1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include "bge_impl.h"
27
28 #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset)))
29
30 /*
31 * Future features ... ?
32 */
33 #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */
34 #define BGE_IND_IO32 1 /* indirect access code */
35 #define BGE_SEE_IO32 1 /* SEEPROM access code */
36 #define BGE_FLASH_IO32 1 /* FLASH access code */
37
38 /*
39 * BGE MSI tunable:
40 *
41 * By default MSI is enabled on all supported platforms but it is disabled
42 * for some Broadcom chips due to known MSI hardware issues. Currently MSI
43 * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
44 */
45 boolean_t bge_enable_msi = B_TRUE;
46
47 /*
48 * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
49 */
50 boolean_t bge_relaxed_ordering = B_TRUE;
51
52 /*
53 * Property names
54 */
55 static char knownids_propname[] = "bge-known-subsystems";
56
57 /*
58 * Patchable globals:
59 *
60 * bge_autorecover
61 * Enables/disables automatic recovery after fault detection
62 *
63 * bge_mlcr_default
64 * Value to program into the MLCR; controls the chip's GPIO pins
65 *
66 * bge_dma_{rd,wr}prio
67 * Relative priorities of DMA reads & DMA writes respectively.
68 * These may each be patched to any value 0-3. Equal values
69 * will give "fair" (round-robin) arbitration for PCI access.
70 * Unequal values will give one or the other function priority.
71 *
72 * bge_dma_rwctrl
73 * Value to put in the Read/Write DMA control register. See
74 * the Broadcom PRM for things you can fiddle with in this
75 * register ...
76 *
77 * bge_{tx,rx}_{count,ticks}_{norm,intr}
78 * Send/receive interrupt coalescing parameters. Counts are
79 * #s of descriptors, ticks are in microseconds. *norm* values
80 * apply between status updates/interrupts; the *intr* values
81 * refer to the 'during-interrupt' versions - see the PRM.
82 *
83 * NOTE: these values have been determined by measurement. They
84 * differ significantly from the values recommended in the PRM.
85 */
86 static uint32_t bge_autorecover = 1;
87 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
88
89 static uint32_t bge_dma_rdprio = 1;
90 static uint32_t bge_dma_wrprio = 0;
91 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
92 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
93 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
94 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
95
96 uint32_t bge_rx_ticks_norm = 128;
97 uint32_t bge_tx_ticks_norm = 2048; /* 8 for FJ2+ !?!? */
98 uint32_t bge_rx_count_norm = 8;
99 uint32_t bge_tx_count_norm = 128;
100
101 static uint32_t bge_rx_ticks_intr = 128;
102 static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */
103 static uint32_t bge_rx_count_intr = 2;
104 static uint32_t bge_tx_count_intr = 0;
105
106 /*
107 * Memory pool configuration parameters.
108 *
109 * These are generally specific to each member of the chip family, since
110 * each one may have a different memory size/configuration.
111 *
112 * Setting the mbuf pool length for a specific type of chip to 0 inhibits
113 * the driver from programming the various registers; instead they are left
114 * at their hardware defaults. This is the preferred option for later chips
115 * (5705+), whereas the older chips *required* these registers to be set,
116 * since the h/w default was 0 ;-(
117 */
118 static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT;
119 static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704;
120 static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705;
121 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
122 static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT;
123 static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704;
124 static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */
125 static uint32_t bge_mbuf_pool_len_5721 = 0;
126
127 /*
128 * Various high and low water marks, thresholds, etc ...
129 *
130 * Note: these are taken from revision 7 of the PRM, and some are different
131 * from both the values in earlier PRMs *and* those determined experimentally
132 * and used in earlier versions of this driver ...
133 */
134 static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT;
135 static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT;
137
138 static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT;
139 static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT;
140 static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT;
141
142 static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT;
143 static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT;
145
146 static uint32_t bge_watchdog_count = 1 << 16;
147 static uint16_t bge_dma_miss_limit = 20;
148
149 static uint32_t bge_stop_start_on_sync = 0;
150
151 /*
152 * bge_intr_max_loop controls the maximum loop number within bge_intr.
153 * When loading NIC with heavy network traffic, it is useful.
154 * Increasing this value could have positive effect to throughput,
155 * but it might also increase ticks of a bge ISR stick on CPU, which might
156 * lead to bad UI interactive experience. So tune this with caution.
