1 /*
2 * This file is provided under a CDDLv1 license. When using or
3 * redistributing this file, you may do so under this license.
4 * In redistributing this file this license must be included
5 * and no other modification of this header file is permitted.
6 *
7 * CDDL LICENSE SUMMARY
8 *
9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10 *
11 * The contents of this file are subject to the terms of Version
12 * 1.0 of the Common Development and Distribution License (the "License").
13 *
14 * You should have received a copy of the License with this software.
15 * You can obtain a copy of the License at
16 * http://www.opensolaris.org/os/licensing.
17 * See the License for the specific language governing permissions
18 * and limitations under the License.
19 */
20
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms of the CDDLv1.
24 */
25
26 /*
27 * IntelVersion: 1.108 v3-1-10-1_2009-9-18_Release14-6
28 */
29 #include "e1000_api.h"
30
31 static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
32 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
33
34 /*
35 * e1000_init_mac_ops_generic - Initialize MAC function pointers
36 * @hw: pointer to the HW structure
37 *
38 * Setups up the function pointers to no-op functions
39 */
40 void
e1000_init_mac_ops_generic(struct e1000_hw * hw)41 e1000_init_mac_ops_generic(struct e1000_hw *hw)
42 {
43 struct e1000_mac_info *mac = &hw->mac;
44 DEBUGFUNC("e1000_init_mac_ops_generic");
45
46 /* General Setup */
47 mac->ops.init_params = e1000_null_ops_generic;
48 mac->ops.init_hw = e1000_null_ops_generic;
49 mac->ops.reset_hw = e1000_null_ops_generic;
50 mac->ops.setup_physical_interface = e1000_null_ops_generic;
51 mac->ops.get_bus_info = e1000_null_ops_generic;
52 mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
53 mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
54 mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
55 mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
56 /* LED */
57 mac->ops.cleanup_led = e1000_null_ops_generic;
58 mac->ops.setup_led = e1000_null_ops_generic;
59 mac->ops.blink_led = e1000_null_ops_generic;
60 mac->ops.led_on = e1000_null_ops_generic;
61 mac->ops.led_off = e1000_null_ops_generic;
62 /* LINK */
63 mac->ops.setup_link = e1000_null_ops_generic;
64 mac->ops.get_link_up_info = e1000_null_link_info;
65 mac->ops.check_for_link = e1000_null_ops_generic;
66 mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
67 /* Management */
68 mac->ops.check_mng_mode = e1000_null_mng_mode;
69 mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
70 mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
71 mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
72 /* VLAN, MC, etc. */
73 mac->ops.update_mc_addr_list = e1000_null_update_mc;
74 mac->ops.clear_vfta = e1000_null_mac_generic;
75 mac->ops.write_vfta = e1000_null_write_vfta;
76 mac->ops.mta_set = e1000_null_mta_set;
77 mac->ops.rar_set = e1000_rar_set_generic;
78 mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
79 }
80
81 /*
82 * e1000_null_ops_generic - No-op function, returns 0
83 * @hw: pointer to the HW structure
84 */
85 s32
e1000_null_ops_generic(struct e1000_hw * hw)86 e1000_null_ops_generic(struct e1000_hw *hw)
87 {
88 DEBUGFUNC("e1000_null_ops_generic");
89 UNREFERENCED_1PARAMETER(hw);
90 return (E1000_SUCCESS);
91 }
92
93 /*
94 * e1000_null_mac_generic - No-op function, return void
95 * @hw: pointer to the HW structure
96 */
97 void
e1000_null_mac_generic(struct e1000_hw * hw)98 e1000_null_mac_generic(struct e1000_hw *hw)
99 {
100 DEBUGFUNC("e1000_null_mac_generic");
101 UNREFERENCED_1PARAMETER(hw);
102 }
103
104 /*
105 * e1000_null_link_info - No-op function, return 0
106 * @hw: pointer to the HW structure
107 */
108 s32
e1000_null_link_info(struct e1000_hw * hw,u16 * s,u16 * d)109 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
110 {
111 DEBUGFUNC("e1000_null_link_info");
112 UNREFERENCED_3PARAMETER(hw, s, d);
113 return (E1000_SUCCESS);
114 }
115
116 /*
117 * e1000_null_mng_mode - No-op function, return false
118 * @hw: pointer to the HW structure
119 */
120 bool
e1000_null_mng_mode(struct e1000_hw * hw)121 e1000_null_mng_mode(struct e1000_hw *hw)
122 {
123 DEBUGFUNC("e1000_null_mng_mode");
124 UNREFERENCED_1PARAMETER(hw);
125 return (false);
126 }
127
128 /*
129 * e1000_null_update_mc - No-op function, return void
130 * @hw: pointer to the HW structure
131 */
132 void
e1000_null_update_mc(struct e1000_hw * hw,u8 * h,u32 a)133 e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
134 {
135 DEBUGFUNC("e1000_null_update_mc");
136 UNREFERENCED_3PARAMETER(hw, h, a);
137 }
138
139 /*
140 * e1000_null_write_vfta - No-op function, return void
141 * @hw: pointer to the HW structure
142 */
143 void
e1000_null_write_vfta(struct e1000_hw * hw,u32 a,u32 b)144 e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
145 {
146 DEBUGFUNC("e1000_null_write_vfta");
147 UNREFERENCED_3PARAMETER(hw, a, b);
148 }
149
150 /*
151 * e1000_null_set_mta - No-op function, return void
152 * @hw: pointer to the HW structure
153 */
154 void
e1000_null_mta_set(struct e1000_hw * hw,u32 a)155 e1000_null_mta_set(struct e1000_hw *hw, u32 a)
156 {
157 DEBUGFUNC("e1000_null_mta_set");
158 UNREFERENCED_2PARAMETER(hw, a);
159 }
160
161 /*
162 * e1000_null_rar_set - No-op function, return void
163 * @hw: pointer to the HW structure
164 */
165 void
e1000_null_rar_set(struct e1000_hw * hw,u8 * h,u32 a)166 e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
167 {
168 DEBUGFUNC("e1000_null_rar_set");
169 UNREFERENCED_3PARAMETER(hw, h, a);
170 }
171
172 /*
173 * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
174 * @hw: pointer to the HW structure
175 *
176 * Determines and stores the system bus information for a particular
177 * network interface. The following bus information is determined and stored:
178 * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
179 */
180 s32
e1000_get_bus_info_pci_generic(struct e1000_hw * hw)181 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
182 {
183 struct e1000_mac_info *mac = &hw->mac;
184 struct e1000_bus_info *bus = &hw->bus;
185 u32 status = E1000_READ_REG(hw, E1000_STATUS);
186 s32 ret_val = E1000_SUCCESS;
187
188 DEBUGFUNC("e1000_get_bus_info_pci_generic");
189
190 /* PCI or PCI-X? */
191 bus->type = (status & E1000_STATUS_PCIX_MODE)
192 ? e1000_bus_type_pcix
193 : e1000_bus_type_pci;
194
195 /* Bus speed */
196 if (bus->type == e1000_bus_type_pci) {
197 bus->speed = (status & E1000_STATUS_PCI66)
198 ? e1000_bus_speed_66
199 : e1000_bus_speed_33;
200 } else {
201 switch (status & E1000_STATUS_PCIX_SPEED) {
202 case E1000_STATUS_PCIX_SPEED_66:
203 bus->speed = e1000_bus_speed_66;
204 break;
205 case E1000_STATUS_PCIX_SPEED_100:
206 bus->speed = e1000_bus_speed_100;
207 break;
208 case E1000_STATUS_PCIX_SPEED_133:
209 bus->speed = e1000_bus_speed_133;
210 break;
211 default:
212 bus->speed = e1000_bus_speed_reserved;
213 break;
214 }
215 }
216
217 /* Bus width */
218 bus->width = (status & E1000_STATUS_BUS64)
219 ? e1000_bus_width_64
220 : e1000_bus_width_32;
221
222 /* Which PCI(-X) function? */
223 mac->ops.set_lan_id(hw);
224
225 return (ret_val);
226 }
227
228 /*
229 * e1000_get_bus_info_pcie_generic - Get PCIe bus information
230 * @hw: pointer to the HW structure
231 *
232 * Determines and stores the system bus information for a particular
233 * network interface. The following bus information is determined and stored:
234 * bus speed, bus width, type (PCIe), and PCIe function.
235 */
236 s32
e1000_get_bus_info_pcie_generic(struct e1000_hw * hw)237 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
238 {
239 struct e1000_mac_info *mac = &hw->mac;
240 struct e1000_bus_info *bus = &hw->bus;
241 s32 ret_val;
242 u16 pcie_link_status;
243
244 DEBUGFUNC("e1000_get_bus_info_pcie_generic");
245
246 bus->type = e1000_bus_type_pci_express;
247 bus->speed = e1000_bus_speed_2500;
248
249 ret_val = e1000_read_pcie_cap_reg(hw,
250 PCIE_LINK_STATUS,
251 &pcie_link_status);
252 if (ret_val)
253 bus->width = e1000_bus_width_unknown;
254 else
255 bus->width = (enum e1000_bus_width)((pcie_link_status &
256 PCIE_LINK_WIDTH_MASK) >>
257 PCIE_LINK_WIDTH_SHIFT);
258
259 mac->ops.set_lan_id(hw);
260
261 return (E1000_SUCCESS);
262 }
263
264 /*
265 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
266 *
267 * @hw: pointer to the HW structure
268 *
269 * Determines the LAN function id by reading memory-mapped registers
270 * and swaps the port value if requested.
