xref: /onnv-gate/usr/src/uts/common/io/igb/igb_82575.c (revision 12111:a462ebfcbf99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 /* IntelVersion: 1.146.2.2 v3_3_14_3_BHSW1 */
31 
32 /*
33  * 82575EB Gigabit Network Connection
34  * 82575EB Gigabit Backplane Connection
35  * 82575GB Gigabit Network Connection
36  * 82576 Gigabit Network Connection
37  * 82576 Quad Port Gigabit Mezzanine Adapter
38  */
39 
40 #include "igb_api.h"
41 
42 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
43 static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
44 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
45 static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
46 static void e1000_release_phy_82575(struct e1000_hw *hw);
47 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
48 static void e1000_release_nvm_82575(struct e1000_hw *hw);
49 static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
50 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
51 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
52     u16 *duplex);
53 static s32 e1000_init_hw_82575(struct e1000_hw *hw);
54 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
55 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
56     u16 *data);
57 static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
58 static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
59 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset,
60     u16 *data);
61 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset,
62     u16 data);
63 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
64     bool active);
65 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
66 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
67 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
68 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
69     u32 offset, u16 data);
70 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
71 static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
72 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
73     u16 *speed, u16 *duplex);
74 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
75 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
76 static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
77 static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
78 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
79 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
80 static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
81 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
82 
83 static const u16 e1000_82580_rxpbs_table[] =
84 	{36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140};
85 #define	E1000_82580_RXPBS_TABLE_SIZE \
86 	(sizeof (e1000_82580_rxpbs_table)/sizeof (u16))
87 
88 /*
89  * e1000_init_phy_params_82575 - Init PHY func ptrs.
90  * @hw: pointer to the HW structure
91  */
92 static s32
e1000_init_phy_params_82575(struct e1000_hw * hw)93 e1000_init_phy_params_82575(struct e1000_hw *hw)
94 {
95 	struct e1000_phy_info *phy = &hw->phy;
96 	s32 ret_val = E1000_SUCCESS;
97 
98 	DEBUGFUNC("e1000_init_phy_params_82575");
99 
100 	if (hw->phy.media_type != e1000_media_type_copper) {
101 		phy->type = e1000_phy_none;
102 		goto out;
103 	}
104 
105 	phy->ops.power_up = e1000_power_up_phy_copper;
106 	phy->ops.power_down = e1000_power_down_phy_copper_82575;
107 
108 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
109 	phy->reset_delay_us = 100;
110 
111 	phy->ops.acquire = e1000_acquire_phy_82575;
112 	phy->ops.check_reset_block = e1000_check_reset_block_generic;
113 	phy->ops.commit = e1000_phy_sw_reset_generic;
114 	phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
115 	phy->ops.release = e1000_release_phy_82575;
116 
117 	if (e1000_sgmii_active_82575(hw)) {
118 		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
119 		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
120 		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
121 	} else if (hw->mac.type == e1000_82580) {
122 		phy->ops.reset = e1000_phy_hw_reset_generic;
123 		phy->ops.read_reg = e1000_read_phy_reg_82580;
124 		phy->ops.write_reg = e1000_write_phy_reg_82580;
125 	} else {
126 		phy->ops.reset = e1000_phy_hw_reset_generic;
127 		phy->ops.read_reg = e1000_read_phy_reg_igp;
128 		phy->ops.write_reg = e1000_write_phy_reg_igp;
129 	}
130 
131 	/* Set phy->phy_addr and phy->id. */
132 	ret_val = e1000_get_phy_id_82575(hw);
133 
134 	/* Verify phy id and set remaining function pointers */
135 	switch (phy->id) {
136 	case M88E1111_I_PHY_ID:
137 		phy->type = e1000_phy_m88;
138 		phy->ops.check_polarity = e1000_check_polarity_m88;
139 		phy->ops.get_info = e1000_get_phy_info_m88;
140 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
141 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
142 		break;
143 	case IGP03E1000_E_PHY_ID:
144 	case IGP04E1000_E_PHY_ID:
145 		phy->type = e1000_phy_igp_3;
146 		phy->ops.check_polarity = e1000_check_polarity_igp;
147 		phy->ops.get_info = e1000_get_phy_info_igp;
148 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
149 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
150 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
151 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
152 		break;
153 	case I82580_I_PHY_ID:
154 		phy->type = e1000_phy_82580;
155 		phy->ops.check_polarity = e1000_check_polarity_82577;
156 		phy->ops.force_speed_duplex =
157 		    e1000_phy_force_speed_duplex_82577;
158 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
159 		phy->ops.get_info = e1000_get_phy_info_82577;
160 		break;
161 	default:
162 		ret_val = -E1000_ERR_PHY;
163 		goto out;
164 	}
165 
166 out:
167 	return (ret_val);
168 }
169 
170 /*
171  * e1000_init_nvm_params_82575 - Init NVM func ptrs.
172  * @hw: pointer to the HW structure
173  */
174 static s32
e1000_init_nvm_params_82575(struct e1000_hw * hw)175 e1000_init_nvm_params_82575(struct e1000_hw *hw)
176 {
177 	struct e1000_nvm_info *nvm = &hw->nvm;
178 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
179 	u16 size;
180 
181 	DEBUGFUNC("e1000_init_nvm_params_82575");
182 
183 	nvm->opcode_bits = 8;
184 	nvm->delay_usec = 1;
185 	switch (nvm->override) {
186 	case e1000_nvm_override_spi_large:
187 		nvm->page_size = 32;
188 		nvm->address_bits = 16;
189 		break;
190 	case e1000_nvm_override_spi_small:
191 		nvm->page_size = 8;
192 		nvm->address_bits = 8;
193 		break;
194 	default:
195 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
196 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
197 		break;
198 	}
199 
200 	nvm->type = e1000_nvm_eeprom_spi;
201 
202 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
203 	    E1000_EECD_SIZE_EX_SHIFT);
204 
205 	/*
206 	 * Added to a constant, "size" becomes the left-shift value
207 	 * for setting word_size.
208 	 */
209 	size += NVM_WORD_SIZE_BASE_SHIFT;
210 
211 	/* EEPROM access above 16k is unsupported */
212 	if (size > 14)
213 		size = 14;
214 	nvm->word_size = 1 << size;
215 
216 	/* Function Pointers */
217 	nvm->ops.acquire = e1000_acquire_nvm_82575;
218 	nvm->ops.read = e1000_read_nvm_eerd;
219 	nvm->ops.release = e1000_release_nvm_82575;
220 	nvm->ops.update = e1000_update_nvm_checksum_generic;
221 	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
222 	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
223 	nvm->ops.write = e1000_write_nvm_spi;
224 
225 	return (E1000_SUCCESS);
226 }
227 
228 /*
229  * e1000_init_mac_params_82575 - Init MAC func ptrs.
