11369Sdduvall /* 21369Sdduvall * CDDL HEADER START 31369Sdduvall * 41369Sdduvall * The contents of this file are subject to the terms of the 51369Sdduvall * Common Development and Distribution License (the "License"). 61369Sdduvall * You may not use this file except in compliance with the License. 71369Sdduvall * 81369Sdduvall * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 91369Sdduvall * or http://www.opensolaris.org/os/licensing. 101369Sdduvall * See the License for the specific language governing permissions 111369Sdduvall * and limitations under the License. 121369Sdduvall * 131369Sdduvall * When distributing Covered Code, include this CDDL HEADER in each 141369Sdduvall * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 151369Sdduvall * If applicable, add the following below this CDDL HEADER, with the 161369Sdduvall * fields enclosed by brackets "[]" replaced with your own identifying 171369Sdduvall * information: Portions Copyright [yyyy] [name of copyright owner] 181369Sdduvall * 191369Sdduvall * CDDL HEADER END 201369Sdduvall */ 211369Sdduvall 221369Sdduvall /* 231369Sdduvall * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 241369Sdduvall * Use is subject to license terms. 251369Sdduvall */ 261369Sdduvall 271369Sdduvall #pragma ident "%Z%%M% %I% %E% SMI" 281369Sdduvall 291369Sdduvall #include "sys/bge_impl2.h" 301369Sdduvall 311369Sdduvall #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset))) 321369Sdduvall 331369Sdduvall /* 341369Sdduvall * Future features ... ? 351369Sdduvall */ 361369Sdduvall #define BGE_CFG_IO8 0 /* 8/16-bit cfg space BIS/BIC */ 371369Sdduvall #define BGE_IND_IO32 0 /* indirect access code */ 381369Sdduvall #define BGE_SEE_IO32 1 /* SEEPROM access code */ 391369Sdduvall #define BGE_FLASH_IO32 1 /* FLASH access code */ 401369Sdduvall 411369Sdduvall /* 421369Sdduvall * BGE MSI tunable: 431369Sdduvall * 441369Sdduvall * By default MSI is enabled on all supported platforms but it is disabled 451369Sdduvall * for some Broadcom chips due to known MSI hardware issues. Currently MSI 461369Sdduvall * is enabled only for 5714C A2 and 5715C A2 broadcom chips. 471369Sdduvall */ 481369Sdduvall #if defined(__sparc) 491369Sdduvall boolean_t bge_enable_msi = B_TRUE; 501369Sdduvall #else 511369Sdduvall boolean_t bge_enable_msi = B_FALSE; 521369Sdduvall #endif 531369Sdduvall 541369Sdduvall /* 551369Sdduvall * Property names 561369Sdduvall */ 571369Sdduvall static char knownids_propname[] = "bge-known-subsystems"; 581369Sdduvall 591369Sdduvall /* 601369Sdduvall * Patchable globals: 611369Sdduvall * 621369Sdduvall * bge_autorecover 631369Sdduvall * Enables/disables automatic recovery after fault detection 641369Sdduvall * 651369Sdduvall * bge_mlcr_default 661369Sdduvall * Value to program into the MLCR; controls the chip's GPIO pins 671369Sdduvall * 681369Sdduvall * bge_dma_{rd,wr}prio 691369Sdduvall * Relative priorities of DMA reads & DMA writes respectively. 701369Sdduvall * These may each be patched to any value 0-3. Equal values 711369Sdduvall * will give "fair" (round-robin) arbitration for PCI access. 721369Sdduvall * Unequal values will give one or the other function priority. 731369Sdduvall * 741369Sdduvall * bge_dma_rwctrl 751369Sdduvall * Value to put in the Read/Write DMA control register. See 761369Sdduvall * the Broadcom PRM for things you can fiddle with in this 771369Sdduvall * register ... 781369Sdduvall * 791369Sdduvall * bge_{tx,rx}_{count,ticks}_{norm,intr} 801369Sdduvall * Send/receive interrupt coalescing parameters. Counts are 811369Sdduvall * #s of descriptors, ticks are in microseconds. *norm* values 821369Sdduvall * apply between status updates/interrupts; the *intr* values 831369Sdduvall * refer to the 'during-interrupt' versions - see the PRM. 841369Sdduvall * 851369Sdduvall * NOTE: these values have been determined by measurement. They 861369Sdduvall * differ significantly from the values recommended in the PRM. 871369Sdduvall */ 881369Sdduvall static uint32_t bge_autorecover = 1; 891369Sdduvall static uint32_t bge_mlcr_default = MLCR_DEFAULT; 901369Sdduvall static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714; 911369Sdduvall 921369Sdduvall static uint32_t bge_dma_rdprio = 1; 931369Sdduvall static uint32_t bge_dma_wrprio = 0; 941369Sdduvall static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT; 951369Sdduvall static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721; 961369Sdduvall static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714; 971369Sdduvall static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715; 981369Sdduvall 991369Sdduvall uint32_t bge_rx_ticks_norm = 128; 1001369Sdduvall uint32_t bge_tx_ticks_norm = 2048; /* 8 for FJ2+ !?!? */ 1011369Sdduvall uint32_t bge_rx_count_norm = 8; 1021369Sdduvall uint32_t bge_tx_count_norm = 128; 1031369Sdduvall 1041369Sdduvall static uint32_t bge_rx_ticks_intr = 128; 1051369Sdduvall static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */ 1061369Sdduvall static uint32_t bge_rx_count_intr = 2; 1071369Sdduvall static uint32_t bge_tx_count_intr = 0; 1081369Sdduvall 1091369Sdduvall /* 1101369Sdduvall * Memory pool configuration parameters. 1111369Sdduvall * 1121369Sdduvall * These are generally specific to each member of the chip family, since 1131369Sdduvall * each one may have a different memory size/configuration. 1141369Sdduvall * 1151369Sdduvall * Setting the mbuf pool length for a specific type of chip to 0 inhibits 1161369Sdduvall * the driver from programming the various registers; instead they are left 1171369Sdduvall * at their hardware defaults. This is the preferred option for later chips 1181369Sdduvall * (5705+), whereas the older chips *required* these registers to be set, 1191369Sdduvall * since the h/w default was 0 ;-( 1201369Sdduvall */ 1211369Sdduvall static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT; 1221369Sdduvall static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704; 1231369Sdduvall static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705; 1241369Sdduvall static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721; 1251369Sdduvall static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT; 1261369Sdduvall static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704; 1271369Sdduvall static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */ 1281369Sdduvall static uint32_t bge_mbuf_pool_len_5721 = 0; 1291369Sdduvall 1301369Sdduvall /* 1311369Sdduvall * Various high and low water marks, thresholds, etc ... 1321369Sdduvall * 1331369Sdduvall * Note: these are taken from revision 7 of the PRM, and some are different 1341369Sdduvall * from both the values in earlier PRMs *and* those determined experimentally 1351369Sdduvall * and used in earlier versions of this driver ... 1361369Sdduvall */ 1371369Sdduvall static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT; 1381369Sdduvall static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT; 1391369Sdduvall static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT; 1401369Sdduvall 1411369Sdduvall static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT; 1421369Sdduvall static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT; 1431369Sdduvall static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT; 1441369Sdduvall 1451369Sdduvall static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT; 1461369Sdduvall static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT; 1471369Sdduvall static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT; 1481369Sdduvall 1491369Sdduvall static uint32_t bge_watchdog_count = 1 << 16; 1501369Sdduvall static uint16_t bge_dma_miss_limit = 20; 1511369Sdduvall 1521369Sdduvall static uint32_t bge_stop_start_on_sync = 0; 1531369Sdduvall 1541369Sdduvall boolean_t bge_jumbo_enable = B_TRUE; 1551369Sdduvall static uint32_t bge_default_jumbo_size = BGE_JUMBO_BUFF_SIZE; 1561369Sdduvall 1571369Sdduvall /* 1581369Sdduvall * ========== Low-level chip & ring buffer manipulation ========== 1591369Sdduvall */ 1601369Sdduvall 1611369Sdduvall #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */ 1621369Sdduvall 1631369Sdduvall 1641369Sdduvall /* 1651369Sdduvall * Config space read-modify-write routines 1661369Sdduvall */ 1671369Sdduvall 1681369Sdduvall #if BGE_CFG_IO8 1691369Sdduvall 1701369Sdduvall /* 1711369Sdduvall * 8- and 16-bit set/clr operations are not used; all the config registers 1721369Sdduvall * that we need to do bit-twiddling on are 32 bits wide. I'll leave the 1731369Sdduvall * code here, though, in case we ever find that we do want it after all ... 1741369Sdduvall */ 1751369Sdduvall 1761369Sdduvall static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits); 1771369Sdduvall #pragma inline(bge_cfg_set8) 1781369Sdduvall 1791369Sdduvall static void 1801369Sdduvall bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits) 1811369Sdduvall { 1821369Sdduvall uint8_t regval; 1831369Sdduvall 1841369Sdduvall BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)", 1851369Sdduvall (void *)bgep, regno, bits)); 1861369Sdduvall 1871369Sdduvall regval = pci_config_get8(bgep->cfg_handle, regno); 1881369Sdduvall 1891369Sdduvall BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 1901369Sdduvall (void *)bgep, regno, bits, regval, regval | bits)); 1911369Sdduvall 1921369Sdduvall regval |= bits; 1931369Sdduvall pci_config_put8(bgep->cfg_handle, regno, regval); 1941369Sdduvall } 1951369Sdduvall 1961369Sdduvall static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits); 1971369Sdduvall #pragma inline(bge_cfg_clr8) 1981369Sdduvall 1991369Sdduvall static void 2001369Sdduvall bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits) 2011369Sdduvall { 2021369Sdduvall uint8_t regval; 2031369Sdduvall 2041369Sdduvall BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)", 2051369Sdduvall (void *)bgep, regno, bits)); 2061369Sdduvall 2071369Sdduvall regval = pci_config_get8(bgep->cfg_handle, regno); 2081369Sdduvall 2091369Sdduvall BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 2101369Sdduvall (void *)bgep, regno, bits, regval, regval & ~bits)); 2111369Sdduvall 2121369Sdduvall regval &= ~bits; 2131369Sdduvall pci_config_put8(bgep->cfg_handle, regno, regval); 2141369Sdduvall } 2151369Sdduvall 2161369Sdduvall static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits); 2171369Sdduvall #pragma inline(bge_cfg_set16) 2181369Sdduvall 2191369Sdduvall static void 2201369Sdduvall bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits) 2211369Sdduvall { 2221369Sdduvall uint16_t regval; 2231369Sdduvall 2241369Sdduvall BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)", 2251369Sdduvall (void *)bgep, regno, bits)); 2261369Sdduvall 2271369Sdduvall regval = pci_config_get16(bgep->cfg_handle, regno); 2281369Sdduvall 2291369Sdduvall BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 2301369Sdduvall (void *)bgep, regno, bits, regval, regval | bits)); 2311369Sdduvall 2321369Sdduvall regval |= bits; 2331369Sdduvall pci_config_put16(bgep->cfg_handle, regno, regval); 2341369Sdduvall } 2351369Sdduvall 2361369Sdduvall static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits); 2371369Sdduvall #pragma inline(bge_cfg_clr16) 2381369Sdduvall 2391369Sdduvall static void 2401369Sdduvall bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits) 2411369Sdduvall { 2421369Sdduvall uint16_t regval; 2431369Sdduvall 2441369Sdduvall BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)", 2451369Sdduvall (void *)bgep, regno, bits)); 2461369Sdduvall 2471369Sdduvall regval = pci_config_get16(bgep->cfg_handle, regno); 2481369Sdduvall 2491369Sdduvall BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 2501369Sdduvall (void *)bgep, regno, bits, regval, regval & ~bits)); 2511369Sdduvall 2521369Sdduvall regval &= ~bits; 2531369Sdduvall pci_config_put16(bgep->cfg_handle, regno, regval); 2541369Sdduvall } 2551369Sdduvall 2561369Sdduvall #endif /* BGE_CFG_IO8 */ 2571369Sdduvall 2581369Sdduvall static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 2591369Sdduvall #pragma inline(bge_cfg_set32) 2601369Sdduvall 2611369Sdduvall static void 2621369Sdduvall bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 2631369Sdduvall { 2641369Sdduvall uint32_t regval; 2651369Sdduvall 2661369Sdduvall BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)", 2671369Sdduvall (void *)bgep, regno, bits)); 2681369Sdduvall 2691369Sdduvall regval = pci_config_get32(bgep->cfg_handle, regno); 2701369Sdduvall 2711369Sdduvall BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 2721369Sdduvall (void *)bgep, regno, bits, regval, regval | bits)); 2731369Sdduvall 2741369Sdduvall regval |= bits; 2751369Sdduvall pci_config_put32(bgep->cfg_handle, regno, regval); 2761369Sdduvall } 2771369Sdduvall 2781369Sdduvall static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 2791369Sdduvall #pragma inline(bge_cfg_clr32) 2801369Sdduvall 2811369Sdduvall static void 2821369Sdduvall bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 2831369Sdduvall { 2841369Sdduvall uint32_t regval; 2851369Sdduvall 2861369Sdduvall BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)", 2871369Sdduvall (void *)bgep, regno, bits)); 2881369Sdduvall 2891369Sdduvall regval = pci_config_get32(bgep->cfg_handle, regno); 2901369Sdduvall 2911369Sdduvall BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x", 2921369Sdduvall (void *)bgep, regno, bits, regval, regval & ~bits)); 2931369Sdduvall 2941369Sdduvall regval &= ~bits; 2951369Sdduvall pci_config_put32(bgep->cfg_handle, regno, regval); 2961369Sdduvall } 2971369Sdduvall 2981369Sdduvall #if BGE_IND_IO32 2991369Sdduvall 3001369Sdduvall /* 3011369Sdduvall * Indirect access to registers & RISC scratchpads, using config space 3021369Sdduvall * accesses only. 3031369Sdduvall * 3041369Sdduvall * This isn't currently used, but someday we might want to use it for 3051369Sdduvall * restoring the Subsystem Device/Vendor registers (which aren't directly 3061369Sdduvall * writable in Config Space), or for downloading firmware into the RISCs 3071369Sdduvall * 3081369Sdduvall * In any case there are endian issues to be resolved before this code is 3091369Sdduvall * enabled; the bizarre way that bytes get twisted by this chip AND by 3101369Sdduvall * the PCI bridge in SPARC systems mean that we shouldn't enable it until 3111369Sdduvall * it's been thoroughly tested for all access sizes on all supported 3121369Sdduvall * architectures (SPARC *and* x86!). 3131369Sdduvall */ 3141369Sdduvall static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno); 3151369Sdduvall #pragma inline(bge_ind_get32) 3161369Sdduvall 3171369Sdduvall static uint32_t 3181369Sdduvall bge_ind_get32(bge_t *bgep, bge_regno_t regno) 3191369Sdduvall { 3201369Sdduvall uint32_t val; 3211369Sdduvall 3221369Sdduvall BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno)); 3231369Sdduvall 3241369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 3251369Sdduvall 3261369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); 3271369Sdduvall val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR); 3281369Sdduvall 3291369Sdduvall BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x", 3301369Sdduvall (void *)bgep, regno, val)); 3311369Sdduvall 3321369Sdduvall return (val); 3331369Sdduvall } 3341369Sdduvall 3351369Sdduvall static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val); 3361369Sdduvall #pragma inline(bge_ind_put32) 3371369Sdduvall 3381369Sdduvall static void 3391369Sdduvall bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val) 3401369Sdduvall { 3411369Sdduvall BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)", 3421369Sdduvall (void *)bgep, regno, val)); 3431369Sdduvall 3441369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 3451369Sdduvall 3461369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); 3471369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val); 3481369Sdduvall } 3491369Sdduvall 3501369Sdduvall #endif /* BGE_IND_IO32 */ 3511369Sdduvall 3521369Sdduvall #if BGE_DEBUGGING 3531369Sdduvall 3541369Sdduvall static void bge_pci_check(bge_t *bgep); 3551369Sdduvall #pragma no_inline(bge_pci_check) 3561369Sdduvall 3571369Sdduvall static void 3581369Sdduvall bge_pci_check(bge_t *bgep) 3591369Sdduvall { 3601369Sdduvall uint16_t pcistatus; 3611369Sdduvall 3621369Sdduvall pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT); 3631369Sdduvall if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0) 3641369Sdduvall BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x", 3651369Sdduvall (void *)bgep, pcistatus)); 3661369Sdduvall } 3671369Sdduvall 3681369Sdduvall #endif /* BGE_DEBUGGING */ 3691369Sdduvall 3701369Sdduvall /* 3711369Sdduvall * Perform first-stage chip (re-)initialisation, using only config-space 3721369Sdduvall * accesses: 3731369Sdduvall * 3741369Sdduvall * + Read the vendor/device/revision/subsystem/cache-line-size registers, 3751369Sdduvall * returning the data in the structure pointed to by <idp>. 3761369Sdduvall * + Configure the target-mode endianness (swap) options. 3771369Sdduvall * + Disable interrupts and enable Memory Space accesses. 3781369Sdduvall * + Enable or disable Bus Mastering according to the <enable_dma> flag. 3791369Sdduvall * 3801369Sdduvall * This sequence is adapted from Broadcom document 570X-PG102-R, 3811369Sdduvall * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence 3821369Sdduvall * are 4 and 5 (Reset Core and wait) which are handled elsewhere. 3831369Sdduvall * 3841369Sdduvall * This function MUST be called before any non-config-space accesses 3851369Sdduvall * are made; on this first call <enable_dma> is B_FALSE, and it 3861369Sdduvall * effectively performs steps 3-1(!) of the initialisation sequence 3871369Sdduvall * (the rest are not required but should be harmless). 3881369Sdduvall * 3891369Sdduvall * It MUST also be called also after a chip reset, as this disables 3901369Sdduvall * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and 3911369Sdduvall * it is effectively performing steps 6-8. 3921369Sdduvall */ 3931369Sdduvall void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma); 3941369Sdduvall #pragma no_inline(bge_chip_cfg_init) 3951369Sdduvall 3961369Sdduvall void 3971369Sdduvall bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma) 3981369Sdduvall { 3991369Sdduvall ddi_acc_handle_t handle; 4001369Sdduvall uint16_t command; 4011369Sdduvall uint32_t mhcr; 4021369Sdduvall uint16_t value16; 4031369Sdduvall int i; 4041369Sdduvall 4051369Sdduvall BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)", 4061369Sdduvall (void *)bgep, (void *)cidp, enable_dma)); 4071369Sdduvall 4081369Sdduvall /* 4091369Sdduvall * Step 3: save PCI cache line size and subsystem vendor ID 4101369Sdduvall * 4111369Sdduvall * Read all the config-space registers that characterise the 4121369Sdduvall * chip, specifically vendor/device/revision/subsystem vendor 4131369Sdduvall * and subsystem device id. We expect (but don't check) that 4141369Sdduvall * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704) 4151369Sdduvall * 4161369Sdduvall * Also save all bus-transation related registers (cache-line 4171369Sdduvall * size, bus-grant/latency parameters, etc). Some of these are 4181369Sdduvall * cleared by reset, so we'll have to restore them later. This 4191369Sdduvall * comes from the Broadcom document 570X-PG102-R ... 4201369Sdduvall * 4211369Sdduvall * Note: Broadcom document 570X-PG102-R seems to be in error 4221369Sdduvall * here w.r.t. the offsets of the Subsystem Vendor ID and 4231369Sdduvall * Subsystem (Device) ID registers, which are the opposite way 4241369Sdduvall * round according to the PCI standard. For good measure, we 4251369Sdduvall * save/restore both anyway. 4261369Sdduvall */ 4271369Sdduvall handle = bgep->cfg_handle; 4281369Sdduvall 4291369Sdduvall mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR); 4301369Sdduvall cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK; 4311369Sdduvall cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE); 4321369Sdduvall cidp->command = pci_config_get16(handle, PCI_CONF_COMM); 4331369Sdduvall 4341369Sdduvall cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID); 4351369Sdduvall cidp->device = pci_config_get16(handle, PCI_CONF_DEVID); 4361369Sdduvall cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID); 4371369Sdduvall cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID); 4381369Sdduvall cidp->revision = pci_config_get8(handle, PCI_CONF_REVID); 4391369Sdduvall cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ); 4401369Sdduvall cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER); 4411369Sdduvall 4421369Sdduvall BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s", 4431369Sdduvall cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X", 4441369Sdduvall cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow", 4451369Sdduvall cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide", 4461369Sdduvall cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low")); 4471369Sdduvall BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x", 4481369Sdduvall cidp->vendor, cidp->device, cidp->revision)); 4491369Sdduvall BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x", 4501369Sdduvall cidp->subven, cidp->subdev, cidp->asic_rev)); 4511369Sdduvall BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x", 4521369Sdduvall cidp->clsize, cidp->latency, cidp->command)); 4531369Sdduvall 4541369Sdduvall /* 4551369Sdduvall * Step 2 (also step 6): disable and clear interrupts. 4561369Sdduvall * Steps 11-13: configure PIO endianness options, and enable 4571369Sdduvall * indirect register access. We'll also select any other 4581369Sdduvall * options controlled by the MHCR (eg tagged status, mask 4591369Sdduvall * interrupt mode) at this stage ... 4601369Sdduvall * 4611369Sdduvall * Note: internally, the chip is 64-bit and BIG-endian, but 4621369Sdduvall * since it talks to the host over a (LITTLE-endian) PCI bus, 4631369Sdduvall * it normally swaps bytes around at the PCI interface. 4641369Sdduvall * However, the PCI host bridge on SPARC systems normally 4651369Sdduvall * swaps the byte lanes around too, since SPARCs are also 4661369Sdduvall * BIG-endian. So it turns out that on SPARC, the right 4671369Sdduvall * option is to tell the chip to swap (and the host bridge 4681369Sdduvall * will swap back again), whereas on x86 we ask the chip 4691369Sdduvall * NOT to swap, so the natural little-endianness of the 4701369Sdduvall * PCI bus is assumed. Then the only thing that doesn't 4711369Sdduvall * automatically work right is access to an 8-byte register 4721369Sdduvall * by a little-endian host; but we don't want to set the 4731369Sdduvall * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte 4741369Sdduvall * accesses don't go where expected ;-( So we live with 4751369Sdduvall * that, and perform word-swaps in software in the few cases 4761369Sdduvall * where a chip register is defined as an 8-byte value -- 4771369Sdduvall * see the code below for details ... 4781369Sdduvall * 4791369Sdduvall * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't 4801369Sdduvall * very clear in the register description in the PRM, but 4811369Sdduvall * Broadcom document 570X-PG104-R page 248 explains a little 4821369Sdduvall * more (under "Broadcom Mask Mode"). The bit changes the way 4831369Sdduvall * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE 4841369Sdduvall * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same 4851369Sdduvall * way as the 5700 did, which isn't very convenient. Setting 4861369Sdduvall * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT 4871369Sdduvall * bit do just what its name says -- MASK the PCI #INTA output 4881369Sdduvall * (i.e. deassert the signal at the pin) leaving all internal 4891369Sdduvall * state unchanged. This is much more convenient for our 4901369Sdduvall * interrupt handler, so we set MASK_INTERRUPT_MODE here. 4911369Sdduvall * 4921369Sdduvall * Note: the inconvenient semantics of the interrupt mailbox 4931369Sdduvall * (nonzero disables and acknowledges/clears the interrupt, 4941369Sdduvall * zero enables AND CLEARS it) would make race conditions 4951369Sdduvall * likely in the interrupt handler: 4961369Sdduvall * 4971369Sdduvall * (1) acknowledge & disable interrupts 4981369Sdduvall * (2) while (more to do) 4991369Sdduvall * process packets 5001369Sdduvall * (3) enable interrupts -- also clears pending 5011369Sdduvall * 5021369Sdduvall * If the chip received more packets and internally generated 5031369Sdduvall * an interrupt between the check at (2) and the mbox write 5041369Sdduvall * at (3), this interrupt would be lost :-( 5051369Sdduvall * 5061369Sdduvall * The best way to avoid this is to use TAGGED STATUS mode, 5071369Sdduvall * where the chip includes a unique tag in each status block 5081369Sdduvall * update, and the host, when re-enabling interrupts, passes 5091369Sdduvall * the last tag it saw back to the chip; then the chip can 5101369Sdduvall * see whether the host is truly up to date, and regenerate 5111369Sdduvall * its interrupt if not. 5121369Sdduvall */ 5131369Sdduvall mhcr = MHCR_ENABLE_INDIRECT_ACCESS | 5141369Sdduvall MHCR_ENABLE_TAGGED_STATUS_MODE | 5151369Sdduvall MHCR_MASK_INTERRUPT_MODE | 5161369Sdduvall MHCR_CLEAR_INTERRUPT_INTA; 5171369Sdduvall 5181369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 5191369Sdduvall mhcr |= MHCR_MASK_PCI_INT_OUTPUT; 5201369Sdduvall 5211369Sdduvall #ifdef _BIG_ENDIAN 5221369Sdduvall mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; 5231369Sdduvall #endif /* _BIG_ENDIAN */ 5241369Sdduvall 5251369Sdduvall pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr); 5261369Sdduvall 5271408Srandyf #ifdef BGE_IPMI_ASF 5281408Srandyf bgep->asf_wordswapped = B_FALSE; 5291408Srandyf #endif 5301369Sdduvall /* 5311369Sdduvall * Step 1 (also step 7): Enable PCI Memory Space accesses 5321369Sdduvall * Disable Memory Write/Invalidate 5331369Sdduvall * Enable or disable Bus Mastering 5341369Sdduvall * 5351369Sdduvall * Note that all other bits are taken from the original value saved 5361369Sdduvall * the first time through here, rather than from the current register 5371369Sdduvall * value, 'cos that will have been cleared by a soft RESET since. 5381369Sdduvall * In this way we preserve the OBP/nexus-parent's preferred settings 5391369Sdduvall * of the parity-error and system-error enable bits across multiple 5401369Sdduvall * chip RESETs. 5411369Sdduvall * 5421369Sdduvall * Step 8: Disable PCI-X Relaxed Ordering -- doesn't apply 5431369Sdduvall */ 5441369Sdduvall command = bgep->chipid.command | PCI_COMM_MAE; 5451369Sdduvall command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL); 5461369Sdduvall if (enable_dma) 5471369Sdduvall command |= PCI_COMM_ME; 5481369Sdduvall /* 5491369Sdduvall * on BCM5714 revision A0, false parity error gets generated 5501369Sdduvall * due to a logic bug. Provide a workaround by disabling parrity 5511369Sdduvall * error. 5521369Sdduvall */ 5531369Sdduvall if (((cidp->device == DEVICE_ID_5714C) || 5541369Sdduvall (cidp->device == DEVICE_ID_5714S)) && 5551369Sdduvall (cidp->revision == REVISION_ID_5714_A0)) { 5561369Sdduvall command &= ~PCI_COMM_PARITY_DETECT; 5571369Sdduvall } 5581369Sdduvall pci_config_put16(handle, PCI_CONF_COMM, command); 5591369Sdduvall 5601369Sdduvall /* 5611369Sdduvall * On some PCI-E device, there were instances when 5621369Sdduvall * the device was still link training. 