register value written to VLAN filter table
273  *
274  * Writes value at the given offset in the register array which stores
275  * the VLAN filter table.
276  */
277 void
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)278 e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
279 {
280 	DEBUGFUNC("e1000_write_vfta_generic");
281 
282 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
283 	E1000_WRITE_FLUSH(hw);
284 }
285 
286 /*
287  * e1000_init_rx_addrs_generic - Initialize receive address's
288  * @hw: pointer to the HW structure
289  * @rar_count: receive address registers
290  *
291  * Setups the receive address registers by setting the base receive address
292  * register to the devices MAC address and clearing all the other receive
293  * address registers to 0.
294  */
295 void
e1000_init_rx_addrs_generic(struct e1000_hw * hw,u16 rar_count)296 e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
297 {
298 	u32 i;
299 	u8 mac_addr[ETH_ADDR_LEN] = {0};
300 
301 	DEBUGFUNC("e1000_init_rx_addrs_generic");
302 
303 	/* Setup the receive address */
304 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
305 
306 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
307 
308 	/* Zero out the other (rar_entry_count - 1) receive addresses */
309 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
310 	for (i = 1; i < rar_count; i++)
311 		hw->mac.ops.rar_set(hw, mac_addr, i);
312 }
313 
314 /*
315  * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
316  * @hw: pointer to the HW structure
317  *
318  * Checks the nvm for an alternate MAC address.  An alternate MAC address
319  * can be setup by pre-boot software and must be treated like a permanent
320  * address and must override the actual permanent MAC address.  If an
321  * alternate MAC address is found it is programmed into RAR0, replacing
322  * the permanent address that was installed into RAR0 by the Si on reset.
323  * This function will return SUCCESS unless it encounters an error while
324  * reading the EEPROM.
325  */
326 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)327 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
328 {
329 	u32 i;
330 	s32 ret_val = E1000_SUCCESS;
331 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
332 	u8 alt_mac_addr[ETH_ADDR_LEN];
333 
334 	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
335 
336 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
337 	    &nvm_alt_mac_addr_offset);
338 	if (ret_val) {
339 		DEBUGOUT("NVM Read Error\n");
340 		goto out;
341 	}
342 
343 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
344 		/* There is no Alternate MAC Address */
345 		goto out;
346 	}
347 
348 	if (hw->bus.func == E1000_FUNC_1)
349 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
350 	if (hw->bus.func == E1000_FUNC_2)
351 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
352 	if (hw->bus.func == E1000_FUNC_3)
353 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
354 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
355 		offset = nvm_alt_mac_addr_offset + (i >> 1);
356 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
357 		if (ret_val) {
358 			DEBUGOUT("NVM Read Error\n");
359 			goto out;
360 		}
361 
362 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
363 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
364 	}
365 
366 	/* if multicast bit is set, the alternate address will not be used */
367 	if (alt_mac_addr[0] & 0x01) {
368 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
369 		goto out;
370 	}
371 
372 	/*
373 	 * We have a valid alternate MAC address, and we want to treat it the
374 	 * same as the normal permanent MAC address stored by the HW into the
375 	 * RAR. Do this by mapping this address into RAR0.
376 	 */
377 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
378 
379 out:
380 	return (ret_val);
381 }
382 
383 /*
384  * e1000_rar_set_generic - Set receive address register
385  * @hw: pointer to the HW structure
386  * @addr: pointer to the receive address
387  * @index: receive address array register
388  *
389  * Sets the receive address array register at index to the address passed
390  * in by addr.
391  */
392 void
e1000_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)393 e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
394 {
395 	u32 rar_low, rar_high;
396 
397 	DEBUGFUNC("e1000_rar_set_generic");
398 
399 	/*
400 	 * HW expects these in little endian so we reverse the byte order
401 	 * from network order (big endian) to little endian
402 	 */
403 	rar_low = ((u32) addr[0] |
404 	    ((u32) addr[1] << 8) |
405 	    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
406 
407 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
408 
409 	/* If MAC address zero, no need to set the AV bit */
410 	if (rar_low || rar_high)
411 		rar_high |= E1000_RAH_AV;
412 
413 	/*
414 	 * Some bridges will combine consecutive 32-bit writes into
415 	 * a single burst write, which will malfunction on some parts.
416 	 * The flushes avoid this.
417 	 */
418 	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
419 	E1000_WRITE_FLUSH(hw);
420 	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
421 	E1000_WRITE_FLUSH(hw);
422 }
423 
424 /*
425  * e1000_mta_set_generic - Set multicast filter table address
426  * @hw: pointer to the HW structure
427  * @hash_value: determines the MTA register and bit to set
428  *
429  * The multicast table address is a register array of 32-bit registers.
430  * The hash_value is used to determine what register the bit is in, the
431  * current value is read, the new bit is OR'd in and the new value is
432  * written back into the register.
433  */
434 void
e1000_mta_set_generic(struct e1000_hw * hw,u32 hash_value)435 e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
436 {
437 	u32 hash_bit, hash_reg, mta;
438 
439 	DEBUGFUNC("e1000_mta_set_generic");
440 	/*
441 	 * The MTA is a register array of 32-bit registers. It is
442 	 * treated like an array of (32*mta_reg_count) bits.  We want to
443 	 * set bit BitArray[hash_value]. So we figure out what register
444 	 * the bit is in, read it, OR in the new bit, then write
445 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
446 	 * mask to bits 31:5 of the hash value which gives us the
447 	 * register we're modifying.  The hash bit within that register
448 	 * is determined by the lower 5 bits of the hash value.
449 	 */
450 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
451 	hash_bit = hash_value & 0x1F;
452 
453 	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
454 
455 	mta |= (1 << hash_bit);
456 
457 	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
458 	E1000_WRITE_FLUSH(hw);
459 }
460 
461 /*
462  * e1000_update_mc_addr_list_generic - Update Multicast addresses
463  * @hw: pointer to the HW structure
464  * @mc_addr_list: array of multicast addresses to program
465  * @mc_addr_count: number of multicast addresses to program
466  *
467  * Updates the Multicast Table Array.
468  * The caller must have a packed mc_addr_list of multicast addresses.
469  */
470 void
e1000_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)471 e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
472     u8 *mc_addr_list, u32 mc_addr_count)
473 {
474 	u32 hash_value, hash_bit, hash_reg;
475 	int i;
476 
477 	DEBUGFUNC("e1000_update_mc_addr_list_generic");
478 
479 	/* clear mta_shadow */
480 	(void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow));
481 
482 	/* update mta_shadow from mc_addr_list */
483 	for (i = 0; (u32) i < mc_addr_count; i++) {
484 		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
485 
486 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
487 		hash_bit = hash_value & 0x1F;
488 
489 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
490 		mc_addr_list += (ETH_ADDR_LEN);
491 	}
492 
493 	/* replace the entire MTA table */
494 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
495 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
496 	E1000_WRITE_FLUSH(hw);
497 }
498 
499 /*
500  * e1000_hash_mc_addr_generic - Generate a multicast hash value
501  * @hw: pointer to the HW structure
502  * @mc_addr: pointer to a multicast address
503  *
504  * Generates a multicast address hash value which is used to determine
505  * the multicast filter table array address and new table value.  See
506  * e1000_mta_set_generic()
507  */
508 u32
e1000_hash_mc_addr_generic(struct e1000_hw * hw,u8 * mc_addr)509 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
510 {
511 	u32 hash_value, hash_mask;
512 	u8 bit_shift = 0;
513 
514 	DEBUGFUNC("e1000_hash_mc_addr_generic");
515 
516 	/* Register count multiplied by bits per register */
517 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
518 
519 	/*
520 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
521 	 * where 0xFF would still fall within the hash mask.