157 */
158 static int bge_intr_max_loop = 1;
159
160 /*
161 * ========== Low-level chip & ring buffer manipulation ==========
162 */
163
164 #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */
165
166
167 /*
168 * Config space read-modify-write routines
169 */
170
171 #if BGE_CFG_IO8
172
173 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
174 #pragma inline(bge_cfg_clr16)
175
176 static void
bge_cfg_clr16(bge_t * bgep,bge_regno_t regno,uint16_t bits)177 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
178 {
179 uint16_t regval;
180
181 BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
182 (void *)bgep, regno, bits));
183
184 regval = pci_config_get16(bgep->cfg_handle, regno);
185
186 BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
187 (void *)bgep, regno, bits, regval, regval & ~bits));
188
189 regval &= ~bits;
190 pci_config_put16(bgep->cfg_handle, regno, regval);
191 }
192
193 #endif /* BGE_CFG_IO8 */
194
195 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
196 #pragma inline(bge_cfg_clr32)
197
198 static void
bge_cfg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)199 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
200 {
201 uint32_t regval;
202
203 BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
204 (void *)bgep, regno, bits));
205
206 regval = pci_config_get32(bgep->cfg_handle, regno);
207
208 BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
209 (void *)bgep, regno, bits, regval, regval & ~bits));
210
211 regval &= ~bits;
212 pci_config_put32(bgep->cfg_handle, regno, regval);
213 }
214
215 #if BGE_IND_IO32
216
217 /*
218 * Indirect access to registers & RISC scratchpads, using config space
219 * accesses only.
220 *
221 * This isn't currently used, but someday we might want to use it for
222 * restoring the Subsystem Device/Vendor registers (which aren't directly
223 * writable in Config Space), or for downloading firmware into the RISCs
224 *
225 * In any case there are endian issues to be resolved before this code is
226 * enabled; the bizarre way that bytes get twisted by this chip AND by
227 * the PCI bridge in SPARC systems mean that we shouldn't enable it until
228 * it's been thoroughly tested for all access sizes on all supported
229 * architectures (SPARC *and* x86!).
230 */
231 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
232 #pragma inline(bge_ind_get32)
233
234 uint32_t
bge_ind_get32(bge_t * bgep,bge_regno_t regno)235 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
236 {
237 uint32_t val;
238
239 BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
240
241 #ifdef __sparc
242 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
243 regno = LE_32(regno);
244 #endif
245 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
246 val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
247
248 BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
249 (void *)bgep, regno, val));
250
251 val = LE_32(val);
252
253 return (val);
254 }
255
256 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
257 #pragma inline(bge_ind_put32)
258
259 void
bge_ind_put32(bge_t * bgep,bge_regno_t regno,uint32_t val)260 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
261 {
262 BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
263 (void *)bgep, regno, val));
264
265 val = LE_32(val);
266 #ifdef __sparc
267 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
268 regno = LE_32(regno);
269 #endif
270 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
271 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
272 }
273
274 #endif /* BGE_IND_IO32 */
275
276 #if BGE_DEBUGGING
277
278 static void bge_pci_check(bge_t *bgep);
279 #pragma no_inline(bge_pci_check)
280
281 static void
bge_pci_check(bge_t * bgep)282 bge_pci_check(bge_t *bgep)
283 {
284 uint16_t pcistatus;
285
286 pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
287 if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
288 BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
289 (void *)bgep, pcistatus));
290 }
291
292 #endif /* BGE_DEBUGGING */
293
294 /*
295 * Perform first-stage chip (re-)initialisation, using only config-space
296 * accesses:
297 *
298 * + Read the vendor/device/revision/subsystem/cache-line-size registers,
299 * returning the data in the structure pointed to by <idp>.
300 * + Configure the target-mode endianness (swap) options.
301 * + Disable interrupts and enable Memory Space accesses.
302 * + Enable or disable Bus Mastering according to the <enable_dma> flag.
303 *
304 * This sequence is adapted from Broadcom document 570X-PG102-R,
305 * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence
306 * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
307 *
308 * This function MUST be called before any non-config-space accesses
309 * are made; on this first call <enable_dma> is B_FALSE, and it
310 * effectively performs steps 3-1(!) of the initialisation sequence
311 * (the rest are not required but should be harmless).
312 *
313 * It MUST also be called after a chip reset, as this disables
314 * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and
315 * it is effectively performing steps 6-8.