230  * @hw: pointer to the HW structure
231  */
232 static s32
e1000_init_mac_params_82575(struct e1000_hw * hw)233 e1000_init_mac_params_82575(struct e1000_hw *hw)
234 {
235 	struct e1000_mac_info *mac = &hw->mac;
236 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
237 	u32 ctrl_ext = 0;
238 
239 	DEBUGFUNC("e1000_init_mac_params_82575");
240 
241 	/* Set media type */
242 	/*
243 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
244 	 * based on the EEPROM. We cannot rely upon device ID. There
245 	 * is no distinguishable difference between fiber and internal
246 	 * SerDes mode on the 82575. There can be an external PHY attached
247 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
248 	 */
249 	hw->phy.media_type = e1000_media_type_copper;
250 	dev_spec->sgmii_active = false;
251 
252 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
253 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
254 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
255 		dev_spec->sgmii_active = true;
256 		ctrl_ext |= E1000_CTRL_I2C_ENA;
257 		break;
258 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
259 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
260 		hw->phy.media_type = e1000_media_type_internal_serdes;
261 		ctrl_ext |= E1000_CTRL_I2C_ENA;
262 		break;
263 	default:
264 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
265 		break;
266 	}
267 
268 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
269 
270 	/*
271 	 * if using i2c make certain the MDICNFG register is cleared to prevent
272 	 * communications from being misrouted to the mdic registers
273 	 */
274 	if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
275 		E1000_WRITE_REG(hw, E1000_MDICNFG, 0);
276 
277 	/* Set mta register count */
278 	mac->mta_reg_count = 128;
279 	/* Set uta register count */
280 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
281 	/* Set rar entry count */
282 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
283 	if (mac->type == e1000_82576)
284 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
285 	if (mac->type == e1000_82580)
286 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
287 	/* Set if part includes ASF firmware */
288 	mac->asf_firmware_present = true;
289 	/* Set if manageability features are enabled. */
290 	mac->arc_subsystem_valid =
291 	    (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
292 	    ? true : false;
293 
294 	/* Function pointers */
295 
296 	/* bus type/speed/width */
297 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
298 	/* reset */
299 	if (mac->type == e1000_82580)
300 		mac->ops.reset_hw = e1000_reset_hw_82580;
301 	else
302 		mac->ops.reset_hw = e1000_reset_hw_82575;
303 	/* hw initialization */
304 	mac->ops.init_hw = e1000_init_hw_82575;
305 	/* link setup */
306 	mac->ops.setup_link = e1000_setup_link_generic;
307 	/* physical interface link setup */
308 	mac->ops.setup_physical_interface =
309 	    (hw->phy.media_type == e1000_media_type_copper)
310 	    ? e1000_setup_copper_link_82575
311 	    : e1000_setup_serdes_link_82575;
312 	/* physical interface shutdown */
313 	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
314 	/* check for link */
315 	mac->ops.check_for_link = e1000_check_for_link_82575;
316 	/* receive address register setting */
317 	mac->ops.rar_set = e1000_rar_set_generic;
318 	/* read mac address */
319 	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
320 	/* multicast address update */
321 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
322 	/* writing VFTA */
323 	mac->ops.write_vfta = e1000_write_vfta_generic;
324 	/* clearing VFTA */
325 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
326 	/* setting MTA */
327 	mac->ops.mta_set = e1000_mta_set_generic;
328 	/* ID LED init */
329 	mac->ops.id_led_init = e1000_id_led_init_generic;
330 	/* blink LED */
331 	mac->ops.blink_led = e1000_blink_led_generic;
332 	/* setup LED */
333 	mac->ops.setup_led = e1000_setup_led_generic;
334 	/* cleanup LED */
335 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
336 	/* turn on/off LED */
337 	mac->ops.led_on = e1000_led_on_generic;
338 	mac->ops.led_off = e1000_led_off_generic;
339 	/* clear hardware counters */
340 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
341 	/* link info */
342 	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
343 
344 	/* set lan id for port to determine which phy lock to use */
345 	hw->mac.ops.set_lan_id(hw);
346 
347 	return (E1000_SUCCESS);
348 }
349 
350 /*
351  * e1000_init_function_pointers_82575 - Init func ptrs.
352  * @hw: pointer to the HW structure
353  *
354  * Called to initialize all function pointers and parameters.
355  */
356 void
e1000_init_function_pointers_82575(struct e1000_hw * hw)357 e1000_init_function_pointers_82575(struct e1000_hw *hw)
358 {
359 	DEBUGFUNC("e1000_init_function_pointers_82575");
360 
361 	hw->mac.ops.init_params = e1000_init_mac_params_82575;
362 	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
363 	hw->phy.ops.init_params = e1000_init_phy_params_82575;
364 }
365 
366 /*
367  * e1000_acquire_phy_82575 - Acquire rights to access PHY
368  * @hw: pointer to the HW structure
369  *
370  * Acquire access rights to the correct PHY.
371  */
372 static s32
e1000_acquire_phy_82575(struct e1000_hw * hw)373 e1000_acquire_phy_82575(struct e1000_hw *hw)
374 {
375 	u16 mask = E1000_SWFW_PHY0_SM;
376 
377 	DEBUGFUNC("e1000_acquire_phy_82575");
378 
379 	if (hw->bus.func == E1000_FUNC_1)
380 		mask = E1000_SWFW_PHY1_SM;
381 	else if (hw->bus.func == E1000_FUNC_2)
382 		mask = E1000_SWFW_PHY2_SM;
383 	else if (hw->bus.func == E1000_FUNC_3)
384 		mask = E1000_SWFW_PHY3_SM;
385 
386 	return (e1000_acquire_swfw_sync_82575(hw, mask));
387 }
388 
389 /*
390  * e1000_release_phy_82575 - Release rights to access PHY
391  * @hw: pointer to the HW structure
392  *
393  * A wrapper to release access rights to the correct PHY.
394  */
395 static void
e1000_release_phy_82575(struct e1000_hw * hw)396 e1000_release_phy_82575(struct e1000_hw *hw)
397 {
398 	u16 mask = E1000_SWFW_PHY0_SM;
399 
400 	DEBUGFUNC("e1000_release_phy_82575");
401 
402 	if (hw->bus.func == E1000_FUNC_1)
403 		mask = E1000_SWFW_PHY1_SM;
404 	else if (hw->bus.func == E1000_FUNC_2)
405 		mask = E1000_SWFW_PHY2_SM;
406 	else if (hw->bus.func == E1000_FUNC_3)
407 		mask = E1000_SWFW_PHY3_SM;
408 
409 	e1000_release_swfw_sync_82575(hw, mask);
410 }
411 
412 /*
413  * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
414  * @hw: pointer to the HW structure
415  * @offset: register offset to be read
416  * @data: pointer to the read data
417  *
418  * Reads the PHY register at offset using the serial gigabit media independent
419  * interface and stores the retrieved information in data.
420  */
421 static s32
e1000_read_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 * data)422 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data)
423 {
424 	s32 ret_val = -E1000_ERR_PARAM;
425 
426 	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
427 
428 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
429 		DEBUGOUT1("PHY Address %u is out of range\n", offset);
430 		goto out;
431 	}
432 
433 	ret_val = hw->phy.ops.acquire(hw);
434 	if (ret_val)
435 		goto out;
436 
437 	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
438 
439 	hw->phy.ops.release(hw);
440 
441 out:
442 	return (ret_val);
443 }
444 
445 /*
446  * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
447  * @hw: pointer to the HW structure
448  * @offset: register offset to write to
449  * @data: data to write at register offset
450  *
451  * Writes the data to PHY register at the offset using the serial gigabit
452  * media independent interface.
453  */
454 static s32
e1000_write_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 data)455 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data)
456 {
457 	s32 ret_val = -E1000_ERR_PARAM;
458 
459 	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
460 
461 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
462 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
463 		goto out;
464 	}
465 
466 	ret_val = hw->phy.ops.acquire(hw);
467 	if (ret_val)
468 		goto out;
469 
470 	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
471 
472 	hw->phy.ops.release(hw);
473 
474 out:
475 	return (ret_val);
476 }
477 
478 /*
479  * e1000_get_phy_id_82575 - Retrieve PHY addr and id
480  * @hw: pointer to the HW structure
481  *
482  * Retrieves the PHY address and ID for both PHY's which do and do not use
483  * sgmi interface.