5631369Sdduvall */ 5641369Sdduvall if (bgep->chipid.pci_type == BGE_PCI_E) { 5651369Sdduvall i = 0; 5661369Sdduvall value16 = pci_config_get16(handle, PCI_CONF_COMM); 5671369Sdduvall while ((value16 != command) && (i < 100)) { 5681369Sdduvall drv_usecwait(200); 5691369Sdduvall value16 = pci_config_get16(handle, PCI_CONF_COMM); 5701369Sdduvall ++i; 5711369Sdduvall } 5721369Sdduvall } 5731369Sdduvall 5741369Sdduvall /* 5751369Sdduvall * Clear any remaining error status bits 5761369Sdduvall */ 5771369Sdduvall pci_config_put16(handle, PCI_CONF_STAT, ~0); 5781369Sdduvall 5791369Sdduvall /* 5801369Sdduvall * Make sure these indirect-access registers are sane 5811369Sdduvall * rather than random after power-up or reset 582*1611Szh199473 * 583*1611Szh199473 * For BCM5714C A3 silicon to avoid resource deadlocking 5841369Sdduvall */ 585*1611Szh199473 if ((cidp->device == DEVICE_ID_5714C) && 586*1611Szh199473 (cidp->revision == REVISION_ID_5714_A3)) { 587*1611Szh199473 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0x4900); 588*1611Szh199473 pci_config_put32(handle, PCI_CONF_BGE_RIADR, 1); 589*1611Szh199473 } else { 590*1611Szh199473 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0); 591*1611Szh199473 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0); 592*1611Szh199473 } 5931369Sdduvall } 5941369Sdduvall 5951369Sdduvall #ifdef __amd64 5961369Sdduvall /* 5971369Sdduvall * Distinguish CPU types 5981369Sdduvall * 5991369Sdduvall * These use to distinguish AMD64 or Intel EM64T of CPU running mode. 6001369Sdduvall * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine 6011369Sdduvall * for PCI-Express based network interface card. This is the work-around 6021369Sdduvall * for those nics. 6031369Sdduvall */ 6041369Sdduvall static boolean_t bge_get_em64t_type(void); 6051369Sdduvall #pragma inline(bge_get_em64t_type) 6061369Sdduvall 6071369Sdduvall static boolean_t 6081369Sdduvall bge_get_em64t_type(void) 6091369Sdduvall { 6101369Sdduvall 6111369Sdduvall return (x86_vendor == X86_VENDOR_Intel); 6121369Sdduvall } 6131369Sdduvall #endif 6141369Sdduvall 6151369Sdduvall /* 6161369Sdduvall * Operating register get/set access routines 6171369Sdduvall */ 6181369Sdduvall 6191369Sdduvall uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno); 6201369Sdduvall #pragma inline(bge_reg_get32) 6211369Sdduvall 6221369Sdduvall uint32_t 6231369Sdduvall bge_reg_get32(bge_t *bgep, bge_regno_t regno) 6241369Sdduvall { 6251369Sdduvall BGE_TRACE(("bge_reg_get32($%p, 0x%lx)", 6261369Sdduvall (void *)bgep, regno)); 6271369Sdduvall 6281369Sdduvall return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno))); 6291369Sdduvall } 6301369Sdduvall 6311369Sdduvall void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data); 6321369Sdduvall #pragma inline(bge_reg_put32) 6331369Sdduvall 6341369Sdduvall void 6351369Sdduvall bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data) 6361369Sdduvall { 6371369Sdduvall BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)", 6381369Sdduvall (void *)bgep, regno, data)); 6391369Sdduvall 6401369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data); 6411369Sdduvall BGE_PCICHK(bgep); 6421369Sdduvall } 6431369Sdduvall 6441369Sdduvall void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 6451369Sdduvall #pragma inline(bge_reg_set32) 6461369Sdduvall 6471369Sdduvall void 6481369Sdduvall bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 6491369Sdduvall { 6501369Sdduvall uint32_t regval; 6511369Sdduvall 6521369Sdduvall BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)", 6531369Sdduvall (void *)bgep, regno, bits)); 6541369Sdduvall 6551369Sdduvall regval = bge_reg_get32(bgep, regno); 6561369Sdduvall regval |= bits; 6571369Sdduvall bge_reg_put32(bgep, regno, regval); 6581369Sdduvall } 6591369Sdduvall 6601369Sdduvall void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); 6611369Sdduvall #pragma inline(bge_reg_clr32) 6621369Sdduvall 6631369Sdduvall void 6641369Sdduvall bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) 6651369Sdduvall { 6661369Sdduvall uint32_t regval; 6671369Sdduvall 6681369Sdduvall BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)", 6691369Sdduvall (void *)bgep, regno, bits)); 6701369Sdduvall 6711369Sdduvall regval = bge_reg_get32(bgep, regno); 6721369Sdduvall regval &= ~bits; 6731369Sdduvall bge_reg_put32(bgep, regno, regval); 6741369Sdduvall } 6751369Sdduvall 6761369Sdduvall static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno); 6771369Sdduvall #pragma inline(bge_reg_get64) 6781369Sdduvall 6791369Sdduvall static uint64_t 6801369Sdduvall bge_reg_get64(bge_t *bgep, bge_regno_t regno) 6811369Sdduvall { 6821369Sdduvall uint64_t regval; 6831369Sdduvall 6841369Sdduvall #ifdef __amd64 6851369Sdduvall if (bge_get_em64t_type()) { 6861369Sdduvall regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4)); 6871369Sdduvall regval <<= 32; 6881369Sdduvall regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)); 6891369Sdduvall } else { 6901369Sdduvall regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); 6911369Sdduvall } 6921369Sdduvall #else 6931369Sdduvall regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); 6941369Sdduvall #endif 6951369Sdduvall 6961369Sdduvall #ifdef _LITTLE_ENDIAN 6971369Sdduvall regval = (regval >> 32) | (regval << 32); 6981369Sdduvall #endif /* _LITTLE_ENDIAN */ 6991369Sdduvall 7001369Sdduvall BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx", 7011369Sdduvall (void *)bgep, regno, regval)); 7021369Sdduvall 7031369Sdduvall return (regval); 7041369Sdduvall } 7051369Sdduvall 7061369Sdduvall static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data); 7071369Sdduvall #pragma inline(bge_reg_put64) 7081369Sdduvall 7091369Sdduvall static void 7101369Sdduvall bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data) 7111369Sdduvall { 7121369Sdduvall BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)", 7131369Sdduvall (void *)bgep, regno, data)); 7141369Sdduvall 7151369Sdduvall #ifdef _LITTLE_ENDIAN 7161369Sdduvall data = ((data >> 32) | (data << 32)); 7171369Sdduvall #endif /* _LITTLE_ENDIAN */ 7181369Sdduvall 7191369Sdduvall #ifdef __amd64 7201369Sdduvall if (bge_get_em64t_type()) { 7211369Sdduvall ddi_put32(bgep->io_handle, 7221369Sdduvall PIO_ADDR(bgep, regno), (uint32_t)data); 7231369Sdduvall BGE_PCICHK(bgep); 7241369Sdduvall ddi_put32(bgep->io_handle, 7251369Sdduvall PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32)); 7261369Sdduvall 7271369Sdduvall } else { 7281369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); 7291369Sdduvall } 7301369Sdduvall #else 7311369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); 7321369Sdduvall #endif 7331369Sdduvall 7341369Sdduvall BGE_PCICHK(bgep); 7351369Sdduvall } 7361369Sdduvall 7371369Sdduvall /* 7381369Sdduvall * The DDI doesn't provide get/put functions for 128 bit data 7391369Sdduvall * so we put RCBs out as two 64-bit chunks instead. 7401369Sdduvall */ 7411369Sdduvall static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); 7421369Sdduvall #pragma inline(bge_reg_putrcb) 7431369Sdduvall 7441369Sdduvall static void 7451369Sdduvall bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) 7461369Sdduvall { 7471369Sdduvall uint64_t *p; 7481369Sdduvall 7491369Sdduvall BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", 7501369Sdduvall (void *)bgep, addr, rcbp->host_ring_addr, 7511369Sdduvall rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); 7521369Sdduvall 7531369Sdduvall ASSERT((addr % sizeof (*rcbp)) == 0); 7541369Sdduvall 7551369Sdduvall p = (void *)rcbp; 7561369Sdduvall bge_reg_put64(bgep, addr, *p++); 7571369Sdduvall bge_reg_put64(bgep, addr+8, *p); 7581369Sdduvall } 7591369Sdduvall 7601369Sdduvall void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data); 7611369Sdduvall #pragma inline(bge_mbx_put) 7621369Sdduvall 7631369Sdduvall void 7641369Sdduvall bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data) 7651369Sdduvall { 7661369Sdduvall BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)", 7671369Sdduvall (void *)bgep, regno, data)); 7681369Sdduvall 7691369Sdduvall /* 7701369Sdduvall * Mailbox registers are nominally 64 bits on the 5701, but 7711369Sdduvall * the MSW isn't used. On the 5703, they're only 32 bits 7721369Sdduvall * anyway. So here we just write the lower(!) 32 bits - 7731369Sdduvall * remembering that the chip is big-endian, even though the 7741369Sdduvall * PCI bus is little-endian ... 7751369Sdduvall */ 7761369Sdduvall #ifdef _BIG_ENDIAN 7771369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data); 7781369Sdduvall #else 7791369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data); 7801369Sdduvall #endif /* _BIG_ENDIAN */ 7811369Sdduvall BGE_PCICHK(bgep); 7821369Sdduvall } 7831369Sdduvall 7841369Sdduvall #if BGE_DEBUGGING 7851369Sdduvall 7861369Sdduvall void bge_led_mark(bge_t *bgep); 7871369Sdduvall #pragma no_inline(bge_led_mark) 7881369Sdduvall 7891369Sdduvall void 7901369Sdduvall bge_led_mark(bge_t *bgep) 7911369Sdduvall { 7921369Sdduvall uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK | 7931369Sdduvall LED_CONTROL_1000MBPS_LED | 7941369Sdduvall LED_CONTROL_100MBPS_LED | 7951369Sdduvall LED_CONTROL_10MBPS_LED; 7961369Sdduvall 7971369Sdduvall /* 7981369Sdduvall * Blink all three LINK LEDs on simultaneously, then all off, 7991369Sdduvall * then restore to automatic hardware control. This is used 8001369Sdduvall * in laboratory testing to trigger a logic analyser or scope. 8011369Sdduvall */ 8021369Sdduvall bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 8031369Sdduvall led_ctrl ^= LED_CONTROL_OVERRIDE_LINK; 8041369Sdduvall bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 8051369Sdduvall led_ctrl = LED_CONTROL_OVERRIDE_LINK; 8061369Sdduvall bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); 8071369Sdduvall } 8081369Sdduvall 8091369Sdduvall #endif /* BGE_DEBUGGING */ 8101369Sdduvall 8111369Sdduvall /* 8121369Sdduvall * NIC on-chip memory access routines 8131369Sdduvall * 8141369Sdduvall * Only 32K of NIC memory is visible at a time, controlled by the 8151369Sdduvall * Memory Window Base Address Register (in PCI config space). Once 8161369Sdduvall * this is set, the 32K region of NIC-local memory that it refers 8171369Sdduvall * to can be directly addressed in the upper 32K of the 64K of PCI 8181369Sdduvall * memory space used for the device. 8191369Sdduvall */ 8201369Sdduvall 8211369Sdduvall static void bge_nic_setwin(bge_t *bgep, bge_regno_t base); 8221369Sdduvall #pragma inline(bge_nic_setwin) 8231369Sdduvall 8241369Sdduvall static void 8251369Sdduvall bge_nic_setwin(bge_t *bgep, bge_regno_t base) 8261369Sdduvall { 8271369Sdduvall BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)", 8281369Sdduvall (void *)bgep, base)); 8291369Sdduvall 8301369Sdduvall ASSERT((base & MWBAR_GRANULE_MASK) == 0); 8311369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base); 8321369Sdduvall } 8331369Sdduvall 8341369Sdduvall 8351369Sdduvall static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr); 8361369Sdduvall #pragma inline(bge_nic_get32) 8371369Sdduvall 8381369Sdduvall static uint32_t 8391369Sdduvall bge_nic_get32(bge_t *bgep, bge_regno_t addr) 8401369Sdduvall { 8411369Sdduvall uint32_t data; 8421369Sdduvall 8431408Srandyf #ifdef BGE_IPMI_ASF 8441408Srandyf if (bgep->asf_enabled && !bgep->asf_wordswapped) { 8451408Srandyf /* workaround for word swap error */ 8461408Srandyf if (addr & 4) 8471408Srandyf addr = addr - 4; 8481408Srandyf else 8491408Srandyf addr = addr + 4; 8501408Srandyf } 8511408Srandyf #endif 8521408Srandyf 8531369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 8541369Sdduvall addr &= MWBAR_GRANULE_MASK; 8551369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 8561369Sdduvall 8571369Sdduvall data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); 8581369Sdduvall 8591369Sdduvall BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x", 8601369Sdduvall (void *)bgep, addr, data)); 8611369Sdduvall 8621369Sdduvall return (data); 8631369Sdduvall } 8641369Sdduvall 8651408Srandyf void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data); 8661408Srandyf #pragma inline(bge_nic_put32) 8671408Srandyf 8681408Srandyf void 8691369Sdduvall bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data) 8701369Sdduvall { 8711369Sdduvall BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)", 8721369Sdduvall (void *)bgep, addr, data)); 8731369Sdduvall 8741408Srandyf #ifdef BGE_IPMI_ASF 8751408Srandyf if (bgep->asf_enabled && !bgep->asf_wordswapped) { 8761408Srandyf /* workaround for word swap error */ 8771408Srandyf if (addr & 4) 8781408Srandyf addr = addr - 4; 8791408Srandyf else 8801408Srandyf addr = addr + 4; 8811408Srandyf } 8821408Srandyf #endif 8831408Srandyf 8841369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 8851369Sdduvall addr &= MWBAR_GRANULE_MASK; 8861369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 8871369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data); 8881369Sdduvall BGE_PCICHK(bgep); 8891369Sdduvall } 8901369Sdduvall 8911369Sdduvall 8921369Sdduvall static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr); 8931369Sdduvall #pragma inline(bge_nic_get64) 8941369Sdduvall 8951369Sdduvall static uint64_t 8961369Sdduvall bge_nic_get64(bge_t *bgep, bge_regno_t addr) 8971369Sdduvall { 8981369Sdduvall uint64_t data; 8991369Sdduvall 9001369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 9011369Sdduvall addr &= MWBAR_GRANULE_MASK; 9021369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 9031369Sdduvall 9041369Sdduvall #ifdef __amd64 9051369Sdduvall if (bge_get_em64t_type()) { 9061369Sdduvall data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); 9071369Sdduvall data <<= 32; 9081369Sdduvall data |= ddi_get32(bgep->io_handle, 9091369Sdduvall PIO_ADDR(bgep, addr + 4)); 9101369Sdduvall } else { 9111369Sdduvall data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); 9121369Sdduvall } 9131369Sdduvall #else 9141369Sdduvall data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); 9151369Sdduvall #endif 9161369Sdduvall 9171369Sdduvall BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx", 9181369Sdduvall (void *)bgep, addr, data)); 9191369Sdduvall 9201369Sdduvall return (data); 9211369Sdduvall } 9221369Sdduvall 9231369Sdduvall static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data); 9241369Sdduvall #pragma inline(bge_nic_put64) 9251369Sdduvall 9261369Sdduvall static void 9271369Sdduvall bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data) 9281369Sdduvall { 9291369Sdduvall BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)", 9301369Sdduvall (void *)bgep, addr, data)); 9311369Sdduvall 9321369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 9331369Sdduvall addr &= MWBAR_GRANULE_MASK; 9341369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 9351369Sdduvall 9361369Sdduvall #ifdef __amd64 9371369Sdduvall if (bge_get_em64t_type()) { 9381369Sdduvall ddi_put32(bgep->io_handle, 9391369Sdduvall PIO_ADDR(bgep, addr), (uint32_t)data); 9401369Sdduvall BGE_PCICHK(bgep); 9411369Sdduvall ddi_put32(bgep->io_handle, 9421369Sdduvall PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32)); 9431369Sdduvall } else { 9441369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); 9451369Sdduvall } 9461369Sdduvall #else 9471369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); 9481369Sdduvall #endif 9491369Sdduvall 9501369Sdduvall BGE_PCICHK(bgep); 9511369Sdduvall } 9521369Sdduvall 9531369Sdduvall /* 9541369Sdduvall * The DDI doesn't provide get/put functions for 128 bit data 9551369Sdduvall * so we put RCBs out as two 64-bit chunks instead. 9561369Sdduvall */ 9571369Sdduvall static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); 9581369Sdduvall #pragma inline(bge_nic_putrcb) 9591369Sdduvall 9601369Sdduvall static void 9611369Sdduvall bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) 9621369Sdduvall { 9631369Sdduvall uint64_t *p; 9641369Sdduvall 9651369Sdduvall BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", 9661369Sdduvall (void *)bgep, addr, rcbp->host_ring_addr, 9671369Sdduvall rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); 9681369Sdduvall 9691369Sdduvall ASSERT((addr % sizeof (*rcbp)) == 0); 9701369Sdduvall 9711369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 9721369Sdduvall addr &= MWBAR_GRANULE_MASK; 9731369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 9741369Sdduvall 9751369Sdduvall p = (void *)rcbp; 9761369Sdduvall #ifdef __amd64 9771369Sdduvall if (bge_get_em64t_type()) { 9781369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), 9791369Sdduvall (uint32_t)(*p)); 9801369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4), 9811369Sdduvall (uint32_t)(*p >> 32)); 9821369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8), 9831369Sdduvall (uint32_t)(*(p + 1))); 9841369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12), 9851369Sdduvall (uint32_t)(*p >> 32)); 9861369Sdduvall 9871369Sdduvall } else { 9881369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); 9891369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p); 9901369Sdduvall } 9911369Sdduvall #else 9921369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); 9931369Sdduvall ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p); 9941369Sdduvall #endif 9951369Sdduvall 9961369Sdduvall BGE_PCICHK(bgep); 9971369Sdduvall } 9981369Sdduvall 9991369Sdduvall static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes); 10001369Sdduvall #pragma inline(bge_nic_zero) 10011369Sdduvall 10021369Sdduvall static void 10031369Sdduvall bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes) 10041369Sdduvall { 10051369Sdduvall BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)", 10061369Sdduvall (void *)bgep, addr, nbytes)); 10071369Sdduvall 10081369Sdduvall ASSERT((addr & ~MWBAR_GRANULE_MASK) == 10091369Sdduvall ((addr+nbytes) & ~MWBAR_GRANULE_MASK)); 10101369Sdduvall 10111369Sdduvall bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); 10121369Sdduvall addr &= MWBAR_GRANULE_MASK; 10131369Sdduvall addr += NIC_MEM_WINDOW_OFFSET; 10141369Sdduvall 10151369Sdduvall (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr), 10161369Sdduvall nbytes, 1, DDI_DATA_SZ08_ACC); 10171369Sdduvall BGE_PCICHK(bgep); 10181369Sdduvall } 10191369Sdduvall 10201369Sdduvall /* 10211369Sdduvall * MII (PHY) register get/set access routines 10221369Sdduvall * 10231369Sdduvall * These use the chip's MII auto-access method, controlled by the 10241369Sdduvall * MII Communication register at 0x044c, so the CPU doesn't have 10251369Sdduvall * to fiddle with the individual bits. 10261369Sdduvall */ 10271369Sdduvall 10281369Sdduvall #undef BGE_DBG 10291369Sdduvall #define BGE_DBG BGE_DBG_MII /* debug flag for this code */ 10301369Sdduvall 10311369Sdduvall static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno, 10321369Sdduvall uint16_t data, uint32_t cmd); 10331369Sdduvall #pragma no_inline(bge_mii_access) 10341369Sdduvall 10351369Sdduvall static uint16_t 10361369Sdduvall bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd) 10371369Sdduvall { 10381369Sdduvall uint32_t timeout; 10391369Sdduvall uint32_t regval1; 10401369Sdduvall uint32_t regval2; 10411369Sdduvall 10421369Sdduvall BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)", 10431369Sdduvall (void *)bgep, regno, data, cmd)); 10441369Sdduvall 10451369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 10461369Sdduvall 10471369Sdduvall /* 10481369Sdduvall * Assemble the command ... 10491369Sdduvall */ 10501369Sdduvall cmd |= data << MI_COMMS_DATA_SHIFT; 10511369Sdduvall cmd |= regno << MI_COMMS_REGISTER_SHIFT; 10521369Sdduvall cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT; 10531369Sdduvall cmd |= MI_COMMS_START; 10541369Sdduvall 10551369Sdduvall /* 10561369Sdduvall * Wait for any command already in progress ... 10571369Sdduvall * 10581369Sdduvall * Note: this *shouldn't* ever find that there is a command 10591369Sdduvall * in progress, because we already hold the <genlock> mutex. 10601369Sdduvall * Nonetheless, we have sometimes seen the MI_COMMS_START 10611369Sdduvall * bit set here -- it seems that the chip can initiate MII 10621369Sdduvall * accesses internally, even with polling OFF. 10631369Sdduvall */ 10641369Sdduvall regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 10651369Sdduvall for (timeout = 1000; ; ) { 10661369Sdduvall if ((regval2 & MI_COMMS_START) == 0) { 10671369Sdduvall bge_reg_put32(bgep, MI_COMMS_REG, cmd); 10681369Sdduvall break; 10691369Sdduvall } 10701369Sdduvall if (--timeout == 0) 10711369Sdduvall break; 10721369Sdduvall drv_usecwait(10); 10731369Sdduvall regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 10741369Sdduvall } 10751369Sdduvall 10761369Sdduvall if (timeout != 1000) 10771369Sdduvall BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " 10781369Sdduvall "MI_COMMS_START set for %d us; 0x%x->0x%x", 10791369Sdduvall cmd, 10*(1000-timeout), regval1, regval2)); 10801369Sdduvall 10811369Sdduvall ASSERT(timeout != 0); 10821369Sdduvall if (timeout == 0) 10831369Sdduvall return ((uint16_t)~0u); 10841369Sdduvall 10851369Sdduvall regval1 = bge_reg_get32(bgep, MI_COMMS_REG); 10861369Sdduvall for (timeout = 1000; ; ) { 10871369Sdduvall if ((regval1 & MI_COMMS_START) == 0) 10881369Sdduvall break; 10891369Sdduvall if (--timeout == 0) 10901369Sdduvall break; 10911369Sdduvall drv_usecwait(10); 10921369Sdduvall regval1 = bge_reg_get32(bgep, MI_COMMS_REG); 10931369Sdduvall } 10941369Sdduvall 10951369Sdduvall /* 10961369Sdduvall * Drop out early if the READ FAILED bit is set -- this chip 10971369Sdduvall * could be a 5703/4S, with a SerDes instead of a PHY! 10981369Sdduvall */ 10991369Sdduvall if (regval2 & MI_COMMS_READ_FAILED) 11001369Sdduvall return ((uint16_t)~0u); 11011369Sdduvall 11021369Sdduvall ASSERT(timeout != 0); 11031369Sdduvall if (timeout == 0) 11041369Sdduvall return ((uint16_t)~0u); 11051369Sdduvall 11061369Sdduvall /* 11071369Sdduvall * The PRM says to wait 5us after seeing the START bit clear 11081369Sdduvall * and then re-read the register to get the final value of the 11091369Sdduvall * data field, in order to avoid a race condition where the 11101369Sdduvall * START bit is clear but the data field isn't yet valid. 11111369Sdduvall * 11121369Sdduvall * Note: we don't actually seem to be encounter this race; 11131369Sdduvall * except when the START bit is seen set again (see below), 11141369Sdduvall * the data field doesn't change during this 5us interval. 11151369Sdduvall */ 11161369Sdduvall drv_usecwait(5); 11171369Sdduvall regval2 = bge_reg_get32(bgep, MI_COMMS_REG); 11181369Sdduvall 11191369Sdduvall /* 11201369Sdduvall * Unfortunately, when following the PRMs instructions above, 11211369Sdduvall * we have occasionally seen the START bit set again(!) in the 11221369Sdduvall * value read after the 5us delay. This seems to be due to the 11231369Sdduvall * chip autonomously starting another MII access internally. 11241369Sdduvall * In such cases, the command/data/etc fields relate to the 11251369Sdduvall * internal command, rather than the one that we thought had 11261369Sdduvall * just finished. So in this case, we fall back to returning 11271369Sdduvall * the data from the original read that showed START clear. 11281369Sdduvall */ 11291369Sdduvall if (regval2 & MI_COMMS_START) { 11301369Sdduvall BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " 11311369Sdduvall "MI_COMMS_START set after transaction; 0x%x->0x%x", 11321369Sdduvall cmd, regval1, regval2)); 11331369Sdduvall regval2 = regval1; 11341369Sdduvall } 11351369Sdduvall 11361369Sdduvall ASSERT((regval2 & MI_COMMS_START) == 0); 11371369Sdduvall if (regval2 & MI_COMMS_START) 11381369Sdduvall return ((uint16_t)~0u); 11391369Sdduvall 11401369Sdduvall ASSERT((regval2 & MI_COMMS_READ_FAILED) == 0); 11411369Sdduvall if (regval2 & MI_COMMS_READ_FAILED) 11421369Sdduvall return ((uint16_t)~0u); 11431369Sdduvall 11441369Sdduvall return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT); 11451369Sdduvall } 11461369Sdduvall 11471369Sdduvall uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno); 11481369Sdduvall #pragma no_inline(bge_mii_get16) 11491369Sdduvall 11501369Sdduvall uint16_t 11511369Sdduvall bge_mii_get16(bge_t *bgep, bge_regno_t regno) 11521369Sdduvall { 11531369Sdduvall BGE_TRACE(("bge_mii_get16($%p, 0x%lx)", 11541369Sdduvall (void *)bgep, regno)); 11551369Sdduvall 11561369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 11571369Sdduvall 11581369Sdduvall return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ)); 11591369Sdduvall } 11601369Sdduvall 11611369Sdduvall void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data); 11621369Sdduvall #pragma no_inline(bge_mii_put16) 11631369Sdduvall 11641369Sdduvall void 11651369Sdduvall bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data) 11661369Sdduvall { 11671369Sdduvall BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)", 11681369Sdduvall (void *)bgep, regno, data)); 11691369Sdduvall 11701369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 11711369Sdduvall 11721369Sdduvall (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE); 11731369Sdduvall } 11741369Sdduvall 11751369Sdduvall #undef BGE_DBG 11761369Sdduvall #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */ 11771369Sdduvall 11781369Sdduvall #if BGE_SEE_IO32 || BGE_FLASH_IO32 11791369Sdduvall 11801369Sdduvall /* 11811369Sdduvall * Basic SEEPROM get/set access routine 11821369Sdduvall * 11831369Sdduvall * This uses the chip's SEEPROM auto-access method, controlled by the 11841369Sdduvall * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU 11851369Sdduvall * doesn't have to fiddle with the individual bits. 11861369Sdduvall * 11871369Sdduvall * The caller should hold <genlock> and *also* have already acquired 11881369Sdduvall * the right to access the SEEPROM, via bge_nvmem_acquire() above. 11891369Sdduvall * 11901369Sdduvall * Return value: 11911369Sdduvall * 0 on success, 11921369Sdduvall * ENODATA on access timeout (maybe retryable: device may just be busy) 11931369Sdduvall * EPROTO on other h/w or s/w errors. 11941369Sdduvall * 11951369Sdduvall * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output 11961369Sdduvall * from a (successful) SEEPROM_ACCESS_READ. 11971369Sdduvall */ 11981369Sdduvall static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, 11991369Sdduvall uint32_t *dp); 12001369Sdduvall #pragma no_inline(bge_seeprom_access) 12011369Sdduvall 12021369Sdduvall static int 12031369Sdduvall bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 12041369Sdduvall { 12051369Sdduvall uint32_t tries; 12061369Sdduvall uint32_t regval; 12071369Sdduvall 12081369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 12091369Sdduvall 12101369Sdduvall /* 12111369Sdduvall * On the newer chips that support both SEEPROM & Flash, we need 12121369Sdduvall * to specifically enable SEEPROM access (Flash is the default). 12131369Sdduvall * On older chips, we don't; SEEPROM is the only NVtype supported, 12141369Sdduvall * and the NVM control registers don't exist ... 12151369Sdduvall */ 12161369Sdduvall switch (bgep->chipid.nvtype) { 12171369Sdduvall case BGE_NVTYPE_NONE: 12181369Sdduvall case BGE_NVTYPE_UNKNOWN: 12191369Sdduvall _NOTE(NOTREACHED) 12201369Sdduvall case BGE_NVTYPE_SEEPROM: 12211369Sdduvall break; 12221369Sdduvall 12231369Sdduvall case BGE_NVTYPE_LEGACY_SEEPROM: 12241369Sdduvall case BGE_NVTYPE_UNBUFFERED_FLASH: 12251369Sdduvall case BGE_NVTYPE_BUFFERED_FLASH: 12261369Sdduvall default: 12271369Sdduvall bge_reg_set32(bgep, NVM_CONFIG1_REG, 12281369Sdduvall NVM_CFG1_LEGACY_SEEPROM_MODE); 12291369Sdduvall break; 12301369Sdduvall } 12311369Sdduvall 12321369Sdduvall /* 12331369Sdduvall * Check there's no command in progress. 12341369Sdduvall * 12351369Sdduvall * Note: this *shouldn't* ever find that there is a command 12361369Sdduvall * in progress, because we already hold the <genlock> mutex. 