316 */
317 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
318 #pragma no_inline(bge_chip_cfg_init)
319
320 void
bge_chip_cfg_init(bge_t * bgep,chip_id_t * cidp,boolean_t enable_dma)321 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
322 {
323 ddi_acc_handle_t handle;
324 uint16_t command;
325 uint32_t mhcr;
326 uint16_t value16;
327 int i;
328
329 BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
330 (void *)bgep, (void *)cidp, enable_dma));
331
332 /*
333 * Step 3: save PCI cache line size and subsystem vendor ID
334 *
335 * Read all the config-space registers that characterise the
336 * chip, specifically vendor/device/revision/subsystem vendor
337 * and subsystem device id. We expect (but don't check) that
338 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
339 *
340 * Also save all bus-transaction related registers (cache-line
341 * size, bus-grant/latency parameters, etc). Some of these are
342 * cleared by reset, so we'll have to restore them later. This
343 * comes from the Broadcom document 570X-PG102-R ...
344 *
345 * Note: Broadcom document 570X-PG102-R seems to be in error
346 * here w.r.t. the offsets of the Subsystem Vendor ID and
347 * Subsystem (Device) ID registers, which are the opposite way
348 * round according to the PCI standard. For good measure, we
349 * save/restore both anyway.
350 */
351 handle = bgep->cfg_handle;
352
353 /*
354 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
355 * has been set in PCI_CONF_COMM already, we need to write the
356 * byte-swapped value to it. So we just write zero first for simplicity.
357 */
358 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
359 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
360 pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
361 mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
362 cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
363 cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
364 cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
365
366 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
367 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
368 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
369 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
370 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
371 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
372
373 BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
374 cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
375 cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
376 cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
377 cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
378 BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
379 cidp->vendor, cidp->device, cidp->revision));
380 BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
381 cidp->subven, cidp->subdev, cidp->asic_rev));
382 BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
383 cidp->clsize, cidp->latency, cidp->command));
384
385 /*
386 * Step 2 (also step 6): disable and clear interrupts.
387 * Steps 11-13: configure PIO endianness options, and enable
388 * indirect register access. We'll also select any other
389 * options controlled by the MHCR (e.g. tagged status, mask
390 * interrupt mode) at this stage ...
391 *
392 * Note: internally, the chip is 64-bit and BIG-endian, but
393 * since it talks to the host over a (LITTLE-endian) PCI bus,
394 * it normally swaps bytes around at the PCI interface.
395 * However, the PCI host bridge on SPARC systems normally
396 * swaps the byte lanes around too, since SPARCs are also
397 * BIG-endian. So it turns out that on SPARC, the right
398 * option is to tell the chip to swap (and the host bridge
399 * will swap back again), whereas on x86 we ask the chip
400 * NOT to swap, so the natural little-endianness of the
401 * PCI bus is assumed. Then the only thing that doesn't
402 * automatically work right is access to an 8-byte register
403 * by a little-endian host; but we don't want to set the
404 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
405 * accesses don't go where expected ;-( So we live with
406 * that, and perform word-swaps in software in the few cases
407 * where a chip register is defined as an 8-byte value --
408 * see the code below for details ...
409 *
410 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
411 * very clear in the register description in the PRM, but
412 * Broadcom document 570X-PG104-R page 248 explains a little
413 * more (under "Broadcom Mask Mode"). The bit changes the way
414 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
415 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
416 * way as the 5700 did, which isn't very convenient. Setting
417 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
418 * bit do just what its name says -- MASK the PCI #INTA output
419 * (i.e. deassert the signal at the pin) leaving all internal
420 * state unchanged. This is much more convenient for our
421 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
422 *
423 * Note: the inconvenient semantics of the interrupt mailbox
424 * (nonzero disables and acknowledges/clears the interrupt,
425 * zero enables AND CLEARS it) would make race conditions
426 * likely in the interrupt handler:
427 *
428 * (1) acknowledge & disable interrupts
429 * (2) while (more to do)
430 * process packets
431 * (3) enable interrupts -- also clears pending
432 *
433 * If the chip received more packets and internally generated
434 * an interrupt between the check at (2) and the mbox write
435 * at (3), this interrupt would be lost :-(
436 *
437 * The best way to avoid this is to use TAGGED STATUS mode,
438 * where the chip includes a unique tag in each status block
439 * update, and the host, when re-enabling interrupts, passes
440 * the last tag it saw back to the chip; then the chip can
441 * see whether the host is truly up to date, and regenerate
442 * its interrupt if not.