484  */
485 static s32
e1000_get_phy_id_82575(struct e1000_hw * hw)486 e1000_get_phy_id_82575(struct e1000_hw *hw)
487 {
488 	struct e1000_phy_info *phy = &hw->phy;
489 	s32 ret_val = E1000_SUCCESS;
490 	u16 phy_id;
491 	u32 ctrl_ext;
492 
493 	DEBUGFUNC("e1000_get_phy_id_82575");
494 
495 	/*
496 	 * For SGMII PHYs, we try the list of possible addresses until
497 	 * we find one that works.  For non-SGMII PHYs
498 	 * (e.g. integrated copper PHYs), an address of 1 should
499 	 * work.  The result of this function should mean phy->phy_addr
500 	 * and phy->id are set correctly.
501 	 */
502 	if (!e1000_sgmii_active_82575(hw)) {
503 		phy->addr = 1;
504 		ret_val = e1000_get_phy_id(hw);
505 		goto out;
506 	}
507 
508 	/* Power on sgmii phy if it is disabled */
509 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
510 	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
511 	    ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
512 	E1000_WRITE_FLUSH(hw);
513 	msec_delay(300);
514 
515 	/*
516 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
517 	 * Therefore, we need to test 1-7
518 	 */
519 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
520 		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
521 		if (ret_val == E1000_SUCCESS) {
522 			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
523 			    phy_id,
524 			    phy->addr);
525 			/*
526 			 * At the time of this writing, The M88 part is
527 			 * the only supported SGMII PHY product.
528 			 */
529 			if (phy_id == M88_VENDOR)
530 				break;
531 		} else {
532 			DEBUGOUT1("PHY address %u was unreadable\n",
533 			    phy->addr);
534 		}
535 	}
536 
537 	/* A valid PHY type couldn't be found. */
538 	if (phy->addr == 8) {
539 		phy->addr = 0;
540 		ret_val = -E1000_ERR_PHY;
541 	} else {
542 		ret_val = e1000_get_phy_id(hw);
543 	}
544 
545 	/* restore previous sfp cage power state */
546 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
547 
548 out:
549 	return (ret_val);
550 }
551 
552 /*
553  * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
554  * @hw: pointer to the HW structure
555  *
556  * Resets the PHY using the serial gigabit media independent interface.
557  */
558 static s32
e1000_phy_hw_reset_sgmii_82575(struct e1000_hw * hw)559 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
560 {
561 	s32 ret_val = E1000_SUCCESS;
562 
563 	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
564 
565 	/*
566 	 * This isn't a true "hard" reset, but is the only reset
567 	 * available to us at this time.
568 	 */
569 
570 	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
571 
572 	if (!(hw->phy.ops.write_reg))
573 		goto out;
574 
575 	/*
576 	 * SFP documentation requires the following to configure the SPF module
577 	 * to work on SGMII.  No further documentation is given.
578 	 */
579 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
580 	if (ret_val)
581 		goto out;
582 
583 	ret_val = hw->phy.ops.commit(hw);
584 
585 out:
586 	return (ret_val);
587 }
588 
589 /*
590  * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
591  * @hw: pointer to the HW structure
592  * @active: true to enable LPLU, false to disable
593  *
594  * Sets the LPLU D0 state according to the active flag.  When
595  * activating LPLU this function also disables smart speed
596  * and vice versa.  LPLU will not be activated unless the
597  * device autonegotiation advertisement meets standards of
598  * either 10 or 10/100 or 10/100/1000 at all duplexes.
599  * This is a function pointer entry point only called by
600  * PHY setup routines.
601  */
602 static s32
e1000_set_d0_lplu_state_82575(struct e1000_hw * hw,bool active)603 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
604 {
605 	struct e1000_phy_info *phy = &hw->phy;
606 	s32 ret_val = E1000_SUCCESS;
607 	u16 data;
608 
609 	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
610 
611 	if (!(hw->phy.ops.read_reg))
612 		goto out;
613 
614 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
615 	if (ret_val)
616 		goto out;
617 
618 	if (active) {
619 		data |= IGP02E1000_PM_D0_LPLU;
620 		ret_val = phy->ops.write_reg(hw,
621 		    IGP02E1000_PHY_POWER_MGMT,
622 		    data);
623 		if (ret_val)
624 			goto out;
625 
626 		/* When LPLU is enabled, we should disable SmartSpeed */
627 		ret_val = phy->ops.read_reg(hw,
628 		    IGP01E1000_PHY_PORT_CONFIG,
629 		    &data);
630 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
631 		ret_val = phy->ops.write_reg(hw,
632 		    IGP01E1000_PHY_PORT_CONFIG,
633 		    data);
634 		if (ret_val)
635 			goto out;
636 	} else {
637 		data &= ~IGP02E1000_PM_D0_LPLU;
638 		ret_val = phy->ops.write_reg(hw,
639 		    IGP02E1000_PHY_POWER_MGMT,
640 		    data);
641 		/*
642 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
643 		 * during Dx states where the power conservation is most
644 		 * important.  During driver activity we should enable
645 		 * SmartSpeed, so performance is maintained.
646 		 */
647 		if (phy->smart_speed == e1000_smart_speed_on) {
648 			ret_val = phy->ops.read_reg(hw,
649 			    IGP01E1000_PHY_PORT_CONFIG,
650 			    &data);
651 			if (ret_val)
652 				goto out;
653 
654 			data |= IGP01E1000_PSCFR_SMART_SPEED;
655 			ret_val = phy->ops.write_reg(hw,
656 			    IGP01E1000_PHY_PORT_CONFIG,
657 			    data);
658 			if (ret_val)
659 				goto out;
660 		} else if (phy->smart_speed == e1000_smart_speed_off) {
661 			ret_val = phy->ops.read_reg(hw,
662 			    IGP01E1000_PHY_PORT_CONFIG,
663 			    &data);
664 			if (ret_val)
665 				goto out;
666 
667 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
668 			ret_val = phy->ops.write_reg(hw,
669 			    IGP01E1000_PHY_PORT_CONFIG,
670 			    data);
671 			if (ret_val)
672 				goto out;
673 		}
674 	}
675 
676 out:
677 	return (ret_val);
678 }
679 
680 /*
681  * e1000_acquire_nvm_82575 - Request for access to EEPROM
682  * @hw: pointer to the HW structure
683  *
684  * Acquire the necessary semaphores for exclusive access to the EEPROM.
685  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
686  * Return successful if access grant bit set, else clear the request for
687  * EEPROM access and return -E1000_ERR_NVM (-1).
688  */
689 static s32
e1000_acquire_nvm_82575(struct e1000_hw * hw)690 e1000_acquire_nvm_82575(struct e1000_hw *hw)
691 {
692 	s32 ret_val;
693 
694 	DEBUGFUNC("e1000_acquire_nvm_82575");
695 
696 	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
697 	if (ret_val)
698 		goto out;
699 
700 	ret_val = e1000_acquire_nvm_generic(hw);
701 
702 	if (ret_val)
703 		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
704 
705 out:
706 	return (ret_val);
707 }
708 
709 /*
710  * e1000_release_nvm_82575 - Release exclusive access to EEPROM
711  * @hw: pointer to the HW structure
712  *
713  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
714  * then release the semaphores acquired.
715  */
716 static void
e1000_release_nvm_82575(struct e1000_hw * hw)717 e1000_release_nvm_82575(struct e1000_hw *hw)
718 {
719 	DEBUGFUNC("e1000_release_nvm_82575");
720 
721 	e1000_release_nvm_generic(hw);
722 	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
723 }
724 
725 /*
726  * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
727  * @hw: pointer to the HW structure
728  * @mask: specifies which semaphore to acquire
729  *
730  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
731  * will also specify which port we're acquiring the lock for.