271 */
272 static void
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)273 e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
274 {
275 struct e1000_bus_info *bus = &hw->bus;
276 u32 reg;
277
278 /*
279 * The status register reports the correct function number
280 * for the device regardless of function swap state.
281 */
282 reg = E1000_READ_REG(hw, E1000_STATUS);
283 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
284 }
285
286 /*
287 * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
288 * @hw: pointer to the HW structure
289 *
290 * Determines the LAN function id by reading PCI config space.
291 */
292 void
e1000_set_lan_id_multi_port_pci(struct e1000_hw * hw)293 e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
294 {
295 struct e1000_bus_info *bus = &hw->bus;
296 u16 pci_header_type;
297 u32 status;
298
299 e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
300 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
301 status = E1000_READ_REG(hw, E1000_STATUS);
302 bus->func = (status & E1000_STATUS_FUNC_MASK)
303 >> E1000_STATUS_FUNC_SHIFT;
304 } else {
305 bus->func = 0;
306 }
307 }
308
309 /*
310 * e1000_set_lan_id_single_port - Set LAN id for a single port device
311 * @hw: pointer to the HW structure
312 *
313 * Sets the LAN function id to zero for a single port device.
314 */
315 void
e1000_set_lan_id_single_port(struct e1000_hw * hw)316 e1000_set_lan_id_single_port(struct e1000_hw *hw)
317 {
318 struct e1000_bus_info *bus = &hw->bus;
319
320 bus->func = 0;
321 }
322
323 /*
324 * e1000_clear_vfta_generic - Clear VLAN filter table
325 * @hw: pointer to the HW structure
326 *
327 * Clears the register array which contains the VLAN filter table by
328 * setting all the values to 0.
329 */
330 void
e1000_clear_vfta_generic(struct e1000_hw * hw)331 e1000_clear_vfta_generic(struct e1000_hw *hw)
332 {
333 u32 offset;
334
335 DEBUGFUNC("e1000_clear_vfta_generic");
336
337 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
338 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
339 E1000_WRITE_FLUSH(hw);
340 }
341 }
342
343 /*
344 * e1000_write_vfta_generic - Write value to VLAN filter table
345 * @hw: pointer to the HW structure
346 * @offset: register offset in VLAN filter table
347 * @value: register value written to VLAN filter table
348 *
349 * Writes value at the given offset in the register array which stores
350 * the VLAN filter table.
351 */
352 void
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)353 e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
354 {
355 DEBUGFUNC("e1000_write_vfta_generic");
356
357 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
358 E1000_WRITE_FLUSH(hw);
359 }
360
361 /*
362 * e1000_init_rx_addrs_generic - Initialize receive address's
363 * @hw: pointer to the HW structure
364 * @rar_count: receive address registers
365 *
366 * Setups the receive address registers by setting the base receive address
367 * register to the devices MAC address and clearing all the other receive
368 * address registers to 0.
369 */
370 void
e1000_init_rx_addrs_generic(struct e1000_hw * hw,u16 rar_count)371 e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
372 {
373 u32 i;
374 u8 mac_addr[ETH_ADDR_LEN] = {0};
375
376 DEBUGFUNC("e1000_init_rx_addrs_generic");
377
378 /* Setup the receive address */
379 DEBUGOUT("Programming MAC Address into RAR[0]\n");
380
381 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
382
383 /* Zero out the other (rar_entry_count - 1) receive addresses */
384 DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1);
385 for (i = 1; i < rar_count; i++)
386 hw->mac.ops.rar_set(hw, mac_addr, i);
387
388 }
389
390 /*
391 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
392 * @hw: pointer to the HW structure
393 *
394 * Checks the nvm for an alternate MAC address. An alternate MAC address
395 * can be setup by pre-boot software and must be treated like a permanent
396 * address and must override the actual permanent MAC address. If an
397 * alternate MAC address is found it is programmed into RAR0, replacing
398 * the permanent address that was installed into RAR0 by the Si on reset.
399 * This function will return SUCCESS unless it encounters an error while
400 * reading the EEPROM.
401 */
402 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)403 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
404 {
405 u32 i;
406 s32 ret_val = E1000_SUCCESS;
407 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
408 u8 alt_mac_addr[ETH_ADDR_LEN];
409
410 DEBUGFUNC("e1000_check_alt_mac_addr_generic");
411
412 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
413 &nvm_alt_mac_addr_offset);
414 if (ret_val) {
415 DEBUGOUT("NVM Read Error\n");
416 goto out;
417 }
418
419 if (nvm_alt_mac_addr_offset == 0xFFFF) {
420 /* There is no Alternate MAC Address */
421 goto out;
422 }
423
424 if (hw->bus.func == E1000_FUNC_1)
425 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
426
427 for (i = 0; i < ETH_ADDR_LEN; i += 2) {
428 offset = nvm_alt_mac_addr_offset + (i >> 1);
429 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
430 if (ret_val) {
431 DEBUGOUT("NVM Read Error\n");
432 goto out;
433 }
434
435 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
436 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
437 }
438
439 /* if multicast bit is set, the alternate address will not be used */
440 if (alt_mac_addr[0] & 0x01) {
441 DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
442 goto out;
443 }
444
445 /*
446 * We have a valid alternate MAC address, and we want to treat it the
447 * same as the normal permanent MAC address stored by the HW into the
448 * RAR. Do this by mapping this address into RAR0.
449 */
450 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
451
452 out:
453 return (ret_val);
454 }
455
456 /*
457 * e1000_rar_set_generic - Set receive address register
458 * @hw: pointer to the HW structure
459 * @addr: pointer to the receive address
460 * @index: receive address array register
461 *
462 * Sets the receive address array register at index to the address passed
463 * in by addr.
464 */
465 void
e1000_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)466 e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
467 {
468 u32 rar_low, rar_high;
469
470 DEBUGFUNC("e1000_rar_set_generic");
471
472 /*
473 * HW expects these in little endian so we reverse the byte order from
474 * network order (big endian) to little endian
475 */
476 rar_low = ((u32) addr[0] |
477 ((u32) addr[1] << 8) |
478 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
479
480 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
481
482 /* If MAC address zero, no need to set the AV bit */
483 if (rar_low || rar_high)
484 rar_high |= E1000_RAH_AV;
485
486 /*
487 * Some bridges will combine consecutive 32-bit writes into
488 * a single burst write, which will malfunction on some parts.
489 * The flushes avoid this.
490 */
491 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
492 E1000_WRITE_FLUSH(hw);
493 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
494 E1000_WRITE_FLUSH(hw);
495 }
496
497 /*
498 * e1000_mta_set_generic - Set multicast filter table address
499 * @hw: pointer to the HW structure
500 * @hash_value: determines the MTA register and bit to set
501 *
502 * The multicast table address is a register array of 32-bit registers.
503 * The hash_value is used to determine what register the bit is in, the
504 * current value is read, the new bit is OR'd in and the new value is
505 * written back into the register.
506 */
507 void
e1000_mta_set_generic(struct e1000_hw * hw,u32 hash_value)508 e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
509 {
510 u32 hash_bit, hash_reg, mta;
511
512 DEBUGFUNC("e1000_mta_set_generic");
513 /*
514 * The MTA is a register array of 32-bit registers. It is treated like
515 * an array of (32*mta_reg_count) bits. We want to set bit
516 * BitArray[hash_value]. So we figure out what register the bit is in,
517 * read it, OR in the new bit, then write back the new value. The
518 * (hw->mac.mta_reg_count - 1) serves as a mask to bits 31:5 of the
519 * hash value which gives us the register we're modifying. The hash
520 * bit within that register is determined by the lower 5 bits of the
521 * hash value.
522 */
523 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
524 hash_bit = hash_value & 0x1F;
525
526 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
527
528 mta |= (1 << hash_bit);
529
530 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
531 E1000_WRITE_FLUSH(hw);
532 }
533
534 /*
535 * e1000_update_mc_addr_list_generic - Update Multicast addresses
536 * @hw: pointer to the HW structure
537 * @mc_addr_list: array of multicast addresses to program
538 * @mc_addr_count: number of multicast addresses to program
539 *
540 * Updates entire Multicast Table Array.
541 * The caller must have a packed mc_addr_list of multicast addresses.