522 	 */
523 	while (hash_mask >> bit_shift != 0xFF)
524 		bit_shift++;
525 
526 	/*
527 	 * The portion of the address that is used for the hash table
528 	 * is determined by the mc_filter_type setting.
529 	 * The algorithm is such that there is a total of 8 bits of shifting.
530 	 * The bit_shift for a mc_filter_type of 0 represents the number of
531 	 * left-shifts where the MSB of mc_addr[5] would still fall within
532 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
533 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
534 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
535 	 * cases are a variation of this algorithm...essentially raising the
536 	 * number of bits to shift mc_addr[5] left, while still keeping the
537 	 * 8-bit shifting total.
538 	 *
539 	 * For example, given the following Destination MAC Address and an
540 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
541 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
542 	 * values resulting from each mc_filter_type...
543 	 * [0] [1] [2] [3] [4] [5]
544 	 * 01  AA  00  12  34  56
545 	 * LSB			MSB
546 	 *
547 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
548 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
549 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
550 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
551 	 */
552 	switch (hw->mac.mc_filter_type) {
553 		default:
554 		case 0:
555 			break;
556 		case 1:
557 			bit_shift += 1;
558 			break;
559 		case 2:
560 			bit_shift += 2;
561 			break;
562 		case 3:
563 			bit_shift += 4;
564 			break;
565 	}
566 
567 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
568 	    (((u16) mc_addr[5]) << bit_shift)));
569 
570 	return (hash_value);
571 }
572 
573 /*
574  * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
575  * @hw: pointer to the HW structure
576  *
577  * Clears the base hardware counters by reading the counter registers.
578  */
579 void
e1000_clear_hw_cntrs_base_generic(struct e1000_hw * hw)580 e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
581 {
582 	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
583 
584 	(void) E1000_READ_REG(hw, E1000_CRCERRS);
585 	(void) E1000_READ_REG(hw, E1000_SYMERRS);
586 	(void) E1000_READ_REG(hw, E1000_MPC);
587 	(void) E1000_READ_REG(hw, E1000_SCC);
588 	(void) E1000_READ_REG(hw, E1000_ECOL);
589 	(void) E1000_READ_REG(hw, E1000_MCC);
590 	(void) E1000_READ_REG(hw, E1000_LATECOL);
591 	(void) E1000_READ_REG(hw, E1000_COLC);
592 	(void) E1000_READ_REG(hw, E1000_DC);
593 	(void) E1000_READ_REG(hw, E1000_SEC);
594 	(void) E1000_READ_REG(hw, E1000_RLEC);
595 	(void) E1000_READ_REG(hw, E1000_XONRXC);
596 	(void) E1000_READ_REG(hw, E1000_XONTXC);
597 	(void) E1000_READ_REG(hw, E1000_XOFFRXC);
598 	(void) E1000_READ_REG(hw, E1000_XOFFTXC);
599 	(void) E1000_READ_REG(hw, E1000_FCRUC);
600 	(void) E1000_READ_REG(hw, E1000_GPRC);
601 	(void) E1000_READ_REG(hw, E1000_BPRC);
602 	(void) E1000_READ_REG(hw, E1000_MPRC);
603 	(void) E1000_READ_REG(hw, E1000_GPTC);
604 	(void) E1000_READ_REG(hw, E1000_GORCL);
605 	(void) E1000_READ_REG(hw, E1000_GORCH);
606 	(void) E1000_READ_REG(hw, E1000_GOTCL);
607 	(void) E1000_READ_REG(hw, E1000_GOTCH);
608 	(void) E1000_READ_REG(hw, E1000_RNBC);
609 	(void) E1000_READ_REG(hw, E1000_RUC);
610 	(void) E1000_READ_REG(hw, E1000_RFC);
611 	(void) E1000_READ_REG(hw, E1000_ROC);
612 	(void) E1000_READ_REG(hw, E1000_RJC);
613 	(void) E1000_READ_REG(hw, E1000_TORL);
614 	(void) E1000_READ_REG(hw, E1000_TORH);
615 	(void) E1000_READ_REG(hw, E1000_TOTL);
616 	(void) E1000_READ_REG(hw, E1000_TOTH);
617 	(void) E1000_READ_REG(hw, E1000_TPR);
618 	(void) E1000_READ_REG(hw, E1000_TPT);
619 	(void) E1000_READ_REG(hw, E1000_MPTC);
620 	(void) E1000_READ_REG(hw, E1000_BPTC);
621 }
622 
623 /*
624  * e1000_check_for_copper_link_generic - Check for link (Copper)
625  * @hw: pointer to the HW structure
626  *
627  * Checks to see of the link status of the hardware has changed.  If a
628  * change in link status has been detected, then we read the PHY registers
629  * to get the current speed/duplex if link exists.
630  */
631 s32
e1000_check_for_copper_link_generic(struct e1000_hw * hw)632 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
633 {
634 	struct e1000_mac_info *mac = &hw->mac;
635 	s32 ret_val;
636 	bool link;
637 
638 	DEBUGFUNC("e1000_check_for_copper_link");
639 
640 	/*
641 	 * We only want to go out to the PHY registers to see if Auto-Neg
642 	 * has completed and/or if our link status has changed.  The
643 	 * get_link_status flag is set upon receiving a Link Status
644 	 * Change or Rx Sequence Error interrupt.
645 	 */
646 	if (!mac->get_link_status) {
647 		ret_val = E1000_SUCCESS;
648 		goto out;
649 	}
650 
651 	/*
652 	 * First we want to see if the MII Status Register reports
653 	 * link.  If so, then we want to get the current speed/duplex
654 	 * of the PHY.
655 	 */
656 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
657 	if (ret_val)
658 		goto out;
659 
660 	if (!link)
661 		goto out; /* No link detected */
662 
663 	mac->get_link_status = false;
664 
665 	/*
666 	 * Check if there was DownShift, must be checked
667 	 * immediately after link-up
668 	 */
669 	(void) e1000_check_downshift_generic(hw);
670 
671 	/*
672 	 * If we are forcing speed/duplex, then we simply return since
673 	 * we have already determined whether we have link or not.
674 	 */
675 	if (!mac->autoneg) {
676 		ret_val = -E1000_ERR_CONFIG;
677 		goto out;
678 	}
679 
680 	/*
681 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
682 	 * of MAC speed/duplex configuration.  So we only need to
683 	 * configure Collision Distance in the MAC.
684 	 */
685 	e1000_config_collision_dist_generic(hw);
686 
687 	/*
688 	 * Configure Flow Control now that Auto-Neg has completed.
689 	 * First, we need to restore the desired flow control
690 	 * settings because we may have had to re-autoneg with a
691 	 * different link partner.
692 	 */
693 	ret_val = e1000_config_fc_after_link_up_generic(hw);
694 	if (ret_val)
695 		DEBUGOUT("Error configuring flow control\n");
696 
697 out:
698 	return (ret_val);
699 }
700 
701 /*
702  * e1000_check_for_fiber_link_generic - Check for link (Fiber)
703  * @hw: pointer to the HW structure
704  *
705  * Checks for link up on the hardware.  If link is not up and we have
706  * a signal, then we need to force link up.
707  */
708 s32
e1000_check_for_fiber_link_generic(struct e1000_hw * hw)709 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
710 {
711 	struct e1000_mac_info *mac = &hw->mac;
712 	u32 rxcw;
713 	u32 ctrl;
714 	u32 status;
715 	s32 ret_val = E1000_SUCCESS;
716 
717 	DEBUGFUNC("e1000_check_for_fiber_link_generic");
718 
719 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
720 	status = E1000_READ_REG(hw, E1000_STATUS);
721 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
722 
723 	/*
724 	 * If we don't have link (auto-negotiation failed or link partner
725 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
726 	 * and our link partner is not trying to auto-negotiate with us (we
727 	 * are receiving idles or data), we need to force link up. We also
728 	 * need to give auto-negotiation time to complete, in case the cable
729 	 * was just plugged in. The autoneg_failed flag does this.