732  */
733 static s32
e1000_acquire_swfw_sync_82575(struct e1000_hw * hw,u16 mask)734 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
735 {
736 	u32 swfw_sync;
737 	u32 swmask = mask;
738 	u32 fwmask = mask << 16;
739 	s32 ret_val = E1000_SUCCESS;
740 	s32 i = 0, timeout = 200;	/* FIXME: find real value to use here */
741 
742 	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
743 
744 	while (i < timeout) {
745 		if (e1000_get_hw_semaphore_generic(hw)) {
746 			ret_val = -E1000_ERR_SWFW_SYNC;
747 			goto out;
748 		}
749 
750 		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
751 		if (!(swfw_sync & (fwmask | swmask)))
752 			break;
753 
754 		/*
755 		 * Firmware currently using resource (fwmask)
756 		 * or other software thread using resource (swmask)
757 		 */
758 		e1000_put_hw_semaphore_generic(hw);
759 		msec_delay_irq(5);
760 		i++;
761 	}
762 
763 	if (i == timeout) {
764 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
765 		ret_val = -E1000_ERR_SWFW_SYNC;
766 		goto out;
767 	}
768 
769 	swfw_sync |= swmask;
770 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
771 
772 	e1000_put_hw_semaphore_generic(hw);
773 
774 out:
775 	return (ret_val);
776 }
777 
778 /*
779  * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
780  * @hw: pointer to the HW structure
781  * @mask: specifies which semaphore to acquire
782  *
783  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
784  * will also specify which port we're releasing the lock for.
785  */
786 static void
e1000_release_swfw_sync_82575(struct e1000_hw * hw,u16 mask)787 e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
788 {
789 	u32 swfw_sync;
790 
791 	DEBUGFUNC("e1000_release_swfw_sync_82575");
792 
793 	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
794 		/* Empty */
795 	}
796 
797 	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
798 	swfw_sync &= ~mask;
799 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
800 
801 	e1000_put_hw_semaphore_generic(hw);
802 }
803 
804 /*
805  * e1000_get_cfg_done_82575 - Read config done bit
806  * @hw: pointer to the HW structure
807  *
808  * Read the management control register for the config done bit for
809  * completion status.  NOTE: silicon which is EEPROM-less will fail trying
810  * to read the config done bit, so an error is *ONLY* logged and returns
811  * E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
812  * would not be able to be reset or change link.
813  */
814 static s32
e1000_get_cfg_done_82575(struct e1000_hw * hw)815 e1000_get_cfg_done_82575(struct e1000_hw *hw)
816 {
817 	s32 timeout = PHY_CFG_TIMEOUT;
818 	s32 ret_val = E1000_SUCCESS;
819 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
820 
821 	DEBUGFUNC("e1000_get_cfg_done_82575");
822 
823 	if (hw->bus.func == E1000_FUNC_1)
824 		mask = E1000_NVM_CFG_DONE_PORT_1;
825 	else if (hw->bus.func == E1000_FUNC_2)
826 		mask = E1000_NVM_CFG_DONE_PORT_2;
827 	else if (hw->bus.func == E1000_FUNC_3)
828 		mask = E1000_NVM_CFG_DONE_PORT_3;
829 
830 	while (timeout) {
831 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
832 			break;
833 		msec_delay(1);
834 		timeout--;
835 	}
836 	if (!timeout)
837 		DEBUGOUT("MNG configuration cycle has not completed.\n");
838 
839 	/* If EEPROM is not marked present, init the PHY manually */
840 	if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
841 	    (hw->phy.type == e1000_phy_igp_3))
842 		(void) e1000_phy_init_script_igp3(hw);
843 
844 	return (ret_val);
845 }
846 
847 /*
848  * e1000_get_link_up_info_82575 - Get link speed/duplex info
849  * @hw: pointer to the HW structure
850  * @speed: stores the current speed
851  * @duplex: stores the current duplex
852  *
853  * This is a wrapper function, if using the serial gigabit media independent
854  * interface, use PCS to retrieve the link speed and duplex information.
855  * Otherwise, use the generic function to get the link speed and duplex info.
856  */
857 static s32
e1000_get_link_up_info_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)858 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex)
859 {
860 	s32 ret_val;
861 
862 	DEBUGFUNC("e1000_get_link_up_info_82575");
863 
864 	if (hw->phy.media_type != e1000_media_type_copper)
865 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
866 		    duplex);
867 	else
868 		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
869 		    duplex);
870 
871 	return (ret_val);
872 }
873 
874 /*
875  * e1000_check_for_link_82575 - Check for link
876  * @hw: pointer to the HW structure
877  *
878  * If sgmii is enabled, then use the pcs register to determine link, otherwise
879  * use the generic interface for determining link.
880  */
881 static s32
e1000_check_for_link_82575(struct e1000_hw * hw)882 e1000_check_for_link_82575(struct e1000_hw *hw)
883 {
884 	s32 ret_val;
885 	u16 speed, duplex;
886 
887 	DEBUGFUNC("e1000_check_for_link_82575");
888 
889 	/* SGMII link check is done through the PCS register. */
890 	if (hw->phy.media_type != e1000_media_type_copper) {
891 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
892 		    &duplex);
893 		/*
894 		 * Use this flag to determine if link needs to be checked or
895 		 * not.  If we have link clear the flag so that we do not
896 		 * continue to check for link.
897 		 */
898 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
899 	} else {
900 		ret_val = e1000_check_for_copper_link_generic(hw);
901 	}
902 
903 	return (ret_val);
904 }
905 
906 /*
907  * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
908  * @hw: pointer to the HW structure
909  * @speed: stores the current speed
910  * @duplex: stores the current duplex
911  *
912  * Using the physical coding sub-layer (PCS), retrieve the current speed and
913  * duplex, then store the values in the pointers provided.
914  */
915 static s32
e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)916 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
917     u16 *speed, u16 *duplex)
918 {
919 	struct e1000_mac_info *mac = &hw->mac;
920 	u32 pcs;
921 
922 	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
923 
924 	/* Set up defaults for the return values of this function */
925 	mac->serdes_has_link = false;
926 	*speed = 0;
927 	*duplex = 0;
928 
929 	/*
930 	 * Read the PCS Status register for link state. For non-copper mode,
931 	 * the status register is not accurate. The PCS status register is
932 	 * used instead.
933 	 */
934 	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
935 
936 	/*
937 	 * The link up bit determines when link is up on autoneg. The sync ok
938 	 * gets set once both sides sync up and agree upon link. Stable link
939 	 * can be determined by checking for both link up and link sync ok
940 	 */
941 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
942 		mac->serdes_has_link = true;
943 
944 		/* Detect and store PCS speed */
945 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
946 			*speed = SPEED_1000;
947 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
948 			*speed = SPEED_100;
949 		} else {
950 			*speed = SPEED_10;
951 		}
952 
953 		/* Detect and store PCS duplex */
954 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
955 			*duplex = FULL_DUPLEX;
956 		} else {
957 			*duplex = HALF_DUPLEX;
958 		}
959 	}
960 
961 	return (E1000_SUCCESS);
962 }
963 
964 /*
965  * e1000_shutdown_serdes_link_82575 - Remove link during power down
966  * @hw: pointer to the HW structure
967  *
968  * In the case of serdes shut down sfp and PCS on driver unload
969  * when management pass thru is not enabled.