542 */
543 void
e1000_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)544 e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
545 u8 *mc_addr_list, u32 mc_addr_count)
546 {
547 u32 hash_value, hash_bit, hash_reg;
548 int i;
549
550 DEBUGFUNC("e1000_update_mc_addr_list_generic");
551
552 /* clear mta_shadow */
553 (void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow));
554
555 /* update mta_shadow from mc_addr_list */
556 for (i = 0; (u32) i < mc_addr_count; i++) {
557 hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
558
559 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
560 hash_bit = hash_value & 0x1F;
561
562 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
563 mc_addr_list += (ETH_ADDR_LEN);
564 }
565
566 /* replace the entire MTA table */
567 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
568 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
569 E1000_WRITE_FLUSH(hw);
570 }
571
572 /*
573 * e1000_hash_mc_addr_generic - Generate a multicast hash value
574 * @hw: pointer to the HW structure
575 * @mc_addr: pointer to a multicast address
576 *
577 * Generates a multicast address hash value which is used to determine
578 * the multicast filter table array address and new table value. See
579 * e1000_mta_set_generic()
580 */
581 u32
e1000_hash_mc_addr_generic(struct e1000_hw * hw,u8 * mc_addr)582 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
583 {
584 u32 hash_value, hash_mask;
585 u8 bit_shift = 0;
586
587 DEBUGFUNC("e1000_hash_mc_addr_generic");
588
589 /* Register count multiplied by bits per register */
590 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
591
592 /*
593 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
594 * where 0xFF would still fall within the hash mask.
595 */
596 while (hash_mask >> bit_shift != 0xFF)
597 bit_shift++;
598
599 /*
600 * The portion of the address that is used for the hash table is
601 * determined by the mc_filter_type setting. The algorithm is such
602 * that there is a total of 8 bits of shifting. The bit_shift for a
603 * mc_filter_type of 0 represents the number of left-shifts where the
604 * MSB of mc_addr[5] would still fall within the hash_mask. Case 0
605 * does this exactly. Since there are a total of 8 bits of shifting,
606 * then mc_addr[4] will shift right the remaining number of bits. Thus
607 * 8 - bit_shift. The rest of the cases are a variation of this
608 * algorithm...essentially raising the number of bits to shift
609 * mc_addr[5] left, while still keeping the 8-bit shifting total.
610 *
611 * For example, given the following Destination MAC Address and an mta
612 * register count of 128 (thus a 4096-bit vector and 0xFFF mask), we
613 * can see that the bit_shift for case 0 is 4. These are the hash
614 * values resulting from each mc_filter_type...
615 * [0] [1] [2] [3] [4] [5]
616 * 01 AA 00 12 34 56
617 * LSB MSB
618 *
619 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
620 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
621 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
622 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
623 */
624 switch (hw->mac.mc_filter_type) {
625 default:
626 case 0:
627 break;
628 case 1:
629 bit_shift += 1;
630 break;
631 case 2:
632 bit_shift += 2;
633 break;
634 case 3:
635 bit_shift += 4;
636 break;
637 }
638
639 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
640 (((u16) mc_addr[5]) << bit_shift)));
641
642 return (hash_value);
643 }
644
645 /*
646 * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
647 * @hw: pointer to the HW structure
648 *
649 * In certain situations, a system BIOS may report that the PCIx maximum
650 * memory read byte count (MMRBC) value is higher than than the actual
651 * value. We check the PCIx command register with the current PCIx status
652 * register.
653 */
654 void
e1000_pcix_mmrbc_workaround_generic(struct e1000_hw * hw)655 e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
656 {
657 u16 cmd_mmrbc;
658 u16 pcix_cmd;
659 u16 pcix_stat_hi_word;
660 u16 stat_mmrbc;
661
662 DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
663
664 /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
665 if (hw->bus.type != e1000_bus_type_pcix)
666 return;
667
668 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
669 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
670 cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
671 PCIX_COMMAND_MMRBC_SHIFT;
672 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
673 PCIX_STATUS_HI_MMRBC_SHIFT;
674 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
675 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
676 if (cmd_mmrbc > stat_mmrbc) {
677 pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
678 pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
679 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
680 }
681 }
682
683 /*
684 * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
685 * @hw: pointer to the HW structure
686 *
687 * Clears the base hardware counters by reading the counter registers.
688 */
689 void
e1000_clear_hw_cntrs_base_generic(struct e1000_hw * hw)690 e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
691 {
692 DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
693
694 (void) E1000_READ_REG(hw, E1000_CRCERRS);
695 (void) E1000_READ_REG(hw, E1000_SYMERRS);
696 (void) E1000_READ_REG(hw, E1000_MPC);
697 (void) E1000_READ_REG(hw, E1000_SCC);
698 (void) E1000_READ_REG(hw, E1000_ECOL);
699 (void) E1000_READ_REG(hw, E1000_MCC);
700 (void) E1000_READ_REG(hw, E1000_LATECOL);
701 (void) E1000_READ_REG(hw, E1000_COLC);
702 (void) E1000_READ_REG(hw, E1000_DC);
703 (void) E1000_READ_REG(hw, E1000_SEC);
704 (void) E1000_READ_REG(hw, E1000_RLEC);
705 (void) E1000_READ_REG(hw, E1000_XONRXC);
706 (void) E1000_READ_REG(hw, E1000_XONTXC);
707 (void) E1000_READ_REG(hw, E1000_XOFFRXC);
708 (void) E1000_READ_REG(hw, E1000_XOFFTXC);
709 (void) E1000_READ_REG(hw, E1000_FCRUC);
710 (void) E1000_READ_REG(hw, E1000_GPRC);
711 (void) E1000_READ_REG(hw, E1000_BPRC);
712 (void) E1000_READ_REG(hw, E1000_MPRC);
713 (void) E1000_READ_REG(hw, E1000_GPTC);
714 (void) E1000_READ_REG(hw, E1000_GORCL);
715 (void) E1000_READ_REG(hw, E1000_GORCH);
716 (void) E1000_READ_REG(hw, E1000_GOTCL);
717 (void) E1000_READ_REG(hw, E1000_GOTCH);
718 (void) E1000_READ_REG(hw, E1000_RNBC);
719 (void) E1000_READ_REG(hw, E1000_RUC);
720 (void) E1000_READ_REG(hw, E1000_RFC);
721 (void) E1000_READ_REG(hw, E1000_ROC);
722 (void) E1000_READ_REG(hw, E1000_RJC);
723 (void) E1000_READ_REG(hw, E1000_TORL);
724 (void) E1000_READ_REG(hw, E1000_TORH);
725 (void) E1000_READ_REG(hw, E1000_TOTL);
726 (void) E1000_READ_REG(hw, E1000_TOTH);
727 (void) E1000_READ_REG(hw, E1000_TPR);
728 (void) E1000_READ_REG(hw, E1000_TPT);
729 (void) E1000_READ_REG(hw, E1000_MPTC);
730 (void) E1000_READ_REG(hw, E1000_BPTC);
731 }
732
733 /*
734 * e1000_check_for_copper_link_generic - Check for link (Copper)
735 * @hw: pointer to the HW structure
736 *
737 * Checks to see of the link status of the hardware has changed. If a
738 * change in link status has been detected, then we read the PHY registers
739 * to get the current speed/duplex if link exists.
740 */
741 s32
e1000_check_for_copper_link_generic(struct e1000_hw * hw)742 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
743 {
744 struct e1000_mac_info *mac = &hw->mac;
745 s32 ret_val;
746 bool link;
747
748 DEBUGFUNC("e1000_check_for_copper_link");
749
750 /*
751 * We only want to go out to the PHY registers to see if Auto-Neg has
752 * completed and/or if our link status has changed. The
753 * get_link_status flag is set upon receiving a Link Status Change or
754 * Rx Sequence Error interrupt.
755 */
756 if (!mac->get_link_status) {
757 ret_val = E1000_SUCCESS;
758 goto out;
759 }
760
761 /*
762 * First we want to see if the MII Status Register reports link. If
763 * so, then we want to get the current speed/duplex of the PHY.
764 */
765 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
766 if (ret_val)
767 goto out;
768
769 if (!link)
770 goto out; /* No link detected */
771
772 mac->get_link_status = false;
773
774 /*
775 * Check if there was DownShift, must be checked immediately after
776 * link-up
777 */
778 (void) e1000_check_downshift_generic(hw);
779
780 /*
781 * If we are forcing speed/duplex, then we simply return since we have
782 * already determined whether we have link or not.
783 */
784 if (!mac->autoneg) {
785 ret_val = -E1000_ERR_CONFIG;
786 goto out;
787 }
788
789 /*
790 * Auto-Neg is enabled. Auto Speed Detection takes care of MAC
791 * speed/duplex configuration. So we only need to configure Collision
792 * Distance in the MAC.
793 */
794 e1000_config_collision_dist_generic(hw);
795
796 /*
797 * Configure Flow Control now that Auto-Neg has completed. First, we
798 * need to restore the desired flow control settings because we may
799 * have had to re-autoneg with a different link partner.
800 */
801 ret_val = e1000_config_fc_after_link_up_generic(hw);
802 if (ret_val) {
803 /* EMPTY */
804 DEBUGOUT("Error configuring flow control\n");
805 }
806
807 out:
808 return (ret_val);
809 }
810
811 /*
812 * e1000_check_for_fiber_link_generic - Check for link (Fiber)
813 * @hw: pointer to the HW structure
814 *
815 * Checks for link up on the hardware. If link is not up and we have
816 * a signal, then we need to force link up.