730 	 */
731 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
732 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
733 	    (!(rxcw & E1000_RXCW_C))) {
734 		if (mac->autoneg_failed == 0) {
735 			mac->autoneg_failed = 1;
736 			goto out;
737 		}
738 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
739 
740 		/* Disable auto-negotiation in the TXCW register */
741 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
742 
743 		/* Force link-up and also force full-duplex. */
744 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
745 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
746 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
747 
748 		/* Configure Flow Control after forcing link up. */
749 		ret_val = e1000_config_fc_after_link_up_generic(hw);
750 		if (ret_val) {
751 			DEBUGOUT("Error configuring flow control\n");
752 			goto out;
753 		}
754 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
755 		/*
756 		 * If we are forcing link and we are receiving /C/ ordered
757 		 * sets, re-enable auto-negotiation in the TXCW register
758 		 * and disable forced link in the Device Control register
759 		 * in an attempt to auto-negotiate with our link partner.
760 		 */
761 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
762 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
763 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
764 
765 		mac->serdes_has_link = true;
766 	}
767 
768 out:
769 	return (ret_val);
770 }
771 
772 /*
773  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
774  * @hw: pointer to the HW structure
775  *
776  * Checks for link up on the hardware.  If link is not up and we have
777  * a signal, then we need to force link up.
778  */
779 s32
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)780 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
781 {
782 	struct e1000_mac_info *mac = &hw->mac;
783 	u32 rxcw;
784 	u32 ctrl;
785 	u32 status;
786 	s32 ret_val = E1000_SUCCESS;
787 
788 	DEBUGFUNC("e1000_check_for_serdes_link_generic");
789 
790 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
791 	status = E1000_READ_REG(hw, E1000_STATUS);
792 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
793 
794 	/*
795 	 * If we don't have link (auto-negotiation failed or link partner
796 	 * cannot auto-negotiate), and our link partner is not trying to
797 	 * auto-negotiate with us (we are receiving idles or data),
798 	 * we need to force link up. We also need to give auto-negotiation
799 	 * time to complete.
800 	 */
801 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
802 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
803 		if (mac->autoneg_failed == 0) {
804 			mac->autoneg_failed = 1;
805 			goto out;
806 		}
807 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
808 
809 		/* Disable auto-negotiation in the TXCW register */
810 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
811 
812 		/* Force link-up and also force full-duplex. */
813 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
814 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
815 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
816 
817 		/* Configure Flow Control after forcing link up. */
818 		ret_val = e1000_config_fc_after_link_up_generic(hw);
819 		if (ret_val) {
820 			DEBUGOUT("Error configuring flow control\n");
821 			goto out;
822 		}
823 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
824 		/*
825 		 * If we are forcing link and we are receiving /C/ ordered
826 		 * sets, re-enable auto-negotiation in the TXCW register
827 		 * and disable forced link in the Device Control register
828 		 * in an attempt to auto-negotiate with our link partner.
829 		 */
830 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
831 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
832 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
833 
834 		mac->serdes_has_link = true;
835 	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
836 		/*
837 		 * If we force link for non-auto-negotiation switch, check
838 		 * link status based on MAC synchronization for internal
839 		 * serdes media type.
840 		 */
841 		/* SYNCH bit and IV bit are sticky. */
842 		usec_delay(10);
843 		rxcw = E1000_READ_REG(hw, E1000_RXCW);
844 		if (rxcw & E1000_RXCW_SYNCH) {
845 			if (!(rxcw & E1000_RXCW_IV)) {
846 				mac->serdes_has_link = true;
847 				DEBUGOUT("SERDES: Link up - forced.\n");
848 			}
849 		} else {
850 			mac->serdes_has_link = false;
851 			DEBUGOUT("SERDES: Link down - force failed.\n");
852 		}
853 	}
854 
855 	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
856 		status = E1000_READ_REG(hw, E1000_STATUS);
857 		if (status & E1000_STATUS_LU) {
858 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
859 			usec_delay(10);
860 			rxcw = E1000_READ_REG(hw, E1000_RXCW);
861 			if (rxcw & E1000_RXCW_SYNCH) {
862 				if (!(rxcw & E1000_RXCW_IV)) {
863 					mac->serdes_has_link = true;
864 					DEBUGOUT("SERDES: Link up - autoneg "
865 					    "completed sucessfully.\n");
866 				} else {
867 					mac->serdes_has_link = false;
868 					DEBUGOUT("SERDES: Link down - invalid"
869 					    "codewords detected in autoneg.\n");
870 				}
871 			} else {
872 				mac->serdes_has_link = false;
873 				DEBUGOUT("SERDES: Link down - no sync.\n");
874 			}
875 		} else {
876 			mac->serdes_has_link = false;
877 			DEBUGOUT("SERDES: Link down - autoneg failed\n");
878 		}
879 	}
880 
881 out:
882 	return (ret_val);
883 }
884 
885 /*
886  * e1000_setup_link_generic - Setup flow control and link settings
887  * @hw: pointer to the HW structure
888  *
889  * Determines which flow control settings to use, then configures flow
890  * control.  Calls the appropriate media-specific link configuration
891  * function.  Assuming the adapter has a valid link partner, a valid link
892  * should be established.  Assumes the hardware has previously been reset
893  * and the transmitter and receiver are not enabled.
894  */
895 s32
e1000_setup_link_generic(struct e1000_hw * hw)896 e1000_setup_link_generic(struct e1000_hw *hw)
897 {
898 	s32 ret_val = E1000_SUCCESS;
899 
900 	DEBUGFUNC("e1000_setup_link_generic");
901 
902 	/*
903 	 * In the case of the phy reset being blocked, we already have a link.
904 	 * We do not need to set it up again.
905 	 */
906 	if (hw->phy.ops.check_reset_block)
907 		if (hw->phy.ops.check_reset_block(hw))
908 			goto out;
909 
910 	/*
911 	 * If requested flow control is set to default, set flow control
912 	 * based on the EEPROM flow control settings.
913 	 */
914 	if (hw->fc.requested_mode == e1000_fc_default) {
915 		ret_val = e1000_set_default_fc_generic(hw);
916 		if (ret_val)
917 			goto out;
918 	}
919 
920 	/*
921 	 * Save off the requested flow control mode for use later.  Depending
922 	 * on the link partner's capabilities, we may or may not use this mode.
923 	 */
924 	hw->fc.current_mode = hw->fc.requested_mode;
925 
926 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
927 	    hw->fc.current_mode);
928 
929 	/* Call the necessary media_type subroutine to configure the link. */
930 	ret_val = hw->mac.ops.setup_physical_interface(hw);
931 	if (ret_val)
932 		goto out;
933 
934 	/*
935 	 * Initialize the flow control address, type, and PAUSE timer
936 	 * registers to their default values.  This is done even if flow
937 	 * control is disabled, because it does not hurt anything to
938 	 * initialize these registers.
939 	 */
940 	DEBUGOUT("Initializing the Flow Control address,type and timer regs\n");
941 	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
942 	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
943 	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
944 
945 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
946 
947 	ret_val = e1000_set_fc_watermarks_generic(hw);
948 
949 out:
950 	return (ret_val);
951 }
952 
953 /*
954  * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
955  * @hw: pointer to the HW structure
956  *
957  * Configures collision distance and flow control for fiber and serdes
958  * links.  Upon successful setup, poll for link.