970  */
971 void
e1000_shutdown_serdes_link_82575(struct e1000_hw * hw)972 e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
973 {
974 	u32 reg;
975 	u16 eeprom_data = 0;
976 
977 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
978 	    !e1000_sgmii_active_82575(hw))
979 		return;
980 
981 	if (hw->bus.func == E1000_FUNC_0)
982 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
983 	else if (hw->mac.type == e1000_82580)
984 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
985 		    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
986 		    &eeprom_data);
987 	else if (hw->bus.func == E1000_FUNC_1)
988 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
989 
990 	/*
991 	 * If APM is not enabled in the EEPROM and management interface is
992 	 * not enabled, then power down.
993 	 */
994 	if (!(eeprom_data & E1000_NVM_APME_82575) &&
995 	    !e1000_enable_mng_pass_thru(hw)) {
996 		/* Disable PCS to turn off link */
997 		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
998 		reg &= ~E1000_PCS_CFG_PCS_EN;
999 		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1000 
1001 		/* shutdown the laser */
1002 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1003 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1004 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1005 
1006 		/* flush the write to verify completion */
1007 		E1000_WRITE_FLUSH(hw);
1008 		msec_delay(1);
1009 	}
1010 }
1011 
1012 /*
1013  * e1000_reset_hw_82575 - Reset hardware
1014  * @hw: pointer to the HW structure
1015  *
1016  * This resets the hardware into a known state.
1017  */
1018 static s32
e1000_reset_hw_82575(struct e1000_hw * hw)1019 e1000_reset_hw_82575(struct e1000_hw *hw)
1020 {
1021 	u32 ctrl;
1022 	s32 ret_val;
1023 
1024 	DEBUGFUNC("e1000_reset_hw_82575");
1025 
1026 	/*
1027 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1028 	 * on the last TLP read/write transaction when MAC is reset.
1029 	 */
1030 	ret_val = e1000_disable_pcie_master_generic(hw);
1031 	if (ret_val) {
1032 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1033 	}
1034 
1035 	/* set the completion timeout for interface */
1036 	ret_val = e1000_set_pcie_completion_timeout(hw);
1037 	if (ret_val) {
1038 		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1039 	}
1040 
1041 	DEBUGOUT("Masking off all interrupts\n");
1042 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1043 
1044 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1045 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1046 	E1000_WRITE_FLUSH(hw);
1047 
1048 	msec_delay(10);
1049 
1050 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1051 
1052 	DEBUGOUT("Issuing a global reset to MAC\n");
1053 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1054 
1055 	ret_val = e1000_get_auto_rd_done_generic(hw);
1056 	if (ret_val) {
1057 		/*
1058 		 * When auto config read does not complete, do not
1059 		 * return with an error. This can happen in situations
1060 		 * where there is no eeprom and prevents getting link.
1061 		 */
1062 		DEBUGOUT("Auto Read Done did not complete\n");
1063 	}
1064 
1065 	/* If EEPROM is not present, run manual init scripts */
1066 	if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
1067 		(void) e1000_reset_init_script_82575(hw);
1068 
1069 	/* Clear any pending interrupt events. */
1070 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1071 	(void) E1000_READ_REG(hw, E1000_ICR);
1072 
1073 	/* Install any alternate MAC address into RAR0 */
1074 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1075 
1076 	return (ret_val);
1077 }
1078 
1079 /*
1080  * e1000_init_hw_82575 - Initialize hardware
1081  * @hw: pointer to the HW structure
1082  *
1083  * This inits the hardware readying it for operation.
1084  */
1085 static s32
e1000_init_hw_82575(struct e1000_hw * hw)1086 e1000_init_hw_82575(struct e1000_hw *hw)
1087 {
1088 	struct e1000_mac_info *mac = &hw->mac;
1089 	s32 ret_val;
1090 	u16 i, rar_count = mac->rar_entry_count;
1091 
1092 	DEBUGFUNC("e1000_init_hw_82575");
1093 
1094 	/* Initialize identification LED */
1095 	ret_val = mac->ops.id_led_init(hw);
1096 	if (ret_val) {
1097 		DEBUGOUT("Error initializing identification LED\n");
1098 		/* This is not fatal and we should not stop init due to this */
1099 	}
1100 
1101 	/* Disabling VLAN filtering */
1102 	DEBUGOUT("Initializing the IEEE VLAN\n");
1103 	mac->ops.clear_vfta(hw);
1104 
1105 	/* Setup the receive address */
1106 	e1000_init_rx_addrs_generic(hw, rar_count);
1107 	/* Zero out the Multicast HASH table */
1108 	DEBUGOUT("Zeroing the MTA\n");
1109 	for (i = 0; i < mac->mta_reg_count; i++)
1110 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1111 
1112 	/* Zero out the Unicast HASH table */
1113 	DEBUGOUT("Zeroing the UTA\n");
1114 	for (i = 0; i < mac->uta_reg_count; i++)
1115 		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
1116 
1117 	/* Setup link and flow control */
1118 	ret_val = mac->ops.setup_link(hw);
1119 
1120 	/*
1121 	 * Clear all of the statistics registers (clear on read).  It is
1122 	 * important that we do this after we have tried to establish link
1123 	 * because the symbol error count will increment wildly if there
1124 	 * is no link.
1125 	 */
1126 	e1000_clear_hw_cntrs_82575(hw);
1127 
1128 	return (ret_val);
1129 }
1130 
1131 /*
1132  * e1000_setup_copper_link_82575 - Configure copper link settings
1133  * @hw: pointer to the HW structure
1134  *
1135  * Configures the link for auto-neg or forced speed and duplex.  Then we check
1136  * for link, once link is established calls to configure collision distance
1137  * and flow control are called.
1138  */
1139 static s32
e1000_setup_copper_link_82575(struct e1000_hw * hw)1140 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1141 {
1142 	u32 ctrl;
1143 	s32 ret_val;
1144 
1145 	DEBUGFUNC("e1000_setup_copper_link_82575");
1146 
1147 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1148 	ctrl |= E1000_CTRL_SLU;
1149 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1150 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1151 
1152 	ret_val = e1000_setup_serdes_link_82575(hw);
1153 	if (ret_val)
1154 		goto out;
1155 
1156 	if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1157 		/* allow time for SFP cage time to power up phy */
1158 		msec_delay(300);
1159 
1160 		ret_val = hw->phy.ops.reset(hw);
1161 		if (ret_val) {
1162 			DEBUGOUT("Error resetting the PHY.\n");
1163 			goto out;
1164 		}
1165 	}
1166 	switch (hw->phy.type) {
1167 	case e1000_phy_m88:
1168 		ret_val = e1000_copper_link_setup_m88(hw);
1169 		break;
1170 	case e1000_phy_igp_3:
1171 		ret_val = e1000_copper_link_setup_igp(hw);
1172 		break;
1173 	case e1000_phy_82580:
1174 		ret_val = e1000_copper_link_setup_82577(hw);
1175 		break;
1176 	default:
1177 		ret_val = -E1000_ERR_PHY;
1178 		break;
1179 	}
1180 
1181 	if (ret_val)
1182 		goto out;
1183 
1184 	ret_val = e1000_setup_copper_link_generic(hw);
1185 out:
1186 	return (ret_val);
1187 }
1188 
1189 /*
1190  * e1000_setup_serdes_link_82575 - Setup link for serdes
1191  * @hw: pointer to the HW structure
1192  *
1193  * Configure the physical coding sub-layer (PCS) link.  The PCS link is
1194  * used on copper connections where the serialized gigabit media independent
1195  * interface (sgmii), or serdes fiber is being used.  Configures the link
1196  * for auto-negotiation or forces speed/duplex.