817 */
818 s32
e1000_check_for_fiber_link_generic(struct e1000_hw * hw)819 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
820 {
821 struct e1000_mac_info *mac = &hw->mac;
822 u32 rxcw;
823 u32 ctrl;
824 u32 status;
825 s32 ret_val = E1000_SUCCESS;
826
827 DEBUGFUNC("e1000_check_for_fiber_link_generic");
828
829 ctrl = E1000_READ_REG(hw, E1000_CTRL);
830 status = E1000_READ_REG(hw, E1000_STATUS);
831 rxcw = E1000_READ_REG(hw, E1000_RXCW);
832
833 /*
834 * If we don't have link (auto-negotiation failed or link partner
835 * cannot auto-negotiate), the cable is plugged in (we have signal),
836 * and our link partner is not trying to auto-negotiate with us (we
837 * are receiving idles or data), we need to force link up. We also
838 * need to give auto-negotiation time to complete, in case the cable
839 * was just plugged in. The autoneg_failed flag does this.
840 */
841 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
842 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
843 (!(rxcw & E1000_RXCW_C))) {
844 if (mac->autoneg_failed == 0) {
845 mac->autoneg_failed = 1;
846 goto out;
847 }
848 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
849
850 /* Disable auto-negotiation in the TXCW register */
851 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
852
853 /* Force link-up and also force full-duplex. */
854 ctrl = E1000_READ_REG(hw, E1000_CTRL);
855 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
856 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
857
858 /* Configure Flow Control after forcing link up. */
859 ret_val = e1000_config_fc_after_link_up_generic(hw);
860 if (ret_val) {
861 DEBUGOUT("Error configuring flow control\n");
862 goto out;
863 }
864 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
865 /*
866 * If we are forcing link and we are receiving /C/ ordered
867 * sets, re-enable auto-negotiation in the TXCW register and
868 * disable forced link in the Device Control register in an
869 * attempt to auto-negotiate with our link partner.
870 */
871 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
872 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
873 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
874
875 mac->serdes_has_link = true;
876 }
877
878 out:
879 return (ret_val);
880 }
881
882 /*
883 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
884 * @hw: pointer to the HW structure
885 *
886 * Checks for link up on the hardware. If link is not up and we have
887 * a signal, then we need to force link up.
888 */
889 s32
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)890 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
891 {
892 struct e1000_mac_info *mac = &hw->mac;
893 u32 rxcw;
894 u32 ctrl;
895 u32 status;
896 s32 ret_val = E1000_SUCCESS;
897
898 DEBUGFUNC("e1000_check_for_serdes_link_generic");
899
900 ctrl = E1000_READ_REG(hw, E1000_CTRL);
901 status = E1000_READ_REG(hw, E1000_STATUS);
902 rxcw = E1000_READ_REG(hw, E1000_RXCW);
903
904 /*
905 * If we don't have link (auto-negotiation failed or link partner
906 * cannot auto-negotiate), and our link partner is not trying to
907 * auto-negotiate with us (we are receiving idles or data), we need to
908 * force link up. We also need to give auto-negotiation time to
909 * complete.
910 */
911 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
912 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
913 if (mac->autoneg_failed == 0) {
914 mac->autoneg_failed = 1;
915 goto out;
916 }
917 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
918
919 /* Disable auto-negotiation in the TXCW register */
920 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
921
922 /* Force link-up and also force full-duplex. */
923 ctrl = E1000_READ_REG(hw, E1000_CTRL);
924 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
925 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
926
927 /* Configure Flow Control after forcing link up. */
928 ret_val = e1000_config_fc_after_link_up_generic(hw);
929 if (ret_val) {
930 DEBUGOUT("Error configuring flow control\n");
931 goto out;
932 }
933 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
934 /*
935 * If we are forcing link and we are receiving /C/ ordered
936 * sets, re-enable auto-negotiation in the TXCW register and
937 * disable forced link in the Device Control register in an
938 * attempt to auto-negotiate with our link partner.
939 */
940 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
941 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
942 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
943
944 mac->serdes_has_link = true;
945 } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
946 /*
947 * If we force link for non-auto-negotiation switch, check
948 * link status based on MAC synchronization for internal
949 * serdes media type.
950 */
951 /* SYNCH bit and IV bit are sticky. */
952 usec_delay(10);
953 rxcw = E1000_READ_REG(hw, E1000_RXCW);
954 if (rxcw & E1000_RXCW_SYNCH) {
955 if (!(rxcw & E1000_RXCW_IV)) {
956 mac->serdes_has_link = true;
957 DEBUGOUT("SERDES: Link up - forced.\n");
958 }
959 } else {
960 mac->serdes_has_link = false;
961 DEBUGOUT("SERDES: Link down - force failed.\n");
962 }
963 }
964
965 if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
966 status = E1000_READ_REG(hw, E1000_STATUS);
967 if (status & E1000_STATUS_LU) {
968 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
969 usec_delay(10);
970 rxcw = E1000_READ_REG(hw, E1000_RXCW);
971 if (rxcw & E1000_RXCW_SYNCH) {
972 if (!(rxcw & E1000_RXCW_IV)) {
973 mac->serdes_has_link = true;
974 DEBUGOUT("SERDES: Link up - autoneg "
975 "completed sucessfully.\n");
976 } else {
977 mac->serdes_has_link = false;
978 DEBUGOUT("SERDES: Link down - invalid"
979 "codewords detected in autoneg.\n");
980 }
981 } else {
982 mac->serdes_has_link = false;
983 DEBUGOUT("SERDES: Link down - no sync.\n");
984 }
985 } else {
986 mac->serdes_has_link = false;
987 DEBUGOUT("SERDES: Link down - autoneg failed\n");
988 }
989 }
990
991 out:
992 return (ret_val);
993 }
994
995 /*
996 * e1000_setup_link_generic - Setup flow control and link settings
997 * @hw: pointer to the HW structure
998 *
999 * Determines which flow control settings to use, then configures flow
1000 * control. Calls the appropriate media-specific link configuration
1001 * function. Assuming the adapter has a valid link partner, a valid link
1002 * should be established. Assumes the hardware has previously been reset
1003 * and the transmitter and receiver are not enabled.
1004 */
1005 s32
e1000_setup_link_generic(struct e1000_hw * hw)1006 e1000_setup_link_generic(struct e1000_hw *hw)
1007 {
1008 s32 ret_val = E1000_SUCCESS;
1009
1010 DEBUGFUNC("e1000_setup_link_generic");
1011
1012 /*
1013 * In the case of the phy reset being blocked, we already have a link.
1014 * We do not need to set it up again.
1015 */
1016 if (hw->phy.ops.check_reset_block)
1017 if (hw->phy.ops.check_reset_block(hw))
1018 goto out;
1019
1020 /*
1021 * If requested flow control is set to default, set flow control
1022 * based on the EEPROM flow control settings.
1023 */
1024 if (hw->fc.requested_mode == e1000_fc_default) {
1025 ret_val = e1000_set_default_fc_generic(hw);
1026 if (ret_val)
1027 goto out;
1028 }
1029
1030 /*
1031 * Save off the requested flow control mode for use later. Depending
1032 * on the link partner's capabilities, we may or may not use this mode.
1033 */
1034 hw->fc.current_mode = hw->fc.requested_mode;
1035 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
1036 hw->fc.current_mode);
1037
1038 /* Call the necessary media_type subroutine to configure the link. */
1039 ret_val = hw->mac.ops.setup_physical_interface(hw);
1040 if (ret_val)
1041 goto out;
1042
1043 /*
1044 * Initialize the flow control address, type, and PAUSE timer
1045 * registers to their default values. This is done even if flow
1046 * control is disabled, because it does not hurt anything to
1047 * initialize these registers.
1048 */
1049 DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
1050 E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
1051 E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1052 E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
1053
1054 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
1055
1056 ret_val = e1000_set_fc_watermarks_generic(hw);
1057
1058 out:
1059 return (ret_val);
1060 }
1061
1062 /*
1063 * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1064 * @hw: pointer to the HW structure
1065 *
1066 * Configures collision distance and flow control for fiber and serdes
1067 * links. Upon successful setup, poll for link.
1068 */
1069 s32
e1000_setup_fiber_serdes_link_generic(struct e1000_hw * hw)1070 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
1071 {
1072 u32 ctrl;
1073 s32 ret_val = E1000_SUCCESS;
1074
1075 DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1076
1077 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1078
1079 /* Take the link out of reset */
1080 ctrl &= ~E1000_CTRL_LRST;
1081
1082 e1000_config_collision_dist_generic(hw);
1083
1084 ret_val = e1000_commit_fc_settings_generic(hw);
1085 if (ret_val)
1086 goto out;
1087
1088 /*
1089 * Since auto-negotiation is enabled, take the link out of reset (the
1090 * link will be in reset, because we previously reset the chip). This
1091 * will restart auto-negotiation. If auto-negotiation is successful
1092 * then the link-up status bit will be set and the flow control enable
1093 * bits (RFCE and TFCE) will be set according to their negotiated value.