443 */
444 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
445 MHCR_ENABLE_TAGGED_STATUS_MODE |
446 MHCR_MASK_INTERRUPT_MODE |
447 MHCR_CLEAR_INTERRUPT_INTA;
448
449 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
450 mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
451
452 #ifdef _BIG_ENDIAN
453 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
454 #endif /* _BIG_ENDIAN */
455
456 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
457 pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
458 pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
459
460 #ifdef BGE_IPMI_ASF
461 bgep->asf_wordswapped = B_FALSE;
462 #endif
463 /*
464 * Step 1 (also step 7): Enable PCI Memory Space accesses
465 * Disable Memory Write/Invalidate
466 * Enable or disable Bus Mastering
467 *
468 * Note that all other bits are taken from the original value saved
469 * the first time through here, rather than from the current register
470 * value, 'cos that will have been cleared by a soft RESET since.
471 * In this way we preserve the OBP/nexus-parent's preferred settings
472 * of the parity-error and system-error enable bits across multiple
473 * chip RESETs.
474 */
475 command = bgep->chipid.command | PCI_COMM_MAE;
476 command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
477 if (enable_dma)
478 command |= PCI_COMM_ME;
479 /*
480 * on BCM5714 revision A0, false parity error gets generated
481 * due to a logic bug. Provide a workaround by disabling parity
482 * error.
483 */
484 if (((cidp->device == DEVICE_ID_5714C) ||
485 (cidp->device == DEVICE_ID_5714S)) &&
486 (cidp->revision == REVISION_ID_5714_A0)) {
487 command &= ~PCI_COMM_PARITY_DETECT;
488 }
489 pci_config_put16(handle, PCI_CONF_COMM, command);
490
491 /*
492 * On some PCI-E device, there were instances when
493 * the device was still link training.
494 */
495 if (bgep->chipid.pci_type == BGE_PCI_E) {
496 i = 0;
497 value16 = pci_config_get16(handle, PCI_CONF_COMM);
498 while ((value16 != command) && (i < 100)) {
499 drv_usecwait(200);
500 value16 = pci_config_get16(handle, PCI_CONF_COMM);
501 ++i;
502 }
503 }
504
505 /*
506 * Clear any remaining error status bits
507 */
508 pci_config_put16(handle, PCI_CONF_STAT, ~0);
509
510 /*
511 * Do following if and only if the device is NOT BCM5714C OR
512 * BCM5715C
513 */
514 if (!((cidp->device == DEVICE_ID_5714C) ||
515 (cidp->device == DEVICE_ID_5715C))) {
516 /*
517 * Make sure these indirect-access registers are sane
518 * rather than random after power-up or reset
519 */
520 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
521 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
522 }
523 /*
524 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
525 */
526 bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
527
528 if (cidp->pci_type == BGE_PCI_E) {
529 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
530 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
531 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
532 } else
533 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
534 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
535 }
536 }
537
538 #ifdef __amd64
539 /*
540 * Distinguish CPU types
541 *
542 * These use to distinguish AMD64 or Intel EM64T of CPU running mode.
543 * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
544 * for PCI-Express based network interface card. This is the work-around
545 * for those nics.