1197  */
1198 static s32
e1000_setup_serdes_link_82575(struct e1000_hw * hw)1199 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1200 {
1201 	u32 ctrl_ext, ctrl_reg, reg;
1202 	bool pcs_autoneg;
1203 
1204 	DEBUGFUNC("e1000_setup_serdes_link_82575");
1205 
1206 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1207 	    !e1000_sgmii_active_82575(hw))
1208 		return (E1000_SUCCESS);
1209 
1210 	/*
1211 	 * On the 82575, SerDes loopback mode persists until it is
1212 	 * explicitly turned off or a power cycle is performed.  A read to
1213 	 * the register does not indicate its status.  Therefore, we ensure
1214 	 * loopback mode is disabled during initialization.
1215 	 */
1216 	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1217 
1218 	/* power on the sfp cage if present */
1219 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1220 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1221 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1222 
1223 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1224 	ctrl_reg |= E1000_CTRL_SLU;
1225 
1226 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1227 		/* set both sw defined pins */
1228 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1229 
1230 		/* Set switch control to serdes energy detect */
1231 		reg = E1000_READ_REG(hw, E1000_CONNSW);
1232 		reg |= E1000_CONNSW_ENRGSRC;
1233 		E1000_WRITE_REG(hw, E1000_CONNSW, reg);
1234 	}
1235 
1236 	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1237 
1238 	/* default pcs_autoneg to the same setting as mac autoneg */
1239 	pcs_autoneg = hw->mac.autoneg;
1240 
1241 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1242 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1243 		/* sgmii mode lets the phy handle forcing speed/duplex */
1244 		pcs_autoneg = true;
1245 		/* autoneg time out should be disabled for SGMII mode */
1246 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1247 		break;
1248 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1249 		/* disable PCS autoneg and support parallel detect only */
1250 		pcs_autoneg = false;
1251 	default:
1252 		/*
1253 		 * non-SGMII modes only supports a speed of 1000/Full for the
1254 		 * link so it is best to just force the MAC and let the pcs
1255 		 * link either autoneg or be forced to 1000/Full
1256 		 */
1257 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1258 		    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1259 
1260 		/* set speed of 1000/Full if speed/duplex is forced */
1261 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1262 		break;
1263 	}
1264 
1265 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1266 
1267 	/*
1268 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1269 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1270 	 * mode that will be compatible with older link partners and switches.
1271 	 * However, both are supported by the hardware and some drivers/tools.
1272 	 */
1273 
1274 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1275 	    E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1276 
1277 	/*
1278 	 * We force flow control to prevent the CTRL register values from being
1279 	 * overwritten by the autonegotiated flow control values
1280 	 */
1281 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282 
1283 	if (pcs_autoneg) {
1284 		/* Set PCS register for autoneg */
1285 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1286 		    E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1287 		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1288 	} else {
1289 		/* Set PCS register for forced link */
1290 		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
1291 		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1292 	}
1293 
1294 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1295 
1296 	if (!e1000_sgmii_active_82575(hw))
1297 		(void) e1000_force_mac_fc_generic(hw);
1298 
1299 	return (E1000_SUCCESS);
1300 }
1301 
1302 /*
1303  * e1000_valid_led_default_82575 - Verify a valid default LED config
1304  * @hw: pointer to the HW structure
1305  * @data: pointer to the NVM (EEPROM)
1306  *
1307  * Read the EEPROM for the current default LED configuration.  If the
1308  * LED configuration is not valid, set to a valid LED configuration.
1309  */
1310 static s32
e1000_valid_led_default_82575(struct e1000_hw * hw,u16 * data)1311 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1312 {
1313 	s32 ret_val;
1314 
1315 	DEBUGFUNC("e1000_valid_led_default_82575");
1316 
1317 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1318 	if (ret_val) {
1319 		DEBUGOUT("NVM Read Error\n");
1320 		goto out;
1321 	}
1322 
1323 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1324 		switch (hw->phy.media_type) {
1325 		case e1000_media_type_internal_serdes:
1326 			*data = ID_LED_DEFAULT_82575_SERDES;
1327 			break;
1328 		case e1000_media_type_copper:
1329 		default:
1330 			*data = ID_LED_DEFAULT;
1331 			break;
1332 		}
1333 	}
1334 out:
1335 	return (ret_val);
1336 }
1337 
1338 /*
1339  * e1000_sgmii_active_82575 - Return sgmii state
1340  * @hw: pointer to the HW structure
1341  *
1342  * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1343  * which can be enabled for use in the embedded applications.  Simply
1344  * return the current state of the sgmii interface.
1345  */
1346 static bool
e1000_sgmii_active_82575(struct e1000_hw * hw)1347 e1000_sgmii_active_82575(struct e1000_hw *hw)
1348 {
1349 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1350 	return (dev_spec->sgmii_active);
1351 }
1352 
1353 /*
1354  * e1000_reset_init_script_82575 - Inits HW defaults after reset
1355  * @hw: pointer to the HW structure
1356  *
1357  * Inits recommended HW defaults after a reset when there is no EEPROM
1358  * detected. This is only for the 82575.
1359  */
1360 static s32
e1000_reset_init_script_82575(struct e1000_hw * hw)1361 e1000_reset_init_script_82575(struct e1000_hw *hw)
1362 {
1363 	DEBUGFUNC("e1000_reset_init_script_82575");
1364 
1365 	if (hw->mac.type == e1000_82575) {
1366 		DEBUGOUT("Running reset init script for 82575\n");
1367 		/* SerDes configuration via SERDESCTRL */
1368 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1369 		    0x00, 0x0C);
1370 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1371 		    0x01, 0x78);
1372 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1373 		    0x1B, 0x23);
1374 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL,
1375 		    0x23, 0x15);
1376 
1377 		/* CCM configuration via CCMCTL register */
1378 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
1379 		    0x14, 0x00);
1380 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL,
1381 		    0x10, 0x00);
1382 
1383 		/* PCIe lanes configuration */
1384 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1385 		    0x00, 0xEC);
1386 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1387 		    0x61, 0xDF);
1388 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1389 		    0x34, 0x05);
1390 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL,
1391 		    0x2F, 0x81);
1392 
1393 		/* PCIe PLL Configuration */
1394 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1395 		    0x02, 0x47);
1396 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1397 		    0x14, 0x00);
1398 		(void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL,
1399 		    0x10, 0x00);
1400 	}
1401 
1402 	return (E1000_SUCCESS);
1403 }
1404 
1405 /*
1406  * e1000_read_mac_addr_82575 - Read device MAC address
1407  * @hw: pointer to the HW structure
1408  */
1409 static s32
e1000_read_mac_addr_82575(struct e1000_hw * hw)1410 e1000_read_mac_addr_82575(struct e1000_hw *hw)
1411 {
1412 	s32 ret_val = E1000_SUCCESS;
1413 
1414 	DEBUGFUNC("e1000_read_mac_addr_82575");
1415 
1416 	/*
1417 	 * If there's an alternate MAC address place it in RAR0
1418 	 * so that it will override the Si installed default perm
1419 	 * address.
1420 	 */
1421 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1422 	if (ret_val)
1423 		goto out;
1424 
1425 	ret_val = e1000_read_mac_addr_generic(hw);
1426 
1427 out:
1428 	return (ret_val);
1429 }
1430 
1431 /*
1432  * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
1433  * @hw: pointer to the HW structure
1434  *
1435  * In the case of a PHY power down to save power, or to turn off link during a
1436  * driver unload, or wake on lan is not enabled, remove the link.