12371369Sdduvall * Also, to ensure we don't have a conflict with the chip's 12381369Sdduvall * internal firmware or a process accessing the same (shared) 12391369Sdduvall * SEEPROM through the other port of a 5704, we've already 12401369Sdduvall * been through the "software arbitration" protocol. 12411369Sdduvall * So this is just a final consistency check: we shouldn't 12421369Sdduvall * see EITHER the START bit (command started but not complete) 12431369Sdduvall * OR the COMPLETE bit (command completed but not cleared). 12441369Sdduvall */ 12451369Sdduvall regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); 12461369Sdduvall if (regval & SEEPROM_ACCESS_START) 12471369Sdduvall return (EPROTO); 12481369Sdduvall if (regval & SEEPROM_ACCESS_COMPLETE) 12491369Sdduvall return (EPROTO); 12501369Sdduvall 12511369Sdduvall /* 12521369Sdduvall * Assemble the command ... 12531369Sdduvall */ 12541369Sdduvall cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK; 12551369Sdduvall addr >>= SEEPROM_ACCESS_ADDRESS_SIZE; 12561369Sdduvall addr <<= SEEPROM_ACCESS_DEVID_SHIFT; 12571369Sdduvall cmd |= addr & SEEPROM_ACCESS_DEVID_MASK; 12581369Sdduvall cmd |= SEEPROM_ACCESS_START; 12591369Sdduvall cmd |= SEEPROM_ACCESS_COMPLETE; 12601369Sdduvall cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK; 12611369Sdduvall 12621369Sdduvall bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp); 12631369Sdduvall bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd); 12641369Sdduvall 12651369Sdduvall /* 12661369Sdduvall * By observation, a successful access takes ~20us on a 5703/4, 12671369Sdduvall * but apparently much longer (up to 1000us) on the obsolescent 12681369Sdduvall * BCM5700/BCM5701. We want to be sure we don't get any false 12691369Sdduvall * timeouts here; but OTOH, we don't want a bogus access to lock 12701369Sdduvall * out interrupts for longer than necessary. So we'll allow up 12711369Sdduvall * to 1000us ... 12721369Sdduvall */ 12731369Sdduvall for (tries = 0; tries < 1000; ++tries) { 12741369Sdduvall regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); 12751369Sdduvall if (regval & SEEPROM_ACCESS_COMPLETE) 12761369Sdduvall break; 12771369Sdduvall drv_usecwait(1); 12781369Sdduvall } 12791369Sdduvall 12801369Sdduvall ASSERT((regval & SEEPROM_ACCESS_START) == 0); 12811369Sdduvall if (regval & SEEPROM_ACCESS_COMPLETE) { 12821369Sdduvall /* 12831369Sdduvall * All OK; read the SEEPROM data register, then write back 12841369Sdduvall * the value read from the address register in order to 12851369Sdduvall * clear the <complete> bit and leave the SEEPROM access 12861369Sdduvall * state machine idle, ready for the next access ... 12871369Sdduvall */ 12881369Sdduvall BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries)); 12891369Sdduvall *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG); 12901369Sdduvall bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval); 12911369Sdduvall return (0); 12921369Sdduvall } 12931369Sdduvall 12941369Sdduvall /* 12951369Sdduvall * Hmm ... what happened here? 12961369Sdduvall * 12971369Sdduvall * Most likely, the user addressed an non-existent SEEPROM. Or 12981369Sdduvall * maybe the SEEPROM was busy internally (e.g. processing a write) 12991369Sdduvall * and didn't respond to being addressed. Either way, it's left 13001369Sdduvall * the SEEPROM access state machine wedged. So we'll reset it 13011369Sdduvall * before we leave, so it's ready for next time ... 13021369Sdduvall */ 13031369Sdduvall BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries)); 13041369Sdduvall bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); 13051369Sdduvall return (ENODATA); 13061369Sdduvall } 13071369Sdduvall 13081369Sdduvall /* 13091369Sdduvall * Basic Flash get/set access routine 13101369Sdduvall * 13111369Sdduvall * These use the chip's Flash auto-access method, controlled by the 13121369Sdduvall * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to 13131369Sdduvall * fiddle with the individual bits. 13141369Sdduvall * 13151369Sdduvall * The caller should hold <genlock> and *also* have already acquired 13161369Sdduvall * the right to access the Flash, via bge_nvmem_acquire() above. 13171369Sdduvall * 13181369Sdduvall * Return value: 13191369Sdduvall * 0 on success, 13201369Sdduvall * ENODATA on access timeout (maybe retryable: device may just be busy) 13211369Sdduvall * ENODEV if the NVmem device is missing or otherwise unusable 13221369Sdduvall * 13231369Sdduvall * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output 13241369Sdduvall * from a (successful) NVM_FLASH_CMD_RD. 13251369Sdduvall */ 13261369Sdduvall static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, 13271369Sdduvall uint32_t *dp); 13281369Sdduvall #pragma no_inline(bge_flash_access) 13291369Sdduvall 13301369Sdduvall static int 13311369Sdduvall bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 13321369Sdduvall { 13331369Sdduvall uint32_t tries; 13341369Sdduvall uint32_t regval; 13351369Sdduvall 13361369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 13371369Sdduvall 13381369Sdduvall /* 13391369Sdduvall * On the newer chips that support both SEEPROM & Flash, we need 13401369Sdduvall * to specifically disable SEEPROM access while accessing Flash. 13411369Sdduvall * The older chips don't support Flash, and the NVM registers don't 13421369Sdduvall * exist, so we shouldn't be here at all! 13431369Sdduvall */ 13441369Sdduvall switch (bgep->chipid.nvtype) { 13451369Sdduvall case BGE_NVTYPE_NONE: 13461369Sdduvall case BGE_NVTYPE_UNKNOWN: 13471369Sdduvall _NOTE(NOTREACHED) 13481369Sdduvall case BGE_NVTYPE_SEEPROM: 13491369Sdduvall return (ENODEV); 13501369Sdduvall 13511369Sdduvall case BGE_NVTYPE_LEGACY_SEEPROM: 13521369Sdduvall case BGE_NVTYPE_UNBUFFERED_FLASH: 13531369Sdduvall case BGE_NVTYPE_BUFFERED_FLASH: 13541369Sdduvall default: 13551369Sdduvall bge_reg_clr32(bgep, NVM_CONFIG1_REG, 13561369Sdduvall NVM_CFG1_LEGACY_SEEPROM_MODE); 13571369Sdduvall break; 13581369Sdduvall } 13591369Sdduvall 13601369Sdduvall /* 13611369Sdduvall * Assemble the command ... 13621369Sdduvall */ 13631369Sdduvall addr &= NVM_FLASH_ADDR_MASK; 13641369Sdduvall cmd |= NVM_FLASH_CMD_DOIT; 13651369Sdduvall cmd |= NVM_FLASH_CMD_FIRST; 13661369Sdduvall cmd |= NVM_FLASH_CMD_LAST; 13671369Sdduvall cmd |= NVM_FLASH_CMD_DONE; 13681369Sdduvall 13691369Sdduvall bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp); 13701369Sdduvall bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr); 13711369Sdduvall bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd); 13721369Sdduvall 13731369Sdduvall /* 13741369Sdduvall * Allow up to 1000ms ... 13751369Sdduvall */ 13761369Sdduvall for (tries = 0; tries < 1000; ++tries) { 13771369Sdduvall regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG); 13781369Sdduvall if (regval & NVM_FLASH_CMD_DONE) 13791369Sdduvall break; 13801369Sdduvall drv_usecwait(1); 13811369Sdduvall } 13821369Sdduvall 13831369Sdduvall if (regval & NVM_FLASH_CMD_DONE) { 13841369Sdduvall /* 13851369Sdduvall * All OK; read the data from the Flash read register 13861369Sdduvall */ 13871369Sdduvall BGE_DEBUG(("bge_flash_access: complete after %d us", tries)); 13881369Sdduvall *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG); 13891369Sdduvall return (0); 13901369Sdduvall } 13911369Sdduvall 13921369Sdduvall /* 13931369Sdduvall * Hmm ... what happened here? 13941369Sdduvall * 13951369Sdduvall * Most likely, the user addressed an non-existent Flash. Or 13961369Sdduvall * maybe the Flash was busy internally (e.g. processing a write) 13971369Sdduvall * and didn't respond to being addressed. Either way, there's 13981369Sdduvall * nothing we can here ... 13991369Sdduvall */ 14001369Sdduvall BGE_DEBUG(("bge_flash_access: timed out after %d us", tries)); 14011369Sdduvall return (ENODATA); 14021369Sdduvall } 14031369Sdduvall 14041369Sdduvall /* 14051369Sdduvall * The next two functions regulate access to the NVram (if fitted). 14061369Sdduvall * 14071369Sdduvall * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash 14081369Sdduvall * (SPI) interface, but they can be accessed through either port. These 14091369Sdduvall * are managed by different instance of this driver and have no software 14101369Sdduvall * state in common. 14111369Sdduvall * 14121369Sdduvall * In addition (and even on a single core chip) the chip's internal 14131369Sdduvall * firmware can access the SEEPROM/Flash, most notably after a RESET 14141369Sdduvall * when it may download code to run internally. 14151369Sdduvall * 14161369Sdduvall * So we need to arbitrate between these various software agents. For 14171369Sdduvall * this purpose, the chip provides the Software Arbitration Register, 14181369Sdduvall * which implements hardware(!) arbitration. 14191369Sdduvall * 14201369Sdduvall * This functionality didn't exist on older (5700/5701) chips, so there's 14211369Sdduvall * nothing we can do by way of arbitration on those; also, if there's no 14221369Sdduvall * SEEPROM/Flash fitted (or we couldn't determine what type), there's also 14231369Sdduvall * nothing to do. 14241369Sdduvall * 14251369Sdduvall * The internal firmware appears to use Request 0, which is the highest 14261369Sdduvall * priority. So we'd like to use Request 2, leaving one higher and one 14271369Sdduvall * lower for any future developments ... but apparently this doesn't 14281369Sdduvall * always work. So for now, the code uses Request 1 ;-( 14291369Sdduvall */ 14301369Sdduvall 14311369Sdduvall #define NVM_READ_REQ NVM_READ_REQ1 14321369Sdduvall #define NVM_RESET_REQ NVM_RESET_REQ1 14331369Sdduvall #define NVM_SET_REQ NVM_SET_REQ1 14341369Sdduvall 14351369Sdduvall static void bge_nvmem_relinquish(bge_t *bgep); 14361369Sdduvall #pragma no_inline(bge_nvmem_relinquish) 14371369Sdduvall 14381369Sdduvall static void 14391369Sdduvall bge_nvmem_relinquish(bge_t *bgep) 14401369Sdduvall { 14411369Sdduvall uint32_t regval; 14421369Sdduvall 14431369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 14441369Sdduvall 14451369Sdduvall switch (bgep->chipid.nvtype) { 14461369Sdduvall case BGE_NVTYPE_NONE: 14471369Sdduvall case BGE_NVTYPE_UNKNOWN: 14481369Sdduvall _NOTE(NOTREACHED) 14491369Sdduvall return; 14501369Sdduvall 14511369Sdduvall case BGE_NVTYPE_SEEPROM: 14521369Sdduvall /* 14531369Sdduvall * No arbitration performed, no release needed 14541369Sdduvall */ 14551369Sdduvall return; 14561369Sdduvall 14571369Sdduvall case BGE_NVTYPE_LEGACY_SEEPROM: 14581369Sdduvall case BGE_NVTYPE_UNBUFFERED_FLASH: 14591369Sdduvall case BGE_NVTYPE_BUFFERED_FLASH: 14601369Sdduvall default: 14611369Sdduvall break; 14621369Sdduvall } 14631369Sdduvall 14641369Sdduvall /* 14651369Sdduvall * Our own request should be present (whether or not granted) ... 14661369Sdduvall */ 14671369Sdduvall regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 14681369Sdduvall ASSERT((regval & NVM_READ_REQ) != 0); 14691369Sdduvall 14701369Sdduvall /* 14711369Sdduvall * ... this will make it go away. 14721369Sdduvall */ 14731369Sdduvall bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ); 14741369Sdduvall regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 14751369Sdduvall ASSERT((regval & NVM_READ_REQ) == 0); 14761369Sdduvall } 14771369Sdduvall 14781369Sdduvall /* 14791369Sdduvall * Arbitrate for access to the NVmem, if necessary 14801369Sdduvall * 14811369Sdduvall * Return value: 14821369Sdduvall * 0 on success 14831369Sdduvall * EAGAIN if the device is in use (retryable) 14841369Sdduvall * ENODEV if the NVmem device is missing or otherwise unusable 14851369Sdduvall */ 14861369Sdduvall static int bge_nvmem_acquire(bge_t *bgep); 14871369Sdduvall #pragma no_inline(bge_nvmem_acquire) 14881369Sdduvall 14891369Sdduvall static int 14901369Sdduvall bge_nvmem_acquire(bge_t *bgep) 14911369Sdduvall { 14921369Sdduvall uint32_t regval; 14931369Sdduvall uint32_t tries; 14941369Sdduvall 14951369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 14961369Sdduvall 14971369Sdduvall switch (bgep->chipid.nvtype) { 14981369Sdduvall case BGE_NVTYPE_NONE: 14991369Sdduvall case BGE_NVTYPE_UNKNOWN: 15001369Sdduvall /* 15011369Sdduvall * Access denied: no (recognisable) device fitted 15021369Sdduvall */ 15031369Sdduvall return (ENODEV); 15041369Sdduvall 15051369Sdduvall case BGE_NVTYPE_SEEPROM: 15061369Sdduvall /* 15071369Sdduvall * Access granted: no arbitration needed (or possible) 15081369Sdduvall */ 15091369Sdduvall return (0); 15101369Sdduvall 15111369Sdduvall case BGE_NVTYPE_LEGACY_SEEPROM: 15121369Sdduvall case BGE_NVTYPE_UNBUFFERED_FLASH: 15131369Sdduvall case BGE_NVTYPE_BUFFERED_FLASH: 15141369Sdduvall default: 15151369Sdduvall /* 15161369Sdduvall * Access conditional: conduct arbitration protocol 15171369Sdduvall */ 15181369Sdduvall break; 15191369Sdduvall } 15201369Sdduvall 15211369Sdduvall /* 15221369Sdduvall * We're holding the per-port mutex <genlock>, so no-one other 15231369Sdduvall * threads can be attempting to access the NVmem through *this* 15241369Sdduvall * port. But it could be in use by the *other* port (of a 5704), 15251369Sdduvall * or by the chip's internal firmware, so we have to go through 15261369Sdduvall * the full (hardware) arbitration protocol ... 15271369Sdduvall * 15281369Sdduvall * Note that *because* we're holding <genlock>, the interrupt handler 15291369Sdduvall * won't be able to progress. So we're only willing to spin for a 15301369Sdduvall * fairly short time. Specifically: 15311369Sdduvall * 15321369Sdduvall * We *must* wait long enough for the hardware to resolve all 15331369Sdduvall * requests and determine the winner. Fortunately, this is 15341369Sdduvall * "almost instantaneous", even as observed by GHz CPUs. 15351369Sdduvall * 15361369Sdduvall * A successful access by another Solaris thread (via either 15371369Sdduvall * port) typically takes ~20us. So waiting a bit longer than 15381369Sdduvall * that will give a good chance of success, if the other user 15391369Sdduvall * *is* another thread on the other port. 15401369Sdduvall * 15411369Sdduvall * However, the internal firmware can hold on to the NVmem 15421369Sdduvall * for *much* longer: at least 10 milliseconds just after a 15431369Sdduvall * RESET, and maybe even longer if the NVmem actually contains 15441369Sdduvall * code to download and run on the internal CPUs. 15451369Sdduvall * 15461369Sdduvall * So, we'll allow 50us; if that's not enough then it's up to the 15471369Sdduvall * caller to retry later (hence the choice of return code EAGAIN). 15481369Sdduvall */ 15491369Sdduvall regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 15501369Sdduvall ASSERT((regval & NVM_READ_REQ) == 0); 15511369Sdduvall bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ); 15521369Sdduvall 15531369Sdduvall for (tries = 0; tries < 50; ++tries) { 15541369Sdduvall regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); 15551369Sdduvall ASSERT((regval & NVM_READ_REQ) != 0); 15561369Sdduvall if (regval & NVM_WON_REQ1) 15571369Sdduvall break; 15581369Sdduvall drv_usecwait(1); 15591369Sdduvall } 15601369Sdduvall 15611369Sdduvall if (regval & NVM_WON_REQ1) { 15621369Sdduvall BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries)); 15631369Sdduvall return (0); 15641369Sdduvall } 15651369Sdduvall 15661369Sdduvall /* 15671369Sdduvall * Somebody else must be accessing the NVmem, so abandon our 15681369Sdduvall * attempt take control of it. The caller can try again later ... 15691369Sdduvall */ 15701369Sdduvall BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries)); 15711369Sdduvall bge_nvmem_relinquish(bgep); 15721369Sdduvall return (EAGAIN); 15731369Sdduvall } 15741369Sdduvall 15751369Sdduvall /* 15761369Sdduvall * This code assumes that the GPIO1 bit has been wired up to the NVmem 15771369Sdduvall * write protect line in such a way that the NVmem is protected when 15781369Sdduvall * GPIO1 is an input, or is an output but driven high. Thus, to make the 15791369Sdduvall * NVmem writable we have to change GPIO1 to an output AND drive it low. 15801369Sdduvall * 15811369Sdduvall * Note: there's only one set of GPIO pins on a 5704, even though they 15821369Sdduvall * can be accessed through either port. So the chip has to resolve what 15831369Sdduvall * happens if the two ports program a single pin differently ... the rule 15841369Sdduvall * it uses is that if the ports disagree about the *direction* of a pin, 15851369Sdduvall * "output" wins over "input", but if they disagree about its *value* as 15861369Sdduvall * an output, then the pin is TRISTATED instead! In such a case, no-one 15871369Sdduvall * wins, and the external signal does whatever the external circuitry 15881369Sdduvall * defines as the default -- which we've assumed is the PROTECTED state. 15891369Sdduvall * So, we always change GPIO1 back to being an *input* whenever we're not 15901369Sdduvall * specifically using it to unprotect the NVmem. This allows either port 15911369Sdduvall * to update the NVmem, although obviously only one at a a time! 15921369Sdduvall * 15931369Sdduvall * The caller should hold <genlock> and *also* have already acquired the 15941369Sdduvall * right to access the NVmem, via bge_nvmem_acquire() above. 15951369Sdduvall */ 15961369Sdduvall static void bge_nvmem_protect(bge_t *bgep, boolean_t protect); 15971369Sdduvall #pragma inline(bge_nvmem_protect) 15981369Sdduvall 15991369Sdduvall static void 16001369Sdduvall bge_nvmem_protect(bge_t *bgep, boolean_t protect) 16011369Sdduvall { 16021369Sdduvall uint32_t regval; 16031369Sdduvall 16041369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 16051369Sdduvall 16061369Sdduvall regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); 16071369Sdduvall if (protect) { 16081369Sdduvall regval |= MLCR_MISC_PINS_OUTPUT_1; 16091369Sdduvall regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1; 16101369Sdduvall } else { 16111369Sdduvall regval &= ~MLCR_MISC_PINS_OUTPUT_1; 16121369Sdduvall regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; 16131369Sdduvall } 16141369Sdduvall bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval); 16151369Sdduvall } 16161369Sdduvall 16171369Sdduvall /* 16181369Sdduvall * Now put it all together ... 16191369Sdduvall * 16201369Sdduvall * Try to acquire control of the NVmem; if successful, then: 16211369Sdduvall * unprotect it (if we want to write to it) 16221369Sdduvall * perform the requested access 16231369Sdduvall * reprotect it (after a write) 16241369Sdduvall * relinquish control 16251369Sdduvall * 16261369Sdduvall * Return value: 16271369Sdduvall * 0 on success, 16281369Sdduvall * EAGAIN if the device is in use (retryable) 16291369Sdduvall * ENODATA on access timeout (maybe retryable: device may just be busy) 16301369Sdduvall * ENODEV if the NVmem device is missing or otherwise unusable 16311369Sdduvall * EPROTO on other h/w or s/w errors. 16321369Sdduvall */ 16331369Sdduvall static int 16341369Sdduvall bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) 16351369Sdduvall { 16361369Sdduvall int err; 16371369Sdduvall 16381369Sdduvall if ((err = bge_nvmem_acquire(bgep)) == 0) { 16391369Sdduvall switch (cmd) { 16401369Sdduvall case BGE_SEE_READ: 16411369Sdduvall err = bge_seeprom_access(bgep, 16421369Sdduvall SEEPROM_ACCESS_READ, addr, dp); 16431369Sdduvall break; 16441369Sdduvall 16451369Sdduvall case BGE_SEE_WRITE: 16461369Sdduvall bge_nvmem_protect(bgep, B_FALSE); 16471369Sdduvall err = bge_seeprom_access(bgep, 16481369Sdduvall SEEPROM_ACCESS_WRITE, addr, dp); 16491369Sdduvall bge_nvmem_protect(bgep, B_TRUE); 16501369Sdduvall break; 16511369Sdduvall 16521369Sdduvall case BGE_FLASH_READ: 16531369Sdduvall if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 16541369Sdduvall DEVICE_5714_SERIES_CHIPSETS(bgep)) { 16551369Sdduvall bge_reg_set32(bgep, NVM_ACCESS_REG, 16561369Sdduvall NVM_ACCESS_ENABLE); 16571369Sdduvall } 16581369Sdduvall err = bge_flash_access(bgep, 16591369Sdduvall NVM_FLASH_CMD_RD, addr, dp); 16601369Sdduvall if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 16611369Sdduvall DEVICE_5714_SERIES_CHIPSETS(bgep)) { 16621369Sdduvall bge_reg_clr32(bgep, NVM_ACCESS_REG, 16631369Sdduvall NVM_ACCESS_ENABLE); 16641369Sdduvall } 16651369Sdduvall break; 16661369Sdduvall 16671369Sdduvall case BGE_FLASH_WRITE: 16681369Sdduvall if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 16691369Sdduvall DEVICE_5714_SERIES_CHIPSETS(bgep)) { 16701369Sdduvall bge_reg_set32(bgep, NVM_ACCESS_REG, 16711369Sdduvall NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); 16721369Sdduvall } 16731369Sdduvall bge_nvmem_protect(bgep, B_FALSE); 16741369Sdduvall err = bge_flash_access(bgep, 16751369Sdduvall NVM_FLASH_CMD_WR, addr, dp); 16761369Sdduvall bge_nvmem_protect(bgep, B_TRUE); 16771369Sdduvall if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 16781369Sdduvall DEVICE_5714_SERIES_CHIPSETS(bgep)) { 16791369Sdduvall bge_reg_clr32(bgep, NVM_ACCESS_REG, 16801369Sdduvall NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); 16811369Sdduvall } 16821369Sdduvall 16831369Sdduvall break; 16841369Sdduvall 16851369Sdduvall default: 16861369Sdduvall _NOTE(NOTREACHED) 16871369Sdduvall break; 16881369Sdduvall } 16891369Sdduvall bge_nvmem_relinquish(bgep); 16901369Sdduvall } 16911369Sdduvall 16921369Sdduvall BGE_DEBUG(("bge_nvmem_rw32: err %d", err)); 16931369Sdduvall return (err); 16941369Sdduvall } 16951369Sdduvall 16961369Sdduvall /* 16971369Sdduvall * Attempt to get a MAC address from the SEEPROM or Flash, if any 16981369Sdduvall */ 16991369Sdduvall static uint64_t bge_get_nvmac(bge_t *bgep); 17001369Sdduvall #pragma no_inline(bge_get_nvmac) 17011369Sdduvall 17021369Sdduvall static uint64_t 17031369Sdduvall bge_get_nvmac(bge_t *bgep) 17041369Sdduvall { 17051369Sdduvall uint32_t mac_high; 17061369Sdduvall uint32_t mac_low; 17071369Sdduvall uint32_t addr; 17081369Sdduvall uint32_t cmd; 17091369Sdduvall uint64_t mac; 17101369Sdduvall 17111369Sdduvall BGE_TRACE(("bge_get_nvmac($%p)", 17121369Sdduvall (void *)bgep)); 17131369Sdduvall 17141369Sdduvall switch (bgep->chipid.nvtype) { 17151369Sdduvall case BGE_NVTYPE_NONE: 17161369Sdduvall case BGE_NVTYPE_UNKNOWN: 17171369Sdduvall default: 17181369Sdduvall return (0ULL); 17191369Sdduvall 17201369Sdduvall case BGE_NVTYPE_SEEPROM: 17211369Sdduvall case BGE_NVTYPE_LEGACY_SEEPROM: 17221369Sdduvall cmd = BGE_SEE_READ; 17231369Sdduvall break; 17241369Sdduvall 17251369Sdduvall case BGE_NVTYPE_UNBUFFERED_FLASH: 17261369Sdduvall case BGE_NVTYPE_BUFFERED_FLASH: 17271369Sdduvall cmd = BGE_FLASH_READ; 17281369Sdduvall break; 17291369Sdduvall } 17301369Sdduvall 17311369Sdduvall addr = NVMEM_DATA_MAC_ADDRESS; 17321369Sdduvall if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high)) 17331369Sdduvall return (0ULL); 17341369Sdduvall addr += 4; 17351369Sdduvall if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low)) 17361369Sdduvall return (0ULL); 17371369Sdduvall 17381369Sdduvall /* 17391369Sdduvall * The Broadcom chip is natively BIG-endian, so that's how the 17401369Sdduvall * MAC address is represented in NVmem. We may need to swap it 17411369Sdduvall * around on a little-endian host ... 17421369Sdduvall */ 17431369Sdduvall #ifdef _BIG_ENDIAN 17441369Sdduvall mac = mac_high; 17451369Sdduvall mac = mac << 32; 17461369Sdduvall mac |= mac_low; 17471369Sdduvall #else 17481369Sdduvall mac = BGE_BSWAP_32(mac_high); 17491369Sdduvall mac = mac << 32; 17501369Sdduvall mac |= BGE_BSWAP_32(mac_low); 17511369Sdduvall #endif /* _BIG_ENDIAN */ 17521369Sdduvall 17531369Sdduvall return (mac); 17541369Sdduvall } 17551369Sdduvall 17561369Sdduvall #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ 17571369Sdduvall 17581369Sdduvall /* 17591369Sdduvall * Dummy version for when we're not supporting NVmem access 17601369Sdduvall */ 17611369Sdduvall static uint64_t bge_get_nvmac(bge_t *bgep); 17621369Sdduvall #pragma inline(bge_get_nvmac) 17631369Sdduvall 17641369Sdduvall static uint64_t 17651369Sdduvall bge_get_nvmac(bge_t *bgep) 17661369Sdduvall { 17671369Sdduvall _NOTE(ARGUNUSED(bgep)) 17681369Sdduvall return (0ULL); 17691369Sdduvall } 17701369Sdduvall 17711369Sdduvall #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ 17721369Sdduvall 17731369Sdduvall /* 17741369Sdduvall * Determine the type of NVmem that is (or may be) attached to this chip, 17751369Sdduvall */ 17761369Sdduvall static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep); 17771369Sdduvall #pragma no_inline(bge_nvmem_id) 17781369Sdduvall 17791369Sdduvall static enum bge_nvmem_type 17801369Sdduvall bge_nvmem_id(bge_t *bgep) 17811369Sdduvall { 17821369Sdduvall enum bge_nvmem_type nvtype; 17831369Sdduvall uint32_t config1; 17841369Sdduvall 17851369Sdduvall BGE_TRACE(("bge_nvmem_id($%p)", 17861369Sdduvall (void *)bgep)); 17871369Sdduvall 17881369Sdduvall switch (bgep->chipid.device) { 17891369Sdduvall default: 17901369Sdduvall /* 17911369Sdduvall * We shouldn't get here; it means we don't recognise 17921369Sdduvall * the chip, which means we don't know how to determine 17931369Sdduvall * what sort of NVmem (if any) it has. So we'll say 17941369Sdduvall * NONE, to disable the NVmem access code ... 17951369Sdduvall */ 17961369Sdduvall nvtype = BGE_NVTYPE_NONE; 17971369Sdduvall break; 17981369Sdduvall 17991369Sdduvall case DEVICE_ID_5700: 18001369Sdduvall case DEVICE_ID_5700x: 18011369Sdduvall case DEVICE_ID_5701: 18021369Sdduvall /* 18031369Sdduvall * These devices support *only* SEEPROMs 18041369Sdduvall */ 18051369Sdduvall nvtype = BGE_NVTYPE_SEEPROM; 18061369Sdduvall break; 18071369Sdduvall 18081369Sdduvall case DEVICE_ID_5702: 18091369Sdduvall case DEVICE_ID_5702fe: 18101369Sdduvall case DEVICE_ID_5703C: 18111369Sdduvall case DEVICE_ID_5703S: 18121369Sdduvall case DEVICE_ID_5704C: 18131369Sdduvall case DEVICE_ID_5704S: 18141369Sdduvall case DEVICE_ID_5704: 18151369Sdduvall case DEVICE_ID_5705M: 18161369Sdduvall case DEVICE_ID_5705C: 18171369Sdduvall case DEVICE_ID_5706: 18181369Sdduvall case DEVICE_ID_5782: 18191369Sdduvall case DEVICE_ID_5788: 18201369Sdduvall case DEVICE_ID_5751: 18211369Sdduvall case DEVICE_ID_5751M: 18221369Sdduvall case DEVICE_ID_5721: 18231369Sdduvall case DEVICE_ID_5714C: 18241369Sdduvall case DEVICE_ID_5714S: 18251369Sdduvall case DEVICE_ID_5715C: 18261369Sdduvall config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG); 18271369Sdduvall if (config1 & NVM_CFG1_FLASH_MODE) 18281369Sdduvall if (config1 & NVM_CFG1_BUFFERED_MODE) 18291369Sdduvall nvtype = BGE_NVTYPE_BUFFERED_FLASH; 18301369Sdduvall else 18311369Sdduvall nvtype = BGE_NVTYPE_UNBUFFERED_FLASH; 18321369Sdduvall else 18331369Sdduvall nvtype = BGE_NVTYPE_LEGACY_SEEPROM; 18341369Sdduvall break; 18351369Sdduvall } 18361369Sdduvall 18371369Sdduvall return (nvtype); 18381369Sdduvall } 18391369Sdduvall 18401369Sdduvall #undef BGE_DBG 18411369Sdduvall #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */ 18421369Sdduvall 18431369Sdduvall static void 18441369Sdduvall bge_init_recv_rule(bge_t *bgep) 18451369Sdduvall { 18461369Sdduvall bge_recv_rule_t *rulep; 18471369Sdduvall uint32_t i; 18481369Sdduvall 18491369Sdduvall /* 18501369Sdduvall * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING 18511369Sdduvall * 1. to direct UDP traffic, set: 18521369Sdduvall * rulep->control = RULE_PROTO_CONTROL; 18531369Sdduvall * rulep->mask_value = RULE_UDP_MASK_VALUE; 18541369Sdduvall * 2. to direct ICMP traffic, set: 18551369Sdduvall * rulep->control = RULE_PROTO_CONTROL; 18561369Sdduvall * rulep->mask_value = RULE_ICMP_MASK_VALUE; 18571369Sdduvall * 3. to direct traffic by source ip, set: 18581369Sdduvall * rulep->control = RULE_SIP_CONTROL; 18591369Sdduvall * rulep->mask_value = RULE_SIP_MASK_VALUE; 18601369Sdduvall */ 18611369Sdduvall rulep = bgep->recv_rules; 18621369Sdduvall rulep->control = RULE_PROTO_CONTROL; 18631369Sdduvall rulep->mask_value = RULE_TCP_MASK_VALUE; 18641369Sdduvall 18651369Sdduvall /* 18661369Sdduvall * set receive rule registers 18671369Sdduvall */ 18681369Sdduvall rulep = bgep->recv_rules; 18691369Sdduvall for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) { 18701369Sdduvall bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value); 18711369Sdduvall bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control); 18721369Sdduvall } 18731369Sdduvall } 18741369Sdduvall 18751369Sdduvall /* 18761369Sdduvall * Using the values captured by bge_chip_cfg_init(), and additional probes 18771369Sdduvall * as required, characterise the chip fully: determine the label by which 18781369Sdduvall * to refer to this chip, the correct settings for various registers, and 18791369Sdduvall * of course whether the device and/or subsystem are supported! 