1094 */
1095 DEBUGOUT("Auto-negotiation enabled\n");
1096
1097 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1098 E1000_WRITE_FLUSH(hw);
1099 msec_delay(1);
1100
1101 /*
1102 * For these adapters, the SW definable pin 1 is set when the optics
1103 * detect a signal. If we have a signal, then poll for a "Link-Up"
1104 * indication.
1105 */
1106 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1107 (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1108 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1109 } else {
1110 /* EMPTY */
1111 DEBUGOUT("No signal detected\n");
1112 }
1113
1114 out:
1115 return (ret_val);
1116 }
1117
1118 /*
1119 * e1000_config_collision_dist_generic - Configure collision distance
1120 * @hw: pointer to the HW structure
1121 *
1122 * Configures the collision distance to the default value and is used
1123 * during link setup. Currently no func pointer exists and all
1124 * implementations are handled in the generic version of this function.
1125 */
1126 void
e1000_config_collision_dist_generic(struct e1000_hw * hw)1127 e1000_config_collision_dist_generic(struct e1000_hw *hw)
1128 {
1129 u32 tctl;
1130
1131 DEBUGFUNC("e1000_config_collision_dist_generic");
1132
1133 tctl = E1000_READ_REG(hw, E1000_TCTL);
1134
1135 tctl &= ~E1000_TCTL_COLD;
1136 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1137
1138 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1139 E1000_WRITE_FLUSH(hw);
1140 }
1141
1142 /*
1143 * e1000_poll_fiber_serdes_link_generic - Poll for link up
1144 * @hw: pointer to the HW structure
1145 *
1146 * Polls for link up by reading the status register, if link fails to come
1147 * up with auto-negotiation, then the link is forced if a signal is detected.
1148 */
1149 s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)1150 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1151 {
1152 struct e1000_mac_info *mac = &hw->mac;
1153 u32 i, status;
1154 s32 ret_val = E1000_SUCCESS;
1155
1156 DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1157
1158 /*
1159 * If we have a signal (the cable is plugged in, or assumed true for
1160 * serdes media) then poll for a "Link-Up" indication in the Device
1161 * Status Register. Time-out if a link isn't seen in 500 milliseconds
1162 * seconds (Auto-negotiation should complete in less than 500
1163 * milliseconds even if the other end is doing it in SW).
1164 */
1165 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1166 msec_delay(10);
1167 status = E1000_READ_REG(hw, E1000_STATUS);
1168 if (status & E1000_STATUS_LU)
1169 break;
1170 }
1171 if (i == FIBER_LINK_UP_LIMIT) {
1172 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1173 mac->autoneg_failed = 1;
1174 /*
1175 * AutoNeg failed to achieve a link, so we'll call
1176 * mac->check_for_link. This routine will force the link up if
1177 * we detect a signal. This will allow us to communicate with
1178 * non-autonegotiating link partners.
1179 */
1180 ret_val = hw->mac.ops.check_for_link(hw);
1181 if (ret_val) {
1182 DEBUGOUT("Error while checking for link\n");
1183 goto out;
1184 }
1185 mac->autoneg_failed = 0;
1186 } else {
1187 mac->autoneg_failed = 0;
1188 DEBUGOUT("Valid Link Found\n");
1189 }
1190
1191 out:
1192 return (ret_val);
1193 }
1194
1195 /*
1196 * e1000_commit_fc_settings_generic - Configure flow control
1197 * @hw: pointer to the HW structure
1198 *
1199 * Write the flow control settings to the Transmit Config Word Register (TXCW)
1200 * base on the flow control settings in e1000_mac_info.
1201 */
1202 s32
e1000_commit_fc_settings_generic(struct e1000_hw * hw)1203 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1204 {
1205 struct e1000_mac_info *mac = &hw->mac;
1206 u32 txcw;
1207 s32 ret_val = E1000_SUCCESS;
1208
1209 DEBUGFUNC("e1000_commit_fc_settings_generic");
1210
1211 /*
1212 * Check for a software override of the flow control settings, and
1213 * setup the device accordingly. If auto-negotiation is enabled, then
1214 * software will have to set the "PAUSE" bits to the correct value in
1215 * the Transmit Config Word Register (TXCW) and re-start auto-
1216 * negotiation. However, if auto-negotiation is disabled, then
1217 * software will have to manually configure the two flow control enable
1218 * bits in the CTRL register.
1219 *
1220 * The possible values of the "fc" parameter are:
1221 * 0: Flow control is completely disabled
1222 * 1: Rx flow control is enabled (we can receive pause frames,
1223 * but not send pause frames).
1224 * 2: Tx flow control is enabled (we can send pause frames but we
1225 * do not support receiving pause frames).
1226 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1227 */
1228 switch (hw->fc.current_mode) {
1229 case e1000_fc_none:
1230 /* Flow control completely disabled by a software over-ride. */
1231 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1232 break;
1233 case e1000_fc_rx_pause:
1234 /*
1235 * Rx Flow control is enabled and Tx Flow control is disabled
1236 * by a software over-ride. Since there really isn't a way to
1237 * advertise that we are capable of Rx Pause ONLY, we will
1238 * advertise that we support both symmetric and asymmetric RX
1239 * PAUSE. Later, we will disable the adapter's ability to send
1240 * PAUSE frames.
1241 */
1242 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1243 break;
1244 case e1000_fc_tx_pause:
1245 /*
1246 * Tx Flow control is enabled, and Rx Flow control is disabled,
1247 * by a software over-ride.
1248 */
1249 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1250 break;
1251 case e1000_fc_full:
1252 /*
1253 * Flow control (both Rx and Tx) is enabled by a software
1254 * over-ride.
1255 */
1256 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1257 break;
1258 default:
1259 DEBUGOUT("Flow control param set incorrectly\n");
1260 ret_val = -E1000_ERR_CONFIG;
1261 goto out;
1262 }
1263
1264 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1265 mac->txcw = txcw;
1266
1267 out:
1268 return (ret_val);
1269 }
1270
1271 /*
1272 * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1273 * @hw: pointer to the HW structure
1274 *
1275 * Sets the flow control high/low threshold (watermark) registers. If
1276 * flow control XON frame transmission is enabled, then set XON frame
1277 * transmission as well.
1278 */
1279 s32
e1000_set_fc_watermarks_generic(struct e1000_hw * hw)1280 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1281 {
1282 s32 ret_val = E1000_SUCCESS;
1283 u32 fcrtl = 0, fcrth = 0;
1284
1285 DEBUGFUNC("e1000_set_fc_watermarks_generic");
1286
1287 /*
1288 * Set the flow control receive threshold registers. Normally, these
1289 * registers will be set to a default threshold that may be adjusted
1290 * later by the driver's runtime code. However, if the ability to
1291 * transmit pause frames is not enabled, then these registers will be
1292 * set to 0.
1293 */
1294 if (hw->fc.current_mode & e1000_fc_tx_pause) {
1295 /*
1296 * We need to set up the Receive Threshold high and low water
1297 * marks as well as (optionally) enabling the transmission of
1298 * XON frames.
1299 */
1300 fcrtl = hw->fc.low_water;
1301 if (hw->fc.send_xon)
1302 fcrtl |= E1000_FCRTL_XONE;
1303
1304 fcrth = hw->fc.high_water;
1305 }
1306 E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1307 E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1308
1309 return (ret_val);
1310 }
1311
1312 /*
1313 * e1000_set_default_fc_generic - Set flow control default values
1314 * @hw: pointer to the HW structure
1315 *
1316 * Read the EEPROM for the default values for flow control and store the
1317 * values.
1318 */
1319 s32
e1000_set_default_fc_generic(struct e1000_hw * hw)1320 e1000_set_default_fc_generic(struct e1000_hw *hw)
1321 {
1322 s32 ret_val = E1000_SUCCESS;
1323 u16 nvm_data;
1324
1325 DEBUGFUNC("e1000_set_default_fc_generic");
1326
1327 /*
1328 * Read and store word 0x0F of the EEPROM. This word contains bits
1329 * that determine the hardware's default PAUSE (flow control) mode, a
1330 * bit that determines whether the HW defaults to enabling or
1331 * disabling auto-negotiation, and the direction of the SW defined
1332 * pins. If there is no SW over-ride of the flow control setting, then
1333 * the variable hw->fc will be initialized based on a value in the
1334 * EEPROM.
1335 */
1336 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
1337
1338 if (ret_val) {
1339 DEBUGOUT("NVM Read Error\n");
1340 goto out;
1341 }
1342
1343 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
1344 hw->fc.requested_mode = e1000_fc_none;
1345 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
1346 NVM_WORD0F_ASM_DIR)
1347 hw->fc.requested_mode = e1000_fc_tx_pause;
1348 else
1349 hw->fc.requested_mode = e1000_fc_full;
1350
1351 out:
1352 return (ret_val);
1353 }
1354
1355 /*
1356 * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1357 * @hw: pointer to the HW structure
1358 *
1359 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1360 * device control register to reflect the adapter settings. TFCE and RFCE
1361 * need to be explicitly set by software when a copper PHY is used because
1362 * autonegotiation is managed by the PHY rather than the MAC. Software must
1363 * also configure these bits when link is forced on a fiber connection.