1437  */
1438 static void
e1000_power_down_phy_copper_82575(struct e1000_hw * hw)1439 e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
1440 {
1441 	struct e1000_phy_info *phy = &hw->phy;
1442 	struct e1000_mac_info *mac = &hw->mac;
1443 
1444 	if (!(phy->ops.check_reset_block))
1445 		return;
1446 
1447 	/* If the management interface is not enabled, then power down */
1448 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1449 		e1000_power_down_phy_copper(hw);
1450 }
1451 
1452 /*
1453  * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1454  * @hw: pointer to the HW structure
1455  *
1456  * Clears the hardware counters by reading the counter registers.
1457  */
1458 static void
e1000_clear_hw_cntrs_82575(struct e1000_hw * hw)1459 e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
1460 {
1461 	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
1462 
1463 	e1000_clear_hw_cntrs_base_generic(hw);
1464 
1465 	(void) E1000_READ_REG(hw, E1000_PRC64);
1466 	(void) E1000_READ_REG(hw, E1000_PRC127);
1467 	(void) E1000_READ_REG(hw, E1000_PRC255);
1468 	(void) E1000_READ_REG(hw, E1000_PRC511);
1469 	(void) E1000_READ_REG(hw, E1000_PRC1023);
1470 	(void) E1000_READ_REG(hw, E1000_PRC1522);
1471 	(void) E1000_READ_REG(hw, E1000_PTC64);
1472 	(void) E1000_READ_REG(hw, E1000_PTC127);
1473 	(void) E1000_READ_REG(hw, E1000_PTC255);
1474 	(void) E1000_READ_REG(hw, E1000_PTC511);
1475 	(void) E1000_READ_REG(hw, E1000_PTC1023);
1476 	(void) E1000_READ_REG(hw, E1000_PTC1522);
1477 
1478 	(void) E1000_READ_REG(hw, E1000_ALGNERRC);
1479 	(void) E1000_READ_REG(hw, E1000_RXERRC);
1480 	(void) E1000_READ_REG(hw, E1000_TNCRS);
1481 	(void) E1000_READ_REG(hw, E1000_CEXTERR);
1482 	(void) E1000_READ_REG(hw, E1000_TSCTC);
1483 	(void) E1000_READ_REG(hw, E1000_TSCTFC);
1484 
1485 	(void) E1000_READ_REG(hw, E1000_MGTPRC);
1486 	(void) E1000_READ_REG(hw, E1000_MGTPDC);
1487 	(void) E1000_READ_REG(hw, E1000_MGTPTC);
1488 
1489 	(void) E1000_READ_REG(hw, E1000_IAC);
1490 	(void) E1000_READ_REG(hw, E1000_ICRXOC);
1491 
1492 	(void) E1000_READ_REG(hw, E1000_ICRXPTC);
1493 	(void) E1000_READ_REG(hw, E1000_ICRXATC);
1494 	(void) E1000_READ_REG(hw, E1000_ICTXPTC);
1495 	(void) E1000_READ_REG(hw, E1000_ICTXATC);
1496 	(void) E1000_READ_REG(hw, E1000_ICTXQEC);
1497 	(void) E1000_READ_REG(hw, E1000_ICTXQMTC);
1498 	(void) E1000_READ_REG(hw, E1000_ICRXDMTC);
1499 
1500 	(void) E1000_READ_REG(hw, E1000_CBTMPC);
1501 	(void) E1000_READ_REG(hw, E1000_HTDPMC);
1502 	(void) E1000_READ_REG(hw, E1000_CBRMPC);
1503 	(void) E1000_READ_REG(hw, E1000_RPTHC);
1504 	(void) E1000_READ_REG(hw, E1000_HGPTC);
1505 	(void) E1000_READ_REG(hw, E1000_HTCBDPC);
1506 	(void) E1000_READ_REG(hw, E1000_HGORCL);
1507 	(void) E1000_READ_REG(hw, E1000_HGORCH);
1508 	(void) E1000_READ_REG(hw, E1000_HGOTCL);
1509 	(void) E1000_READ_REG(hw, E1000_HGOTCH);
1510 	(void) E1000_READ_REG(hw, E1000_LENERRS);
1511 
1512 	/* This register should not be read in copper configurations */
1513 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
1514 	    e1000_sgmii_active_82575(hw))
1515 		(void) E1000_READ_REG(hw, E1000_SCVPC);
1516 }
1517 
1518 /*
1519  * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1520  * @hw: pointer to the HW structure
1521  *
1522  * After rx enable if managability is enabled then there is likely some
1523  * bad data at the start of the fifo and possibly in the DMA fifo.  This
1524  * function clears the fifos and flushes any packets that came in as rx was
1525  * being enabled.
1526  */
1527 void
e1000_rx_fifo_flush_82575(struct e1000_hw * hw)1528 e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
1529 {
1530 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1531 	int i, ms_wait;
1532 
1533 	DEBUGFUNC("e1000_rx_fifo_workaround_82575");
1534 	if (hw->mac.type != e1000_82575 ||
1535 	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1536 		return;
1537 
1538 	/* Disable all RX queues */
1539 	for (i = 0; i < 4; i++) {
1540 		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
1541 		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
1542 		    rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1543 	}
1544 	/* Poll all queues to verify they have shut down */
1545 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1546 		msec_delay(1);
1547 		rx_enabled = 0;
1548 		for (i = 0; i < 4; i++)
1549 			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
1550 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1551 			break;
1552 	}
1553 
1554 	if (ms_wait == 10)
1555 		DEBUGOUT("Queue disable timed out after 10ms\n");
1556 
1557 	/*
1558 	 * Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1559 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1560 	 * any packet that was coming in as RCTL.EN was set is flushed
1561 	 */
1562 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1563 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1564 
1565 	rlpml = E1000_READ_REG(hw, E1000_RLPML);
1566 	E1000_WRITE_REG(hw, E1000_RLPML, 0);
1567 
1568 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1569 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1570 	temp_rctl |= E1000_RCTL_LPE;
1571 
1572 	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
1573 	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1574 	E1000_WRITE_FLUSH(hw);
1575 	msec_delay(2);
1576 
1577 	/*
1578 	 * Enable RX queues that were previously enabled and restore our
1579 	 * previous state
1580 	 */
1581 	for (i = 0; i < 4; i++)
1582 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
1583 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1584 	E1000_WRITE_FLUSH(hw);
1585 
1586 	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
1587 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1588 
1589 	/* Flush receive errors generated by workaround */
1590 	(void) E1000_READ_REG(hw, E1000_ROC);
1591 	(void) E1000_READ_REG(hw, E1000_RNBC);
1592 	(void) E1000_READ_REG(hw, E1000_MPC);
1593 }
1594 
1595 /*
1596  * e1000_set_pcie_completion_timeout - set pci-e completion timeout
1597  * @hw: pointer to the HW structure
1598  *
1599  * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1600  * however the hardware default for these parts is 500us to 1ms which is less
1601  * than the 10ms recommended by the pci-e spec.  To address this we need to
1602  * increase the value to either 10ms to 200ms for capability version 1 config,
1603  * or 16ms to 55ms for version 2.