546 */
547 static boolean_t bge_get_em64t_type(void);
548 #pragma inline(bge_get_em64t_type)
549
550 static boolean_t
bge_get_em64t_type(void)551 bge_get_em64t_type(void)
552 {
553
554 return (x86_vendor == X86_VENDOR_Intel);
555 }
556 #endif
557
558 /*
559 * Operating register get/set access routines
560 */
561
562 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
563 #pragma inline(bge_reg_get32)
564
565 uint32_t
bge_reg_get32(bge_t * bgep,bge_regno_t regno)566 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
567 {
568 BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
569 (void *)bgep, regno));
570
571 return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
572 }
573
574 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
575 #pragma inline(bge_reg_put32)
576
577 void
bge_reg_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)578 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
579 {
580 BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
581 (void *)bgep, regno, data));
582
583 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
584 BGE_PCICHK(bgep);
585 }
586
587 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
588 #pragma inline(bge_reg_set32)
589
590 void
bge_reg_set32(bge_t * bgep,bge_regno_t regno,uint32_t bits)591 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
592 {
593 uint32_t regval;
594
595 BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
596 (void *)bgep, regno, bits));
597
598 regval = bge_reg_get32(bgep, regno);
599 regval |= bits;
600 bge_reg_put32(bgep, regno, regval);
601 }
602
603 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
604 #pragma inline(bge_reg_clr32)
605
606 void
bge_reg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)607 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
608 {
609 uint32_t regval;
610
611 BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
612 (void *)bgep, regno, bits));
613
614 regval = bge_reg_get32(bgep, regno);
615 regval &= ~bits;
616 bge_reg_put32(bgep, regno, regval);
617 }
618
619 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
620 #pragma inline(bge_reg_get64)
621
622 static uint64_t
bge_reg_get64(bge_t * bgep,bge_regno_t regno)623 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
624 {
625 uint64_t regval;
626
627 #ifdef __amd64
628 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
629 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
630 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
631 regval <<= 32;
632 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
633 } else {
634 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
635 }
636 #elif defined(__sparc)
637 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
638 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
639 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
640 regval <<= 32;
641 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
642 } else {
643 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
644 }
645 #else
646 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
647 #endif
648
649 #ifdef _LITTLE_ENDIAN
650 regval = (regval >> 32) | (regval << 32);
651 #endif /* _LITTLE_ENDIAN */
652
653 BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
654 (void *)bgep, regno, regval));
655
656 return (regval);
657 }
658
659 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
660 #pragma inline(bge_reg_put64)
661
662 static void
bge_reg_put64(bge_t * bgep,bge_regno_t regno,uint64_t data)663 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
664 {
665 BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
666 (void *)bgep, regno, data));
667
668 #ifdef _LITTLE_ENDIAN
669 data = ((data >> 32) | (data << 32));
670 #endif /* _LITTLE_ENDIAN */
671
672 #ifdef __amd64
673 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
674 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
675 ddi_put32(bgep->io_handle,
676 PIO_ADDR(bgep, regno), (uint32_t)data);
677 BGE_PCICHK(bgep);
678 ddi_put32(bgep->io_handle,
679 PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
680
681 } else {
682 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
683 }
684 #elif defined(__sparc)
685 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
686 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
687 ddi_put32(bgep->io_handle,
688 PIO_ADDR(bgep, regno + 4), (uint32_t)data);
689 BGE_PCICHK(bgep);
690 ddi_put32(bgep->io_handle,
691 PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
692 } else {
693 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
694 }
695 #else
696 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
697 #endif
698
699 BGE_PCICHK(bgep);
700 }
701
702 /*
703 * The DDI doesn't provide get/put functions for 128 bit data
704 * so we put RCBs out as two 64-bit chunks instead.
705 */
706 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
707 #pragma inline(bge_reg_putrcb)
708
709 static void
bge_reg_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)710 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
711 {
712 uint64_t *p;
713
714 BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
715 (void *)bgep, addr, rcbp->host_ring_addr,
716 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
717
718 ASSERT((addr % sizeof (*rcbp)) == 0);
719
720 p = (void *)rcbp;
721 bge_reg_put64(bgep, addr, *p++);
722 bge_reg_put64(bgep, addr+8, *p);
723 }
724
725 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
726 #pragma inline(bge_mbx_put)
727
728 void
bge_mbx_put(bge_t * bgep,bge_regno_t regno,uint64_t data)729 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
730 {
731 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
732 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
733
734 BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
735 (void *)bgep, regno, data));
736
737 /*
738 * Mailbox registers are nominally 64 bits on the 5701, but
739 * the MSW isn't used. On the 5703, they're only 32 bits
740 * anyway. So here we just write the lower(!) 32 bits -
741 * remembering that the chip is big-endian, even though the
742 * PCI bus is little-endian ...