18801369Sdduvall */ 18811369Sdduvall void bge_chip_id_init(bge_t *bgep); 18821369Sdduvall #pragma no_inline(bge_chip_id_init) 18831369Sdduvall 18841369Sdduvall void 18851369Sdduvall bge_chip_id_init(bge_t *bgep) 18861369Sdduvall { 18871369Sdduvall char buf[MAXPATHLEN]; /* any risk of stack overflow? */ 18881369Sdduvall boolean_t sys_ok; 18891369Sdduvall boolean_t dev_ok; 18901369Sdduvall chip_id_t *cidp; 18911369Sdduvall uint32_t subid; 18921369Sdduvall char *devname; 18931369Sdduvall char *sysname; 18941369Sdduvall int *ids; 18951369Sdduvall int err; 18961369Sdduvall uint_t i; 18971369Sdduvall 18981369Sdduvall ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL); 18991369Sdduvall 19001369Sdduvall sys_ok = dev_ok = B_FALSE; 19011369Sdduvall cidp = &bgep->chipid; 19021369Sdduvall 19031369Sdduvall /* 19041369Sdduvall * Check the PCI device ID to determine the generic chip type and 19051369Sdduvall * select parameters that depend on this. 19061369Sdduvall * 19071369Sdduvall * Note: because the SPARC platforms in general don't fit the 19081369Sdduvall * SEEPROM 'behind' the chip, the PCI revision ID register reads 19091369Sdduvall * as zero - which is why we use <asic_rev> rather than <revision> 19101369Sdduvall * below ... 19111369Sdduvall * 19121369Sdduvall * Note: in general we can't distinguish between the Copper/SerDes 19131369Sdduvall * versions by ID alone, as some Copper devices (e.g. some but not 19141369Sdduvall * all 5703Cs) have the same ID as the SerDes equivalents. So we 19151369Sdduvall * treat them the same here, and the MII code works out the media 19161369Sdduvall * type later on ... 19171369Sdduvall */ 19181369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base; 19191369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len; 19201369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_USED; 19211369Sdduvall cidp->bge_dma_rwctrl = bge_dma_rwctrl; 19221369Sdduvall cidp->pci_type = BGE_PCI_X; 19231369Sdduvall cidp->statistic_type = BGE_STAT_BLK; 19241369Sdduvall 19251369Sdduvall if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX) 19261369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_DEFAULT; 19271369Sdduvall if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX) 19281369Sdduvall cidp->tx_rings = BGE_SEND_RINGS_DEFAULT; 19291369Sdduvall 19301369Sdduvall cidp->msi_enabled = B_FALSE; 19311369Sdduvall 19321369Sdduvall switch (cidp->device) { 19331369Sdduvall case DEVICE_ID_5700: 19341369Sdduvall case DEVICE_ID_5700x: 19351369Sdduvall cidp->chip_label = 5700; 19361369Sdduvall cidp->flags |= CHIP_FLAG_NO_CSUM; 19371369Sdduvall break; 19381369Sdduvall 19391369Sdduvall case DEVICE_ID_5701: 19401369Sdduvall cidp->chip_label = 5701; 19411369Sdduvall dev_ok = B_TRUE; 19421369Sdduvall cidp->flags |= CHIP_FLAG_NO_CSUM; 19431369Sdduvall break; 19441369Sdduvall 19451369Sdduvall case DEVICE_ID_5702: 19461369Sdduvall case DEVICE_ID_5702fe: 19471369Sdduvall cidp->chip_label = 5702; 19481369Sdduvall dev_ok = B_TRUE; 19491369Sdduvall cidp->flags |= CHIP_FLAG_NO_CSUM; /* for now */ 19501369Sdduvall break; 19511369Sdduvall 19521369Sdduvall case DEVICE_ID_5703C: 19531369Sdduvall case DEVICE_ID_5703S: 19541369Sdduvall case DEVICE_ID_5703: 19551369Sdduvall /* 19561369Sdduvall * Revision A0 of the 5703/5793 had various errata 19571369Sdduvall * that we can't or don't work around, so it's not 19581369Sdduvall * supported, but all later versions are 19591369Sdduvall */ 19601369Sdduvall cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703; 19611369Sdduvall if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0) 19621369Sdduvall dev_ok = B_TRUE; 19631369Sdduvall break; 19641369Sdduvall 19651369Sdduvall case DEVICE_ID_5704C: 19661369Sdduvall case DEVICE_ID_5704S: 19671369Sdduvall case DEVICE_ID_5704: 19681369Sdduvall /* 19691369Sdduvall * Revision A0 of the 5704/5794 had various errata 19701369Sdduvall * but we have workarounds, so it *is* supported. 19711369Sdduvall */ 19721369Sdduvall cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704; 19731369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5704; 19741369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5704; 19751369Sdduvall dev_ok = B_TRUE; 19761369Sdduvall break; 19771369Sdduvall 19781369Sdduvall case DEVICE_ID_5705C: 19791369Sdduvall case DEVICE_ID_5705M: 19801369Sdduvall case DEVICE_ID_5705MA3: 19811369Sdduvall case DEVICE_ID_5705F: 19821369Sdduvall cidp->chip_label = 5705; 19831369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5705; 19841369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5705; 19851369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5705; 19861369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 19871369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 19881369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 19891369Sdduvall cidp->statistic_type = BGE_STAT_REG; 19901369Sdduvall dev_ok = B_TRUE; 19911369Sdduvall break; 19921369Sdduvall 19931369Sdduvall case DEVICE_ID_5706: 19941369Sdduvall cidp->chip_label = 5706; 19951369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 19961369Sdduvall cidp->flags |= CHIP_FLAG_NO_CSUM; /* for now */ 19971369Sdduvall break; 19981369Sdduvall 19991369Sdduvall case DEVICE_ID_5782: 20001369Sdduvall /* 20011369Sdduvall * Apart from the label, we treat this as a 5705(?) 20021369Sdduvall */ 20031369Sdduvall cidp->chip_label = 5782; 20041369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5705; 20051369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5705; 20061369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5705; 20071369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20081369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20091369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20101369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20111369Sdduvall dev_ok = B_TRUE; 20121369Sdduvall break; 20131369Sdduvall 20141369Sdduvall case DEVICE_ID_5788: 20151369Sdduvall /* 20161369Sdduvall * Apart from the label, we treat this as a 5705(?) 20171369Sdduvall */ 20181369Sdduvall cidp->chip_label = 5788; 20191369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5705; 20201369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5705; 20211369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5705; 20221369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20231369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20241369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20251369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20261369Sdduvall dev_ok = B_TRUE; 20271369Sdduvall break; 20281369Sdduvall 20291369Sdduvall case DEVICE_ID_5714C: 20301369Sdduvall if (cidp->revision >= REVISION_ID_5714_A2) 20311369Sdduvall cidp->msi_enabled = bge_enable_msi; 20321369Sdduvall /* FALLTHRU */ 20331369Sdduvall case DEVICE_ID_5714S: 20341369Sdduvall cidp->chip_label = 5714; 20351369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5721; 20361369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5721; 20371369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5721; 20381369Sdduvall cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714; 20391369Sdduvall cidp->bge_mlcr_default = bge_mlcr_default_5714; 20401369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20411369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20421369Sdduvall cidp->pci_type = BGE_PCI_E; 20431369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20441369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20451369Sdduvall dev_ok = B_TRUE; 20461369Sdduvall break; 20471369Sdduvall 20481369Sdduvall case DEVICE_ID_5715C: 20491369Sdduvall cidp->chip_label = 5715; 20501369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5721; 20511369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5721; 20521369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5721; 20531369Sdduvall cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715; 20541369Sdduvall cidp->bge_mlcr_default = bge_mlcr_default_5714; 20551369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20561369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20571369Sdduvall cidp->pci_type = BGE_PCI_E; 20581369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20591369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20601369Sdduvall dev_ok = B_TRUE; 20611369Sdduvall break; 20621369Sdduvall 20631369Sdduvall case DEVICE_ID_5721: 20641369Sdduvall cidp->chip_label = 5721; 20651369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5721; 20661369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5721; 20671369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5721; 20681369Sdduvall cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 20691369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20701369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20711369Sdduvall cidp->pci_type = BGE_PCI_E; 20721369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20731369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20741369Sdduvall dev_ok = B_TRUE; 20751369Sdduvall break; 20761369Sdduvall 20771369Sdduvall case DEVICE_ID_5751: 20781369Sdduvall case DEVICE_ID_5751M: 20791369Sdduvall cidp->chip_label = 5751; 20801369Sdduvall cidp->mbuf_base = bge_mbuf_pool_base_5721; 20811369Sdduvall cidp->mbuf_length = bge_mbuf_pool_len_5721; 20821369Sdduvall cidp->recv_slots = BGE_RECV_SLOTS_5721; 20831369Sdduvall cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; 20841369Sdduvall cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; 20851369Sdduvall cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; 20861369Sdduvall cidp->pci_type = BGE_PCI_E; 20871369Sdduvall cidp->statistic_type = BGE_STAT_REG; 20881369Sdduvall cidp->flags |= CHIP_FLAG_NO_JUMBO; 20891369Sdduvall dev_ok = B_TRUE; 20901369Sdduvall break; 20911369Sdduvall 20921369Sdduvall } 20931369Sdduvall 20941369Sdduvall /* 20951369Sdduvall * Setup the default jumbo parameter. 20961369Sdduvall */ 20971369Sdduvall cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma; 20981369Sdduvall cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac; 20991369Sdduvall cidp->mbuf_hi_water = bge_mbuf_hi_water; 21001369Sdduvall cidp->ethmax_size = ETHERMAX; 21011369Sdduvall cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT; 21021369Sdduvall 21031369Sdduvall /* 21041369Sdduvall * If jumbo is enabled and this kind of chipset supports jumbo feature, 21051369Sdduvall * setup below jumbo specific parameters. 21061369Sdduvall */ 21071369Sdduvall if (bge_jumbo_enable && 21081369Sdduvall !(cidp->flags & CHIP_FLAG_NO_JUMBO) && 21091369Sdduvall (cidp->default_mtu > BGE_DEFAULT_MTU) && 21101369Sdduvall (cidp->default_mtu <= BGE_MAXIMUM_MTU)) { 21111369Sdduvall cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_JUMBO; 21121369Sdduvall cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_JUMBO; 21131369Sdduvall cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO; 21141369Sdduvall cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE; 21151369Sdduvall cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO; 21161369Sdduvall cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED; 21171369Sdduvall cidp->ethmax_size = cidp->default_mtu + 21181369Sdduvall sizeof (struct ether_header); 21191369Sdduvall } 21201369Sdduvall 21211369Sdduvall /* 21221369Sdduvall * Identify the NV memory type: SEEPROM or Flash? 21231369Sdduvall */ 21241369Sdduvall cidp->nvtype = bge_nvmem_id(bgep); 21251369Sdduvall 21261369Sdduvall /* 21271369Sdduvall * Now, we want to check whether this device is part of a 21281369Sdduvall * supported subsystem (e.g., on the motherboard of a Sun 21291369Sdduvall * branded platform). 21301369Sdduvall * 21311369Sdduvall * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-) 21321369Sdduvall */ 21331369Sdduvall if (cidp->subven == VENDOR_ID_SUN) 21341369Sdduvall sys_ok = B_TRUE; 21351369Sdduvall 21361369Sdduvall /* 21371369Sdduvall * Rule 2: If it's on the list on known subsystems, then it's OK. 21381369Sdduvall * Note: 0x14e41647 should *not* appear in the list, but the code 21391369Sdduvall * doesn't enforce that. 21401369Sdduvall */ 21411369Sdduvall err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 21421369Sdduvall DDI_PROP_DONTPASS, knownids_propname, &ids, &i); 21431369Sdduvall if (err == DDI_PROP_SUCCESS) { 21441369Sdduvall /* 21451369Sdduvall * Got the list; scan for a matching subsystem vendor/device 21461369Sdduvall */ 21471369Sdduvall subid = (cidp->subven << 16) | cidp->subdev; 21481369Sdduvall while (i--) 21491369Sdduvall if (ids[i] == subid) 21501369Sdduvall sys_ok = B_TRUE; 21511369Sdduvall ddi_prop_free(ids); 21521369Sdduvall } 21531369Sdduvall 21541369Sdduvall /* 21551369Sdduvall * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK 21561369Sdduvall * 21571369Sdduvall * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram 21581369Sdduvall * the Subsystem Vendor ID, so it defaults to Broadcom. Therefore, 21591369Sdduvall * we have to check specially for the exact device paths to the 21601369Sdduvall * motherboard devices on those platforms ;-( 21611369Sdduvall * 21621369Sdduvall * Note: we can't just use the "supported-subsystems" mechanism 21631369Sdduvall * above, because the entry would have to be 0x14e41647 -- which 21641369Sdduvall * would then accept *any* plugin card that *didn't* contain a 21651369Sdduvall * (valid) SEEPROM ;-( 21661369Sdduvall */ 21671369Sdduvall sysname = ddi_node_name(ddi_root_node()); 21681369Sdduvall devname = ddi_pathname(bgep->devinfo, buf); 21691369Sdduvall ASSERT(strlen(devname) > 0); 21701369Sdduvall if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0) /* Taco */ 21711369Sdduvall if (strcmp(devname, "/pci@1f,700000/network@2") == 0) 21721369Sdduvall sys_ok = B_TRUE; 21731369Sdduvall if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0) /* ENWS */ 21741369Sdduvall if (strcmp(devname, "/pci@1c,600000/network@3") == 0) 21751369Sdduvall sys_ok = B_TRUE; 21761369Sdduvall 21771369Sdduvall /* 21781369Sdduvall * Now check what we've discovered: is this truly a supported 21791369Sdduvall * chip on (the motherboard of) a supported platform? 21801369Sdduvall * 21811369Sdduvall * Possible problems here: 21821369Sdduvall * 1) it's a completely unheard-of chip (e.g. 5761) 21831369Sdduvall * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0) 21841369Sdduvall * 3) it's a chip we would support if it were on the motherboard 21851369Sdduvall * of a Sun platform, but this one isn't ;-( 21861369Sdduvall */ 21871369Sdduvall if (cidp->chip_label == 0) 21881369Sdduvall bge_problem(bgep, 21891369Sdduvall "Device 'pci%04x,%04x' not recognized (%d?)", 21901369Sdduvall cidp->vendor, cidp->device, cidp->device); 21911369Sdduvall else if (!dev_ok) 21921369Sdduvall bge_problem(bgep, 21931369Sdduvall "Device 'pci%04x,%04x' (%d) revision %d not supported", 21941369Sdduvall cidp->vendor, cidp->device, cidp->chip_label, 21951369Sdduvall cidp->revision); 21961369Sdduvall #if BGE_DEBUGGING 21971369Sdduvall else if (!sys_ok) 21981369Sdduvall bge_problem(bgep, 21991369Sdduvall "%d-based subsystem 'pci%04x,%04x' not validated", 22001369Sdduvall cidp->chip_label, cidp->subven, cidp->subdev); 22011369Sdduvall #endif 22021369Sdduvall else 22031369Sdduvall cidp->flags |= CHIP_FLAG_SUPPORTED; 22041369Sdduvall } 22051369Sdduvall 22061369Sdduvall void 22071369Sdduvall bge_chip_msi_trig(bge_t *bgep) 22081369Sdduvall { 22091369Sdduvall uint32_t regval; 22101369Sdduvall 22111369Sdduvall regval = bgep->param_msi_cnt<<4; 22121369Sdduvall bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval); 22131369Sdduvall BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval)); 22141369Sdduvall } 22151369Sdduvall 22161369Sdduvall /* 22171369Sdduvall * Various registers that control the chip's internal engines (state 22181369Sdduvall * machines) have a <reset> and <enable> bits (fortunately, in the 22191369Sdduvall * same place in each such register :-). 22201369Sdduvall * 22211369Sdduvall * To reset the state machine, the <reset> bit must be written with 1; 22221369Sdduvall * it will then read back as 1 while the reset is in progress, but 22231369Sdduvall * self-clear to 0 when the reset completes. 22241369Sdduvall * 22251369Sdduvall * To enable a state machine, one must set the <enable> bit, which 22261369Sdduvall * will continue to read back as 0 until the state machine is running. 22271369Sdduvall * 22281369Sdduvall * To disable a state machine, the <enable> bit must be cleared, but 22291369Sdduvall * it will continue to read back as 1 until the state machine actually 22301369Sdduvall * stops. 22311369Sdduvall * 22321369Sdduvall * This routine implements polling for completion of a reset, enable 22331369Sdduvall * or disable operation, returning B_TRUE on success (bit reached the 22341369Sdduvall * required state) or B_FALSE on timeout (200*100us == 20ms). 22351369Sdduvall */ 22361369Sdduvall static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, 22371369Sdduvall uint32_t mask, uint32_t val); 22381369Sdduvall #pragma no_inline(bge_chip_poll_engine) 22391369Sdduvall 22401369Sdduvall static boolean_t 22411369Sdduvall bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, 22421369Sdduvall uint32_t mask, uint32_t val) 22431369Sdduvall { 22441369Sdduvall uint32_t regval; 22451369Sdduvall uint32_t n; 22461369Sdduvall 22471369Sdduvall BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)", 22481369Sdduvall (void *)bgep, regno, mask, val)); 22491369Sdduvall 22501369Sdduvall for (n = 200; n; --n) { 22511369Sdduvall regval = bge_reg_get32(bgep, regno); 22521369Sdduvall if ((regval & mask) == val) 22531369Sdduvall return (B_TRUE); 22541369Sdduvall drv_usecwait(100); 22551369Sdduvall } 22561369Sdduvall 22571369Sdduvall return (B_FALSE); 22581369Sdduvall } 22591369Sdduvall 22601369Sdduvall /* 22611369Sdduvall * Various registers that control the chip's internal engines (state 22621369Sdduvall * machines) have a <reset> bit (fortunately, in the same place in 22631369Sdduvall * each such register :-). To reset the state machine, this bit must 22641369Sdduvall * be written with 1; it will then read back as 1 while the reset is 22651369Sdduvall * in progress, but self-clear to 0 when the reset completes. 22661369Sdduvall * 22671369Sdduvall * This code sets the bit, then polls for it to read back as zero. 22681369Sdduvall * The return value is B_TRUE on success (reset bit cleared itself), 22691369Sdduvall * or B_FALSE if the state machine didn't recover :( 22701369Sdduvall * 22711369Sdduvall * NOTE: the Core reset is similar to other resets, except that we 22721369Sdduvall * can't poll for completion, since the Core reset disables memory 22731369Sdduvall * access! So we just have to assume that it will all complete in 22741369Sdduvall * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5. 22751369Sdduvall */ 22761369Sdduvall static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno); 22771369Sdduvall #pragma no_inline(bge_chip_reset_engine) 22781369Sdduvall 22791369Sdduvall static boolean_t 22801369Sdduvall bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno) 22811369Sdduvall { 22821369Sdduvall uint32_t regval; 22831369Sdduvall uint32_t val32; 22841369Sdduvall 22851369Sdduvall regval = bge_reg_get32(bgep, regno); 22861369Sdduvall 22871369Sdduvall BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)", 22881369Sdduvall (void *)bgep, regno)); 22891369Sdduvall BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x", 22901369Sdduvall regno, regval)); 22911369Sdduvall 22921369Sdduvall regval |= STATE_MACHINE_RESET_BIT; 22931369Sdduvall 22941369Sdduvall switch (regno) { 22951369Sdduvall case MISC_CONFIG_REG: 22961369Sdduvall /* 22971369Sdduvall * BCM5714/5721/5751 pcie chip special case. In order to avoid 22981369Sdduvall * resetting PCIE block and bringing PCIE link down, bit 29 22991369Sdduvall * in the register needs to be set first, and then set it again 23001369Sdduvall * while the reset bit is written. 23011369Sdduvall * See:P500 of 57xx-PG102-RDS.pdf. 23021369Sdduvall */ 23031369Sdduvall if (DEVICE_5705_SERIES_CHIPSETS(bgep)|| 23041369Sdduvall DEVICE_5721_SERIES_CHIPSETS(bgep)|| 23051369Sdduvall DEVICE_5714_SERIES_CHIPSETS(bgep)) { 23061369Sdduvall regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE; 23071369Sdduvall if (bgep->chipid.pci_type == BGE_PCI_E) { 23081369Sdduvall if (bgep->chipid.asic_rev == 23091369Sdduvall MHCR_CHIP_REV_5751_A0 || 23101369Sdduvall bgep->chipid.asic_rev == 23111369Sdduvall MHCR_CHIP_REV_5721_A0) { 23121369Sdduvall val32 = bge_reg_get32(bgep, 23131369Sdduvall PHY_TEST_CTRL_REG); 23141369Sdduvall if (val32 == (PHY_PCIE_SCRAM_MODE | 23151369Sdduvall PHY_PCIE_LTASS_MODE)) 23161369Sdduvall bge_reg_put32(bgep, 23171369Sdduvall PHY_TEST_CTRL_REG, 23181369Sdduvall PHY_PCIE_SCRAM_MODE); 23191369Sdduvall val32 = pci_config_get32 23201369Sdduvall (bgep->cfg_handle, 23211369Sdduvall PCI_CONF_BGE_CLKCTL); 23221369Sdduvall val32 |= CLKCTL_PCIE_A0_FIX; 23231369Sdduvall pci_config_put32(bgep->cfg_handle, 23241369Sdduvall PCI_CONF_BGE_CLKCTL, val32); 23251369Sdduvall } 23261369Sdduvall bge_reg_set32(bgep, regno, 23271369Sdduvall MISC_CONFIG_GRC_RESET_DISABLE); 23281369Sdduvall regval |= MISC_CONFIG_GRC_RESET_DISABLE; 23291369Sdduvall } 23301369Sdduvall } 23311369Sdduvall 23321369Sdduvall /* 23331369Sdduvall * Special case - causes Core reset 23341369Sdduvall * 23351369Sdduvall * On SPARC v9 we want to ensure that we don't start 23361369Sdduvall * timing until the I/O access has actually reached 23371369Sdduvall * the chip, otherwise we might make the next access 23381369Sdduvall * too early. And we can't just force the write out 23391369Sdduvall * by following it with a read (even to config space) 23401369Sdduvall * because that would cause the fault we're trying 23411369Sdduvall * to avoid. Hence the need for membar_sync() here. 23421369Sdduvall */ 23431369Sdduvall ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval); 23441369Sdduvall #ifdef __sparcv9 23451369Sdduvall membar_sync(); 23461369Sdduvall #endif /* __sparcv9 */ 23471369Sdduvall /* 23481369Sdduvall * On some platforms,system need about 300us for 23491369Sdduvall * link setup. 23501369Sdduvall */ 23511369Sdduvall drv_usecwait(300); 23521369Sdduvall 23531369Sdduvall if (bgep->chipid.pci_type == BGE_PCI_E) { 23541369Sdduvall /* PCI-E device need more reset time */ 23551369Sdduvall drv_usecwait(120000); 23561369Sdduvall 23571369Sdduvall /* Set PCIE max payload size and clear error status. */ 23581369Sdduvall if (bgep->chipid.chip_label == 5721 || 23591369Sdduvall bgep->chipid.chip_label == 5751) { 23601369Sdduvall pci_config_put16(bgep->cfg_handle, 23611369Sdduvall PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX); 23621369Sdduvall pci_config_put16(bgep->cfg_handle, 23631369Sdduvall PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS); 23641369Sdduvall } 23651369Sdduvall } 23661369Sdduvall 23671369Sdduvall BGE_PCICHK(bgep); 23681369Sdduvall return (B_TRUE); 23691369Sdduvall 23701369Sdduvall default: 23711369Sdduvall bge_reg_put32(bgep, regno, regval); 23721369Sdduvall return (bge_chip_poll_engine(bgep, regno, 23731369Sdduvall STATE_MACHINE_RESET_BIT, 0)); 23741369Sdduvall } 23751369Sdduvall } 23761369Sdduvall 23771369Sdduvall /* 23781369Sdduvall * Various registers that control the chip's internal engines (state 23791369Sdduvall * machines) have an <enable> bit (fortunately, in the same place in 23801369Sdduvall * each such register :-). To stop the state machine, this bit must 23811369Sdduvall * be written with 0, then polled to see when the state machine has 23821369Sdduvall * actually stopped. 23831369Sdduvall * 23841369Sdduvall * The return value is B_TRUE on success (enable bit cleared), or 23851369Sdduvall * B_FALSE if the state machine didn't stop :( 23861369Sdduvall */ 23871369Sdduvall static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, 23881369Sdduvall uint32_t morebits); 23891369Sdduvall #pragma no_inline(bge_chip_disable_engine) 23901369Sdduvall 23911369Sdduvall static boolean_t 23921369Sdduvall bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) 23931369Sdduvall { 23941369Sdduvall uint32_t regval; 23951369Sdduvall 23961369Sdduvall BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)", 23971369Sdduvall (void *)bgep, regno, morebits)); 23981369Sdduvall 23991369Sdduvall switch (regno) { 24001369Sdduvall case FTQ_RESET_REG: 24011369Sdduvall /* 24021369Sdduvall * Not quite like the others; it doesn't 24031369Sdduvall * have an <enable> bit, but instead we 24041369Sdduvall * have to set and then clear all the bits 24051369Sdduvall */ 24061369Sdduvall bge_reg_put32(bgep, regno, ~(uint32_t)0); 24071369Sdduvall drv_usecwait(100); 24081369Sdduvall bge_reg_put32(bgep, regno, 0); 24091369Sdduvall return (B_TRUE); 24101369Sdduvall 24111369Sdduvall default: 24121369Sdduvall regval = bge_reg_get32(bgep, regno); 24131369Sdduvall regval &= ~STATE_MACHINE_ENABLE_BIT; 24141369Sdduvall regval &= ~morebits; 24151369Sdduvall bge_reg_put32(bgep, regno, regval); 24161369Sdduvall return (bge_chip_poll_engine(bgep, regno, 24171369Sdduvall STATE_MACHINE_ENABLE_BIT, 0)); 24181369Sdduvall } 24191369Sdduvall } 24201369Sdduvall 24211369Sdduvall /* 24221369Sdduvall * Various registers that control the chip's internal engines (state 24231369Sdduvall * machines) have an <enable> bit (fortunately, in the same place in 24241369Sdduvall * each such register :-). To start the state machine, this bit must 24251369Sdduvall * be written with 1, then polled to see when the state machine has 24261369Sdduvall * actually started. 24271369Sdduvall * 24281369Sdduvall * The return value is B_TRUE on success (enable bit set), or 24291369Sdduvall * B_FALSE if the state machine didn't start :( 24301369Sdduvall */ 24311369Sdduvall static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, 24321369Sdduvall uint32_t morebits); 24331369Sdduvall #pragma no_inline(bge_chip_enable_engine) 24341369Sdduvall 24351369Sdduvall static boolean_t 24361369Sdduvall bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) 24371369Sdduvall { 24381369Sdduvall uint32_t regval; 24391369Sdduvall 24401369Sdduvall BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)", 24411369Sdduvall (void *)bgep, regno, morebits)); 24421369Sdduvall 24431369Sdduvall switch (regno) { 24441369Sdduvall case FTQ_RESET_REG: 24451369Sdduvall /* 24461369Sdduvall * Not quite like the others; it doesn't 24471369Sdduvall * have an <enable> bit, but instead we 24481369Sdduvall * have to set and then clear all the bits 24491369Sdduvall */ 24501369Sdduvall bge_reg_put32(bgep, regno, ~(uint32_t)0); 24511369Sdduvall drv_usecwait(100); 24521369Sdduvall bge_reg_put32(bgep, regno, 0); 24531369Sdduvall return (B_TRUE); 24541369Sdduvall 24551369Sdduvall default: 24561369Sdduvall regval = bge_reg_get32(bgep, regno); 24571369Sdduvall regval |= STATE_MACHINE_ENABLE_BIT; 24581369Sdduvall regval |= morebits; 24591369Sdduvall bge_reg_put32(bgep, regno, regval); 24601369Sdduvall return (bge_chip_poll_engine(bgep, regno, 24611369Sdduvall STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT)); 24621369Sdduvall } 24631369Sdduvall } 24641369Sdduvall 24651369Sdduvall /* 24661369Sdduvall * Reprogram the Ethernet, Transmit, and Receive MAC 24671369Sdduvall * modes to match the param_* variables 24681369Sdduvall */ 24691369Sdduvall static void bge_sync_mac_modes(bge_t *bgep); 24701369Sdduvall #pragma no_inline(bge_sync_mac_modes) 24711369Sdduvall 24721369Sdduvall static void 24731369Sdduvall bge_sync_mac_modes(bge_t *bgep) 24741369Sdduvall { 24751369Sdduvall uint32_t macmode; 24761369Sdduvall uint32_t regval; 24771369Sdduvall 24781369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 24791369Sdduvall 24801369Sdduvall /* 24811369Sdduvall * Reprogram the Ethernet MAC mode ... 