1604  */
1605 static s32
e1000_set_pcie_completion_timeout(struct e1000_hw * hw)1606 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
1607 {
1608 	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
1609 	s32 ret_val = E1000_SUCCESS;
1610 	u16 pcie_devctl2;
1611 
1612 	/* only take action if timeout value is defaulted to 0 */
1613 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1614 		goto out;
1615 
1616 	/*
1617 	 * if capababilities version is type 1 we can write the
1618 	 * timeout of 10ms to 200ms through the GCR register
1619 	 */
1620 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1621 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1622 		goto out;
1623 	}
1624 
1625 	/*
1626 	 * for version 2 capabilities we need to write the config space
1627 	 * directly in order to set the completion timeout value for
1628 	 * 16ms to 55ms
1629 	 */
1630 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1631 	    &pcie_devctl2);
1632 	if (ret_val)
1633 		goto out;
1634 
1635 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1636 
1637 	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1638 	    &pcie_devctl2);
1639 out:
1640 	/* disable completion timeout resend */
1641 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1642 
1643 	E1000_WRITE_REG(hw, E1000_GCR, gcr);
1644 	return (ret_val);
1645 }
1646 
1647 /*
1648  * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
1649  * @hw: pointer to the hardware struct
1650  * @enable: state to enter, either enabled or disabled
1651  *
1652  * enables/disables L2 switch loopback functionality.
1653  */
1654 void
e1000_vmdq_set_loopback_pf(struct e1000_hw * hw,bool enable)1655 e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1656 {
1657 	u32 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
1658 
1659 	if (enable)
1660 		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1661 	else
1662 		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1663 
1664 	E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
1665 }
1666 
1667 /*
1668  * e1000_vmdq_set_replication_pf - enable or disable vmdq replication
1669  * @hw: pointer to the hardware struct
1670  * @enable: state to enter, either enabled or disabled
1671  *
1672  * enables/disables replication of packets across multiple pools.
1673  */
1674 void
e1000_vmdq_set_replication_pf(struct e1000_hw * hw,bool enable)1675 e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1676 {
1677 	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
1678 
1679 	if (enable)
1680 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1681 	else
1682 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1683 
1684 	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
1685 }
1686 
1687 /*
1688  * e1000_read_phy_reg_82580 - Read 82580 MDI control register
1689  * @hw: pointer to the HW structure
1690  * @offset: register offset to be read
1691  * @data: pointer to the read data
1692  *
1693  * Reads the MDI control register in the PHY at offset and stores the
1694  * information read to data.
1695  */
1696 static s32
e1000_read_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 * data)1697 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1698 {
1699 	u32 mdicnfg = 0;
1700 	s32 ret_val;
1701 
1702 	DEBUGFUNC("e1000_read_phy_reg_82580");
1703 
1704 	ret_val = hw->phy.ops.acquire(hw);
1705 	if (ret_val)
1706 		goto out;
1707 
1708 	/*
1709 	 * We config the phy address in MDICNFG register now. Same bits
1710 	 * as before. The values in MDIC can be written but will be
1711 	 * ignored. This allows us to call the old function after
1712 	 * configuring the PHY address in the new register
1713 	 */
1714 	mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1715 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
1716 
1717 	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
1718 
1719 	hw->phy.ops.release(hw);
1720 
1721 out:
1722 	return (ret_val);
1723 }
1724 
1725 /*
1726  * e1000_write_phy_reg_82580 - Write 82580 MDI control register
1727  * @hw: pointer to the HW structure
1728  * @offset: register offset to write to
1729  * @data: data to write to register at offset
1730  *
1731  * Writes data to MDI control register in the PHY at offset.
1732  */
1733 static s32
e1000_write_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 data)1734 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1735 {
1736 	u32 mdicnfg = 0;
1737 	s32 ret_val;
1738 
1739 	DEBUGFUNC("e1000_write_phy_reg_82580");
1740 
1741 	ret_val = hw->phy.ops.acquire(hw);
1742 	if (ret_val)
1743 		goto out;
1744 
1745 	/*
1746 	 * We config the phy address in MDICNFG register now. Same bits
1747 	 * as before. The values in MDIC can be written but will be
1748 	 * ignored. This allows us to call the old function after
1749 	 * configuring the PHY address in the new register
1750 	 */
1751 	mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1752 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
1753 
1754 	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
1755 
1756 	hw->phy.ops.release(hw);
1757 
1758 out:
1759 	return (ret_val);
1760 }
1761 
1762 /*
1763  * e1000_reset_hw_82580 - Reset hardware
1764  * @hw: pointer to the HW structure
1765  *
1766  * This resets function or entire device (all ports, etc.)
1767  * to a known state.
1768  */
1769 static s32
e1000_reset_hw_82580(struct e1000_hw * hw)1770 e1000_reset_hw_82580(struct e1000_hw *hw)
1771 {
1772 	s32 ret_val = E1000_SUCCESS;
1773 	/* BH SW mailbox bit in SW_FW_SYNC */
1774 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1775 	u32 ctrl;
1776 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1777 
1778 	DEBUGFUNC("e1000_reset_hw_82580");
1779 
1780 	hw->dev_spec._82575.global_device_reset = false;
1781 
1782 	/* Get current control state. */
1783 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1784 
1785 	/*
1786 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1787 	 * on the last TLP read/write transaction when MAC is reset.
1788 	 */
1789 	ret_val = e1000_disable_pcie_master_generic(hw);
1790 	if (ret_val)
1791 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1792 
1793 	DEBUGOUT("Masking off all interrupts\n");
1794 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1795 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1796 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1797 	E1000_WRITE_FLUSH(hw);
1798 
1799 	msec_delay(10);
1800 
1801 	/* Determine whether or not a global dev reset is requested */
1802 	if (global_device_reset &&
1803 	    e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
1804 		global_device_reset = false;
1805 
1806 	if (global_device_reset &&
1807 	    !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1808 		ctrl |= E1000_CTRL_DEV_RST;
1809 	else
1810 		ctrl |= E1000_CTRL_RST;
1811 
1812 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1813 
1814 	/* Add delay to insure DEV_RST has time to complete */
1815 	if (global_device_reset)
1816 		msec_delay(5);
1817 
1818 	ret_val = e1000_get_auto_rd_done_generic(hw);
1819 	if (ret_val) {
1820 		/*
1821 		 * When auto config read does not complete, do not
1822 		 * return with an error. This can happen in situations
1823 		 * where there is no eeprom and prevents getting link.
1824 		 */
1825 		DEBUGOUT("Auto Read Done did not complete\n");
1826 	}
1827 
1828 	/* If EEPROM is not present, run manual init scripts */
1829 	if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
1830 		(void) e1000_reset_init_script_82575(hw);
1831 
1832 	/* clear global device reset status bit */
1833 	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
1834 
1835 	/* Clear any pending interrupt events. */
1836 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1837 	(void) E1000_READ_REG(hw, E1000_ICR);
1838 
1839 	/* Install any alternate MAC address into RAR0 */
1840 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1841 
1842 	/* Release semaphore */
1843 	if (global_device_reset)
1844 		e1000_release_swfw_sync_82575(hw, swmbsw_mask);
1845 
1846 	return (ret_val);
1847 }
1848 
1849 /*
1850  * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1851  * @data: data received by reading RXPBS register
1852  *
1853  * The 82580 uses a table based approach for packet buffer allocation sizes.
1854  * This function converts the retrieved value into the correct table value
1855  *    0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1856  * 0x0 36  72 144   1   2   4   8  16
1857  * 0x8 35  70 140 rsv rsv rsv rsv rsv
1858  */
1859 u16
e1000_rxpbs_adjust_82580(u32 data)1860 e1000_rxpbs_adjust_82580(u32 data)
1861 {
1862 	u16 ret_val = 0;
1863 
1864 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1865 		ret_val = e1000_82580_rxpbs_table[data];
1866 
1867 	return (ret_val);
1868 }
1869