959  */
960 s32
e1000_setup_fiber_serdes_link_generic(struct e1000_hw * hw)961 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
962 {
963 	u32 ctrl;
964 	s32 ret_val = E1000_SUCCESS;
965 
966 	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
967 
968 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
969 
970 	/* Take the link out of reset */
971 	ctrl &= ~E1000_CTRL_LRST;
972 
973 	e1000_config_collision_dist_generic(hw);
974 
975 	ret_val = e1000_commit_fc_settings_generic(hw);
976 	if (ret_val)
977 		goto out;
978 
979 	/*
980 	 * Since auto-negotiation is enabled, take the link out of reset (the
981 	 * link will be in reset, because we previously reset the chip). This
982 	 * will restart auto-negotiation.  If auto-negotiation is successful
983 	 * then the link-up status bit will be set and the flow control enable
984 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
985 	 */
986 	DEBUGOUT("Auto-negotiation enabled\n");
987 
988 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
989 	E1000_WRITE_FLUSH(hw);
990 	msec_delay(1);
991 
992 	/*
993 	 * For these adapters, the SW definable pin 1 is set when the optics
994 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
995 	 * indication.
996 	 */
997 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
998 	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
999 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1000 	} else {
1001 		DEBUGOUT("No signal detected\n");
1002 	}
1003 
1004 out:
1005 	return (ret_val);
1006 }
1007 
1008 /*
1009  * e1000_config_collision_dist_generic - Configure collision distance
1010  * @hw: pointer to the HW structure
1011  *
1012  * Configures the collision distance to the default value and is used
1013  * during link setup. Currently no func pointer exists and all
1014  * implementations are handled in the generic version of this function.
1015  */
1016 void
e1000_config_collision_dist_generic(struct e1000_hw * hw)1017 e1000_config_collision_dist_generic(struct e1000_hw *hw)
1018 {
1019 	u32 tctl;
1020 
1021 	DEBUGFUNC("e1000_config_collision_dist_generic");
1022 
1023 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1024 
1025 	tctl &= ~E1000_TCTL_COLD;
1026 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1027 
1028 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1029 	E1000_WRITE_FLUSH(hw);
1030 }
1031 
1032 /*
1033  * e1000_poll_fiber_serdes_link_generic - Poll for link up
1034  * @hw: pointer to the HW structure
1035  *
1036  * Polls for link up by reading the status register, if link fails to come
1037  * up with auto-negotiation, then the link is forced if a signal is detected.
1038  */
1039 s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)1040 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1041 {
1042 	struct e1000_mac_info *mac = &hw->mac;
1043 	u32 i, status;
1044 	s32 ret_val = E1000_SUCCESS;
1045 
1046 	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1047 
1048 	/*
1049 	 * If we have a signal (the cable is plugged in, or assumed true for
1050 	 * serdes media) then poll for a "Link-Up" indication in the Device
1051 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1052 	 * seconds (Auto-negotiation should complete in less than 500
1053 	 * milliseconds even if the other end is doing it in SW).
1054 	 */
1055 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1056 		msec_delay(10);
1057 		status = E1000_READ_REG(hw, E1000_STATUS);
1058 		if (status & E1000_STATUS_LU)
1059 			break;
1060 	}
1061 	if (i == FIBER_LINK_UP_LIMIT) {
1062 		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1063 		mac->autoneg_failed = 1;
1064 		/*
1065 		 * AutoNeg failed to achieve a link, so we'll call
1066 		 * mac->check_for_link. This routine will force the
1067 		 * link up if we detect a signal. This will allow us to
1068 		 * communicate with non-autonegotiating link partners.
1069 		 */
1070 		ret_val = hw->mac.ops.check_for_link(hw);
1071 		if (ret_val) {
1072 			DEBUGOUT("Error while checking for link\n");
1073 			goto out;
1074 		}
1075 		mac->autoneg_failed = 0;
1076 	} else {
1077 		mac->autoneg_failed = 0;
1078 		DEBUGOUT("Valid Link Found\n");
1079 	}
1080 
1081 out:
1082 	return (ret_val);
1083 }
1084 
1085 /*
1086  * e1000_commit_fc_settings_generic - Configure flow control
1087  * @hw: pointer to the HW structure
1088  *
1089  * Write the flow control settings to the Transmit Config Word Register (TXCW)
1090  * base on the flow control settings in e1000_mac_info.
1091  */
1092 s32
e1000_commit_fc_settings_generic(struct e1000_hw * hw)1093 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1094 {
1095 	struct e1000_mac_info *mac = &hw->mac;
1096 	u32 txcw;
1097 	s32 ret_val = E1000_SUCCESS;
1098 
1099 	DEBUGFUNC("e1000_commit_fc_settings_generic");
1100 
1101 	/*
1102 	 * Check for a software override of the flow control settings, and
1103 	 * setup the device accordingly.  If auto-negotiation is enabled, then
1104 	 * software will have to set the "PAUSE" bits to the correct value in
1105 	 * the Transmit Config Word Register (TXCW) and re-start auto-
1106 	 * negotiation.  However, if auto-negotiation is disabled, then
1107 	 * software will have to manually configure the two flow control enable
1108 	 * bits in the CTRL register.
1109 	 *
1110 	 * The possible values of the "fc" parameter are:
1111 	 *	0:  Flow control is completely disabled
1112 	 *	1:  Rx flow control is enabled (we can receive pause frames,
1113 	 *	    but not send pause frames).
1114 	 *	2:  Tx flow control is enabled (we can send pause frames but we
1115 	 *	    do not support receiving pause frames).
1116 	 *	3:  Both Rx and Tx flow control (symmetric) are enabled.
1117 	 */
1118 	switch (hw->fc.current_mode) {
1119 	case e1000_fc_none:
1120 		/* Flow control completely disabled by a software over-ride. */
1121 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1122 		break;
1123 	case e1000_fc_rx_pause:
1124 		/*
1125 		 * Rx Flow control is enabled and Tx Flow control is disabled
1126 		 * by a software over-ride. Since there really isn't a way to
1127 		 * advertise that we are capable of Rx Pause ONLY, we will
1128 		 * advertise that we support both symmetric and asymmetric RX
1129 		 * PAUSE.  Later, we will disable the adapter's ability to send
1130 		 * PAUSE frames.
1131 		 */
1132 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1133 		break;
1134 	case e1000_fc_tx_pause:
1135 		/*
1136 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
1137 		 * by a software over-ride.
1138 		 */
1139 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1140 		break;
1141 	case e1000_fc_full:
1142 		/*
1143 		 * Flow control (both Rx and Tx) is enabled by a software
1144 		 * over-ride.
1145 		 */
1146 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1147 		break;
1148 	default:
1149 		DEBUGOUT("Flow control param set incorrectly\n");
1150 		ret_val = -E1000_ERR_CONFIG;
1151 		goto out;
1152 	}
1153 
1154 	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1155 	mac->txcw = txcw;
1156 
1157 out:
1158 	return (ret_val);
1159 }
1160 
1161 /*
1162  * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1163  * @hw: pointer to the HW structure
1164  *
1165  * Sets the flow control high/low threshold (watermark) registers.  If
1166  * flow control XON frame transmission is enabled, then set XON frame
1167  * transmission as well.
1168  */
1169 s32
e1000_set_fc_watermarks_generic(struct e1000_hw * hw)1170 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1171 {
1172 	s32 ret_val = E1000_SUCCESS;
1173 	u32 fcrtl = 0, fcrth = 0;
1174 
1175 	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1176 
1177 	/*
1178 	 * Set the flow control receive threshold registers.  Normally,
1179 	 * these registers will be set to a default threshold that may be
1180 	 * adjusted later by the driver's runtime code.  However, if the
1181 	 * ability to transmit pause frames is not enabled, then these
1182 	 * registers will be set to 0.
1183 	 */
1184 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1185 		/*
1186 		 * We need to set up the Receive Threshold high and low water
1187 		 * marks as well as (optionally) enabling the transmission of
1188 		 * XON frames.