1364 */
1365 s32
e1000_force_mac_fc_generic(struct e1000_hw * hw)1366 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1367 {
1368 u32 ctrl;
1369 s32 ret_val = E1000_SUCCESS;
1370
1371 DEBUGFUNC("e1000_force_mac_fc_generic");
1372
1373 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1374
1375 /*
1376 * Because we didn't get link via the internal auto-negotiation
1377 * mechanism (we either forced link or we got link via PHY auto-neg),
1378 * we have to manually enable/disable transmit an receive flow
1379 * control.
1380 *
1381 * The "Case" statement below enables/disable flow control according to
1382 * the "hw->fc.current_mode" parameter.
1383 *
1384 * The possible values of the "fc" parameter are:
1385 * 0: Flow control is completely disabled
1386 * 1: Rx flow control is enabled (we can receive pause
1387 * frames but not send pause frames).
1388 * 2: Tx flow control is enabled (we can send pause frames
1389 * frames but we do not receive pause frames).
1390 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1391 * other: No other values should be possible at this point.
1392 */
1393 DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1394
1395 switch (hw->fc.current_mode) {
1396 case e1000_fc_none:
1397 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1398 break;
1399 case e1000_fc_rx_pause:
1400 ctrl &= (~E1000_CTRL_TFCE);
1401 ctrl |= E1000_CTRL_RFCE;
1402 break;
1403 case e1000_fc_tx_pause:
1404 ctrl &= (~E1000_CTRL_RFCE);
1405 ctrl |= E1000_CTRL_TFCE;
1406 break;
1407 case e1000_fc_full:
1408 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1409 break;
1410 default:
1411 DEBUGOUT("Flow control param set incorrectly\n");
1412 ret_val = -E1000_ERR_CONFIG;
1413 goto out;
1414 }
1415
1416 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1417
1418 out:
1419 return (ret_val);
1420 }
1421
1422 /*
1423 * e1000_config_fc_after_link_up_generic - Configures flow control after link
1424 * @hw: pointer to the HW structure
1425 *
1426 * Checks the status of auto-negotiation after link up to ensure that the
1427 * speed and duplex were not forced. If the link needed to be forced, then
1428 * flow control needs to be forced also. If auto-negotiation is enabled
1429 * and did not fail, then we configure flow control based on our link
1430 * partner.
1431 */
1432 s32
e1000_config_fc_after_link_up_generic(struct e1000_hw * hw)1433 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1434 {
1435 struct e1000_mac_info *mac = &hw->mac;
1436 s32 ret_val = E1000_SUCCESS;
1437 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1438 u16 speed, duplex;
1439
1440 DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1441
1442 /*
1443 * Check for the case where we have fiber media and auto-neg failed so
1444 * we had to force link. In this case, we need to force the
1445 * configuration of the MAC to match the "fc" parameter.
1446 */
1447 if (mac->autoneg_failed) {
1448 if (hw->phy.media_type == e1000_media_type_fiber ||
1449 hw->phy.media_type == e1000_media_type_internal_serdes)
1450 ret_val = e1000_force_mac_fc_generic(hw);
1451 } else {
1452 if (hw->phy.media_type == e1000_media_type_copper)
1453 ret_val = e1000_force_mac_fc_generic(hw);
1454 }
1455
1456 if (ret_val) {
1457 DEBUGOUT("Error forcing flow control settings\n");
1458 goto out;
1459 }
1460
1461 /*
1462 * Check for the case where we have copper media and auto-neg is
1463 * enabled. In this case, we need to check and see if Auto-Neg has
1464 * completed, and if so, how the PHY and link partner has flow control
1465 * configured.
1466 */
1467 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1468 /*
1469 * Read the MII Status Register and check to see if AutoNeg
1470 * has completed. We read this twice because this reg has
1471 * some "sticky" (latched) bits.
1472 */
1473 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1474 if (ret_val)
1475 goto out;
1476 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1477 if (ret_val)
1478 goto out;
1479
1480 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1481 DEBUGOUT("Copper PHY and Auto Neg "
1482 "has not completed.\n");
1483 goto out;
1484 }
1485 /*
1486 * The AutoNeg process has completed, so we now need to read
1487 * both the Auto Negotiation Advertisement Register (Address
1488 * 4) and the Auto_Negotiation Base Page Ability Register
1489 * (Address 5) to determine how flow control was negotiated.
1490 */
1491 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1492 &mii_nway_adv_reg);
1493 if (ret_val)
1494 goto out;
1495 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1496 &mii_nway_lp_ability_reg);
1497 if (ret_val)
1498 goto out;
1499
1500 /*
1501 * Two bits in the Auto Negotiation Advertisement Register
1502 * (Address 4) and two bits in the Auto Negotiation Base
1503 * Page Ability Register (Address 5) determine flow control
1504 * for both the PHY and the link partner. The following
1505 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1506 * 1999, describes these PAUSE resolution bits and how flow
1507 * control is determined based upon these settings.
1508 * NOTE: DC = Don't Care
1509 *
1510 * LOCAL DEVICE | LINK PARTNER
1511 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1512 * ------|---------|-------|---------|--------------------
1513 * 0 | 0 | DC | DC | e1000_fc_none
1514 * 0 | 1 | 0 | DC | e1000_fc_none
1515 * 0 | 1 | 1 | 0 | e1000_fc_none
1516 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1517 * 1 | 0 | 0 | DC | e1000_fc_none
1518 * 1 | DC | 1 | DC | e1000_fc_full
1519 * 1 | 1 | 0 | 0 | e1000_fc_none
1520 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1521 *
1522 * Are both PAUSE bits set to 1? If so, this implies
1523 * Symmetric Flow Control is enabled at both ends. The
1524 * ASM_DIR bits are irrelevant per the spec.
1525 *
1526 * For Symmetric Flow Control:
1527 *
1528 * LOCAL DEVICE | LINK PARTNER
1529 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1530 * ------|---------|-------|---------|--------------------
1531 * 1 | DC | 1 | DC | E1000_fc_full
1532 *
1533 */
1534 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1535 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1536 /*
1537 * Now we need to check if the user selected Rx ONLY
1538 * of pause frames. In this case, we had to advertise
1539 * FULL flow control because we could not advertise RX
1540 * ONLY. Hence, we must now check to see if we need to
1541 * turn OFF the TRANSMISSION of PAUSE frames.
1542 */
1543 if (hw->fc.requested_mode == e1000_fc_full) {
1544 hw->fc.current_mode = e1000_fc_full;
1545 DEBUGOUT("Flow Control = FULL.\r\n");
1546 } else {
1547 hw->fc.current_mode = e1000_fc_rx_pause;
1548 DEBUGOUT("Flow Control = "
1549 "RX PAUSE frames only.\r\n");
1550 }
1551 }
1552 /*
1553 * For receiving PAUSE frames ONLY.
1554 *
1555 * LOCAL DEVICE | LINK PARTNER
1556 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1557 * ------|---------|-------|---------|--------------------
1558 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1559 */
1560 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1561 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1562 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1563 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1564 hw->fc.current_mode = e1000_fc_tx_pause;
1565 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1566 }
1567 /*
1568 * For transmitting PAUSE frames ONLY.
1569 *
1570 * LOCAL DEVICE | LINK PARTNER
1571 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1572 * ------|---------|-------|---------|--------------------
1573 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1574 */
1575 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1576 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1577 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1578 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1579 hw->fc.current_mode = e1000_fc_rx_pause;
1580 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1581 } else {
1582 /*
1583 * Per the IEEE spec, at this point flow control
1584 * should be disabled.
1585 */
1586 hw->fc.current_mode = e1000_fc_none;
1587 DEBUGOUT("Flow Control = NONE.\r\n");
1588 }
1589
1590 /*
1591 * Now we need to do one last check... If we auto- negotiated
1592 * to HALF DUPLEX, flow control should not be enabled per IEEE
1593 * 802.3 spec.
1594 */
1595 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1596 if (ret_val) {
1597 DEBUGOUT("Error getting link speed and duplex\n");
1598 goto out;
1599 }
1600
1601 if (duplex == HALF_DUPLEX)
1602 hw->fc.current_mode = e1000_fc_none;
1603
1604 /*
1605 * Now we call a subroutine to actually force the MAC
1606 * controller to use the correct flow control settings.
1607 */
1608 ret_val = e1000_force_mac_fc_generic(hw);
1609 if (ret_val) {
1610 DEBUGOUT("Error forcing flow control settings\n");
1611 goto out;
1612 }
1613 }
1614
1615 out:
1616 return (ret_val);
1617 }
1618
1619 /*
1620 * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1621 * @hw: pointer to the HW structure
1622 * @speed: stores the current speed
1623 * @duplex: stores the current duplex
1624 *
1625 * Read the status register for the current speed/duplex and store the current
1626 * speed and duplex for copper connections.