24821369Sdduvall */ 24831369Sdduvall macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG); 24841369Sdduvall if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && 24851369Sdduvall (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) 24861369Sdduvall macmode &= ~ETHERNET_MODE_LINK_POLARITY; 24871369Sdduvall else 24881369Sdduvall macmode |= ETHERNET_MODE_LINK_POLARITY; 24891369Sdduvall macmode &= ~ETHERNET_MODE_PORTMODE_MASK; 24901369Sdduvall if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && 24911369Sdduvall (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) 24921369Sdduvall macmode |= ETHERNET_MODE_PORTMODE_TBI; 24931369Sdduvall else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100) 24941369Sdduvall macmode |= ETHERNET_MODE_PORTMODE_MII; 24951369Sdduvall else 24961369Sdduvall macmode |= ETHERNET_MODE_PORTMODE_GMII; 24971369Sdduvall if (bgep->param_link_duplex == LINK_DUPLEX_HALF) 24981369Sdduvall macmode |= ETHERNET_MODE_HALF_DUPLEX; 24991369Sdduvall else 25001369Sdduvall macmode &= ~ETHERNET_MODE_HALF_DUPLEX; 25011369Sdduvall if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC) 25021369Sdduvall macmode |= ETHERNET_MODE_MAC_LOOPBACK; 25031369Sdduvall else 25041369Sdduvall macmode &= ~ETHERNET_MODE_MAC_LOOPBACK; 25051369Sdduvall bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode); 25061369Sdduvall BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x", 25071369Sdduvall (void *)bgep, regval, macmode)); 25081369Sdduvall 25091369Sdduvall /* 25101369Sdduvall * ... the Transmit MAC mode ... 25111369Sdduvall */ 25121369Sdduvall macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG); 25131369Sdduvall if (bgep->param_link_tx_pause) 25141369Sdduvall macmode |= TRANSMIT_MODE_FLOW_CONTROL; 25151369Sdduvall else 25161369Sdduvall macmode &= ~TRANSMIT_MODE_FLOW_CONTROL; 25171369Sdduvall bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode); 25181369Sdduvall BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x", 25191369Sdduvall (void *)bgep, regval, macmode)); 25201369Sdduvall 25211369Sdduvall /* 25221369Sdduvall * ... and the Receive MAC mode 25231369Sdduvall */ 25241369Sdduvall macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG); 25251369Sdduvall if (bgep->param_link_rx_pause) 25261369Sdduvall macmode |= RECEIVE_MODE_FLOW_CONTROL; 25271369Sdduvall else 25281369Sdduvall macmode &= ~RECEIVE_MODE_FLOW_CONTROL; 25291369Sdduvall bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode); 25301369Sdduvall BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x", 25311369Sdduvall (void *)bgep, regval, macmode)); 25321369Sdduvall } 25331369Sdduvall 25341369Sdduvall /* 25351369Sdduvall * bge_chip_sync() -- program the chip with the unicast MAC address, 25361369Sdduvall * the multicast hash table, the required level of promiscuity, and 25371369Sdduvall * the current loopback mode ... 25381369Sdduvall */ 25391408Srandyf #ifdef BGE_IPMI_ASF 25401408Srandyf void bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive); 25411408Srandyf #else 25421369Sdduvall void bge_chip_sync(bge_t *bgep); 25431408Srandyf #endif 25441369Sdduvall #pragma no_inline(bge_chip_sync) 25451369Sdduvall 25461369Sdduvall void 25471408Srandyf #ifdef BGE_IPMI_ASF 25481408Srandyf bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive) 25491408Srandyf #else 25501369Sdduvall bge_chip_sync(bge_t *bgep) 25511408Srandyf #endif 25521369Sdduvall { 25531369Sdduvall void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits); 25541369Sdduvall boolean_t promisc; 25551369Sdduvall uint64_t macaddr; 25561369Sdduvall uint32_t fill; 25571369Sdduvall int i; 25581369Sdduvall 25591369Sdduvall BGE_TRACE(("bge_chip_sync($%p)", 25601369Sdduvall (void *)bgep)); 25611369Sdduvall 25621369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 25631369Sdduvall 25641369Sdduvall promisc = B_FALSE; 25651369Sdduvall fill = ~(uint32_t)0; 25661369Sdduvall 25671369Sdduvall if (bgep->promisc) 25681369Sdduvall promisc = B_TRUE; 25691369Sdduvall else 25701369Sdduvall fill = (uint32_t)0; 25711369Sdduvall 25721369Sdduvall /* 25731369Sdduvall * If the TX/RX MAC engines are already running, we should stop 25741369Sdduvall * them (and reset the RX engine) before changing the parameters. 25751369Sdduvall * If they're not running, this will have no effect ... 25761369Sdduvall * 25771369Sdduvall * NOTE: this is currently disabled by default because stopping 25781369Sdduvall * and restarting the Tx engine may cause an outgoing packet in 25791369Sdduvall * transit to be truncated. Also, stopping and restarting the 25801369Sdduvall * Rx engine seems to not work correctly on the 5705. Testing 25811369Sdduvall * has not (yet!) revealed any problems with NOT stopping and 25821369Sdduvall * restarting these engines (and Broadcom say their drivers don't 25831369Sdduvall * do this), but if it is found to cause problems, this variable 25841369Sdduvall * can be patched to re-enable the old behaviour ... 25851369Sdduvall */ 25861369Sdduvall if (bge_stop_start_on_sync) { 25871408Srandyf #ifdef BGE_IPMI_ASF 25881408Srandyf if (bgep->asf_enabled) { 25891408Srandyf (void) bge_chip_disable_engine(bgep, 25901408Srandyf RECEIVE_MAC_MODE_REG, 0); 25911408Srandyf } else { 25921408Srandyf (void) bge_chip_disable_engine(bgep, 25931408Srandyf RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG); 25941408Srandyf } 25951408Srandyf #else 25961369Sdduvall (void) bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 25971369Sdduvall RECEIVE_MODE_KEEP_VLAN_TAG); 25981408Srandyf #endif 25991369Sdduvall (void) bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0); 26001369Sdduvall (void) bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG); 26011369Sdduvall } 26021369Sdduvall 26031369Sdduvall /* 26041369Sdduvall * Reprogram the hashed multicast address table ... 26051369Sdduvall */ 26061369Sdduvall for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i) 26071369Sdduvall bge_reg_put32(bgep, MAC_HASH_REG(i), 26081369Sdduvall bgep->mcast_hash[i] | fill); 26091369Sdduvall 26101408Srandyf #ifdef BGE_IPMI_ASF 26111408Srandyf if (!bgep->asf_enabled || !asf_keeplive) { 26121408Srandyf #endif 26131408Srandyf /* 26141408Srandyf * Transform the MAC address from host to chip format, then 26151408Srandyf * reprogram the transmit random backoff seed and the unicast 26161408Srandyf * MAC address(es) ... 26171408Srandyf */ 26181408Srandyf for (i = 0, fill = 0, macaddr = 0ull; i < ETHERADDRL; ++i) { 26191408Srandyf macaddr <<= 8; 26201408Srandyf macaddr |= bgep->curr_addr.addr[i]; 26211408Srandyf fill += bgep->curr_addr.addr[i]; 26221408Srandyf } 26231408Srandyf bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill); 26241408Srandyf for (i = 0; i < MAC_ADDRESS_REGS_MAX; ++i) 26251408Srandyf bge_reg_put64(bgep, MAC_ADDRESS_REG(i), macaddr); 26261408Srandyf 26271408Srandyf BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx", 26281408Srandyf (void *)bgep, macaddr)); 26291408Srandyf #ifdef BGE_IPMI_ASF 26301369Sdduvall } 26311408Srandyf #endif 26321369Sdduvall 26331369Sdduvall /* 26341369Sdduvall * Set or clear the PROMISCUOUS mode bit 26351369Sdduvall */ 26361369Sdduvall opfn = promisc ? bge_reg_set32 : bge_reg_clr32; 26371369Sdduvall (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS); 26381369Sdduvall 26391369Sdduvall /* 26401369Sdduvall * Sync the rest of the MAC modes too ... 26411369Sdduvall */ 26421369Sdduvall bge_sync_mac_modes(bgep); 26431369Sdduvall 26441369Sdduvall /* 26451369Sdduvall * Restart RX/TX MAC engines if required ... 26461369Sdduvall */ 26471369Sdduvall if (bgep->bge_chip_state == BGE_CHIP_RUNNING) { 26481369Sdduvall (void) bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0); 26491408Srandyf #ifdef BGE_IPMI_ASF 26501408Srandyf if (bgep->asf_enabled) { 26511408Srandyf (void) bge_chip_enable_engine(bgep, 26521408Srandyf RECEIVE_MAC_MODE_REG, 0); 26531408Srandyf } else { 26541408Srandyf (void) bge_chip_enable_engine(bgep, 26551408Srandyf RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG); 26561408Srandyf } 26571408Srandyf #else 26581369Sdduvall (void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 26591369Sdduvall RECEIVE_MODE_KEEP_VLAN_TAG); 26601408Srandyf #endif 26611369Sdduvall } 26621369Sdduvall } 26631369Sdduvall 26641369Sdduvall /* 26651369Sdduvall * This array defines the sequence of state machine control registers 26661369Sdduvall * in which the <enable> bit must be cleared to bring the chip to a 26671369Sdduvall * clean stop. Taken from Broadcom document 570X-PG102-R, p116. 26681369Sdduvall */ 26691369Sdduvall static bge_regno_t shutdown_engine_regs[] = { 26701369Sdduvall RECEIVE_MAC_MODE_REG, 26711369Sdduvall RCV_BD_INITIATOR_MODE_REG, 26721369Sdduvall RCV_LIST_PLACEMENT_MODE_REG, 26731369Sdduvall RCV_LIST_SELECTOR_MODE_REG, /* BCM5704 series only */ 26741369Sdduvall RCV_DATA_BD_INITIATOR_MODE_REG, 26751369Sdduvall RCV_DATA_COMPLETION_MODE_REG, 26761369Sdduvall RCV_BD_COMPLETION_MODE_REG, 26771369Sdduvall 26781369Sdduvall SEND_BD_SELECTOR_MODE_REG, 26791369Sdduvall SEND_BD_INITIATOR_MODE_REG, 26801369Sdduvall SEND_DATA_INITIATOR_MODE_REG, 26811369Sdduvall READ_DMA_MODE_REG, 26821369Sdduvall SEND_DATA_COMPLETION_MODE_REG, 26831369Sdduvall DMA_COMPLETION_MODE_REG, /* BCM5704 series only */ 26841369Sdduvall SEND_BD_COMPLETION_MODE_REG, 26851369Sdduvall TRANSMIT_MAC_MODE_REG, 26861369Sdduvall 26871369Sdduvall HOST_COALESCE_MODE_REG, 26881369Sdduvall WRITE_DMA_MODE_REG, 26891369Sdduvall MBUF_CLUSTER_FREE_MODE_REG, /* BCM5704 series only */ 26901369Sdduvall FTQ_RESET_REG, /* special - see code */ 26911369Sdduvall BUFFER_MANAGER_MODE_REG, /* BCM5704 series only */ 26921369Sdduvall MEMORY_ARBITER_MODE_REG, /* BCM5704 series only */ 26931369Sdduvall BGE_REGNO_NONE /* terminator */ 26941369Sdduvall }; 26951369Sdduvall 26961369Sdduvall /* 26971369Sdduvall * bge_chip_stop() -- stop all chip processing 26981369Sdduvall * 26991369Sdduvall * If the <fault> parameter is B_TRUE, we're stopping the chip because 27001369Sdduvall * we've detected a problem internally; otherwise, this is a normal 27011369Sdduvall * (clean) stop (at user request i.e. the last STREAM has been closed). 27021369Sdduvall */ 27031369Sdduvall void bge_chip_stop(bge_t *bgep, boolean_t fault); 27041369Sdduvall #pragma no_inline(bge_chip_stop) 27051369Sdduvall 27061369Sdduvall void 27071369Sdduvall bge_chip_stop(bge_t *bgep, boolean_t fault) 27081369Sdduvall { 27091369Sdduvall bge_regno_t regno; 27101369Sdduvall bge_regno_t *rbp; 27111369Sdduvall boolean_t ok; 27121369Sdduvall 27131369Sdduvall BGE_TRACE(("bge_chip_stop($%p)", 27141369Sdduvall (void *)bgep)); 27151369Sdduvall 27161369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 27171369Sdduvall 27181369Sdduvall rbp = shutdown_engine_regs; 27191369Sdduvall /* 27201369Sdduvall * When driver try to shutdown the BCM5705/5788/5721/5751/ 27211369Sdduvall * 5752/5714 and 5715 chipsets,the buffer manager and the mem 27221369Sdduvall * -ory arbiter should not be disabled. 27231369Sdduvall */ 27241369Sdduvall for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) { 27251369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 27261369Sdduvall ok &= bge_chip_disable_engine(bgep, regno, 0); 27271369Sdduvall else if ((regno != RCV_LIST_SELECTOR_MODE_REG) && 27281369Sdduvall (regno != DMA_COMPLETION_MODE_REG) && 27291369Sdduvall (regno != MBUF_CLUSTER_FREE_MODE_REG)&& 27301369Sdduvall (regno != BUFFER_MANAGER_MODE_REG) && 27311369Sdduvall (regno != MEMORY_ARBITER_MODE_REG)) 27321369Sdduvall ok &= bge_chip_disable_engine(bgep, 27331369Sdduvall regno, 0); 27341369Sdduvall } 27351369Sdduvall 27361369Sdduvall /* 27371369Sdduvall * Finally, disable (all) MAC events & clear the MAC status 27381369Sdduvall */ 27391369Sdduvall bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0); 27401369Sdduvall bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0); 27411369Sdduvall 27421369Sdduvall /* 27431369Sdduvall * Do we need to check whether everything completed OK? 27441369Sdduvall * Probably not ... it always works anyway. 27451369Sdduvall */ 27461369Sdduvall 27471369Sdduvall if (fault) 27481369Sdduvall bgep->bge_chip_state = BGE_CHIP_FAULT; 27491369Sdduvall else 27501369Sdduvall bgep->bge_chip_state = BGE_CHIP_STOPPED; 27511369Sdduvall } 27521369Sdduvall 27531369Sdduvall /* 27541369Sdduvall * Poll for completion of chip's ROM firmware; also, at least on the 27551369Sdduvall * first time through, find and return the hardware MAC address, if any. 27561369Sdduvall */ 27571369Sdduvall static uint64_t bge_poll_firmware(bge_t *bgep); 27581369Sdduvall #pragma no_inline(bge_poll_firmware) 27591369Sdduvall 27601369Sdduvall static uint64_t 27611369Sdduvall bge_poll_firmware(bge_t *bgep) 27621369Sdduvall { 27631369Sdduvall uint64_t magic; 27641369Sdduvall uint64_t mac; 27651369Sdduvall uint32_t gen; 27661369Sdduvall uint32_t i; 27671369Sdduvall 27681369Sdduvall /* 27691369Sdduvall * Step 18: put the T3_MAGIC_NUMBER into the GENCOMM port 27701369Sdduvall * 27711369Sdduvall * Step 19: poll for firmware completion (GENCOMM port set 27721369Sdduvall * to the ones complement of T3_MAGIC_NUMBER). 27731369Sdduvall * 27741369Sdduvall * While we're at it, we also read the MAC address register; 27751369Sdduvall * at some stage the the firmware will load this with the 27761369Sdduvall * factory-set value. 27771369Sdduvall * 27781369Sdduvall * When both the magic number and the MAC address are set, 27791369Sdduvall * we're done; but we impose a time limit of one second 27801369Sdduvall * (1000*1000us) in case the firmware fails in some fashion 27811369Sdduvall * or the SEEPROM that provides that MAC address isn't fitted. 27821369Sdduvall * 27831369Sdduvall * After the first time through (chip state != INITIAL), we 27841369Sdduvall * don't need the MAC address to be set (we've already got it 27851369Sdduvall * or not, from the first time), so we don't wait for it, but 27861369Sdduvall * we still have to wait for the T3_MAGIC_NUMBER. 27871369Sdduvall * 27881369Sdduvall * Note: the magic number is only a 32-bit quantity, but the NIC 27891369Sdduvall * memory is 64-bit (and big-endian) internally. Addressing the 27901369Sdduvall * GENCOMM word as "the upper half of a 64-bit quantity" makes 27911369Sdduvall * it work correctly on both big- and little-endian hosts. 27921369Sdduvall */ 27931408Srandyf #ifdef BGE_IPMI_ASF 27941408Srandyf if (!bgep->asf_enabled) { 27951408Srandyf #endif 27961408Srandyf magic = (uint64_t)T3_MAGIC_NUMBER << 32; 27971408Srandyf bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic); 27981408Srandyf BGE_DEBUG(("bge_poll_firmware: put T3 magic 0x%llx in GENCOMM" 27991408Srandyf " 0x%lx", magic, NIC_MEM_GENCOMM)); 28001408Srandyf #ifdef BGE_IPMI_ASF 28011408Srandyf } 28021408Srandyf #endif 28031369Sdduvall 28041369Sdduvall for (i = 0; i < 1000; ++i) { 28051369Sdduvall drv_usecwait(1000); 28061369Sdduvall gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32; 28071369Sdduvall mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0)); 28081408Srandyf #ifdef BGE_IPMI_ASF 28091408Srandyf if (!bgep->asf_enabled) { 28101408Srandyf #endif 28111408Srandyf if (gen != ~T3_MAGIC_NUMBER) 28121408Srandyf continue; 28131408Srandyf #ifdef BGE_IPMI_ASF 28141408Srandyf } 28151408Srandyf #endif 28161369Sdduvall if (mac != 0ULL) 28171369Sdduvall break; 28181369Sdduvall if (bgep->bge_chip_state != BGE_CHIP_INITIAL) 28191369Sdduvall break; 28201369Sdduvall } 28211369Sdduvall 28221369Sdduvall magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM); 28231369Sdduvall BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops", 28241369Sdduvall (void *)bgep, gen, i)); 28251369Sdduvall BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx", 28261369Sdduvall mac, magic)); 28271369Sdduvall 28281369Sdduvall return (mac); 28291369Sdduvall } 28301369Sdduvall 28311408Srandyf #ifdef BGE_IPMI_ASF 28321408Srandyf void bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode); 28331408Srandyf #else 28341369Sdduvall void bge_chip_reset(bge_t *bgep, boolean_t enable_dma); 28351408Srandyf #endif 28361369Sdduvall #pragma no_inline(bge_chip_reset) 28371369Sdduvall 28381369Sdduvall void 28391408Srandyf #ifdef BGE_IPMI_ASF 28401408Srandyf bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode) 28411408Srandyf #else 28421369Sdduvall bge_chip_reset(bge_t *bgep, boolean_t enable_dma) 28431408Srandyf #endif 28441369Sdduvall { 28451369Sdduvall chip_id_t chipid; 28461369Sdduvall uint64_t mac; 28471369Sdduvall uint32_t modeflags; 28481369Sdduvall uint32_t mhcr; 28491369Sdduvall uint32_t sx0; 28501369Sdduvall uint32_t i; 28511408Srandyf #ifdef BGE_IPMI_ASF 28521408Srandyf uint32_t mailbox; 28531408Srandyf #endif 28541369Sdduvall 28551369Sdduvall BGE_TRACE(("bge_chip_reset($%p, %d)", 28561369Sdduvall (void *)bgep, enable_dma)); 28571369Sdduvall 28581369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 28591369Sdduvall 28601369Sdduvall BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d", 28611369Sdduvall (void *)bgep, enable_dma, bgep->bge_chip_state)); 28621369Sdduvall 28631369Sdduvall /* 28641369Sdduvall * Do we need to stop the chip cleanly before resetting? 28651369Sdduvall */ 28661369Sdduvall switch (bgep->bge_chip_state) { 28671369Sdduvall default: 28681369Sdduvall ASSERT(!"can't get here"); 28691369Sdduvall _NOTE(NOTREACHED) 28701369Sdduvall return; 28711369Sdduvall 28721369Sdduvall case BGE_CHIP_INITIAL: 28731369Sdduvall case BGE_CHIP_STOPPED: 28741369Sdduvall case BGE_CHIP_RESET: 28751369Sdduvall break; 28761369Sdduvall 28771369Sdduvall case BGE_CHIP_RUNNING: 28781369Sdduvall case BGE_CHIP_ERROR: 28791369Sdduvall case BGE_CHIP_FAULT: 28801369Sdduvall bge_chip_stop(bgep, B_FALSE); 28811369Sdduvall break; 28821369Sdduvall } 28831369Sdduvall 28841408Srandyf #ifdef BGE_IPMI_ASF 28851408Srandyf if (bgep->asf_enabled) { 28861408Srandyf if (asf_mode == ASF_MODE_INIT) { 28871408Srandyf bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 28881408Srandyf } else if (asf_mode == ASF_MODE_SHUTDOWN) { 28891408Srandyf bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 28901408Srandyf } 28911408Srandyf } 28921408Srandyf #endif 28931369Sdduvall /* 28941369Sdduvall * Adapted from Broadcom document 570X-PG102-R, pp 102-116. 28951369Sdduvall * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159. 28961369Sdduvall * 28971369Sdduvall * Before reset Core clock,it is 28981369Sdduvall * also required to initialize the Memory Arbiter as specified in step9 28991369Sdduvall * and Misc Host Control Register as specified in step-13 29001369Sdduvall * Step 4-5: reset Core clock & wait for completion 29011369Sdduvall * Steps 6-8: are done by bge_chip_cfg_init() 29021369Sdduvall */ 29031369Sdduvall (void) bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0); 29041369Sdduvall 29051369Sdduvall mhcr = MHCR_ENABLE_INDIRECT_ACCESS | 29061369Sdduvall MHCR_ENABLE_TAGGED_STATUS_MODE | 29071369Sdduvall MHCR_MASK_INTERRUPT_MODE | 29081369Sdduvall MHCR_MASK_PCI_INT_OUTPUT | 29091369Sdduvall MHCR_CLEAR_INTERRUPT_INTA; 29101369Sdduvall #ifdef _BIG_ENDIAN 29111369Sdduvall mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; 29121369Sdduvall #endif /* _BIG_ENDIAN */ 29131369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr); 29141408Srandyf #ifdef BGE_IPMI_ASF 29151408Srandyf if (bgep->asf_enabled) 29161408Srandyf bgep->asf_wordswapped = B_FALSE; 29171408Srandyf #endif 29181369Sdduvall (void) bge_chip_reset_engine(bgep, MISC_CONFIG_REG); 29191369Sdduvall bge_chip_cfg_init(bgep, &chipid, enable_dma); 29201369Sdduvall 29211369Sdduvall /* 29221369Sdduvall * Step 8a: This may belong elsewhere, but BCM5721 needs 29231369Sdduvall * a bit set to avoid a fifo overflow/underflow bug. 29241369Sdduvall */ 29251369Sdduvall if (bgep->chipid.chip_label == 5721 || bgep->chipid.chip_label == 5751) 29261369Sdduvall bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT); 29271369Sdduvall 29281369Sdduvall 29291369Sdduvall /* 29301369Sdduvall * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should 29311369Sdduvall * not be changed. 29321369Sdduvall */ 29331369Sdduvall (void) bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0); 29341369Sdduvall 29351369Sdduvall /* 29361369Sdduvall * Steps 10-11: configure PIO endianness options and 29371369Sdduvall * enable indirect register access -- already done 29381369Sdduvall * Steps 12-13: enable writing to the PCI state & clock 29391369Sdduvall * control registers -- not required; we aren't going to 29401369Sdduvall * use those features. 29411369Sdduvall * Steps 14-15: Configure DMA endianness options. See 29421369Sdduvall * the comments on the setting of the MHCR above. 29431369Sdduvall */ 29441369Sdduvall #ifdef _BIG_ENDIAN 29451369Sdduvall modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME | 29461369Sdduvall MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME; 29471369Sdduvall #else 29481369Sdduvall modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME; 29491369Sdduvall #endif /* _BIG_ENDIAN */ 29501408Srandyf #ifdef BGE_IPMI_ASF 29511408Srandyf if (bgep->asf_enabled) 29521408Srandyf modeflags |= MODE_HOST_STACK_UP; 29531408Srandyf #endif 29541369Sdduvall bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags); 29551369Sdduvall 29561408Srandyf #ifdef BGE_IPMI_ASF 29571408Srandyf if (bgep->asf_enabled) { 29581408Srandyf if (asf_mode != ASF_MODE_NONE) { 29591408Srandyf /* Wait for NVRAM init */ 29601408Srandyf i = 0; 29611408Srandyf drv_usecwait(5000); 29621408Srandyf mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX); 29631408Srandyf while ((mailbox != (uint32_t) 29641408Srandyf ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) && 29651408Srandyf (i < 10000)) { 29661408Srandyf drv_usecwait(100); 29671408Srandyf mailbox = bge_nic_get32(bgep, 29681408Srandyf BGE_FIRMWARE_MAILBOX); 29691408Srandyf i++; 29701408Srandyf } 29711408Srandyf if (!bgep->asf_newhandshake) { 29721408Srandyf if ((asf_mode == ASF_MODE_INIT) || 29731408Srandyf (asf_mode == ASF_MODE_POST_INIT)) { 29741408Srandyf 29751408Srandyf bge_asf_post_reset_old_mode(bgep, 29761408Srandyf BGE_INIT_RESET); 29771408Srandyf } else { 29781408Srandyf bge_asf_post_reset_old_mode(bgep, 29791408Srandyf BGE_SHUTDOWN_RESET); 29801408Srandyf } 29811408Srandyf } 29821408Srandyf } 29831408Srandyf } 29841408Srandyf #endif 29851369Sdduvall /* 29861369Sdduvall * Steps 16-17: poll for firmware completion 29871369Sdduvall */ 29881369Sdduvall mac = bge_poll_firmware(bgep); 29891369Sdduvall 29901369Sdduvall /* 29911369Sdduvall * Step 18: enable external memory -- doesn't apply. 29921369Sdduvall * 29931369Sdduvall * However we take the opportunity to set the MLCR anyway, as 29941369Sdduvall * this register also controls the SEEPROM auto-access method 29951369Sdduvall * which we may want to use later ... 29961369Sdduvall * 29971369Sdduvall * The proper value here depends on the way the chip is wired 29981369Sdduvall * into the circuit board, as this register *also* controls which 29991369Sdduvall * of the "Miscellaneous I/O" pins are driven as outputs and the 30001369Sdduvall * values driven onto those pins! 30011369Sdduvall * 30021369Sdduvall * See also step 74 in the PRM ... 30031369Sdduvall */ 30041369Sdduvall bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, 30051369Sdduvall bgep->chipid.bge_mlcr_default); 30061369Sdduvall bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); 30071369Sdduvall 30081369Sdduvall /* 30091369Sdduvall * Step 20: clear the Ethernet MAC mode register 30101369Sdduvall */ 30111369Sdduvall bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0); 30121369Sdduvall 30131369Sdduvall /* 30141369Sdduvall * Step 21: restore cache-line-size, latency timer, and 30151369Sdduvall * subsystem ID registers to their original values (not 30161369Sdduvall * those read into the local structure <chipid>, 'cos 30171369Sdduvall * that was after they were cleared by the RESET). 30181369Sdduvall * 30191369Sdduvall * Note: the Subsystem Vendor/Device ID registers are not 30201369Sdduvall * directly writable in config space, so we use the shadow 30211369Sdduvall * copy in "Page Zero" of register space to restore them 30221369Sdduvall * both in one go ... 30231369Sdduvall */ 30241369Sdduvall pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ, 30251369Sdduvall bgep->chipid.clsize); 30261369Sdduvall pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 30271369Sdduvall bgep->chipid.latency); 30281369Sdduvall bge_reg_put32(bgep, PCI_CONF_SUBVENID, 30291369Sdduvall (bgep->chipid.subdev << 16) | bgep->chipid.subven); 30301369Sdduvall 30311369Sdduvall /* 30321369Sdduvall * The SEND INDEX registers should be reset to zero by the 30331369Sdduvall * global chip reset; if they're not, there'll be trouble 30341369Sdduvall * later on -- usually in the form of an ASSERTion failure 30351369Sdduvall * in bge_send.c. So let's catch it early ... 30361369Sdduvall */ 30371369Sdduvall sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0)); 30381369Sdduvall if (sx0 != 0) 30391369Sdduvall bge_problem(bgep, "send index %d: device didn't RESET!", sx0); 30401369Sdduvall ASSERT(sx0 == 0); 30411369Sdduvall 30421369Sdduvall /* Enable MSI code */ 30431369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_MSI) 30441369Sdduvall bge_reg_set32(bgep, MSI_MODE_REG, 30451369Sdduvall MSI_PRI_HIGHEST|MSI_MSI_ENABLE); 30461369Sdduvall 30471369Sdduvall /* 30481369Sdduvall * On the first time through, save the factory-set MAC address 30491369Sdduvall * (if any). If bge_poll_firmware() above didn't return one 30501369Sdduvall * (from a chip register) consider looking in the attached NV 30511369Sdduvall * memory device, if any. Once we have it, we save it in both 30521369Sdduvall * register-image (64-bit) and byte-array forms. All-zero and 30531369Sdduvall * all-one addresses are not valid, and we refuse to stash those. 