1189 		 */
1190 		fcrtl = hw->fc.low_water;
1191 		if (hw->fc.send_xon)
1192 			fcrtl |= E1000_FCRTL_XONE;
1193 
1194 		fcrth = hw->fc.high_water;
1195 	}
1196 	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1197 	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1198 
1199 	return (ret_val);
1200 }
1201 
1202 /*
1203  * e1000_set_default_fc_generic - Set flow control default values
1204  * @hw: pointer to the HW structure
1205  *
1206  * Read the EEPROM for the default values for flow control and store the
1207  * values.
1208  */
1209 s32
e1000_set_default_fc_generic(struct e1000_hw * hw)1210 e1000_set_default_fc_generic(struct e1000_hw *hw)
1211 {
1212 	s32 ret_val = E1000_SUCCESS;
1213 	u16 nvm_data;
1214 
1215 	DEBUGFUNC("e1000_set_default_fc_generic");
1216 
1217 	/*
1218 	 * Read and store word 0x0F of the EEPROM. This word contains bits
1219 	 * that determine the hardware's default PAUSE (flow control) mode,
1220 	 * a bit that determines whether the HW defaults to enabling or
1221 	 * disabling auto-negotiation, and the direction of the
1222 	 * SW defined pins. If there is no SW over-ride of the flow
1223 	 * control setting, then the variable hw->fc will
1224 	 * be initialized based on a value in the EEPROM.
1225 	 */
1226 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
1227 
1228 	if (ret_val) {
1229 		DEBUGOUT("NVM Read Error\n");
1230 		goto out;
1231 	}
1232 
1233 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
1234 		hw->fc.requested_mode = e1000_fc_none;
1235 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
1236 	    NVM_WORD0F_ASM_DIR)
1237 		hw->fc.requested_mode = e1000_fc_tx_pause;
1238 	else
1239 		hw->fc.requested_mode = e1000_fc_full;
1240 
1241 out:
1242 	return (ret_val);
1243 }
1244 
1245 /*
1246  * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1247  * @hw: pointer to the HW structure
1248  *
1249  * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1250  * device control register to reflect the adapter settings.  TFCE and RFCE
1251  * need to be explicitly set by software when a copper PHY is used because
1252  * autonegotiation is managed by the PHY rather than the MAC.  Software must
1253  * also configure these bits when link is forced on a fiber connection.
1254  */
1255 s32
e1000_force_mac_fc_generic(struct e1000_hw * hw)1256 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1257 {
1258 	u32 ctrl;
1259 	s32 ret_val = E1000_SUCCESS;
1260 
1261 	DEBUGFUNC("e1000_force_mac_fc_generic");
1262 
1263 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1264 
1265 	/*
1266 	 * Because we didn't get link via the internal auto-negotiation
1267 	 * mechanism (we either forced link or we got link via PHY
1268 	 * auto-neg), we have to manually enable/disable transmit an
1269 	 * receive flow control.
1270 	 *
1271 	 * The "Case" statement below enables/disable flow control
1272 	 * according to the "hw->fc.current_mode" parameter.
1273 	 *
1274 	 * The possible values of the "fc" parameter are:
1275 	 *	0:  Flow control is completely disabled
1276 	 *	1:  Rx flow control is enabled (we can receive pause
1277 	 *	    frames but not send pause frames).
1278 	 *	2:  Tx flow control is enabled (we can send pause frames
1279 	 *	    frames but we do not receive pause frames).
1280 	 *	3:  Both Rx and Tx flow control (symmetric) is enabled.
1281 	 *  other:  No other values should be possible at this point.
1282 	 */
1283 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1284 
1285 	switch (hw->fc.current_mode) {
1286 	case e1000_fc_none:
1287 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1288 		break;
1289 	case e1000_fc_rx_pause:
1290 		ctrl &= (~E1000_CTRL_TFCE);
1291 		ctrl |= E1000_CTRL_RFCE;
1292 		break;
1293 	case e1000_fc_tx_pause:
1294 		ctrl &= (~E1000_CTRL_RFCE);
1295 		ctrl |= E1000_CTRL_TFCE;
1296 		break;
1297 	case e1000_fc_full:
1298 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1299 		break;
1300 	default:
1301 		DEBUGOUT("Flow control param set incorrectly\n");
1302 		ret_val = -E1000_ERR_CONFIG;
1303 		goto out;
1304 	}
1305 
1306 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1307 
1308 out:
1309 	return (ret_val);
1310 }
1311 
1312 /*
1313  * e1000_config_fc_after_link_up_generic - Configures flow control after link
1314  * @hw: pointer to the HW structure
1315  *
1316  * Checks the status of auto-negotiation after link up to ensure that the
1317  * speed and duplex were not forced.  If the link needed to be forced, then
1318  * flow control needs to be forced also.  If auto-negotiation is enabled
1319  * and did not fail, then we configure flow control based on our link
1320  * partner.
1321  */
1322 s32
e1000_config_fc_after_link_up_generic(struct e1000_hw * hw)1323 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1324 {
1325 	struct e1000_mac_info *mac = &hw->mac;
1326 	s32 ret_val = E1000_SUCCESS;
1327 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1328 	u16 speed, duplex;
1329 
1330 	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1331 
1332 	/*
1333 	 * Check for the case where we have fiber media and auto-neg failed
1334 	 * so we had to force link.  In this case, we need to force the
1335 	 * configuration of the MAC to match the "fc" parameter.
1336 	 */
1337 	if (mac->autoneg_failed) {
1338 		if (hw->phy.media_type == e1000_media_type_fiber ||
1339 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1340 			ret_val = e1000_force_mac_fc_generic(hw);
1341 	} else {
1342 		if (hw->phy.media_type == e1000_media_type_copper)
1343 			ret_val = e1000_force_mac_fc_generic(hw);
1344 	}
1345 
1346 	if (ret_val) {
1347 		DEBUGOUT("Error forcing flow control settings\n");
1348 		goto out;
1349 	}
1350 
1351 	/*
1352 	 * Check for the case where we have copper media and auto-neg is
1353 	 * enabled.  In this case, we need to check and see if Auto-Neg
1354 	 * has completed, and if so, how the PHY and link partner has
1355 	 * flow control configured.
1356 	 */
1357 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1358 		/*
1359 		 * Read the MII Status Register and check to see if AutoNeg
1360 		 * has completed.  We read this twice because this reg has
1361 		 * some "sticky" (latched) bits.
1362 		 */
1363 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1364 		if (ret_val)
1365 			goto out;
1366 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1367 		if (ret_val)
1368 			goto out;
1369 
1370 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1371 			DEBUGOUT("Copper PHY and Auto Neg "
1372 			    "has not completed.\n");
1373 			goto out;
1374 		}
1375 
1376 		/*
1377 		 * The AutoNeg process has completed, so we now need to
1378 		 * read both the Auto Negotiation Advertisement
1379 		 * Register (Address 4) and the Auto_Negotiation Base
1380 		 * Page Ability Register (Address 5) to determine how
1381 		 * flow control was negotiated.
1382 		 */
1383 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1384 		    &mii_nway_adv_reg);
1385 		if (ret_val)
1386 			goto out;
1387 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1388 		    &mii_nway_lp_ability_reg);
1389 		if (ret_val)
1390 			goto out;
1391 
1392 		/*
1393 		 * Two bits in the Auto Negotiation Advertisement Register
1394 		 * (Address 4) and two bits in the Auto Negotiation Base
1395 		 * Page Ability Register (Address 5) determine flow control
1396 		 * for both the PHY and the link partner.  The following
1397 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1398 		 * 1999, describes these PAUSE resolution bits and how flow
1399 		 * control is determined based upon these settings.