743 */
744 #ifdef _BIG_ENDIAN
745 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
746 #else
747 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
748 #endif /* _BIG_ENDIAN */
749 BGE_PCICHK(bgep);
750 }
751
752 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
753 #pragma inline(bge_mbx_get)
754
755 uint32_t
bge_mbx_get(bge_t * bgep,bge_regno_t regno)756 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
757 {
758 uint32_t val32;
759
760 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
761 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
762
763 BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
764 (void *)bgep, regno));
765
766 #ifdef _BIG_ENDIAN
767 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
768 #else
769 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
770 #endif /* _BIG_ENDIAN */
771 BGE_PCICHK(bgep);
772
773 BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
774 (void *)bgep, regno, val32));
775
776 return (val32);
777 }
778
779
780 #if BGE_DEBUGGING
781
782 void bge_led_mark(bge_t *bgep);
783 #pragma no_inline(bge_led_mark)
784
785 void
bge_led_mark(bge_t * bgep)786 bge_led_mark(bge_t *bgep)
787 {
788 uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
789 LED_CONTROL_1000MBPS_LED |
790 LED_CONTROL_100MBPS_LED |
791 LED_CONTROL_10MBPS_LED;
792
793 /*
794 * Blink all three LINK LEDs on simultaneously, then all off,
795 * then restore to automatic hardware control. This is used
796 * in laboratory testing to trigger a logic analyser or scope.
797 */
798 bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
799 led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
800 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
801 led_ctrl = LED_CONTROL_OVERRIDE_LINK;
802 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
803 }
804
805 #endif /* BGE_DEBUGGING */
806
807 /*
808 * NIC on-chip memory access routines
809 *
810 * Only 32K of NIC memory is visible at a time, controlled by the
811 * Memory Window Base Address Register (in PCI config space). Once
812 * this is set, the 32K region of NIC-local memory that it refers
813 * to can be directly addressed in the upper 32K of the 64K of PCI
814 * memory space used for the device.
815 */
816
817 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
818 #pragma inline(bge_nic_setwin)
819
820 static void
bge_nic_setwin(bge_t * bgep,bge_regno_t base)821 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
822 {
823 chip_id_t *cidp;
824
825 BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
826 (void *)bgep, base));
827
828 ASSERT((base & MWBAR_GRANULE_MASK) == 0);
829
830 /*
831 * Don't do repeated zero data writes,
832 * if the device is BCM5714C/15C.
833 */
834 cidp = &bgep->chipid;
835 if ((cidp->device == DEVICE_ID_5714C) ||
836 (cidp->device == DEVICE_ID_5715C)) {
837 if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
838 return;
839 /* Adjust lastWriteZeroData */
840 bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
841 B_TRUE : B_FALSE);
842 }
843 #ifdef __sparc
844 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
845 base = LE_32(base);
846 #endif
847 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
848 }
849
850 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
851 #pragma inline(bge_nic_get32)
852
853 static uint32_t
bge_nic_get32(bge_t * bgep,bge_regno_t addr)854 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
855 {
856 uint32_t data;
857
858 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
859 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
860 /* workaround for word swap error */
861 if (addr & 4)
862 addr = addr - 4;
863 else
864 addr = addr + 4;
865 }
866 #endif
867
868 #ifdef __sparc
869 data = bge_nic_read32(bgep, addr);
870 #else
871 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
872 addr &= MWBAR_GRANULE_MASK;
873 addr += NIC_MEM_WINDOW_OFFSET;
874
875 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
876 #endif
877
878 BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
879 (void *)bgep, addr, data));
880
881 return (data);
882 }
883
884 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
885 #pragma inline(bge_nic_put32)
886
887 void
bge_nic_put32(bge_t * bgep,bge_regno_t addr,uint32_t data)888 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
889 {
890 BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
891 (void *)bgep, addr, data));
892
893 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
894 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
895 /* workaround for word swap error */
896 if (addr & 4)
897 addr = addr - 4;
898 else
899 addr = addr + 4;
900 }
901 #endif
902
903 #ifdef __sparc
904 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
905 addr = LE_32(addr);
906 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
907 data = LE_32(data);
908 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
909 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
910 #else
911 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
912 addr &= MWBAR_GRANULE_MASK;
913 addr += NIC_MEM_WINDOW_OFFSET;
914 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
915 BGE_PCICHK(bgep);
916 #endif
917 }
918
919 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
920 #pragma inline(bge_nic_get64)
921
922 static uint64_t
bge_nic_get64(bge_t * bgep,bge_regno_t addr)923 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
924 {
925 uint64_t data;
926
927 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
928 addr &= MWBAR_GRANULE_MASK;
929 addr += NIC_MEM_WINDOW_OFFSET;
930
931 #ifdef __amd64
932 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
933 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
934 data = ddi_get32(bgep->io_handle,
935 PIO_ADDR(bgep, addr + 4));
936 data <<= 32;
937 data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