1627 */
1628 s32
e1000_get_speed_and_duplex_copper_generic(struct e1000_hw * hw,u16 * speed,u16 * duplex)1629 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1630 u16 *duplex)
1631 {
1632 u32 status;
1633
1634 DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1635
1636 status = E1000_READ_REG(hw, E1000_STATUS);
1637 if (status & E1000_STATUS_SPEED_1000) {
1638 *speed = SPEED_1000;
1639 DEBUGOUT("1000 Mbs, ");
1640 } else if (status & E1000_STATUS_SPEED_100) {
1641 *speed = SPEED_100;
1642 DEBUGOUT("100 Mbs, ");
1643 } else {
1644 *speed = SPEED_10;
1645 DEBUGOUT("10 Mbs, ");
1646 }
1647
1648 if (status & E1000_STATUS_FD) {
1649 *duplex = FULL_DUPLEX;
1650 DEBUGOUT("Full Duplex\n");
1651 } else {
1652 *duplex = HALF_DUPLEX;
1653 DEBUGOUT("Half Duplex\n");
1654 }
1655
1656 return (E1000_SUCCESS);
1657 }
1658
1659 /*
1660 * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1661 * @hw: pointer to the HW structure
1662 * @speed: stores the current speed
1663 * @duplex: stores the current duplex
1664 *
1665 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1666 * for fiber/serdes links.
1667 */
1668 s32
e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw * hw,u16 * speed,u16 * duplex)1669 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
1670 u16 *speed, u16 *duplex)
1671 {
1672 DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1673 UNREFERENCED_1PARAMETER(hw);
1674
1675 *speed = SPEED_1000;
1676 *duplex = FULL_DUPLEX;
1677
1678 return (E1000_SUCCESS);
1679 }
1680
1681 /*
1682 * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1683 * @hw: pointer to the HW structure
1684 *
1685 * Acquire the HW semaphore to access the PHY or NVM
1686 */
1687 s32
e1000_get_hw_semaphore_generic(struct e1000_hw * hw)1688 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1689 {
1690 u32 swsm;
1691 s32 ret_val = E1000_SUCCESS;
1692 s32 timeout = hw->nvm.word_size + 1;
1693 s32 i = 0;
1694
1695 DEBUGFUNC("e1000_get_hw_semaphore_generic");
1696
1697 /* Get the SW semaphore */
1698 while (i < timeout) {
1699 swsm = E1000_READ_REG(hw, E1000_SWSM);
1700 if (!(swsm & E1000_SWSM_SMBI))
1701 break;
1702
1703 usec_delay(50);
1704 i++;
1705 }
1706
1707 if (i == timeout) {
1708 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1709 ret_val = -E1000_ERR_NVM;
1710 goto out;
1711 }
1712
1713 /* Get the FW semaphore. */
1714 for (i = 0; i < timeout; i++) {
1715 swsm = E1000_READ_REG(hw, E1000_SWSM);
1716 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1717
1718 /* Semaphore acquired if bit latched */
1719 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1720 break;
1721
1722 usec_delay(50);
1723 }
1724
1725 if (i == timeout) {
1726 /* Release semaphores */
1727 e1000_put_hw_semaphore_generic(hw);
1728 DEBUGOUT("Driver can't access the NVM\n");
1729 ret_val = -E1000_ERR_NVM;
1730 goto out;
1731 }
1732
1733 out:
1734 return (ret_val);
1735 }
1736
1737 /*
1738 * e1000_put_hw_semaphore_generic - Release hardware semaphore
1739 * @hw: pointer to the HW structure
1740 *
1741 * Release hardware semaphore used to access the PHY or NVM
1742 */
1743 void
e1000_put_hw_semaphore_generic(struct e1000_hw * hw)1744 e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1745 {
1746 u32 swsm;
1747
1748 DEBUGFUNC("e1000_put_hw_semaphore_generic");
1749
1750 swsm = E1000_READ_REG(hw, E1000_SWSM);
1751
1752 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1753
1754 E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1755 }
1756
1757 /*
1758 * e1000_get_auto_rd_done_generic - Check for auto read completion
1759 * @hw: pointer to the HW structure
1760 *
1761 * Check EEPROM for Auto Read done bit.
1762 */
1763 s32
e1000_get_auto_rd_done_generic(struct e1000_hw * hw)1764 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1765 {
1766 s32 i = 0;
1767 s32 ret_val = E1000_SUCCESS;
1768
1769 DEBUGFUNC("e1000_get_auto_rd_done_generic");
1770
1771 while (i < AUTO_READ_DONE_TIMEOUT) {
1772 if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1773 break;
1774 msec_delay(1);
1775 i++;
1776 }
1777
1778 if (i == AUTO_READ_DONE_TIMEOUT) {
1779 DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1780 ret_val = -E1000_ERR_RESET;
1781 goto out;
1782 }
1783
1784 out:
1785 return (ret_val);
1786 }
1787
1788 /*
1789 * e1000_valid_led_default_generic - Verify a valid default LED config
1790 * @hw: pointer to the HW structure
1791 * @data: pointer to the NVM (EEPROM)
1792 *
1793 * Read the EEPROM for the current default LED configuration. If the
1794 * LED configuration is not valid, set to a valid LED configuration.
1795 */
1796 s32
e1000_valid_led_default_generic(struct e1000_hw * hw,u16 * data)1797 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1798 {
1799 s32 ret_val;
1800
1801 DEBUGFUNC("e1000_valid_led_default_generic");
1802
1803 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1804 if (ret_val) {
1805 DEBUGOUT("NVM Read Error\n");
1806 goto out;
1807 }
1808
1809 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1810 *data = ID_LED_DEFAULT;
1811
1812 out:
1813 return (ret_val);
1814 }
1815
1816 /*
1817 * e1000_id_led_init_generic -
1818 * @hw: pointer to the HW structure
1819 *
1820 */
1821 s32
e1000_id_led_init_generic(struct e1000_hw * hw)1822 e1000_id_led_init_generic(struct e1000_hw *hw)
1823 {
1824 struct e1000_mac_info *mac = &hw->mac;
1825 s32 ret_val;
1826 const u32 ledctl_mask = 0x000000FF;
1827 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1828 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1829 u16 data, i, temp;
1830 const u16 led_mask = 0x0F;
1831
1832 DEBUGFUNC("e1000_id_led_init_generic");
1833
1834 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1835 if (ret_val)
1836 goto out;
1837
1838 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1839 mac->ledctl_mode1 = mac->ledctl_default;
1840 mac->ledctl_mode2 = mac->ledctl_default;
1841
1842 for (i = 0; i < 4; i++) {
1843 temp = (data >> (i << 2)) & led_mask;
1844 switch (temp) {
1845 case ID_LED_ON1_DEF2:
1846 case ID_LED_ON1_ON2:
1847 case ID_LED_ON1_OFF2:
1848 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1849 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1850 break;
1851 case ID_LED_OFF1_DEF2:
1852 case ID_LED_OFF1_ON2:
1853 case ID_LED_OFF1_OFF2:
1854 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1855 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1856 break;
1857 default:
1858 /* Do nothing */
1859 break;
1860 }
1861 switch (temp) {
1862 case ID_LED_DEF1_ON2:
1863 case ID_LED_ON1_ON2:
1864 case ID_LED_OFF1_ON2:
1865 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1866 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1867 break;
1868 case ID_LED_DEF1_OFF2:
1869 case ID_LED_ON1_OFF2:
1870 case ID_LED_OFF1_OFF2:
1871 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1872 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1873 break;
1874 default:
1875 /* Do nothing */
1876 break;
1877 }
1878 }
1879
1880 out:
1881 return (ret_val);
1882 }
1883
1884 /*
1885 * e1000_setup_led_generic - Configures SW controllable LED
1886 * @hw: pointer to the HW structure
1887 *
1888 * This prepares the SW controllable LED for use and saves the current state
1889 * of the LED so it can be later restored.
1890 */
1891 s32
e1000_setup_led_generic(struct e1000_hw * hw)1892 e1000_setup_led_generic(struct e1000_hw *hw)
1893 {
1894 u32 ledctl;
1895 s32 ret_val = E1000_SUCCESS;
1896
1897 DEBUGFUNC("e1000_setup_led_generic");
1898
1899 if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
1900 ret_val = -E1000_ERR_CONFIG;
1901 goto out;
1902 }
1903
1904 if (hw->phy.media_type == e1000_media_type_fiber) {
1905 ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1906 hw->mac.ledctl_default = ledctl;
1907 /* Turn off LED0 */
1908 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1909 E1000_LEDCTL_LED0_BLINK |
1910 E1000_LEDCTL_LED0_MODE_MASK);
1911 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1912 E1000_LEDCTL_LED0_MODE_SHIFT);
1913 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1914 } else if (hw->phy.media_type == e1000_media_type_copper) {
1915 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1916 }
1917
1918 out:
1919 return (ret_val);
1920 }
1921
1922 /*
1923 * e1000_cleanup_led_generic - Set LED config to default operation
1924 * @hw: pointer to the HW structure
1925 *
1926 * Remove the current LED configuration and set the LED configuration
1927 * to the default value, saved from the EEPROM.