1400 		 * NOTE:  DC = Don't Care
1401 		 *
1402 		 *   LOCAL DEVICE  |   LINK PARTNER
1403 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1404 		 * ------|---------|-------|---------|--------------------
1405 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1406 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1407 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1408 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1409 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1410 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1411 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1412 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1413 		 *
1414 		 * Are both PAUSE bits set to 1?  If so, this implies
1415 		 * Symmetric Flow Control is enabled at both ends.  The
1416 		 * ASM_DIR bits are irrelevant per the spec.
1417 		 *
1418 		 * For Symmetric Flow Control:
1419 		 *
1420 		 *   LOCAL DEVICE  |   LINK PARTNER
1421 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1422 		 * ------|---------|-------|---------|--------------------
1423 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1424 		 *
1425 		 */
1426 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1427 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1428 			/*
1429 			 * Now we need to check if the user selected Rx ONLY
1430 			 * of pause frames.  In this case, we had to advertise
1431 			 * FULL flow control because we could not advertise RX
1432 			 * ONLY. Hence, we must now check to see if we need to
1433 			 * turn OFF  the TRANSMISSION of PAUSE frames.
1434 			 */
1435 			if (hw->fc.requested_mode == e1000_fc_full) {
1436 				hw->fc.current_mode = e1000_fc_full;
1437 				DEBUGOUT("Flow Control = FULL.\r\n");
1438 			} else {
1439 				hw->fc.current_mode = e1000_fc_rx_pause;
1440 				DEBUGOUT("Flow Control = "
1441 				    "RX PAUSE frames only.\r\n");
1442 			}
1443 		}
1444 		/*
1445 		 * For receiving PAUSE frames ONLY.
1446 		 *
1447 		 *   LOCAL DEVICE  |   LINK PARTNER
1448 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1449 		 * ------|---------|-------|---------|--------------------
1450 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1451 		 */
1452 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1453 		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1454 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1455 		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1456 			hw->fc.current_mode = e1000_fc_tx_pause;
1457 			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1458 		}
1459 		/*
1460 		 * For transmitting PAUSE frames ONLY.
1461 		 *
1462 		 *   LOCAL DEVICE  |   LINK PARTNER
1463 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1464 		 * ------|---------|-------|---------|--------------------
1465 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1466 		 */
1467 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1468 		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1469 		    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1470 		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1471 			hw->fc.current_mode = e1000_fc_rx_pause;
1472 			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1473 		} else {
1474 			/*
1475 			 * Per the IEEE spec, at this point flow control
1476 			 * should be disabled.
1477 			 */
1478 			hw->fc.current_mode = e1000_fc_none;
1479 			DEBUGOUT("Flow Control = NONE.\r\n");
1480 		}
1481 
1482 		/*
1483 		 * Now we need to do one last check...  If we auto-
1484 		 * negotiated to HALF DUPLEX, flow control should not be
1485 		 * enabled per IEEE 802.3 spec.
1486 		 */
1487 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1488 		if (ret_val) {
1489 			DEBUGOUT("Error getting link speed and duplex\n");
1490 			goto out;
1491 		}
1492 
1493 		if (duplex == HALF_DUPLEX)
1494 			hw->fc.current_mode = e1000_fc_none;
1495 
1496 		/*
1497 		 * Now we call a subroutine to actually force the MAC
1498 		 * controller to use the correct flow control settings.
1499 		 */
1500 		ret_val = e1000_force_mac_fc_generic(hw);
1501 		if (ret_val) {
1502 			DEBUGOUT("Error forcing flow control settings\n");
1503 			goto out;
1504 		}
1505 	}
1506 
1507 out:
1508 	return (ret_val);
1509 }
1510 
1511 /*
1512  * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1513  * @hw: pointer to the HW structure
1514  * @speed: stores the current speed
1515  * @duplex: stores the current duplex
1516  *
1517  * Read the status register for the current speed/duplex and store the current
1518  * speed and duplex for copper connections.
1519  */
1520 s32
e1000_get_speed_and_duplex_copper_generic(struct e1000_hw * hw,u16 * speed,u16 * duplex)1521 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1522     u16 *duplex)
1523 {
1524 	u32 status;
1525 
1526 	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1527 
1528 	status = E1000_READ_REG(hw, E1000_STATUS);
1529 	if (status & E1000_STATUS_SPEED_1000) {
1530 		*speed = SPEED_1000;
1531 		DEBUGOUT("1000 Mbs, ");
1532 	} else if (status & E1000_STATUS_SPEED_100) {
1533 		*speed = SPEED_100;
1534 		DEBUGOUT("100 Mbs, ");
1535 	} else {
1536 		*speed = SPEED_10;
1537 		DEBUGOUT("10 Mbs, ");
1538 	}
1539 
1540 	if (status & E1000_STATUS_FD) {
1541 		*duplex = FULL_DUPLEX;
1542 		DEBUGOUT("Full Duplex\n");
1543 	} else {
1544 		*duplex = HALF_DUPLEX;
1545 		DEBUGOUT("Half Duplex\n");
1546 	}
1547 
1548 	return (E1000_SUCCESS);
1549 }
1550 
1551 /*
1552  * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1553  * @hw: pointer to the HW structure
1554  * @speed: stores the current speed
1555  * @duplex: stores the current duplex
1556  *
1557  * Sets the speed and duplex to gigabit full duplex (the only possible option)
1558  * for fiber/serdes links.
1559  */
1560 s32
e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw * hw,u16 * speed,u16 * duplex)1561 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
1562     u16 *speed, u16 *duplex)
1563 {
1564 	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1565 	UNREFERENCED_1PARAMETER(hw);
1566 
1567 	*speed = SPEED_1000;
1568 	*duplex = FULL_DUPLEX;
1569 
1570 	return (E1000_SUCCESS);
1571 }
1572 
1573 /*
1574  * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1575  * @hw: pointer to the HW structure
1576  *
1577  * Acquire the HW semaphore to access the PHY or NVM
1578  */
1579 s32
e1000_get_hw_semaphore_generic(struct e1000_hw * hw)1580 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1581 {
1582 	u32 swsm;
1583 	s32 ret_val = E1000_SUCCESS;
1584 	s32 timeout = hw->nvm.word_size + 1;
1585 	s32 i = 0;
1586 
1587 	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1588 
1589 	/* Get the SW semaphore */
1590 	while (i < timeout) {
1591 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1592 		if (!(swsm & E1000_SWSM_SMBI))
1593 			break;
1594 
1595 		usec_delay(50);
1596 		i++;
1597 	}
1598 
1599 	if (i == timeout) {
1600 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1601 		ret_val = -E1000_ERR_NVM;
1602 		goto out;
1603 	}
1604 
1605 	/* Get the FW semaphore. */
1606 	for (i = 0; i < timeout; i++) {
1607 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1608 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1609 
1610 		/* Semaphore acquired if bit latched */
1611 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1612 			break;
1613 
1614 		usec_delay(50);
1615 	}
1616 
1617 	if (i == timeout) {
1618 		/* Release semaphores */
1619 		e1000_put_hw_semaphore_generic(hw);
1620 		DEBUGOUT("Driver can't access the NVM\n");
1621 		ret_val = -E1000_ERR_NVM;
1622 		goto out;
1623 	}
1624 
1625 out:
1626 	return (ret_val);
1627 }
1628 
1629 /*
1630  * e1000_put_hw_semaphore_generic - Release hardware semaphore
1631  * @hw: pointer to the HW structure
1632  *
1633  * Release hardware semaphore used to access the PHY or NVM
1634  */
1635 void
e1000_put_hw_semaphore_generic(struct e1000_hw * hw)1636 e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1637 {
1638 	u32 swsm;
1639 
1640 	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1641 
1642 	swsm = E1000_READ_REG(hw, E1000_SWSM);
1643 
1644 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1645 
1646 	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1647 }
1648 
1649 /*
1650  * e1000_get_auto_rd_done_generic - Check for auto read completion
1651  * @hw: pointer to the HW structure
1652  *
1653  * Check EEPROM for Auto Read done bit.