938 } else {
939 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
940 }
941 #elif defined(__sparc)
942 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
943 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
944 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
945 data <<= 32;
946 data |= ddi_get32(bgep->io_handle,
947 PIO_ADDR(bgep, addr + 4));
948 } else {
949 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
950 }
951 #else
952 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
953 #endif
954
955 BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
956 (void *)bgep, addr, data));
957
958 return (data);
959 }
960
961 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
962 #pragma inline(bge_nic_put64)
963
964 static void
bge_nic_put64(bge_t * bgep,bge_regno_t addr,uint64_t data)965 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
966 {
967 BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
968 (void *)bgep, addr, data));
969
970 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
971 addr &= MWBAR_GRANULE_MASK;
972 addr += NIC_MEM_WINDOW_OFFSET;
973
974 #ifdef __amd64
975 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
976 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
977 ddi_put32(bgep->io_handle,
978 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
979 BGE_PCICHK(bgep);
980 ddi_put32(bgep->io_handle,
981 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
982 } else {
983 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
984 }
985 #elif defined(__sparc)
986 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
987 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
988 ddi_put32(bgep->io_handle,
989 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
990 BGE_PCICHK(bgep);
991 ddi_put32(bgep->io_handle,
992 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
993 } else {
994 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
995 }
996 #else
997 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
998 #endif
999
1000 BGE_PCICHK(bgep);
1001 }
1002
1003 /*
1004 * The DDI doesn't provide get/put functions for 128 bit data
1005 * so we put RCBs out as two 64-bit chunks instead.
1006 */
1007 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1008 #pragma inline(bge_nic_putrcb)
1009
1010 static void
bge_nic_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)1011 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1012 {
1013 uint64_t *p;
1014
1015 BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1016 (void *)bgep, addr, rcbp->host_ring_addr,
1017 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1018
1019 ASSERT((addr % sizeof (*rcbp)) == 0);
1020
1021 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1022 addr &= MWBAR_GRANULE_MASK;
1023 addr += NIC_MEM_WINDOW_OFFSET;
1024
1025 p = (void *)rcbp;
1026 #ifdef __amd64
1027 if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type() ||
1028 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
1029 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1030 (uint32_t)(*p));
1031 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1032 (uint32_t)(*p++ >> 32));
1033 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1034 (uint32_t)(*p));
1035 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1036 (uint32_t)(*p >> 32));
1037
1038 } else {
1039 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1040 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1041 }
1042 #elif defined(__sparc)
1043 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1044 DEVICE_5717_SERIES_CHIPSETS(bgep)) {
1045 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1046 (uint32_t)(*p));
1047 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1048 (uint32_t)(*p++ >> 32));
1049 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1050 (uint32_t)(*p));
1051 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1052 (uint32_t)(*p >> 32));
1053 } else {
1054 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1055 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1056 }
1057 #else
1058 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1059 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1060 #endif
1061
1062 BGE_PCICHK(bgep);
1063 }
1064
1065 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1066 #pragma inline(bge_nic_zero)
1067
1068 static void
bge_nic_zero(bge_t * bgep,bge_regno_t addr,uint32_t nbytes)1069 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1070 {
1071 BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1072 (void *)bgep, addr, nbytes));
1073
1074 ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1075 ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1076
1077 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1078 addr &= MWBAR_GRANULE_MASK;
1079 addr += NIC_MEM_WINDOW_OFFSET;
1080
1081 (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1082 nbytes, 1, DDI_DATA_SZ08_ACC);
1083 BGE_PCICHK(bgep);
1084 }
1085
1086 /*
1087 * MII (PHY) register get/set access routines
1088 *
1089 * These use the chip's MII auto-access method, controlled by the
1090 * MII Communication register at 0x044c, so the CPU doesn't have
1091 * to fiddle with the individual bits.
1092 */
1093
1094 #undef BGE_DBG
1095 #define BGE_DBG BGE_DBG_MII /* debug flag for this code */
1096
1097 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1098 uint16_t data, uint32_t cmd);
1099 #pragma no_inline(bge_mii_access)
1100
1101 static uint16_t
bge_mii_access(bge_t * bgep,bge_regno_t regno,uint16_t data,uint32_t cmd)1102 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1103 {
1104 uint32_t timeout;
1105 uint32_t regval1;
1106 uint32_t regval2;
1107
1108 BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1109 (void *)bgep, regno, data, cmd));
1110
1111 ASSERT(mutex_owned(bgep->genlock));
1112
1113 /*
1114 * Assemble the command ...