30541369Sdduvall */ 30551369Sdduvall if (bgep->bge_chip_state == BGE_CHIP_INITIAL) { 30561369Sdduvall if (mac == 0ULL) 30571369Sdduvall mac = bge_get_nvmac(bgep); 30581369Sdduvall if (mac != 0ULL && mac != ~0ULL) { 30591369Sdduvall bgep->chipid.hw_mac_addr = mac; 30601369Sdduvall for (i = ETHERADDRL; i-- != 0; ) { 30611369Sdduvall bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac; 30621369Sdduvall mac >>= 8; 30631369Sdduvall } 30641369Sdduvall bgep->chipid.vendor_addr.set = 1; 30651369Sdduvall } 30661369Sdduvall } 30671369Sdduvall 30681408Srandyf #ifdef BGE_IPMI_ASF 30691408Srandyf if (bgep->asf_enabled && bgep->asf_newhandshake) { 30701408Srandyf if (asf_mode != ASF_MODE_NONE) { 30711408Srandyf if ((asf_mode == ASF_MODE_INIT) || 30721408Srandyf (asf_mode == ASF_MODE_POST_INIT)) { 30731408Srandyf 30741408Srandyf bge_asf_post_reset_new_mode(bgep, 30751408Srandyf BGE_INIT_RESET); 30761408Srandyf } else { 30771408Srandyf bge_asf_post_reset_new_mode(bgep, 30781408Srandyf BGE_SHUTDOWN_RESET); 30791408Srandyf } 30801408Srandyf } 30811408Srandyf } 30821408Srandyf #endif 30831408Srandyf 30841369Sdduvall /* 30851369Sdduvall * Record the new state 30861369Sdduvall */ 30871369Sdduvall bgep->chip_resets += 1; 30881369Sdduvall bgep->bge_chip_state = BGE_CHIP_RESET; 30891369Sdduvall } 30901369Sdduvall 30911369Sdduvall /* 30921369Sdduvall * bge_chip_start() -- start the chip transmitting and/or receiving, 30931369Sdduvall * including enabling interrupts 30941369Sdduvall */ 30951369Sdduvall void bge_chip_start(bge_t *bgep, boolean_t reset_phys); 30961369Sdduvall #pragma no_inline(bge_chip_start) 30971369Sdduvall 30981369Sdduvall void 30991369Sdduvall bge_chip_start(bge_t *bgep, boolean_t reset_phys) 31001369Sdduvall { 31011369Sdduvall uint32_t coalmode; 31021369Sdduvall uint32_t ledctl; 31031369Sdduvall uint32_t mtu; 31041369Sdduvall uint32_t maxring; 31051369Sdduvall uint64_t ring; 31061369Sdduvall 31071369Sdduvall BGE_TRACE(("bge_chip_start($%p)", 31081369Sdduvall (void *)bgep)); 31091369Sdduvall 31101369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 31111369Sdduvall ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET); 31121369Sdduvall ASSERT(bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0)) == 0); 31131369Sdduvall 31141369Sdduvall /* 31151369Sdduvall * Taken from Broadcom document 570X-PG102-R, pp 102-116. 31161369Sdduvall * The document specifies 95 separate steps to fully 31171369Sdduvall * initialise the chip!!!! 31181369Sdduvall * 31191369Sdduvall * The reset code above has already got us as far as step 31201369Sdduvall * 21, so we continue with ... 31211369Sdduvall * 31221369Sdduvall * Step 22: clear the MAC statistics block 31231369Sdduvall * (0x0300-0x0aff in NIC-local memory) 31241369Sdduvall */ 31251369Sdduvall if (bgep->chipid.statistic_type == BGE_STAT_BLK) 31261369Sdduvall bge_nic_zero(bgep, NIC_MEM_STATISTICS, 31271369Sdduvall NIC_MEM_STATISTICS_SIZE); 31281369Sdduvall 31291369Sdduvall /* 31301369Sdduvall * Step 23: clear the status block (in host memory) 31311369Sdduvall */ 31321369Sdduvall DMA_ZERO(bgep->status_block); 31331369Sdduvall 31341369Sdduvall /* 31351369Sdduvall * Step 24: set DMA read/write control register 31361369Sdduvall */ 31371369Sdduvall pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR, 31381369Sdduvall bgep->chipid.bge_dma_rwctrl); 31391369Sdduvall 31401369Sdduvall /* 31411369Sdduvall * Step 25: Configure DMA endianness -- already done (16/17) 31421369Sdduvall * Step 26: Configure Host-Based Send Rings 31431369Sdduvall * Step 27: Indicate Host Stack Up 31441369Sdduvall */ 31451369Sdduvall bge_reg_set32(bgep, MODE_CONTROL_REG, 31461369Sdduvall MODE_HOST_SEND_BDS | 31471369Sdduvall MODE_HOST_STACK_UP); 31481369Sdduvall 31491369Sdduvall /* 31501369Sdduvall * Step 28: Configure checksum options: 3151*1611Szh199473 * Solaris supports the hardware default checksum options. 3152*1611Szh199473 * 3153*1611Szh199473 * Workaround for Incorrect pseudo-header checksum calculation. 31541369Sdduvall */ 3155*1611Szh199473 if (bgep->macp->m_info.mi_cksum & HCKSUM_INET_PARTIAL) 3156*1611Szh199473 bge_reg_set32(bgep, MODE_CONTROL_REG, 3157*1611Szh199473 MODE_SEND_NO_PSEUDO_HDR_CSUM); 31581369Sdduvall 31591369Sdduvall /* 31601369Sdduvall * Step 29: configure Timer Prescaler. The value is always the 31611369Sdduvall * same: the Core Clock frequency in MHz (66), minus 1, shifted 31621369Sdduvall * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit 31631369Sdduvall * for the whole chip! 31641369Sdduvall */ 31651369Sdduvall bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT); 31661369Sdduvall 31671369Sdduvall /* 31681369Sdduvall * Steps 30-31: Configure MAC local memory pool & DMA pool registers 31691369Sdduvall * 31701369Sdduvall * If the mbuf_length is specified as 0, we just leave these at 31711369Sdduvall * their hardware defaults, rather than explicitly setting them. 31721369Sdduvall * As the Broadcom HRM,driver better not change the parameters 31731369Sdduvall * when the chipsets is 5705/5788/5721/5751/5714 and 5715. 31741369Sdduvall */ 31751369Sdduvall if ((bgep->chipid.mbuf_length != 0) && 31761369Sdduvall (DEVICE_5704_SERIES_CHIPSETS(bgep))) { 31771369Sdduvall bge_reg_put32(bgep, MBUF_POOL_BASE_REG, 31781369Sdduvall bgep->chipid.mbuf_base); 31791369Sdduvall bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG, 31801369Sdduvall bgep->chipid.mbuf_length); 31811369Sdduvall bge_reg_put32(bgep, DMAD_POOL_BASE_REG, 31821369Sdduvall DMAD_POOL_BASE_DEFAULT); 31831369Sdduvall bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG, 31841369Sdduvall DMAD_POOL_LENGTH_DEFAULT); 31851369Sdduvall } 31861369Sdduvall 31871369Sdduvall /* 31881369Sdduvall * Step 32: configure MAC memory pool watermarks 31891369Sdduvall */ 31901369Sdduvall bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG, 31911369Sdduvall bgep->chipid.mbuf_lo_water_rdma); 31921369Sdduvall bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG, 31931369Sdduvall bgep->chipid.mbuf_lo_water_rmac); 31941369Sdduvall bge_reg_put32(bgep, MBUF_HIWAT_REG, 31951369Sdduvall bgep->chipid.mbuf_hi_water); 31961369Sdduvall 31971369Sdduvall /* 31981369Sdduvall * Step 33: configure DMA resource watermarks 31991369Sdduvall */ 32001369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 32011369Sdduvall bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG, 32021369Sdduvall bge_dmad_lo_water); 32031369Sdduvall bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG, 32041369Sdduvall bge_dmad_hi_water); 32051369Sdduvall } 32061369Sdduvall bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames); 32071369Sdduvall 32081369Sdduvall /* 32091369Sdduvall * Steps 34-36: enable buffer manager & internal h/w queues 32101369Sdduvall */ 32111369Sdduvall (void) bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, 32121369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 32131369Sdduvall (void) bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0); 32141369Sdduvall 32151369Sdduvall /* 32161369Sdduvall * Steps 37-39: initialise Receive Buffer (Producer) RCBs 32171369Sdduvall */ 32181369Sdduvall bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG, 32191369Sdduvall &bgep->buff[BGE_STD_BUFF_RING].hw_rcb); 32201369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 32211369Sdduvall bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG, 32221369Sdduvall &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb); 32231369Sdduvall bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG, 32241369Sdduvall &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb); 32251369Sdduvall } 32261369Sdduvall 32271369Sdduvall /* 32281369Sdduvall * Step 40: set Receive Buffer Descriptor Ring replenish thresholds 32291369Sdduvall */ 32301369Sdduvall bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std); 32311369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 32321369Sdduvall bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG, 32331369Sdduvall bge_replenish_jumbo); 32341369Sdduvall bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG, 32351369Sdduvall bge_replenish_mini); 32361369Sdduvall } 32371369Sdduvall 32381369Sdduvall /* 32391369Sdduvall * Steps 41-43: clear Send Ring Producer Indices and initialise 32401369Sdduvall * Send Producer Rings (0x0100-0x01ff in NIC-local memory) 32411369Sdduvall */ 32421369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 32431369Sdduvall maxring = BGE_SEND_RINGS_MAX; 32441369Sdduvall else 32451369Sdduvall maxring = BGE_SEND_RINGS_MAX_5705; 32461369Sdduvall for (ring = 0; ring < maxring; ++ring) { 32471369Sdduvall bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0); 32481369Sdduvall bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0); 32491369Sdduvall bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring), 32501369Sdduvall &bgep->send[ring].hw_rcb); 32511369Sdduvall } 32521369Sdduvall 32531369Sdduvall /* 32541369Sdduvall * Steps 44-45: initialise Receive Return Rings 32551369Sdduvall * (0x0200-0x02ff in NIC-local memory) 32561369Sdduvall */ 32571369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 32581369Sdduvall maxring = BGE_RECV_RINGS_MAX; 32591369Sdduvall else 32601369Sdduvall maxring = BGE_RECV_RINGS_MAX_5705; 32611369Sdduvall for (ring = 0; ring < maxring; ++ring) 32621369Sdduvall bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring), 32631369Sdduvall &bgep->recv[ring].hw_rcb); 32641369Sdduvall 32651369Sdduvall /* 32661369Sdduvall * Step 46: initialise Receive Buffer (Producer) Ring indexes 32671369Sdduvall */ 32681369Sdduvall bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0); 32691369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 32701369Sdduvall bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0); 32711369Sdduvall bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0); 32721369Sdduvall } 32731369Sdduvall /* 32741369Sdduvall * Step 47: configure the MAC unicast address 32751369Sdduvall * Step 48: configure the random backoff seed 32761369Sdduvall * Step 96: set up multicast filters 32771369Sdduvall */ 32781408Srandyf #ifdef BGE_IPMI_ASF 32791408Srandyf bge_chip_sync(bgep, B_FALSE); 32801408Srandyf #else 32811369Sdduvall bge_chip_sync(bgep); 32821408Srandyf #endif 32831369Sdduvall 32841369Sdduvall /* 32851369Sdduvall * Step 49: configure the MTU 32861369Sdduvall */ 32871369Sdduvall mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ; 32881369Sdduvall bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu); 32891369Sdduvall 32901369Sdduvall /* 32911369Sdduvall * Step 50: configure the IPG et al 32921369Sdduvall */ 32931369Sdduvall bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT); 32941369Sdduvall 32951369Sdduvall /* 32961369Sdduvall * Step 51: configure the default Rx Return Ring 32971369Sdduvall */ 32981369Sdduvall bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT); 32991369Sdduvall 33001369Sdduvall /* 33011369Sdduvall * Steps 52-54: configure Receive List Placement, 33021369Sdduvall * and enable Receive List Placement Statistics 33031369Sdduvall */ 33041369Sdduvall bge_reg_put32(bgep, RCV_LP_CONFIG_REG, 33051369Sdduvall RCV_LP_CONFIG(bgep->chipid.rx_rings)); 33061369Sdduvall bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0); 33071369Sdduvall bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE); 33081369Sdduvall 33091369Sdduvall if (bgep->chipid.rx_rings > 1) 33101369Sdduvall bge_init_recv_rule(bgep); 33111369Sdduvall 33121369Sdduvall /* 33131369Sdduvall * Steps 55-56: enable Send Data Initiator Statistics 33141369Sdduvall */ 33151369Sdduvall bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0); 33161369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 33171369Sdduvall bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, 33181369Sdduvall SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER); 33191369Sdduvall } else { 33201369Sdduvall bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, 33211369Sdduvall SEND_INIT_STATS_ENABLE); 33221369Sdduvall } 33231369Sdduvall /* 33241369Sdduvall * Steps 57-58: stop (?) the Host Coalescing Engine 33251369Sdduvall */ 33261369Sdduvall (void) bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0); 33271369Sdduvall 33281369Sdduvall /* 33291369Sdduvall * Steps 59-62: initialise Host Coalescing parameters 33301369Sdduvall */ 33311369Sdduvall bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm); 33321369Sdduvall bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm); 33331369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm); 33341369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm); 33351369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 33361369Sdduvall bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG, 33371369Sdduvall bge_tx_count_intr); 33381369Sdduvall bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG, 33391369Sdduvall bge_tx_ticks_intr); 33401369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG, 33411369Sdduvall bge_rx_count_intr); 33421369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG, 33431369Sdduvall bge_rx_ticks_intr); 33441369Sdduvall } 33451369Sdduvall 33461369Sdduvall /* 33471369Sdduvall * Steps 63-64: initialise status block & statistics 33481369Sdduvall * host memory addresses 33491369Sdduvall * The statistic block does not exist in some chipsets 33501369Sdduvall * Step 65: initialise Statistics Coalescing Tick Counter 33511369Sdduvall */ 33521369Sdduvall bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG, 33531369Sdduvall bgep->status_block.cookie.dmac_laddress); 33541369Sdduvall 33551369Sdduvall /* 33561369Sdduvall * Steps 66-67: initialise status block & statistics 33571369Sdduvall * NIC-local memory addresses 33581369Sdduvall */ 33591369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { 33601369Sdduvall bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG, 33611369Sdduvall bgep->statistics.cookie.dmac_laddress); 33621369Sdduvall bge_reg_put32(bgep, STATISTICS_TICKS_REG, 33631369Sdduvall STATISTICS_TICKS_DEFAULT); 33641369Sdduvall bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG, 33651369Sdduvall NIC_MEM_STATUS_BLOCK); 33661369Sdduvall bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG, 33671369Sdduvall NIC_MEM_STATISTICS); 33681369Sdduvall } 33691369Sdduvall 33701369Sdduvall /* 33711369Sdduvall * Steps 68-71: start the Host Coalescing Engine, the Receive BD 33721369Sdduvall * Completion Engine, the Receive List Placement Engine, and the 33731369Sdduvall * Receive List selector.Pay attention:0x3400 is not exist in BCM5714 33741369Sdduvall * and BCM5715. 33751369Sdduvall */ 33761369Sdduvall if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS && 33771369Sdduvall bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS) 33781369Sdduvall coalmode = COALESCE_64_BYTE_STATUS; 33791369Sdduvall else 33801369Sdduvall coalmode = 0; 33811369Sdduvall (void) bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode); 33821369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 33831369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 33841369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0); 33851369Sdduvall 33861369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 33871369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 33881369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 33891369Sdduvall 33901369Sdduvall /* 33911369Sdduvall * Step 72: Enable MAC DMA engines 33921369Sdduvall * Step 73: Clear & enable MAC statistics 33931369Sdduvall */ 33941369Sdduvall bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, 33951369Sdduvall ETHERNET_MODE_ENABLE_FHDE | 33961369Sdduvall ETHERNET_MODE_ENABLE_RDE | 33971369Sdduvall ETHERNET_MODE_ENABLE_TDE); 33981369Sdduvall bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, 33991369Sdduvall ETHERNET_MODE_ENABLE_TX_STATS | 34001369Sdduvall ETHERNET_MODE_ENABLE_RX_STATS | 34011369Sdduvall ETHERNET_MODE_CLEAR_TX_STATS | 34021369Sdduvall ETHERNET_MODE_CLEAR_RX_STATS); 34031369Sdduvall 34041369Sdduvall /* 34051369Sdduvall * Step 74: configure the MLCR (Miscellaneous Local Control 34061369Sdduvall * Register); not required, as we set up the MLCR in step 10 34071369Sdduvall * (part of the reset code) above. 34081369Sdduvall * 34091369Sdduvall * Step 75: clear Interrupt Mailbox 0 34101369Sdduvall */ 34111369Sdduvall bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0); 34121369Sdduvall 34131369Sdduvall /* 34141369Sdduvall * Steps 76-87: Gentlemen, start your engines ... 34151369Sdduvall * 34161369Sdduvall * Enable the DMA Completion Engine, the Write DMA Engine, 34171369Sdduvall * the Read DMA Engine, Receive Data Completion Engine, 34181369Sdduvall * the MBuf Cluster Free Engine, the Send Data Completion Engine, 34191369Sdduvall * the Send BD Completion Engine, the Receive BD Initiator Engine, 34201369Sdduvall * the Receive Data Initiator Engine, the Send Data Initiator Engine, 34211369Sdduvall * the Send BD Initiator Engine, and the Send BD Selector Engine. 34221369Sdduvall * 34231369Sdduvall * Beware exhaust fumes? 34241369Sdduvall */ 34251369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 34261369Sdduvall (void) bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0); 34271369Sdduvall (void) bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG, 34281369Sdduvall (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS); 34291369Sdduvall (void) bge_chip_enable_engine(bgep, READ_DMA_MODE_REG, 34301369Sdduvall (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS); 34311369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 34321369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 34331369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 34341369Sdduvall (void) bge_chip_enable_engine(bgep, 34351369Sdduvall MBUF_CLUSTER_FREE_MODE_REG, 0); 34361369Sdduvall (void) bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0); 34371369Sdduvall (void) bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 34381369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 34391369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 34401369Sdduvall RCV_BD_DISABLED_RING_ATTN); 34411369Sdduvall (void) bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 34421369Sdduvall RCV_DATA_BD_ILL_RING_ATTN); 34431369Sdduvall (void) bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0); 34441369Sdduvall (void) bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 34451369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 34461369Sdduvall (void) bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 34471369Sdduvall STATE_MACHINE_ATTN_ENABLE_BIT); 34481369Sdduvall 34491369Sdduvall /* 34501369Sdduvall * Step 88: download firmware -- doesn't apply 34511369Sdduvall * Steps 89-90: enable Transmit & Receive MAC Engines 34521369Sdduvall */ 34531369Sdduvall (void) bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0); 34541408Srandyf #ifdef BGE_IPMI_ASF 34551408Srandyf if (bgep->asf_enabled) { 34561408Srandyf (void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0); 34571408Srandyf } else { 34581408Srandyf (void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 34591408Srandyf RECEIVE_MODE_KEEP_VLAN_TAG); 34601408Srandyf } 34611408Srandyf #else 34621369Sdduvall (void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 34631369Sdduvall RECEIVE_MODE_KEEP_VLAN_TAG); 34641408Srandyf #endif 34651369Sdduvall 34661369Sdduvall /* 34671369Sdduvall * Step 91: disable auto-polling of PHY status 34681369Sdduvall */ 34691369Sdduvall bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT); 34701369Sdduvall 34711369Sdduvall /* 34721369Sdduvall * Step 92: configure D0 power state (not required) 34731369Sdduvall * Step 93: initialise LED control register () 34741369Sdduvall */ 34751369Sdduvall ledctl = LED_CONTROL_DEFAULT; 34761369Sdduvall switch (bgep->chipid.device) { 34771369Sdduvall case DEVICE_ID_5700: 34781369Sdduvall case DEVICE_ID_5700x: 34791369Sdduvall case DEVICE_ID_5701: 34801369Sdduvall /* 34811369Sdduvall * Switch to 5700 (MAC) mode on these older chips 34821369Sdduvall */ 34831369Sdduvall ledctl &= ~LED_CONTROL_LED_MODE_MASK; 34841369Sdduvall ledctl |= LED_CONTROL_LED_MODE_5700; 34851369Sdduvall break; 34861369Sdduvall 34871369Sdduvall default: 34881369Sdduvall break; 34891369Sdduvall } 34901369Sdduvall bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl); 34911369Sdduvall 34921369Sdduvall /* 34931369Sdduvall * Step 94: activate link 34941369Sdduvall */ 34951369Sdduvall bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK); 34961369Sdduvall 34971369Sdduvall /* 34981369Sdduvall * Step 95: set up physical layer (PHY/SerDes) 34991369Sdduvall * restart autoneg (if required) 35001369Sdduvall */ 35011369Sdduvall if (reset_phys) 35021369Sdduvall bge_phys_update(bgep); 35031369Sdduvall 35041369Sdduvall /* 35051369Sdduvall * Extra step (DSG): hand over all the Receive Buffers to the chip 35061369Sdduvall */ 35071369Sdduvall for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 35081369Sdduvall bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg, 35091369Sdduvall bgep->buff[ring].rf_next); 35101369Sdduvall 35111369Sdduvall /* 35121369Sdduvall * MSI bits:The least significant MSI 16-bit word. 35131369Sdduvall * ISR will be triggered different. 35141369Sdduvall */ 35151369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_MSI) 35161369Sdduvall bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70); 35171369Sdduvall 35181369Sdduvall /* 35191369Sdduvall * Extra step (DSG): select which interrupts are enabled 35201369Sdduvall * 35211369Sdduvall * Program the Ethernet MAC engine to signal attention on 35221369Sdduvall * Link Change events, then enable interrupts on MAC, DMA, 35231369Sdduvall * and FLOW attention signals. 35241369Sdduvall */ 35251369Sdduvall bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 35261369Sdduvall ETHERNET_EVENT_LINK_INT | 35271369Sdduvall ETHERNET_STATUS_PCS_ERROR_INT); 35281408Srandyf #ifdef BGE_IPMI_ASF 35291408Srandyf if (bgep->asf_enabled) { 35301408Srandyf bge_reg_set32(bgep, MODE_CONTROL_REG, 35311408Srandyf MODE_INT_ON_FLOW_ATTN | 35321408Srandyf MODE_INT_ON_DMA_ATTN | 35331408Srandyf MODE_HOST_STACK_UP| 35341408Srandyf MODE_INT_ON_MAC_ATTN); 35351408Srandyf } else { 35361408Srandyf #endif 35371408Srandyf bge_reg_set32(bgep, MODE_CONTROL_REG, 35381408Srandyf MODE_INT_ON_FLOW_ATTN | 35391408Srandyf MODE_INT_ON_DMA_ATTN | 35401408Srandyf MODE_INT_ON_MAC_ATTN); 35411408Srandyf #ifdef BGE_IPMI_ASF 35421408Srandyf } 35431408Srandyf #endif 35441369Sdduvall 35451369Sdduvall /* 35461369Sdduvall * Step 97: enable PCI interrupts!!! 35471369Sdduvall */ 35481369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 35491369Sdduvall bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR, 35501369Sdduvall MHCR_MASK_PCI_INT_OUTPUT); 35511369Sdduvall 35521369Sdduvall /* 35531369Sdduvall * All done! 35541369Sdduvall */ 35551369Sdduvall bgep->bge_chip_state = BGE_CHIP_RUNNING; 35561369Sdduvall } 35571369Sdduvall 35581369Sdduvall 35591369Sdduvall /* 35601369Sdduvall * ========== Hardware interrupt handler ========== 35611369Sdduvall */ 35621369Sdduvall 35631369Sdduvall #undef BGE_DBG 35641369Sdduvall #define BGE_DBG BGE_DBG_INT /* debug flag for this code */ 35651369Sdduvall 35661369Sdduvall /* 35671369Sdduvall * Sync the status block, then atomically clear the specified bits in 35681369Sdduvall * the <flags-and-tag> field of the status block. 35691369Sdduvall * the <flags> word of the status block, returning the value of the 35701369Sdduvall * <tag> and the <flags> before the bits were cleared. 35711369Sdduvall */ 35721369Sdduvall static uint64_t bge_status_sync(bge_t *bgep, uint64_t bits); 35731369Sdduvall #pragma inline(bge_status_sync) 35741369Sdduvall 35751369Sdduvall static uint64_t 35761369Sdduvall bge_status_sync(bge_t *bgep, uint64_t bits) 35771369Sdduvall { 35781369Sdduvall bge_status_t *bsp; 35791369Sdduvall uint64_t flags; 35801369Sdduvall 35811369Sdduvall BGE_TRACE(("bge_status_sync($%p, 0x%llx)", 35821369Sdduvall (void *)bgep, bits)); 35831369Sdduvall 35841369Sdduvall ASSERT(bgep->bge_guard == BGE_GUARD); 35851369Sdduvall 35861369Sdduvall DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL); 35871369Sdduvall bsp = DMA_VPTR(bgep->status_block); 35881369Sdduvall flags = bge_atomic_clr64(&bsp->flags_n_tag, bits); 35891369Sdduvall 35901369Sdduvall BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx", 35911369Sdduvall (void *)bgep, bits, flags)); 35921369Sdduvall 35931369Sdduvall return (flags); 35941369Sdduvall } 35951369Sdduvall 35961369Sdduvall static void bge_wake_factotum(bge_t *bgep); 35971369Sdduvall #pragma inline(bge_wake_factotum) 35981369Sdduvall 35991369Sdduvall static void 36001369Sdduvall bge_wake_factotum(bge_t *bgep) 36011369Sdduvall { 36021369Sdduvall mutex_enter(bgep->softintrlock); 36031369Sdduvall if (bgep->factotum_flag == 0) { 36041369Sdduvall bgep->factotum_flag = 1; 36051369Sdduvall ddi_trigger_softintr(bgep->factotum_id); 36061369Sdduvall } 36071369Sdduvall mutex_exit(bgep->softintrlock); 36081369Sdduvall } 36091369Sdduvall 36101369Sdduvall /* 36111369Sdduvall * bge_intr() -- handle chip interrupts 36121369Sdduvall */ 36131369Sdduvall uint_t bge_intr(caddr_t arg1, caddr_t arg2); 36141369Sdduvall #pragma no_inline(bge_intr) 36151369Sdduvall 36161369Sdduvall uint_t 36171369Sdduvall bge_intr(caddr_t arg1, caddr_t arg2) 36181369Sdduvall { 36191369Sdduvall bge_t *bgep = (bge_t *)arg1; /* private device info */ 36201369Sdduvall bge_status_t *bsp; 36211369Sdduvall uint64_t flags; 36221369Sdduvall uint32_t mlcr = 0; 36231369Sdduvall uint_t result; 36241369Sdduvall 36251369Sdduvall BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2)); 36261369Sdduvall 36271369Sdduvall /* 36281369Sdduvall * GLD v2 checks that s/w setup is complete before passing 36291369Sdduvall * interrupts to this routine, thus eliminating the old 36301369Sdduvall * (and well-known) race condition around ddi_add_intr() 36311369Sdduvall */ 36321369Sdduvall ASSERT(bgep->progress & PROGRESS_HWINT); 36331369Sdduvall 36341369Sdduvall /* 36351369Sdduvall * Check whether chip's says it's asserting #INTA; 36361369Sdduvall * if not, don't process or claim the interrupt. 36371369Sdduvall * 36381369Sdduvall * Note that the PCI signal is active low, so the 36391369Sdduvall * bit is *zero* when the interrupt is asserted. 36401369Sdduvall */ 36411369Sdduvall result = DDI_INTR_UNCLAIMED; 36421369Sdduvall mutex_enter(bgep->genlock); 36431369Sdduvall 36441369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 36451369Sdduvall mlcr = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); 36461369Sdduvall 36471369Sdduvall BGE_DEBUG(("bge_intr($%p) ($%p) mlcr 0x%08x", arg1, arg2, mlcr)); 36481369Sdduvall 36491369Sdduvall if ((mlcr & MLCR_INTA_STATE) == 0) { 36501369Sdduvall /* 36511369Sdduvall * Block further PCI interrupts ... 36521369Sdduvall */ 36531369Sdduvall result = DDI_INTR_CLAIMED; 36541369Sdduvall 36551369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 36561369Sdduvall bge_cfg_set32(bgep, PCI_CONF_BGE_MHCR, 36571369Sdduvall MHCR_MASK_PCI_INT_OUTPUT); 36581369Sdduvall 36591369Sdduvall /* 36601369Sdduvall * Sync the status block and grab the flags-n-tag from it. 36611369Sdduvall * We count the number of interrupts where there doesn't 36621369Sdduvall * seem to have been a DMA update of the status block; if 36631369Sdduvall * it *has* been updated, the counter will be cleared in 36641369Sdduvall * the while() loop below ... 36651369Sdduvall */ 36661369Sdduvall bgep->missed_dmas += 1; 36671369Sdduvall bsp = DMA_VPTR(bgep->status_block); 36681369Sdduvall flags = bge_status_sync(bgep, STATUS_FLAG_UPDATED); 36691369Sdduvall 36701369Sdduvall while (flags & STATUS_FLAG_UPDATED) { 36711369Sdduvall /* 36721369Sdduvall * Tell the chip that we're processing the interrupt 36731369Sdduvall */ 36741369Sdduvall bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 36751369Sdduvall INTERRUPT_MBOX_DISABLE(flags)); 36761369Sdduvall 36771369Sdduvall /* 36781369Sdduvall * Drop the mutex while we: 36791369Sdduvall * Receive any newly-arrived packets 36801369Sdduvall * Recycle any newly-finished send buffers 36811369Sdduvall */ 36821369Sdduvall mutex_exit(bgep->genlock); 36831369Sdduvall bge_receive(bgep, bsp); 36841369Sdduvall bge_recycle(bgep, bsp); 36851369Sdduvall mutex_enter(bgep->genlock); 36861369Sdduvall 36871369Sdduvall /* 36881369Sdduvall * Tell the chip we've finished processing, and 36891369Sdduvall * give it the tag that we got from the status 36901369Sdduvall * block earlier, so that it knows just how far 36911369Sdduvall * we've gone. If it's got more for us to do, 36921369Sdduvall * it will now update the status block and try 36931369Sdduvall * to assert an interrupt (but we've got the 36941369Sdduvall * #INTA blocked at present). If we see the 36951369Sdduvall * update, we'll loop around to do some more. 36961369Sdduvall * Eventually we'll get out of here ... 