1654  */
1655 s32
e1000_get_auto_rd_done_generic(struct e1000_hw * hw)1656 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1657 {
1658 	s32 i = 0;
1659 	s32 ret_val = E1000_SUCCESS;
1660 
1661 	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1662 
1663 	while (i < AUTO_READ_DONE_TIMEOUT) {
1664 		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1665 			break;
1666 		msec_delay(1);
1667 		i++;
1668 	}
1669 
1670 	if (i == AUTO_READ_DONE_TIMEOUT) {
1671 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1672 		ret_val = -E1000_ERR_RESET;
1673 		goto out;
1674 	}
1675 
1676 out:
1677 	return (ret_val);
1678 }
1679 
1680 /*
1681  * e1000_valid_led_default_generic - Verify a valid default LED config
1682  * @hw: pointer to the HW structure
1683  * @data: pointer to the NVM (EEPROM)
1684  *
1685  * Read the EEPROM for the current default LED configuration.  If the
1686  * LED configuration is not valid, set to a valid LED configuration.
1687  */
1688 s32
e1000_valid_led_default_generic(struct e1000_hw * hw,u16 * data)1689 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1690 {
1691 	s32 ret_val;
1692 
1693 	DEBUGFUNC("e1000_valid_led_default_generic");
1694 
1695 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1696 	if (ret_val) {
1697 		DEBUGOUT("NVM Read Error\n");
1698 		goto out;
1699 	}
1700 
1701 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1702 		*data = ID_LED_DEFAULT;
1703 
1704 out:
1705 	return (ret_val);
1706 }
1707 
1708 /*
1709  * e1000_id_led_init_generic -
1710  * @hw: pointer to the HW structure
1711  *
1712  */
1713 s32
e1000_id_led_init_generic(struct e1000_hw * hw)1714 e1000_id_led_init_generic(struct e1000_hw *hw)
1715 {
1716 	struct e1000_mac_info *mac = &hw->mac;
1717 	s32 ret_val;
1718 	const u32 ledctl_mask = 0x000000FF;
1719 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1720 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1721 	u16 data, i, temp;
1722 	const u16 led_mask = 0x0F;
1723 
1724 	DEBUGFUNC("e1000_id_led_init_generic");
1725 
1726 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1727 	if (ret_val)
1728 		goto out;
1729 
1730 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1731 	mac->ledctl_mode1 = mac->ledctl_default;
1732 	mac->ledctl_mode2 = mac->ledctl_default;
1733 
1734 	for (i = 0; i < 4; i++) {
1735 		temp = (data >> (i << 2)) & led_mask;
1736 		switch (temp) {
1737 		case ID_LED_ON1_DEF2:
1738 		case ID_LED_ON1_ON2:
1739 		case ID_LED_ON1_OFF2:
1740 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1741 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1742 			break;
1743 		case ID_LED_OFF1_DEF2:
1744 		case ID_LED_OFF1_ON2:
1745 		case ID_LED_OFF1_OFF2:
1746 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1747 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1748 			break;
1749 		default:
1750 			/* Do nothing */
1751 			break;
1752 		}
1753 		switch (temp) {
1754 		case ID_LED_DEF1_ON2:
1755 		case ID_LED_ON1_ON2:
1756 		case ID_LED_OFF1_ON2:
1757 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1758 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1759 			break;
1760 		case ID_LED_DEF1_OFF2:
1761 		case ID_LED_ON1_OFF2:
1762 		case ID_LED_OFF1_OFF2:
1763 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1764 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1765 			break;
1766 		default:
1767 			/* Do nothing */
1768 			break;
1769 		}
1770 	}
1771 
1772 out:
1773 	return (ret_val);
1774 }
1775 
1776 /*
1777  * e1000_setup_led_generic - Configures SW controllable LED
1778  * @hw: pointer to the HW structure
1779  *
1780  * This prepares the SW controllable LED for use and saves the current state
1781  * of the LED so it can be later restored.
1782  */
1783 s32
e1000_setup_led_generic(struct e1000_hw * hw)1784 e1000_setup_led_generic(struct e1000_hw *hw)
1785 {
1786 	u32 ledctl;
1787 	s32 ret_val = E1000_SUCCESS;
1788 
1789 	DEBUGFUNC("e1000_setup_led_generic");
1790 
1791 	if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
1792 		ret_val = -E1000_ERR_CONFIG;
1793 		goto out;
1794 	}
1795 
1796 	if (hw->phy.media_type == e1000_media_type_fiber) {
1797 		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1798 		hw->mac.ledctl_default = ledctl;
1799 		/* Turn off LED0 */
1800 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1801 		    E1000_LEDCTL_LED0_BLINK |
1802 		    E1000_LEDCTL_LED0_MODE_MASK);
1803 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1804 		    E1000_LEDCTL_LED0_MODE_SHIFT);
1805 		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1806 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1807 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1808 	}
1809 
1810 out:
1811 	return (ret_val);
1812 }
1813 
1814 /*
1815  * e1000_cleanup_led_generic - Set LED config to default operation
1816  * @hw: pointer to the HW structure
1817  *
1818  * Remove the current LED configuration and set the LED configuration
1819  * to the default value, saved from the EEPROM.
1820  */
1821 s32
e1000_cleanup_led_generic(struct e1000_hw * hw)1822 e1000_cleanup_led_generic(struct e1000_hw *hw)
1823 {
1824 	s32 ret_val = E1000_SUCCESS;
1825 
1826 	DEBUGFUNC("e1000_cleanup_led_generic");
1827 
1828 	if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) {
1829 		ret_val = -E1000_ERR_CONFIG;
1830 		goto out;
1831 	}
1832 
1833 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1834 
1835 out:
1836 	return (ret_val);
1837 }
1838 
1839 /*
1840  * e1000_blink_led_generic - Blink LED
1841  * @hw: pointer to the HW structure
1842  *
1843  * Blink the LEDs which are set to be on.
1844  */
1845 s32
e1000_blink_led_generic(struct e1000_hw * hw)1846 e1000_blink_led_generic(struct e1000_hw *hw)
1847 {
1848 	u32 ledctl_blink = 0;
1849 	u32 i;
1850 
1851 	DEBUGFUNC("e1000_blink_led_generic");
1852 
1853 	if (hw->phy.media_type == e1000_media_type_fiber) {
1854 		/* always blink LED0 for PCI-E fiber */
1855 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1856 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1857 	} else {
1858 		/*
1859 		 * set the blink bit for each LED that's "on" (0x0E)
1860 		 * in ledctl_mode2
1861 		 */
1862 		ledctl_blink = hw->mac.ledctl_mode2;
1863 		for (i = 0; i < 4; i++)
1864 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1865 			    E1000_LEDCTL_MODE_LED_ON)
1866 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1867 				    (i * 8));
1868 	}
1869 
1870 	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1871 
1872 	return (E1000_SUCCESS);
1873 }
1874 
1875 /*
1876  * e1000_led_on_generic - Turn LED on
1877  * @hw: pointer to the HW structure
1878  *
1879  * Turn LED on.