1928 */
1929 s32
e1000_cleanup_led_generic(struct e1000_hw * hw)1930 e1000_cleanup_led_generic(struct e1000_hw *hw)
1931 {
1932 s32 ret_val = E1000_SUCCESS;
1933
1934 DEBUGFUNC("e1000_cleanup_led_generic");
1935
1936 if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) {
1937 ret_val = -E1000_ERR_CONFIG;
1938 goto out;
1939 }
1940
1941 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1942
1943 out:
1944 return (ret_val);
1945 }
1946
1947 /*
1948 * e1000_blink_led_generic - Blink LED
1949 * @hw: pointer to the HW structure
1950 *
1951 * Blink the LEDs which are set to be on.
1952 */
1953 s32
e1000_blink_led_generic(struct e1000_hw * hw)1954 e1000_blink_led_generic(struct e1000_hw *hw)
1955 {
1956 u32 ledctl_blink = 0;
1957 u32 i;
1958
1959 DEBUGFUNC("e1000_blink_led_generic");
1960
1961 if (hw->phy.media_type == e1000_media_type_fiber) {
1962 /* always blink LED0 for PCI-E fiber */
1963 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1964 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1965 } else {
1966 /*
1967 * set the blink bit for each LED that's "on" (0x0E)
1968 * in ledctl_mode2
1969 */
1970 ledctl_blink = hw->mac.ledctl_mode2;
1971 for (i = 0; i < 4; i++)
1972 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1973 E1000_LEDCTL_MODE_LED_ON)
1974 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1975 (i * 8));
1976 }
1977
1978 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1979
1980 return (E1000_SUCCESS);
1981 }
1982
1983 /*
1984 * e1000_led_on_generic - Turn LED on
1985 * @hw: pointer to the HW structure
1986 *
1987 * Turn LED on.
1988 */
1989 s32
e1000_led_on_generic(struct e1000_hw * hw)1990 e1000_led_on_generic(struct e1000_hw *hw)
1991 {
1992 u32 ctrl;
1993
1994 DEBUGFUNC("e1000_led_on_generic");
1995
1996 switch (hw->phy.media_type) {
1997 case e1000_media_type_fiber:
1998 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1999 ctrl &= ~E1000_CTRL_SWDPIN0;
2000 ctrl |= E1000_CTRL_SWDPIO0;
2001 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2002 break;
2003 case e1000_media_type_copper:
2004 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
2005 break;
2006 default:
2007 break;
2008 }
2009
2010 return (E1000_SUCCESS);
2011 }
2012
2013 /*
2014 * e1000_led_off_generic - Turn LED off
2015 * @hw: pointer to the HW structure
2016 *
2017 * Turn LED off.
2018 */
2019 s32
e1000_led_off_generic(struct e1000_hw * hw)2020 e1000_led_off_generic(struct e1000_hw *hw)
2021 {
2022 u32 ctrl;
2023
2024 DEBUGFUNC("e1000_led_off_generic");
2025
2026 switch (hw->phy.media_type) {
2027 case e1000_media_type_fiber:
2028 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2029 ctrl |= E1000_CTRL_SWDPIN0;
2030 ctrl |= E1000_CTRL_SWDPIO0;
2031 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2032 break;
2033 case e1000_media_type_copper:
2034 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
2035 break;
2036 default:
2037 break;
2038 }
2039
2040 return (E1000_SUCCESS);
2041 }
2042
2043 /*
2044 * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
2045 * @hw: pointer to the HW structure
2046 * @no_snoop: bitmap of snoop events
2047 *
2048 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
2049 */
2050 void
e1000_set_pcie_no_snoop_generic(struct e1000_hw * hw,u32 no_snoop)2051 e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
2052 {
2053 u32 gcr;
2054
2055 DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
2056
2057 if (hw->bus.type != e1000_bus_type_pci_express)
2058 return;
2059
2060 if (no_snoop) {
2061 gcr = E1000_READ_REG(hw, E1000_GCR);
2062 gcr &= ~(PCIE_NO_SNOOP_ALL);
2063 gcr |= no_snoop;
2064 E1000_WRITE_REG(hw, E1000_GCR, gcr);
2065 }
2066 }
2067
2068 /*
2069 * e1000_disable_pcie_master_generic - Disables PCI-express master access
2070 * @hw: pointer to the HW structure
2071 *
2072 * Returns 0 (E1000_SUCCESS) if successful, else returns -10
2073 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
2074 * the master requests to be disabled.
2075 *
2076 * Disables PCI-Express master access and verifies there are no pending
2077 * requests.
2078 */
2079 s32
e1000_disable_pcie_master_generic(struct e1000_hw * hw)2080 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
2081 {
2082 u32 ctrl;
2083 s32 timeout = MASTER_DISABLE_TIMEOUT;
2084 s32 ret_val = E1000_SUCCESS;
2085
2086 DEBUGFUNC("e1000_disable_pcie_master_generic");
2087
2088 if (hw->bus.type != e1000_bus_type_pci_express)
2089 goto out;
2090
2091 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2092 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
2093 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2094
2095 while (timeout) {
2096 if (!(E1000_READ_REG(hw, E1000_STATUS) &
2097 E1000_STATUS_GIO_MASTER_ENABLE))
2098 break;
2099 usec_delay(100);
2100 timeout--;
2101 }
2102
2103 if (!timeout) {
2104 DEBUGOUT("Master requests are pending.\n");
2105 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
2106 goto out;
2107 }
2108
2109 out:
2110 return (ret_val);
2111 }
2112
2113 /*
2114 * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2115 * @hw: pointer to the HW structure
2116 *
2117 * Reset the Adaptive Interframe Spacing throttle to default values.
2118 */
2119 void
e1000_reset_adaptive_generic(struct e1000_hw * hw)2120 e1000_reset_adaptive_generic(struct e1000_hw *hw)
2121 {
2122 struct e1000_mac_info *mac = &hw->mac;
2123
2124 DEBUGFUNC("e1000_reset_adaptive_generic");
2125
2126 if (!mac->adaptive_ifs) {
2127 DEBUGOUT("Not in Adaptive IFS mode!\n");
2128 return;
2129 }
2130
2131 mac->current_ifs_val = 0;
2132 mac->ifs_min_val = IFS_MIN;
2133 mac->ifs_max_val = IFS_MAX;
2134 mac->ifs_step_size = IFS_STEP;
2135 mac->ifs_ratio = IFS_RATIO;
2136
2137 mac->in_ifs_mode = false;
2138 E1000_WRITE_REG(hw, E1000_AIT, 0);
2139 }
2140
2141 /*
2142 * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2143 * @hw: pointer to the HW structure
2144 *
2145 * Update the Adaptive Interframe Spacing Throttle value based on the
2146 * time between transmitted packets and time between collisions.
2147 */
2148 void
e1000_update_adaptive_generic(struct e1000_hw * hw)2149 e1000_update_adaptive_generic(struct e1000_hw *hw)
2150 {
2151 struct e1000_mac_info *mac = &hw->mac;
2152
2153 DEBUGFUNC("e1000_update_adaptive_generic");
2154
2155 if (!mac->adaptive_ifs) {
2156 DEBUGOUT("Not in Adaptive IFS mode!\n");
2157 return;
2158 }
2159
2160 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2161 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2162 mac->in_ifs_mode = true;
2163 if (mac->current_ifs_val < mac->ifs_max_val) {
2164 if (!mac->current_ifs_val)
2165 mac->current_ifs_val = mac->ifs_min_val;
2166 else
2167 mac->current_ifs_val +=
2168 mac->ifs_step_size;
2169 E1000_WRITE_REG(hw, E1000_AIT,
2170 mac->current_ifs_val);
2171 }
2172 }
2173 } else {
2174 if (mac->in_ifs_mode &&
2175 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2176 mac->current_ifs_val = 0;
2177 mac->in_ifs_mode = false;
2178 E1000_WRITE_REG(hw, E1000_AIT, 0);
2179 }
2180 }
2181 }
2182
2183 /*
2184 * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2185 * @hw: pointer to the HW structure
2186 *
2187 * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2188 * set, which is forced to MDI mode only.
2189 */
2190 static s32
e1000_validate_mdi_setting_generic(struct e1000_hw * hw)2191 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2192 {
2193 s32 ret_val = E1000_SUCCESS;
2194
2195 DEBUGFUNC("e1000_validate_mdi_setting_generic");
2196
2197 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2198 DEBUGOUT("Invalid MDI setting detected\n");
2199 hw->phy.mdix = 1;
2200 ret_val = -E1000_ERR_CONFIG;
2201 goto out;
2202 }
2203
2204 out:
2205 return (ret_val);
2206 }
2207