36971369Sdduvall */ 36981369Sdduvall bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 36991369Sdduvall INTERRUPT_MBOX_ENABLE(flags)); 37001369Sdduvall bgep->missed_dmas = 0; 37011369Sdduvall flags = bge_status_sync(bgep, STATUS_FLAG_UPDATED); 37021369Sdduvall } 37031369Sdduvall 37041369Sdduvall /* 37051369Sdduvall * Check for exceptional conditions that we need to handle 37061369Sdduvall * 37071369Sdduvall * Link status changed 37081369Sdduvall * Status block not updated 37091369Sdduvall */ 37101369Sdduvall if (flags & STATUS_FLAG_LINK_CHANGED) 37111369Sdduvall bge_wake_factotum(bgep); 37121369Sdduvall 37131369Sdduvall if (bgep->missed_dmas) { 37141369Sdduvall /* 37151369Sdduvall * Probably due to the internal status tag not 37161369Sdduvall * being reset. Force a status block update now; 37171369Sdduvall * this should ensure that we get an update and 37181369Sdduvall * a new interrupt. After that, we should be in 37191369Sdduvall * sync again ... 37201369Sdduvall */ 37211369Sdduvall BGE_REPORT((bgep, "interrupt: flags 0x%llx - " 37221369Sdduvall "not updated?", flags)); 37231369Sdduvall bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 37241369Sdduvall COALESCE_NOW); 37251369Sdduvall 37261369Sdduvall if (bgep->missed_dmas >= bge_dma_miss_limit) { 37271369Sdduvall /* 37281369Sdduvall * If this happens multiple times in a row, 37291369Sdduvall * it means DMA is just not working. Maybe 37301369Sdduvall * the chip's failed, or maybe there's a 37311369Sdduvall * problem on the PCI bus or in the host-PCI 37321369Sdduvall * bridge (Tomatillo). 37331369Sdduvall * 37341369Sdduvall * At all events, we want to stop further 37351369Sdduvall * interrupts and let the recovery code take 37361369Sdduvall * over to see whether anything can be done 37371369Sdduvall * about it ... 37381369Sdduvall */ 37391408Srandyf #ifdef BGE_IPMI_ASF 37401408Srandyf if (bgep->asf_enabled && 37411408Srandyf (bgep->asf_status == ASF_STAT_RUN)) { 37421408Srandyf /* 37431408Srandyf * We must stop ASF heart beat before 37441408Srandyf * bge_chip_stop(), otherwise some 37451408Srandyf * computers (ex. IBM HS20 blade 37461408Srandyf * server) may crash. 37471408Srandyf */ 37481408Srandyf bge_asf_update_status(bgep); 37491408Srandyf bge_asf_stop_timer(bgep); 37501408Srandyf bgep->asf_status = ASF_STAT_STOP; 37511408Srandyf 37521408Srandyf bge_asf_pre_reset_operations(bgep, 37531408Srandyf BGE_INIT_RESET); 37541408Srandyf } 37551408Srandyf #endif 37561369Sdduvall bge_chip_stop(bgep, B_TRUE); 37571369Sdduvall result = DDI_INTR_UNCLAIMED; 37581369Sdduvall } 37591369Sdduvall } 37601369Sdduvall 37611369Sdduvall /* 37621369Sdduvall * Reenable assertion of #INTA, unless there's a DMA fault 37631369Sdduvall */ 37641369Sdduvall if (result == DDI_INTR_CLAIMED) { 37651369Sdduvall if (bgep->intr_type == DDI_INTR_TYPE_FIXED) 37661369Sdduvall bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR, 37671369Sdduvall MHCR_MASK_PCI_INT_OUTPUT); 37681369Sdduvall } 37691369Sdduvall } 37701369Sdduvall 37711369Sdduvall mutex_exit(bgep->genlock); 37721369Sdduvall return (result); 37731369Sdduvall } 37741369Sdduvall 37751369Sdduvall /* 37761369Sdduvall * ========== Factotum, implemented as a softint handler ========== 37771369Sdduvall */ 37781369Sdduvall 37791369Sdduvall #undef BGE_DBG 37801369Sdduvall #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */ 37811369Sdduvall 37821369Sdduvall static void bge_factotum_error_handler(bge_t *bgep); 37831369Sdduvall #pragma no_inline(bge_factotum_error_handler) 37841369Sdduvall 37851369Sdduvall static void 37861369Sdduvall bge_factotum_error_handler(bge_t *bgep) 37871369Sdduvall { 37881369Sdduvall uint32_t flow; 37891369Sdduvall uint32_t rdma; 37901369Sdduvall uint32_t wdma; 37911369Sdduvall uint32_t tmac; 37921369Sdduvall uint32_t rmac; 37931369Sdduvall uint32_t rxrs; 37941369Sdduvall uint32_t txrs = 0; 37951369Sdduvall 37961369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 37971369Sdduvall 37981369Sdduvall /* 37991369Sdduvall * Read all the registers that show the possible 38001369Sdduvall * reasons for the ERROR bit to be asserted 38011369Sdduvall */ 38021369Sdduvall flow = bge_reg_get32(bgep, FLOW_ATTN_REG); 38031369Sdduvall rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG); 38041369Sdduvall wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG); 38051369Sdduvall tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); 38061369Sdduvall rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG); 38071369Sdduvall rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG); 38081369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 38091369Sdduvall txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG); 38101369Sdduvall 38111369Sdduvall BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x", 38121369Sdduvall (void *)bgep, flow, rdma, wdma)); 38131369Sdduvall BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x", 38141369Sdduvall (void *)bgep, tmac, rmac, rxrs, txrs)); 38151369Sdduvall 38161369Sdduvall /* 38171369Sdduvall * For now, just clear all the errors ... 38181369Sdduvall */ 38191369Sdduvall if (DEVICE_5704_SERIES_CHIPSETS(bgep)) 38201369Sdduvall bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0); 38211369Sdduvall bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0); 38221369Sdduvall bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0); 38231369Sdduvall bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0); 38241369Sdduvall bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0); 38251369Sdduvall bge_reg_put32(bgep, FLOW_ATTN_REG, ~0); 38261369Sdduvall } 38271369Sdduvall 38281369Sdduvall /* 38291369Sdduvall * Handler for hardware link state change. 38301369Sdduvall * 38311369Sdduvall * When this routine is called, the hardware link state has changed 38321369Sdduvall * and the new state is reflected in the param_* variables. Here 38331369Sdduvall * we must update the softstate, reprogram the MAC to match, and 38341369Sdduvall * record the change in the log and/or on the console. 38351369Sdduvall */ 38361369Sdduvall static void bge_factotum_link_handler(bge_t *bgep); 38371369Sdduvall #pragma no_inline(bge_factotum_link_handler) 38381369Sdduvall 38391369Sdduvall static void 38401369Sdduvall bge_factotum_link_handler(bge_t *bgep) 38411369Sdduvall { 38421369Sdduvall void (*logfn)(bge_t *bgep, const char *fmt, ...); 38431369Sdduvall const char *msg; 38441369Sdduvall hrtime_t deltat; 38451369Sdduvall 38461369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 38471369Sdduvall 38481369Sdduvall /* 38491369Sdduvall * Update the s/w link_state 38501369Sdduvall */ 38511369Sdduvall if (bgep->param_link_up) 38521369Sdduvall bgep->link_state = LINK_STATE_UP; 38531369Sdduvall else 38541369Sdduvall bgep->link_state = LINK_STATE_DOWN; 38551369Sdduvall 38561369Sdduvall /* 38571369Sdduvall * Reprogram the MAC modes to match 38581369Sdduvall */ 38591369Sdduvall bge_sync_mac_modes(bgep); 38601369Sdduvall 38611369Sdduvall /* 38621369Sdduvall * Finally, we have to decide whether to write a message 38631369Sdduvall * on the console or only in the log. If the PHY has 38641369Sdduvall * been reprogrammed (at user request) "recently", then 38651369Sdduvall * the message only goes in the log. Otherwise it's an 38661369Sdduvall * "unexpected" event, and it goes on the console as well. 38671369Sdduvall */ 38681369Sdduvall deltat = bgep->phys_event_time - bgep->phys_write_time; 38691369Sdduvall if (deltat > BGE_LINK_SETTLE_TIME) 38701369Sdduvall msg = ""; 38711369Sdduvall else if (bgep->param_link_up) 38721369Sdduvall msg = bgep->link_up_msg; 38731369Sdduvall else 38741369Sdduvall msg = bgep->link_down_msg; 38751369Sdduvall 38761369Sdduvall logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log; 38771369Sdduvall (*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg); 38781369Sdduvall } 38791369Sdduvall 38801369Sdduvall static boolean_t bge_factotum_link_check(bge_t *bgep); 38811369Sdduvall #pragma no_inline(bge_factotum_link_check) 38821369Sdduvall 38831369Sdduvall static boolean_t 38841369Sdduvall bge_factotum_link_check(bge_t *bgep) 38851369Sdduvall { 38861369Sdduvall boolean_t check; 38871369Sdduvall uint64_t flags; 38881369Sdduvall uint32_t tmac_status; 38891369Sdduvall 38901369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 38911369Sdduvall 38921369Sdduvall /* 38931369Sdduvall * Get & clear the writable status bits in the Tx status register 38941369Sdduvall * (some bits are write-1-to-clear, others are just readonly). 38951369Sdduvall */ 38961369Sdduvall tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); 38971369Sdduvall bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status); 38981369Sdduvall 38991369Sdduvall /* 39001369Sdduvall * Get & clear the ERROR and LINK_CHANGED bits from the status block 39011369Sdduvall */ 39021369Sdduvall flags = STATUS_FLAG_ERROR | STATUS_FLAG_LINK_CHANGED; 39031369Sdduvall flags = bge_status_sync(bgep, flags); 39041369Sdduvall 39051369Sdduvall /* 39061369Sdduvall * Clear any errors flagged in the status block ... 39071369Sdduvall */ 39081369Sdduvall if (flags & STATUS_FLAG_ERROR) 39091369Sdduvall bge_factotum_error_handler(bgep); 39101369Sdduvall 39111369Sdduvall /* 39121369Sdduvall * We need to check the link status if: 39131369Sdduvall * the status block says there's been a link change 39141369Sdduvall * or there's any discrepancy between the various 39151369Sdduvall * flags indicating the link state (link_state, 39161369Sdduvall * param_link_up, and the LINK STATE bit in the 39171369Sdduvall * Transmit MAC status register). 39181369Sdduvall */ 39191369Sdduvall check = (flags & STATUS_FLAG_LINK_CHANGED) != 0; 39201369Sdduvall switch (bgep->link_state) { 39211369Sdduvall case LINK_STATE_UP: 39221369Sdduvall check |= (bgep->param_link_up == B_FALSE); 39231369Sdduvall check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0); 39241369Sdduvall break; 39251369Sdduvall 39261369Sdduvall case LINK_STATE_DOWN: 39271369Sdduvall check |= (bgep->param_link_up != B_FALSE); 39281369Sdduvall check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0); 39291369Sdduvall break; 39301369Sdduvall 39311369Sdduvall default: 39321369Sdduvall check = B_TRUE; 39331369Sdduvall break; 39341369Sdduvall } 39351369Sdduvall 39361369Sdduvall /* 39371369Sdduvall * If <check> is false, we're sure the link hasn't changed. 39381369Sdduvall * If true, however, it's not yet definitive; we have to call 39391369Sdduvall * bge_phys_check() to determine whether the link has settled 39401369Sdduvall * into a new state yet ... and if it has, then call the link 39411369Sdduvall * state change handler.But when the chip is 5700 in Dell 6650 39421369Sdduvall * ,even if check is false, the link may have changed.So we 39431369Sdduvall * have to call bge_phys_check() to determine the link state. 39441369Sdduvall */ 39451369Sdduvall if (check || bgep->chipid.device == DEVICE_ID_5700) { 39461369Sdduvall check = bge_phys_check(bgep); 39471369Sdduvall if (check) 39481369Sdduvall bge_factotum_link_handler(bgep); 39491369Sdduvall } 39501369Sdduvall 39511369Sdduvall return (check); 39521369Sdduvall } 39531369Sdduvall 39541369Sdduvall /* 39551369Sdduvall * Factotum routine to check for Tx stall, using the 'watchdog' counter 39561369Sdduvall */ 39571369Sdduvall static boolean_t bge_factotum_stall_check(bge_t *bgep); 39581369Sdduvall #pragma no_inline(bge_factotum_stall_check) 39591369Sdduvall 39601369Sdduvall static boolean_t 39611369Sdduvall bge_factotum_stall_check(bge_t *bgep) 39621369Sdduvall { 39631369Sdduvall uint32_t dogval; 39641369Sdduvall 39651369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 39661369Sdduvall 39671369Sdduvall /* 39681369Sdduvall * Specific check for Tx stall ... 39691369Sdduvall * 39701369Sdduvall * The 'watchdog' counter is incremented whenever a packet 39711369Sdduvall * is queued, reset to 1 when some (but not all) buffers 39721369Sdduvall * are reclaimed, reset to 0 (disabled) when all buffers 39731369Sdduvall * are reclaimed, and shifted left here. If it exceeds the 39741369Sdduvall * threshold value, the chip is assumed to have stalled and 39751369Sdduvall * is put into the ERROR state. The factotum will then reset 39761369Sdduvall * it on the next pass. 39771369Sdduvall * 39781369Sdduvall * All of which should ensure that we don't get into a state 39791369Sdduvall * where packets are left pending indefinitely! 39801369Sdduvall */ 39811369Sdduvall dogval = bge_atomic_shl32(&bgep->watchdog, 1); 39821369Sdduvall if (dogval < bge_watchdog_count) 39831369Sdduvall return (B_FALSE); 39841369Sdduvall 39851369Sdduvall BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval)); 39861369Sdduvall return (B_TRUE); 39871369Sdduvall } 39881369Sdduvall 39891369Sdduvall /* 39901369Sdduvall * The factotum is woken up when there's something to do that we'd rather 39911369Sdduvall * not do from inside a hardware interrupt handler or high-level cyclic. 39921369Sdduvall * Its two main tasks are: 39931369Sdduvall * reset & restart the chip after an error 39941369Sdduvall * check the link status whenever necessary 39951369Sdduvall */ 39961369Sdduvall uint_t bge_chip_factotum(caddr_t arg); 39971369Sdduvall #pragma no_inline(bge_chip_factotum) 39981369Sdduvall 39991369Sdduvall uint_t 40001369Sdduvall bge_chip_factotum(caddr_t arg) 40011369Sdduvall { 40021369Sdduvall bge_t *bgep; 40031369Sdduvall uint_t result; 40041369Sdduvall boolean_t error; 40051369Sdduvall boolean_t linkchg; 40061369Sdduvall 40071369Sdduvall bgep = (bge_t *)arg; 40081369Sdduvall 40091369Sdduvall BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep)); 40101369Sdduvall 40111369Sdduvall mutex_enter(bgep->softintrlock); 40121369Sdduvall if (bgep->factotum_flag == 0) { 40131369Sdduvall mutex_exit(bgep->softintrlock); 40141369Sdduvall return (DDI_INTR_UNCLAIMED); 40151369Sdduvall } 40161504Sly149593 bgep->factotum_flag = 0; 40171369Sdduvall mutex_exit(bgep->softintrlock); 40181369Sdduvall 40191369Sdduvall result = DDI_INTR_CLAIMED; 40201369Sdduvall error = B_FALSE; 40211369Sdduvall linkchg = B_FALSE; 40221369Sdduvall 40231369Sdduvall mutex_enter(bgep->genlock); 40241369Sdduvall switch (bgep->bge_chip_state) { 40251369Sdduvall default: 40261369Sdduvall break; 40271369Sdduvall 40281369Sdduvall case BGE_CHIP_RUNNING: 40291369Sdduvall linkchg = bge_factotum_link_check(bgep); 40301369Sdduvall error = bge_factotum_stall_check(bgep); 40311369Sdduvall break; 40321369Sdduvall 40331369Sdduvall case BGE_CHIP_ERROR: 40341369Sdduvall error = B_TRUE; 40351369Sdduvall break; 40361369Sdduvall 40371369Sdduvall case BGE_CHIP_FAULT: 40381369Sdduvall /* 40391369Sdduvall * Fault detected, time to reset ... 40401369Sdduvall */ 40411369Sdduvall if (bge_autorecover) { 40421369Sdduvall BGE_REPORT((bgep, "automatic recovery activated")); 40431369Sdduvall bge_restart(bgep, B_FALSE); 40441408Srandyf #ifdef BGE_IPMI_ASF 40451408Srandyf /* 40461408Srandyf * Start our ASF heartbeat counter as soon as possible. 40471408Srandyf */ 40481408Srandyf if (bgep->asf_enabled) { 40491408Srandyf if (bgep->asf_status != ASF_STAT_RUN) { 40501408Srandyf bgep->asf_timeout_id = timeout( 40511408Srandyf bge_asf_heartbeat, 40521408Srandyf (void *)bgep, 40531408Srandyf drv_usectohz( 40541408Srandyf BGE_ASF_HEARTBEAT_INTERVAL)); 40551408Srandyf bgep->asf_status = ASF_STAT_RUN; 40561408Srandyf } 40571408Srandyf } 40581408Srandyf #endif 40591369Sdduvall } 40601369Sdduvall break; 40611369Sdduvall } 40621369Sdduvall 40631369Sdduvall /* 40641369Sdduvall * If an error is detected, stop the chip now, marking it as 40651369Sdduvall * faulty, so that it will be reset next time through ... 40661369Sdduvall */ 40671408Srandyf if (error) { 40681408Srandyf #ifdef BGE_IPMI_ASF 40691408Srandyf if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) { 40701408Srandyf /* 40711408Srandyf * We must stop ASF heart beat before bge_chip_stop(), 40721408Srandyf * otherwise some computers (ex. IBM HS20 blade server) 40731408Srandyf * may crash. 40741408Srandyf */ 40751408Srandyf bge_asf_update_status(bgep); 40761408Srandyf bge_asf_stop_timer(bgep); 40771408Srandyf bgep->asf_status = ASF_STAT_STOP; 40781408Srandyf 40791408Srandyf bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 40801408Srandyf } 40811408Srandyf #endif 40821369Sdduvall bge_chip_stop(bgep, B_TRUE); 40831408Srandyf } 40841369Sdduvall mutex_exit(bgep->genlock); 40851369Sdduvall 40861369Sdduvall /* 40871369Sdduvall * If the link state changed, tell the world about it. 40881369Sdduvall * Note: can't do this while still holding the mutex. 40891369Sdduvall */ 40901369Sdduvall if (linkchg) 40911369Sdduvall mac_link_update(bgep->macp, bgep->link_state); 40921369Sdduvall 40931369Sdduvall return (result); 40941369Sdduvall } 40951369Sdduvall 40961369Sdduvall /* 40971369Sdduvall * High-level cyclic handler 40981369Sdduvall * 40991369Sdduvall * This routine schedules a (low-level) softint callback to the 41001369Sdduvall * factotum, and prods the chip to update the status block (which 41011369Sdduvall * will cause a hardware interrupt when complete). 41021369Sdduvall */ 41031369Sdduvall void bge_chip_cyclic(void *arg); 41041369Sdduvall #pragma no_inline(bge_chip_cyclic) 41051369Sdduvall 41061369Sdduvall void 41071369Sdduvall bge_chip_cyclic(void *arg) 41081369Sdduvall { 41091369Sdduvall bge_t *bgep; 41101369Sdduvall 41111369Sdduvall bgep = arg; 41121369Sdduvall 41131369Sdduvall switch (bgep->bge_chip_state) { 41141369Sdduvall default: 41151369Sdduvall return; 41161369Sdduvall 41171369Sdduvall case BGE_CHIP_RUNNING: 41181369Sdduvall bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW); 41191369Sdduvall break; 41201369Sdduvall 41211369Sdduvall case BGE_CHIP_FAULT: 41221369Sdduvall case BGE_CHIP_ERROR: 41231369Sdduvall break; 41241369Sdduvall } 41251369Sdduvall 41261369Sdduvall bge_wake_factotum(bgep); 41271369Sdduvall } 41281369Sdduvall 41291369Sdduvall 41301369Sdduvall /* 41311369Sdduvall * ========== Ioctl subfunctions ========== 41321369Sdduvall */ 41331369Sdduvall 41341369Sdduvall #undef BGE_DBG 41351369Sdduvall #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */ 41361369Sdduvall 41371369Sdduvall #if BGE_DEBUGGING || BGE_DO_PPIO 41381369Sdduvall 41391369Sdduvall static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd); 41401369Sdduvall #pragma no_inline(bge_chip_peek_cfg) 41411369Sdduvall 41421369Sdduvall static void 41431369Sdduvall bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd) 41441369Sdduvall { 41451369Sdduvall uint64_t regval; 41461369Sdduvall uint64_t regno; 41471369Sdduvall 41481369Sdduvall BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)", 41491369Sdduvall (void *)bgep, (void *)ppd)); 41501369Sdduvall 41511369Sdduvall regno = ppd->pp_acc_offset; 41521369Sdduvall 41531369Sdduvall switch (ppd->pp_acc_size) { 41541369Sdduvall case 1: 41551369Sdduvall regval = pci_config_get8(bgep->cfg_handle, regno); 41561369Sdduvall break; 41571369Sdduvall 41581369Sdduvall case 2: 41591369Sdduvall regval = pci_config_get16(bgep->cfg_handle, regno); 41601369Sdduvall break; 41611369Sdduvall 41621369Sdduvall case 4: 41631369Sdduvall regval = pci_config_get32(bgep->cfg_handle, regno); 41641369Sdduvall break; 41651369Sdduvall 41661369Sdduvall case 8: 41671369Sdduvall regval = pci_config_get64(bgep->cfg_handle, regno); 41681369Sdduvall break; 41691369Sdduvall } 41701369Sdduvall 41711369Sdduvall ppd->pp_acc_data = regval; 41721369Sdduvall } 41731369Sdduvall 41741369Sdduvall static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd); 41751369Sdduvall #pragma no_inline(bge_chip_poke_cfg) 41761369Sdduvall 41771369Sdduvall static void 41781369Sdduvall bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd) 41791369Sdduvall { 41801369Sdduvall uint64_t regval; 41811369Sdduvall uint64_t regno; 41821369Sdduvall 41831369Sdduvall BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)", 41841369Sdduvall (void *)bgep, (void *)ppd)); 41851369Sdduvall 41861369Sdduvall regno = ppd->pp_acc_offset; 41871369Sdduvall regval = ppd->pp_acc_data; 41881369Sdduvall 41891369Sdduvall switch (ppd->pp_acc_size) { 41901369Sdduvall case 1: 41911369Sdduvall pci_config_put8(bgep->cfg_handle, regno, regval); 41921369Sdduvall break; 41931369Sdduvall 41941369Sdduvall case 2: 41951369Sdduvall pci_config_put16(bgep->cfg_handle, regno, regval); 41961369Sdduvall break; 41971369Sdduvall 41981369Sdduvall case 4: 41991369Sdduvall pci_config_put32(bgep->cfg_handle, regno, regval); 42001369Sdduvall break; 42011369Sdduvall 42021369Sdduvall case 8: 42031369Sdduvall pci_config_put64(bgep->cfg_handle, regno, regval); 42041369Sdduvall break; 42051369Sdduvall } 42061369Sdduvall } 42071369Sdduvall 42081369Sdduvall static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd); 42091369Sdduvall #pragma no_inline(bge_chip_peek_reg) 42101369Sdduvall 42111369Sdduvall static void 42121369Sdduvall bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd) 42131369Sdduvall { 42141369Sdduvall uint64_t regval; 42151369Sdduvall void *regaddr; 42161369Sdduvall 42171369Sdduvall BGE_TRACE(("bge_chip_peek_reg($%p, $%p)", 42181369Sdduvall (void *)bgep, (void *)ppd)); 42191369Sdduvall 42201369Sdduvall regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); 42211369Sdduvall 42221369Sdduvall switch (ppd->pp_acc_size) { 42231369Sdduvall case 1: 42241369Sdduvall regval = ddi_get8(bgep->io_handle, regaddr); 42251369Sdduvall break; 42261369Sdduvall 42271369Sdduvall case 2: 42281369Sdduvall regval = ddi_get16(bgep->io_handle, regaddr); 42291369Sdduvall break; 42301369Sdduvall 42311369Sdduvall case 4: 42321369Sdduvall regval = ddi_get32(bgep->io_handle, regaddr); 42331369Sdduvall break; 42341369Sdduvall 42351369Sdduvall case 8: 42361369Sdduvall regval = ddi_get64(bgep->io_handle, regaddr); 42371369Sdduvall break; 42381369Sdduvall } 42391369Sdduvall 42401369Sdduvall ppd->pp_acc_data = regval; 42411369Sdduvall } 42421369Sdduvall 42431369Sdduvall static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd); 42441369Sdduvall #pragma no_inline(bge_chip_peek_reg) 42451369Sdduvall 42461369Sdduvall static void 42471369Sdduvall bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd) 42481369Sdduvall { 42491369Sdduvall uint64_t regval; 42501369Sdduvall void *regaddr; 42511369Sdduvall 42521369Sdduvall BGE_TRACE(("bge_chip_poke_reg($%p, $%p)", 42531369Sdduvall (void *)bgep, (void *)ppd)); 42541369Sdduvall 42551369Sdduvall regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); 42561369Sdduvall regval = ppd->pp_acc_data; 42571369Sdduvall 42581369Sdduvall switch (ppd->pp_acc_size) { 42591369Sdduvall case 1: 42601369Sdduvall ddi_put8(bgep->io_handle, regaddr, regval); 42611369Sdduvall break; 42621369Sdduvall 42631369Sdduvall case 2: 42641369Sdduvall ddi_put16(bgep->io_handle, regaddr, regval); 42651369Sdduvall break; 42661369Sdduvall 42671369Sdduvall case 4: 42681369Sdduvall ddi_put32(bgep->io_handle, regaddr, regval); 42691369Sdduvall break; 42701369Sdduvall 42711369Sdduvall case 8: 42721369Sdduvall ddi_put64(bgep->io_handle, regaddr, regval); 42731369Sdduvall break; 42741369Sdduvall } 42751369Sdduvall BGE_PCICHK(bgep); 42761369Sdduvall } 42771369Sdduvall 42781369Sdduvall static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd); 42791369Sdduvall #pragma no_inline(bge_chip_peek_nic) 42801369Sdduvall 42811369Sdduvall static void 42821369Sdduvall bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd) 42831369Sdduvall { 42841369Sdduvall uint64_t regoff; 42851369Sdduvall uint64_t regval; 42861369Sdduvall void *regaddr; 42871369Sdduvall 42881369Sdduvall BGE_TRACE(("bge_chip_peek_nic($%p, $%p)", 42891369Sdduvall (void *)bgep, (void *)ppd)); 42901369Sdduvall 42911369Sdduvall regoff = ppd->pp_acc_offset; 42921369Sdduvall bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); 42931369Sdduvall regoff &= MWBAR_GRANULE_MASK; 42941369Sdduvall regoff += NIC_MEM_WINDOW_OFFSET; 42951369Sdduvall regaddr = PIO_ADDR(bgep, regoff); 42961369Sdduvall 42971369Sdduvall switch (ppd->pp_acc_size) { 42981369Sdduvall case 1: 42991369Sdduvall regval = ddi_get8(bgep->io_handle, regaddr); 43001369Sdduvall break; 43011369Sdduvall 43021369Sdduvall case 2: 43031369Sdduvall regval = ddi_get16(bgep->io_handle, regaddr); 43041369Sdduvall break; 43051369Sdduvall 43061369Sdduvall case 4: 43071369Sdduvall regval = ddi_get32(bgep->io_handle, regaddr); 43081369Sdduvall break; 43091369Sdduvall 43101369Sdduvall case 8: 43111369Sdduvall regval = ddi_get64(bgep->io_handle, regaddr); 43121369Sdduvall break; 43131369Sdduvall } 43141369Sdduvall 43151369Sdduvall ppd->pp_acc_data = regval; 43161369Sdduvall } 43171369Sdduvall 43181369Sdduvall static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd); 43191369Sdduvall #pragma no_inline(bge_chip_poke_nic) 43201369Sdduvall 43211369Sdduvall static void 43221369Sdduvall bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd) 43231369Sdduvall { 43241369Sdduvall uint64_t regoff; 43251369Sdduvall uint64_t regval; 43261369Sdduvall void *regaddr; 43271369Sdduvall 43281369Sdduvall BGE_TRACE(("bge_chip_poke_nic($%p, $%p)", 43291369Sdduvall (void *)bgep, (void *)ppd)); 43301369Sdduvall 43311369Sdduvall regoff = ppd->pp_acc_offset; 43321369Sdduvall bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); 43331369Sdduvall regoff &= MWBAR_GRANULE_MASK; 43341369Sdduvall regoff += NIC_MEM_WINDOW_OFFSET; 43351369Sdduvall regaddr = PIO_ADDR(bgep, regoff); 43361369Sdduvall regval = ppd->pp_acc_data; 43371369Sdduvall 43381369Sdduvall switch (ppd->pp_acc_size) { 43391369Sdduvall case 1: 43401369Sdduvall ddi_put8(bgep->io_handle, regaddr, regval); 43411369Sdduvall break; 43421369Sdduvall 43431369Sdduvall case 2: 43441369Sdduvall ddi_put16(bgep->io_handle, regaddr, regval); 43451369Sdduvall break; 43461369Sdduvall 43471369Sdduvall case 4: 43481369Sdduvall ddi_put32(bgep->io_handle, regaddr, regval); 43491369Sdduvall break; 43501369Sdduvall 43511369Sdduvall case 8: 43521369Sdduvall ddi_put64(bgep->io_handle, regaddr, regval); 43531369Sdduvall break; 43541369Sdduvall } 43551369Sdduvall BGE_PCICHK(bgep); 43561369Sdduvall } 43571369Sdduvall 43581369Sdduvall static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd); 43591369Sdduvall #pragma no_inline(bge_chip_peek_mii) 43601369Sdduvall 43611369Sdduvall static void 43621369Sdduvall bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd) 43631369Sdduvall { 43641369Sdduvall BGE_TRACE(("bge_chip_peek_mii($%p, $%p)", 43651369Sdduvall (void *)bgep, (void *)ppd)); 43661369Sdduvall 43671369Sdduvall ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2); 43681369Sdduvall } 43691369Sdduvall 43701369Sdduvall static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd); 43711369Sdduvall #pragma no_inline(bge_chip_poke_mii) 43721369Sdduvall 43731369Sdduvall static void 43741369Sdduvall bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd) 43751369Sdduvall { 43761369Sdduvall BGE_TRACE(("bge_chip_poke_mii($%p, $%p)", 43771369Sdduvall (void *)bgep, (void *)ppd)); 43781369Sdduvall 43791369Sdduvall bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data); 43801369Sdduvall } 43811369Sdduvall 43821369Sdduvall #if BGE_SEE_IO32 43831369Sdduvall 43841369Sdduvall static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); 43851369Sdduvall #pragma no_inline(bge_chip_peek_seeprom) 43861369Sdduvall 43871369Sdduvall static void 43881369Sdduvall bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) 43891369Sdduvall { 43901369Sdduvall uint32_t data; 43911369Sdduvall int err; 43921369Sdduvall 43931369Sdduvall BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)", 43941369Sdduvall (void *)bgep, (void *)ppd)); 43951369Sdduvall 43961369Sdduvall err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data); 43971369Sdduvall ppd->pp_acc_data = err ? ~0ull : data; 43981369Sdduvall } 43991369Sdduvall 44001369Sdduvall