1880  */
1881 s32
e1000_led_on_generic(struct e1000_hw * hw)1882 e1000_led_on_generic(struct e1000_hw *hw)
1883 {
1884 	u32 ctrl;
1885 
1886 	DEBUGFUNC("e1000_led_on_generic");
1887 
1888 	switch (hw->phy.media_type) {
1889 	case e1000_media_type_fiber:
1890 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1891 		ctrl &= ~E1000_CTRL_SWDPIN0;
1892 		ctrl |= E1000_CTRL_SWDPIO0;
1893 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1894 		break;
1895 	case e1000_media_type_copper:
1896 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
1897 		break;
1898 	default:
1899 		break;
1900 	}
1901 
1902 	return (E1000_SUCCESS);
1903 }
1904 
1905 /*
1906  * e1000_led_off_generic - Turn LED off
1907  * @hw: pointer to the HW structure
1908  *
1909  * Turn LED off.
1910  */
1911 s32
e1000_led_off_generic(struct e1000_hw * hw)1912 e1000_led_off_generic(struct e1000_hw *hw)
1913 {
1914 	u32 ctrl;
1915 
1916 	DEBUGFUNC("e1000_led_off_generic");
1917 
1918 	switch (hw->phy.media_type) {
1919 	case e1000_media_type_fiber:
1920 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1921 		ctrl |= E1000_CTRL_SWDPIN0;
1922 		ctrl |= E1000_CTRL_SWDPIO0;
1923 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1924 		break;
1925 	case e1000_media_type_copper:
1926 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1927 		break;
1928 	default:
1929 		break;
1930 	}
1931 
1932 	return (E1000_SUCCESS);
1933 }
1934 
1935 /*
1936  * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
1937  * @hw: pointer to the HW structure
1938  * @no_snoop: bitmap of snoop events
1939  *
1940  * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1941  */
1942 void
e1000_set_pcie_no_snoop_generic(struct e1000_hw * hw,u32 no_snoop)1943 e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
1944 {
1945 	u32 gcr;
1946 
1947 	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
1948 
1949 	if (hw->bus.type != e1000_bus_type_pci_express)
1950 		return;
1951 
1952 	if (no_snoop) {
1953 		gcr = E1000_READ_REG(hw, E1000_GCR);
1954 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1955 		gcr |= no_snoop;
1956 		E1000_WRITE_REG(hw, E1000_GCR, gcr);
1957 	}
1958 }
1959 
1960 /*
1961  * e1000_disable_pcie_master_generic - Disables PCI-express master access
1962  * @hw: pointer to the HW structure
1963  *
1964  * Returns 0 (E1000_SUCCESS) if successful, else returns -10
1965  * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1966  * the master requests to be disabled.
1967  *
1968  * Disables PCI-Express master access and verifies there are no pending
1969  * requests.
1970  */
1971 s32
e1000_disable_pcie_master_generic(struct e1000_hw * hw)1972 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
1973 {
1974 	u32 ctrl;
1975 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1976 	s32 ret_val = E1000_SUCCESS;
1977 
1978 	DEBUGFUNC("e1000_disable_pcie_master_generic");
1979 
1980 	if (hw->bus.type != e1000_bus_type_pci_express)
1981 		goto out;
1982 
1983 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1984 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1985 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1986 
1987 	while (timeout) {
1988 		if (!(E1000_READ_REG(hw, E1000_STATUS) &
1989 		    E1000_STATUS_GIO_MASTER_ENABLE))
1990 			break;
1991 		usec_delay(100);
1992 		timeout--;
1993 	}
1994 
1995 	if (!timeout) {
1996 		DEBUGOUT("Master requests are pending.\n");
1997 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1998 		goto out;
1999 	}
2000 
2001 out:
2002 	return (ret_val);
2003 }
2004 
2005 /*
2006  * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2007  * @hw: pointer to the HW structure
2008  *
2009  * Reset the Adaptive Interframe Spacing throttle to default values.
2010  */
2011 void
e1000_reset_adaptive_generic(struct e1000_hw * hw)2012 e1000_reset_adaptive_generic(struct e1000_hw *hw)
2013 {
2014 	struct e1000_mac_info *mac = &hw->mac;
2015 
2016 	DEBUGFUNC("e1000_reset_adaptive_generic");
2017 
2018 	if (!mac->adaptive_ifs) {
2019 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2020 		return;
2021 	}
2022 
2023 	mac->current_ifs_val = 0;
2024 	mac->ifs_min_val = IFS_MIN;
2025 	mac->ifs_max_val = IFS_MAX;
2026 	mac->ifs_step_size = IFS_STEP;
2027 	mac->ifs_ratio = IFS_RATIO;
2028 
2029 	mac->in_ifs_mode = false;
2030 	E1000_WRITE_REG(hw, E1000_AIT, 0);
2031 }
2032 
2033 /*
2034  * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2035  * @hw: pointer to the HW structure
2036  *
2037  * Update the Adaptive Interframe Spacing Throttle value based on the
2038  * time between transmitted packets and time between collisions.
2039  */
2040 void
e1000_update_adaptive_generic(struct e1000_hw * hw)2041 e1000_update_adaptive_generic(struct e1000_hw *hw)
2042 {
2043 	struct e1000_mac_info *mac = &hw->mac;
2044 
2045 	DEBUGFUNC("e1000_update_adaptive_generic");
2046 
2047 	if (!mac->adaptive_ifs) {
2048 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2049 		return;
2050 	}
2051 
2052 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2053 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2054 			mac->in_ifs_mode = true;
2055 			if (mac->current_ifs_val < mac->ifs_max_val) {
2056 				if (!mac->current_ifs_val)
2057 					mac->current_ifs_val = mac->ifs_min_val;
2058 				else
2059 					mac->current_ifs_val +=
2060 					    mac->ifs_step_size;
2061 				E1000_WRITE_REG(hw, E1000_AIT,
2062 				    mac->current_ifs_val);
2063 			}
2064 		}
2065 	} else {
2066 		if (mac->in_ifs_mode &&
2067 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2068 			mac->current_ifs_val = 0;
2069 			mac->in_ifs_mode = false;
2070 			E1000_WRITE_REG(hw, E1000_AIT, 0);
2071 		}
2072 	}
2073 }
2074 
2075 /*
2076  * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2077  * @hw: pointer to the HW structure
2078  *
2079  * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2080  * set, which is forced to MDI mode only.
2081  */
2082 static s32
e1000_validate_mdi_setting_generic(struct e1000_hw * hw)2083 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2084 {
2085 	s32 ret_val = E1000_SUCCESS;
2086 
2087 	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2088 
2089 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2090 		DEBUGOUT("Invalid MDI setting detected\n");
2091 		hw->phy.mdix = 1;
2092 		ret_val = -E1000_ERR_CONFIG;
2093 		goto out;
2094 	}
2095 
2096 out:
2097 	return (ret_val);
2098 }
2099 
2100 /*
2101  * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2102  * @hw: pointer to the HW structure
2103  * @reg: 32bit register offset such as E1000_SCTL
2104  * @offset: register offset to write to
2105  * @data: data to write at register offset
2106  *
2107  * Writes an address/data control type register.  There are several of these
2108  * and they all have the format address << 8 | data and bit 31 is polled for
2109  * completion.
2110  */
2111 s32
e1000_write_8bit_ctrl_reg_generic(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)2112 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2113     u32 offset, u8 data)
2114 {
2115 	u32 i, regvalue = 0;
2116 	s32 ret_val = E1000_SUCCESS;
2117 
2118 	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2119 
2120 	/* Set up the address and data */
2121 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2122 	E1000_WRITE_REG(hw, reg, regvalue);
2123 
2124 	/* Poll the ready bit to see if the MDI read completed */
2125 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2126 		usec_delay(5);
2127 		regvalue = E1000_READ_REG(hw, reg);
2128 		if (regvalue & E1000_GEN_CTL_READY)
2129 			break;
2130 	}
2131 	if (!(regvalue & E1000_GEN_CTL_READY)) {
2132 		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2133 		ret_val = -E1000_ERR_PHY;
2134 		goto out;
2135 	}
2136 
2137 out:
2138 	return (ret_val);
2139 }
2140