static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); 44011369Sdduvall #pragma no_inline(bge_chip_poke_seeprom) 44021369Sdduvall 44031369Sdduvall static void 44041369Sdduvall bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) 44051369Sdduvall { 44061369Sdduvall uint32_t data; 44071369Sdduvall 44081369Sdduvall BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)", 44091369Sdduvall (void *)bgep, (void *)ppd)); 44101369Sdduvall 44111369Sdduvall data = ppd->pp_acc_data; 44121369Sdduvall (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data); 44131369Sdduvall } 44141369Sdduvall #endif /* BGE_SEE_IO32 */ 44151369Sdduvall 44161369Sdduvall #if BGE_FLASH_IO32 44171369Sdduvall 44181369Sdduvall static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd); 44191369Sdduvall #pragma no_inline(bge_chip_peek_flash) 44201369Sdduvall 44211369Sdduvall static void 44221369Sdduvall bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd) 44231369Sdduvall { 44241369Sdduvall uint32_t data; 44251369Sdduvall int err; 44261369Sdduvall 44271369Sdduvall BGE_TRACE(("bge_chip_peek_flash($%p, $%p)", 44281369Sdduvall (void *)bgep, (void *)ppd)); 44291369Sdduvall 44301369Sdduvall err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data); 44311369Sdduvall ppd->pp_acc_data = err ? ~0ull : data; 44321369Sdduvall } 44331369Sdduvall 44341369Sdduvall static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd); 44351369Sdduvall #pragma no_inline(bge_chip_poke_flash) 44361369Sdduvall 44371369Sdduvall static void 44381369Sdduvall bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd) 44391369Sdduvall { 44401369Sdduvall uint32_t data; 44411369Sdduvall 44421369Sdduvall BGE_TRACE(("bge_chip_poke_flash($%p, $%p)", 44431369Sdduvall (void *)bgep, (void *)ppd)); 44441369Sdduvall 44451369Sdduvall data = ppd->pp_acc_data; 44461369Sdduvall (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE, 44471369Sdduvall ppd->pp_acc_offset, &data); 44481369Sdduvall } 44491369Sdduvall #endif /* BGE_FLASH_IO32 */ 44501369Sdduvall 44511369Sdduvall static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd); 44521369Sdduvall #pragma no_inline(bge_chip_peek_mem) 44531369Sdduvall 44541369Sdduvall static void 44551369Sdduvall bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd) 44561369Sdduvall { 44571369Sdduvall uint64_t regval; 44581369Sdduvall void *vaddr; 44591369Sdduvall 44601369Sdduvall BGE_TRACE(("bge_chip_peek_bge($%p, $%p)", 44611369Sdduvall (void *)bgep, (void *)ppd)); 44621369Sdduvall 44631369Sdduvall vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 44641369Sdduvall 44651369Sdduvall switch (ppd->pp_acc_size) { 44661369Sdduvall case 1: 44671369Sdduvall regval = *(uint8_t *)vaddr; 44681369Sdduvall break; 44691369Sdduvall 44701369Sdduvall case 2: 44711369Sdduvall regval = *(uint16_t *)vaddr; 44721369Sdduvall break; 44731369Sdduvall 44741369Sdduvall case 4: 44751369Sdduvall regval = *(uint32_t *)vaddr; 44761369Sdduvall break; 44771369Sdduvall 44781369Sdduvall case 8: 44791369Sdduvall regval = *(uint64_t *)vaddr; 44801369Sdduvall break; 44811369Sdduvall } 44821369Sdduvall 44831369Sdduvall BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p", 44841369Sdduvall (void *)bgep, (void *)ppd, regval, vaddr)); 44851369Sdduvall 44861369Sdduvall ppd->pp_acc_data = regval; 44871369Sdduvall } 44881369Sdduvall 44891369Sdduvall static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd); 44901369Sdduvall #pragma no_inline(bge_chip_poke_mem) 44911369Sdduvall 44921369Sdduvall static void 44931369Sdduvall bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd) 44941369Sdduvall { 44951369Sdduvall uint64_t regval; 44961369Sdduvall void *vaddr; 44971369Sdduvall 44981369Sdduvall BGE_TRACE(("bge_chip_poke_mem($%p, $%p)", 44991369Sdduvall (void *)bgep, (void *)ppd)); 45001369Sdduvall 45011369Sdduvall vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; 45021369Sdduvall regval = ppd->pp_acc_data; 45031369Sdduvall 45041369Sdduvall BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p", 45051369Sdduvall (void *)bgep, (void *)ppd, regval, vaddr)); 45061369Sdduvall 45071369Sdduvall switch (ppd->pp_acc_size) { 45081369Sdduvall case 1: 45091369Sdduvall *(uint8_t *)vaddr = (uint8_t)regval; 45101369Sdduvall break; 45111369Sdduvall 45121369Sdduvall case 2: 45131369Sdduvall *(uint16_t *)vaddr = (uint16_t)regval; 45141369Sdduvall break; 45151369Sdduvall 45161369Sdduvall case 4: 45171369Sdduvall *(uint32_t *)vaddr = (uint32_t)regval; 45181369Sdduvall break; 45191369Sdduvall 45201369Sdduvall case 8: 45211369Sdduvall *(uint64_t *)vaddr = (uint64_t)regval; 45221369Sdduvall break; 45231369Sdduvall } 45241369Sdduvall } 45251369Sdduvall 45261369Sdduvall static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 45271369Sdduvall struct iocblk *iocp); 45281369Sdduvall #pragma no_inline(bge_pp_ioctl) 45291369Sdduvall 45301369Sdduvall static enum ioc_reply 45311369Sdduvall bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 45321369Sdduvall { 45331369Sdduvall void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd); 45341369Sdduvall bge_peekpoke_t *ppd; 45351369Sdduvall dma_area_t *areap; 45361369Sdduvall uint64_t sizemask; 45371369Sdduvall uint64_t mem_va; 45381369Sdduvall uint64_t maxoff; 45391369Sdduvall boolean_t peek; 45401369Sdduvall 45411369Sdduvall switch (cmd) { 45421369Sdduvall default: 45431369Sdduvall /* NOTREACHED */ 45441369Sdduvall bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd); 45451369Sdduvall return (IOC_INVAL); 45461369Sdduvall 45471369Sdduvall case BGE_PEEK: 45481369Sdduvall peek = B_TRUE; 45491369Sdduvall break; 45501369Sdduvall 45511369Sdduvall case BGE_POKE: 45521369Sdduvall peek = B_FALSE; 45531369Sdduvall break; 45541369Sdduvall } 45551369Sdduvall 45561369Sdduvall /* 45571369Sdduvall * Validate format of ioctl 45581369Sdduvall */ 45591369Sdduvall if (iocp->ioc_count != sizeof (bge_peekpoke_t)) 45601369Sdduvall return (IOC_INVAL); 45611369Sdduvall if (mp->b_cont == NULL) 45621369Sdduvall return (IOC_INVAL); 45631369Sdduvall ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr; 45641369Sdduvall 45651369Sdduvall /* 45661369Sdduvall * Validate request parameters 45671369Sdduvall */ 45681369Sdduvall switch (ppd->pp_acc_space) { 45691369Sdduvall default: 45701369Sdduvall return (IOC_INVAL); 45711369Sdduvall 45721369Sdduvall case BGE_PP_SPACE_CFG: 45731369Sdduvall /* 45741369Sdduvall * Config space 45751369Sdduvall */ 45761369Sdduvall sizemask = 8|4|2|1; 45771369Sdduvall mem_va = 0; 45781369Sdduvall maxoff = PCI_CONF_HDR_SIZE; 45791369Sdduvall ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg; 45801369Sdduvall break; 45811369Sdduvall 45821369Sdduvall case BGE_PP_SPACE_REG: 45831369Sdduvall /* 45841369Sdduvall * Memory-mapped I/O space 45851369Sdduvall */ 45861369Sdduvall sizemask = 8|4|2|1; 45871369Sdduvall mem_va = 0; 45881369Sdduvall maxoff = RIAAR_REGISTER_MAX; 45891369Sdduvall ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg; 45901369Sdduvall break; 45911369Sdduvall 45921369Sdduvall case BGE_PP_SPACE_NIC: 45931369Sdduvall /* 45941369Sdduvall * NIC on-chip memory 45951369Sdduvall */ 45961369Sdduvall sizemask = 8|4|2|1; 45971369Sdduvall mem_va = 0; 45981369Sdduvall maxoff = MWBAR_ONCHIP_MAX; 45991369Sdduvall ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic; 46001369Sdduvall break; 46011369Sdduvall 46021369Sdduvall case BGE_PP_SPACE_MII: 46031369Sdduvall /* 46041369Sdduvall * PHY's MII registers 46051369Sdduvall * NB: all PHY registers are two bytes, but the 46061369Sdduvall * addresses increment in ones (word addressing). 46071369Sdduvall * So we scale the address here, then undo the 46081369Sdduvall * transformation inside the peek/poke functions. 46091369Sdduvall */ 46101369Sdduvall ppd->pp_acc_offset *= 2; 46111369Sdduvall sizemask = 2; 46121369Sdduvall mem_va = 0; 46131369Sdduvall maxoff = (MII_MAXREG+1)*2; 46141369Sdduvall ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii; 46151369Sdduvall break; 46161369Sdduvall 46171369Sdduvall #if BGE_SEE_IO32 46181369Sdduvall case BGE_PP_SPACE_SEEPROM: 46191369Sdduvall /* 46201369Sdduvall * Attached SEEPROM(s), if any. 46211369Sdduvall * NB: we use the high-order bits of the 'address' as 46221369Sdduvall * a device select to accommodate multiple SEEPROMS, 46231369Sdduvall * If each one is the maximum size (64kbytes), this 46241369Sdduvall * makes them appear contiguous. Otherwise, there may 46251369Sdduvall * be holes in the mapping. ENxS doesn't have any 46261369Sdduvall * SEEPROMs anyway ... 46271369Sdduvall */ 46281369Sdduvall sizemask = 4; 46291369Sdduvall mem_va = 0; 46301369Sdduvall maxoff = SEEPROM_DEV_AND_ADDR_MASK; 46311369Sdduvall ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom; 46321369Sdduvall break; 46331369Sdduvall #endif /* BGE_SEE_IO32 */ 46341369Sdduvall 46351369Sdduvall #if BGE_FLASH_IO32 46361369Sdduvall case BGE_PP_SPACE_FLASH: 46371369Sdduvall /* 46381369Sdduvall * Attached Flash device (if any); a maximum of one device 46391369Sdduvall * is currently supported. But it can be up to 1MB (unlike 46401369Sdduvall * the 64k limit on SEEPROMs) so why would you need more ;-) 46411369Sdduvall */ 46421369Sdduvall sizemask = 4; 46431369Sdduvall mem_va = 0; 46441369Sdduvall maxoff = NVM_FLASH_ADDR_MASK; 46451369Sdduvall ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash; 46461369Sdduvall break; 46471369Sdduvall #endif /* BGE_FLASH_IO32 */ 46481369Sdduvall 46491369Sdduvall case BGE_PP_SPACE_BGE: 46501369Sdduvall /* 46511369Sdduvall * BGE data structure! 46521369Sdduvall */ 46531369Sdduvall sizemask = 8|4|2|1; 46541369Sdduvall mem_va = (uintptr_t)bgep; 46551369Sdduvall maxoff = sizeof (*bgep); 46561369Sdduvall ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; 46571369Sdduvall break; 46581369Sdduvall 46591369Sdduvall case BGE_PP_SPACE_STATUS: 46601369Sdduvall case BGE_PP_SPACE_STATISTICS: 46611369Sdduvall case BGE_PP_SPACE_TXDESC: 46621369Sdduvall case BGE_PP_SPACE_TXBUFF: 46631369Sdduvall case BGE_PP_SPACE_RXDESC: 46641369Sdduvall case BGE_PP_SPACE_RXBUFF: 46651369Sdduvall /* 46661369Sdduvall * Various DMA_AREAs 46671369Sdduvall */ 46681369Sdduvall switch (ppd->pp_acc_space) { 46691369Sdduvall case BGE_PP_SPACE_TXDESC: 46701369Sdduvall areap = &bgep->tx_desc; 46711369Sdduvall break; 46721369Sdduvall case BGE_PP_SPACE_TXBUFF: 46731369Sdduvall areap = &bgep->tx_buff[0]; 46741369Sdduvall break; 46751369Sdduvall case BGE_PP_SPACE_RXDESC: 46761369Sdduvall areap = &bgep->rx_desc[0]; 46771369Sdduvall break; 46781369Sdduvall case BGE_PP_SPACE_RXBUFF: 46791369Sdduvall areap = &bgep->rx_buff[0]; 46801369Sdduvall break; 46811369Sdduvall case BGE_PP_SPACE_STATUS: 46821369Sdduvall areap = &bgep->status_block; 46831369Sdduvall break; 46841369Sdduvall case BGE_PP_SPACE_STATISTICS: 46851369Sdduvall if (bgep->chipid.statistic_type == BGE_STAT_BLK) 46861369Sdduvall areap = &bgep->statistics; 46871369Sdduvall break; 46881369Sdduvall } 46891369Sdduvall 46901369Sdduvall sizemask = 8|4|2|1; 46911369Sdduvall mem_va = (uintptr_t)areap->mem_va; 46921369Sdduvall maxoff = areap->alength; 46931369Sdduvall ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; 46941369Sdduvall break; 46951369Sdduvall } 46961369Sdduvall 46971369Sdduvall switch (ppd->pp_acc_size) { 46981369Sdduvall default: 46991369Sdduvall return (IOC_INVAL); 47001369Sdduvall 47011369Sdduvall case 8: 47021369Sdduvall case 4: 47031369Sdduvall case 2: 47041369Sdduvall case 1: 47051369Sdduvall if ((ppd->pp_acc_size & sizemask) == 0) 47061369Sdduvall return (IOC_INVAL); 47071369Sdduvall break; 47081369Sdduvall } 47091369Sdduvall 47101369Sdduvall if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) 47111369Sdduvall return (IOC_INVAL); 47121369Sdduvall 47131369Sdduvall if (ppd->pp_acc_offset >= maxoff) 47141369Sdduvall return (IOC_INVAL); 47151369Sdduvall 47161369Sdduvall if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff) 47171369Sdduvall return (IOC_INVAL); 47181369Sdduvall 47191369Sdduvall /* 47201369Sdduvall * All OK - go do it! 47211369Sdduvall */ 47221369Sdduvall ppd->pp_acc_offset += mem_va; 47231369Sdduvall (*ppfn)(bgep, ppd); 47241369Sdduvall return (peek ? IOC_REPLY : IOC_ACK); 47251369Sdduvall } 47261369Sdduvall 47271369Sdduvall static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 47281369Sdduvall struct iocblk *iocp); 47291369Sdduvall #pragma no_inline(bge_diag_ioctl) 47301369Sdduvall 47311369Sdduvall static enum ioc_reply 47321369Sdduvall bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 47331369Sdduvall { 47341369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 47351369Sdduvall 47361369Sdduvall switch (cmd) { 47371369Sdduvall default: 47381369Sdduvall /* NOTREACHED */ 47391369Sdduvall bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd); 47401369Sdduvall return (IOC_INVAL); 47411369Sdduvall 47421369Sdduvall case BGE_DIAG: 47431369Sdduvall /* 47441369Sdduvall * Currently a no-op 47451369Sdduvall */ 47461369Sdduvall return (IOC_ACK); 47471369Sdduvall 47481369Sdduvall case BGE_PEEK: 47491369Sdduvall case BGE_POKE: 47501369Sdduvall return (bge_pp_ioctl(bgep, cmd, mp, iocp)); 47511369Sdduvall 47521369Sdduvall case BGE_PHY_RESET: 47531369Sdduvall return (IOC_RESTART_ACK); 47541369Sdduvall 47551369Sdduvall case BGE_SOFT_RESET: 47561369Sdduvall case BGE_HARD_RESET: 47571369Sdduvall /* 47581369Sdduvall * Reset and reinitialise the 570x hardware 47591369Sdduvall */ 47601369Sdduvall bge_restart(bgep, cmd == BGE_HARD_RESET); 47611369Sdduvall return (IOC_ACK); 47621369Sdduvall } 47631369Sdduvall 47641369Sdduvall /* NOTREACHED */ 47651369Sdduvall } 47661369Sdduvall 47671369Sdduvall #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ 47681369Sdduvall 47691369Sdduvall static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 47701369Sdduvall struct iocblk *iocp); 47711369Sdduvall #pragma no_inline(bge_mii_ioctl) 47721369Sdduvall 47731369Sdduvall static enum ioc_reply 47741369Sdduvall bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 47751369Sdduvall { 47761369Sdduvall struct bge_mii_rw *miirwp; 47771369Sdduvall 47781369Sdduvall /* 47791369Sdduvall * Validate format of ioctl 47801369Sdduvall */ 47811369Sdduvall if (iocp->ioc_count != sizeof (struct bge_mii_rw)) 47821369Sdduvall return (IOC_INVAL); 47831369Sdduvall if (mp->b_cont == NULL) 47841369Sdduvall return (IOC_INVAL); 47851369Sdduvall miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr; 47861369Sdduvall 47871369Sdduvall /* 47881369Sdduvall * Validate request parameters ... 47891369Sdduvall */ 47901369Sdduvall if (miirwp->mii_reg > MII_MAXREG) 47911369Sdduvall return (IOC_INVAL); 47921369Sdduvall 47931369Sdduvall switch (cmd) { 47941369Sdduvall default: 47951369Sdduvall /* NOTREACHED */ 47961369Sdduvall bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd); 47971369Sdduvall return (IOC_INVAL); 47981369Sdduvall 47991369Sdduvall case BGE_MII_READ: 48001369Sdduvall miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg); 48011369Sdduvall return (IOC_REPLY); 48021369Sdduvall 48031369Sdduvall case BGE_MII_WRITE: 48041369Sdduvall bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data); 48051369Sdduvall return (IOC_ACK); 48061369Sdduvall } 48071369Sdduvall 48081369Sdduvall /* NOTREACHED */ 48091369Sdduvall } 48101369Sdduvall 48111369Sdduvall #if BGE_SEE_IO32 48121369Sdduvall 48131369Sdduvall static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 48141369Sdduvall struct iocblk *iocp); 48151369Sdduvall #pragma no_inline(bge_see_ioctl) 48161369Sdduvall 48171369Sdduvall static enum ioc_reply 48181369Sdduvall bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 48191369Sdduvall { 48201369Sdduvall struct bge_see_rw *seerwp; 48211369Sdduvall 48221369Sdduvall /* 48231369Sdduvall * Validate format of ioctl 48241369Sdduvall */ 48251369Sdduvall if (iocp->ioc_count != sizeof (struct bge_see_rw)) 48261369Sdduvall return (IOC_INVAL); 48271369Sdduvall if (mp->b_cont == NULL) 48281369Sdduvall return (IOC_INVAL); 48291369Sdduvall seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr; 48301369Sdduvall 48311369Sdduvall /* 48321369Sdduvall * Validate request parameters ... 48331369Sdduvall */ 48341369Sdduvall if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK) 48351369Sdduvall return (IOC_INVAL); 48361369Sdduvall 48371369Sdduvall switch (cmd) { 48381369Sdduvall default: 48391369Sdduvall /* NOTREACHED */ 48401369Sdduvall bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd); 48411369Sdduvall return (IOC_INVAL); 48421369Sdduvall 48431369Sdduvall case BGE_SEE_READ: 48441369Sdduvall case BGE_SEE_WRITE: 48451369Sdduvall iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, 48461369Sdduvall seerwp->see_addr, &seerwp->see_data); 48471369Sdduvall return (IOC_REPLY); 48481369Sdduvall } 48491369Sdduvall 48501369Sdduvall /* NOTREACHED */ 48511369Sdduvall } 48521369Sdduvall 48531369Sdduvall #endif /* BGE_SEE_IO32 */ 48541369Sdduvall 48551369Sdduvall #if BGE_FLASH_IO32 48561369Sdduvall 48571369Sdduvall static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, 48581369Sdduvall struct iocblk *iocp); 48591369Sdduvall #pragma no_inline(bge_flash_ioctl) 48601369Sdduvall 48611369Sdduvall static enum ioc_reply 48621369Sdduvall bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) 48631369Sdduvall { 48641369Sdduvall struct bge_flash_rw *flashrwp; 48651369Sdduvall 48661369Sdduvall /* 48671369Sdduvall * Validate format of ioctl 48681369Sdduvall */ 48691369Sdduvall if (iocp->ioc_count != sizeof (struct bge_flash_rw)) 48701369Sdduvall return (IOC_INVAL); 48711369Sdduvall if (mp->b_cont == NULL) 48721369Sdduvall return (IOC_INVAL); 48731369Sdduvall flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr; 48741369Sdduvall 48751369Sdduvall /* 48761369Sdduvall * Validate request parameters ... 48771369Sdduvall */ 48781369Sdduvall if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK) 48791369Sdduvall return (IOC_INVAL); 48801369Sdduvall 48811369Sdduvall switch (cmd) { 48821369Sdduvall default: 48831369Sdduvall /* NOTREACHED */ 48841369Sdduvall bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd); 48851369Sdduvall return (IOC_INVAL); 48861369Sdduvall 48871369Sdduvall case BGE_FLASH_READ: 48881369Sdduvall case BGE_FLASH_WRITE: 48891369Sdduvall iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, 48901369Sdduvall flashrwp->flash_addr, &flashrwp->flash_data); 48911369Sdduvall return (IOC_REPLY); 48921369Sdduvall } 48931369Sdduvall 48941369Sdduvall /* NOTREACHED */ 48951369Sdduvall } 48961369Sdduvall 48971369Sdduvall #endif /* BGE_FLASH_IO32 */ 48981369Sdduvall 48991369Sdduvall enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, 49001369Sdduvall struct iocblk *iocp); 49011369Sdduvall #pragma no_inline(bge_chip_ioctl) 49021369Sdduvall 49031369Sdduvall enum ioc_reply 49041369Sdduvall bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 49051369Sdduvall { 49061369Sdduvall int cmd; 49071369Sdduvall 49081369Sdduvall BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)", 49091369Sdduvall (void *)bgep, (void *)wq, (void *)mp, (void *)iocp)); 49101369Sdduvall 49111369Sdduvall ASSERT(mutex_owned(bgep->genlock)); 49121369Sdduvall 49131369Sdduvall cmd = iocp->ioc_cmd; 49141369Sdduvall switch (cmd) { 49151369Sdduvall default: 49161369Sdduvall /* NOTREACHED */ 49171369Sdduvall bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd); 49181369Sdduvall return (IOC_INVAL); 49191369Sdduvall 49201369Sdduvall case BGE_DIAG: 49211369Sdduvall case BGE_PEEK: 49221369Sdduvall case BGE_POKE: 49231369Sdduvall case BGE_PHY_RESET: 49241369Sdduvall case BGE_SOFT_RESET: 49251369Sdduvall case BGE_HARD_RESET: 49261369Sdduvall #if BGE_DEBUGGING || BGE_DO_PPIO 49271369Sdduvall return (bge_diag_ioctl(bgep, cmd, mp, iocp)); 49281369Sdduvall #else 49291369Sdduvall return (IOC_INVAL); 49301369Sdduvall #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ 49311369Sdduvall 49321369Sdduvall case BGE_MII_READ: 49331369Sdduvall case BGE_MII_WRITE: 49341369Sdduvall return (bge_mii_ioctl(bgep, cmd, mp, iocp)); 49351369Sdduvall 49361369Sdduvall #if BGE_SEE_IO32 49371369Sdduvall case BGE_SEE_READ: 49381369Sdduvall case BGE_SEE_WRITE: 49391369Sdduvall return (bge_see_ioctl(bgep, cmd, mp, iocp)); 49401369Sdduvall #endif /* BGE_SEE_IO32 */ 49411369Sdduvall 49421369Sdduvall #if BGE_FLASH_IO32 49431369Sdduvall case BGE_FLASH_READ: 49441369Sdduvall case BGE_FLASH_WRITE: 49451369Sdduvall return (bge_flash_ioctl(bgep, cmd, mp, iocp)); 49461369Sdduvall #endif /* BGE_FLASH_IO32 */ 49471369Sdduvall } 49481369Sdduvall 49491369Sdduvall /* NOTREACHED */ 49501369Sdduvall } 49511369Sdduvall 49521369Sdduvall void 49531369Sdduvall bge_chip_blank(void *arg, time_t ticks, uint_t count) 49541369Sdduvall { 49551369Sdduvall bge_t *bgep = arg; 49561369Sdduvall 49571369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks); 49581369Sdduvall bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count); 49591369Sdduvall } 49601408Srandyf 49611408Srandyf #ifdef BGE_IPMI_ASF 49621408Srandyf 49631408Srandyf uint32_t 49641408Srandyf bge_nic_read32(bge_t *bgep, bge_regno_t addr) 49651408Srandyf { 49661408Srandyf uint32_t data; 49671408Srandyf 49681408Srandyf if (!bgep->asf_wordswapped) { 49691408Srandyf /* a workaround word swap error */ 49701408Srandyf if (addr & 4) 49711408Srandyf addr = addr - 4; 49721408Srandyf else 49731408Srandyf addr = addr + 4; 49741408Srandyf } 49751408Srandyf 49761408Srandyf pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr); 49771408Srandyf data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR); 49781408Srandyf pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0); 49791408Srandyf 49801408Srandyf return (data); 49811408Srandyf } 49821408Srandyf 49831408Srandyf 49841408Srandyf void 49851408Srandyf bge_asf_update_status(bge_t *bgep) 49861408Srandyf { 49871408Srandyf uint32_t event; 49881408Srandyf 49891408Srandyf bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE); 49901408Srandyf bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4); 49911408Srandyf bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3); 49921408Srandyf 49931408Srandyf event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 49941408Srandyf bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); 49951408Srandyf } 49961408Srandyf 49971408Srandyf 49981408Srandyf /* 49991408Srandyf * The driver is supposed to notify ASF that the OS is still running 50001408Srandyf * every three seconds, otherwise the management server may attempt 50011408Srandyf * to reboot the machine. If it hasn't actually failed, this is 50021408Srandyf * not a desireable result. However, this isn't running as a real-time 50031408Srandyf * thread, and even if it were, it might not be able to generate the 50041408Srandyf * heartbeat in a timely manner due to system load. As it isn't a 50051408Srandyf * significant strain on the machine, we will set the interval to half 50061408Srandyf * of the required value. 50071408Srandyf */ 50081408Srandyf void 50091408Srandyf bge_asf_heartbeat(void *bgep) 50101408Srandyf { 50111408Srandyf bge_asf_update_status((bge_t *)bgep); 50121408Srandyf ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep, 50131408Srandyf drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 50141408Srandyf } 50151408Srandyf 50161408Srandyf 50171408Srandyf void 50181408Srandyf bge_asf_stop_timer(bge_t *bgep) 50191408Srandyf { 50201408Srandyf timeout_id_t tmp_id = 0; 50211408Srandyf 50221408Srandyf while ((bgep->asf_timeout_id != 0) && 50231408Srandyf (tmp_id != bgep->asf_timeout_id)) { 50241408Srandyf tmp_id = bgep->asf_timeout_id; 50251408Srandyf (void) untimeout(tmp_id); 50261408Srandyf } 50271408Srandyf bgep->asf_timeout_id = 0; 50281408Srandyf } 50291408Srandyf 50301408Srandyf 50311408Srandyf 50321408Srandyf /* 50331408Srandyf * This function should be placed at the earliest postion of bge_attach(). 50341408Srandyf */ 50351408Srandyf void 50361408Srandyf bge_asf_get_config(bge_t *bgep) 50371408Srandyf { 50381408Srandyf uint32_t nicsig; 50391408Srandyf uint32_t niccfg; 50401408Srandyf 50411408Srandyf nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR); 50421408Srandyf if (nicsig == BGE_NIC_DATA_SIG) { 50431408Srandyf niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR); 50441408Srandyf if (niccfg & BGE_NIC_CFG_ENABLE_ASF) 50451408Srandyf /* 50461408Srandyf * Here, we don't consider BAXTER, because BGE haven't 50471408Srandyf * supported BAXTER (that is 5752). Also, as I know, 50481408Srandyf * BAXTER doesn't support ASF feature. 50491408Srandyf */ 50501408Srandyf bgep->asf_enabled = B_TRUE; 50511408Srandyf else 50521408Srandyf bgep->asf_enabled = B_FALSE; 50531408Srandyf } else 50541408Srandyf bgep->asf_enabled = B_FALSE; 50551408Srandyf } 50561408Srandyf 50571408Srandyf 50581408Srandyf void 50591408Srandyf bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode) 50601408Srandyf { 50611408Srandyf uint32_t tries; 50621408Srandyf uint32_t event; 50631408Srandyf 50641408Srandyf ASSERT(bgep->asf_enabled); 50651408Srandyf 50661408Srandyf /* Issues "pause firmware" command and wait for ACK */ 50671408Srandyf bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW); 50681408Srandyf event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 50691408Srandyf bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); 50701408Srandyf 50711408Srandyf event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 50721408Srandyf tries = 0; 50731408Srandyf while ((event & RRER_ASF_EVENT) && (tries < 100)) { 50741408Srandyf drv_usecwait(1); 50751408Srandyf tries ++; 50761408Srandyf event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); 50771408Srandyf } 50781408Srandyf 50791408Srandyf bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX, 50801408Srandyf BGE_MAGIC_NUM_FIRMWARE_INIT_DONE); 50811408Srandyf 50821408Srandyf if (bgep->asf_newhandshake) { 50831408Srandyf switch (mode) { 50841408Srandyf case BGE_INIT_RESET: 50851408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 50861408Srandyf BGE_DRV_STATE_START); 50871408Srandyf break; 50881408Srandyf case BGE_SHUTDOWN_RESET: 50891408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 50901408Srandyf BGE_DRV_STATE_UNLOAD); 50911408Srandyf break; 50921408Srandyf case BGE_SUSPEND_RESET: 50931408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 50941408Srandyf BGE_DRV_STATE_SUSPEND); 50951408Srandyf break; 50961408Srandyf default: 50971408Srandyf break; 50981408Srandyf } 50991408Srandyf } 51001408Srandyf } 51011408Srandyf 51021408Srandyf 51031408Srandyf void 51041408Srandyf bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode) 51051408Srandyf { 51061408Srandyf switch (mode) { 51071408Srandyf case BGE_INIT_RESET: 51081408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 51091408Srandyf BGE_DRV_STATE_START); 51101408Srandyf break; 51111408Srandyf case BGE_SHUTDOWN_RESET: 51121408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 51131408Srandyf BGE_DRV_STATE_UNLOAD); 51141408Srandyf break; 51151408Srandyf case BGE_SUSPEND_RESET: 51161408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 51171408Srandyf BGE_DRV_STATE_SUSPEND); 51181408Srandyf break; 51191408Srandyf default: 51201408Srandyf break; 51211408Srandyf } 51221408Srandyf } 51231408Srandyf 51241408Srandyf 51251408Srandyf void 51261408Srandyf bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode) 51271408Srandyf { 51281408Srandyf switch (mode) { 51291408Srandyf case BGE_INIT_RESET: 51301408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 51311408Srandyf BGE_DRV_STATE_START_DONE); 51321408Srandyf break; 51331408Srandyf case BGE_SHUTDOWN_RESET: 51341408Srandyf bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, 51351408Srandyf BGE_DRV_STATE_UNLOAD_DONE); 51361408Srandyf break; 51371408Srandyf default: 51381408Srandyf break; 51391408Srandyf } 51401408Srandyf } 51411408Srandyf 51421408Srandyf #endif /* BGE_IPMI_ASF */ 5143