1115 */
1116 cmd |= data << MI_COMMS_DATA_SHIFT;
1117 cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1118 cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1119 cmd |= MI_COMMS_START;
1120
1121 /*
1122 * Wait for any command already in progress ...
1123 *
1124 * Note: this *shouldn't* ever find that there is a command
1125 * in progress, because we already hold the <genlock> mutex.
1126 * Nonetheless, we have sometimes seen the MI_COMMS_START
1127 * bit set here -- it seems that the chip can initiate MII
1128 * accesses internally, even with polling OFF.
1129 */
1130 regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1131 for (timeout = 100; ; ) {
1132 if ((regval2 & MI_COMMS_START) == 0) {
1133 bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1134 break;
1135 }
1136 if (--timeout == 0)
1137 break;
1138 drv_usecwait(10);
1139 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1140 }
1141
1142 if (timeout == 0)
1143 return ((uint16_t)~0u);
1144
1145 if (timeout != 100)
1146 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1147 "MI_COMMS_START set for %d us; 0x%x->0x%x",
1148 cmd, 10*(100-timeout), regval1, regval2));
1149
1150 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1151 for (timeout = 1000; ; ) {
1152 if ((regval1 & MI_COMMS_START) == 0)
1153 break;
1154 if (--timeout == 0)
1155 break;
1156 drv_usecwait(10);
1157 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1158 }
1159
1160 /*
1161 * Drop out early if the READ FAILED bit is set -- this chip
1162 * could be a 5703/4S, with a SerDes instead of a PHY!
1163 */
1164 if (regval2 & MI_COMMS_READ_FAILED)
1165 return ((uint16_t)~0u);
1166
1167 if (timeout == 0)
1168 return ((uint16_t)~0u);
1169
1170 /*
1171 * The PRM says to wait 5us after seeing the START bit clear
1172 * and then re-read the register to get the final value of the
1173 * data field, in order to avoid a race condition where the
1174 * START bit is clear but the data field isn't yet valid.
1175 *
1176 * Note: we don't actually seem to be encounter this race;
1177 * except when the START bit is seen set again (see below),
1178 * the data field doesn't change during this 5us interval.
1179 */
1180 drv_usecwait(5);
1181 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1182
1183 /*
1184 * Unfortunately, when following the PRMs instructions above,
1185 * we have occasionally seen the START bit set again(!) in the
1186 * value read after the 5us delay. This seems to be due to the
1187 * chip autonomously starting another MII access internally.
1188 * In such cases, the command/data/etc fields relate to the
1189 * internal command, rather than the one that we thought had
1190 * just finished. So in this case, we fall back to returning
1191 * the data from the original read that showed START clear.
1192 */
1193 if (regval2 & MI_COMMS_START) {
1194 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1195 "MI_COMMS_START set after transaction; 0x%x->0x%x",
1196 cmd, regval1, regval2));
1197 regval2 = regval1;
1198 }
1199
1200 if (regval2 & MI_COMMS_START)
1201 return ((uint16_t)~0u);
1202
1203 if (regval2 & MI_COMMS_READ_FAILED)
1204 return ((uint16_t)~0u);
1205
1206 return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1207 }
1208
1209 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1210 #pragma no_inline(bge_mii_get16)
1211
1212 uint16_t
bge_mii_get16(bge_t * bgep,bge_regno_t regno)1213 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1214 {
1215 BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1216 (void *)bgep, regno));
1217
1218 ASSERT(mutex_owned(bgep->genlock));
1219
1220 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1221 (regno == MII_MSCONTROL)))
1222 return (0);
1223
1224 return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1225 }
1226
1227 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1228 #pragma no_inline(bge_mii_put16)
1229
1230 void
bge_mii_put16(bge_t * bgep,bge_regno_t regno,uint16_t data)1231 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1232 {
1233 BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1234 (void *)bgep, regno, data));
1235
1236 ASSERT(mutex_owned(bgep->genlock));
1237
1238 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1239 (regno == MII_MSCONTROL)))
1240 return;
1241
1242 (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1243 }
1244
1245 #undef BGE_DBG
1246 #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */
1247
1248 #if BGE_SEE_IO32 || BGE_FLASH_IO32
1249
1250 /*
1251 * Basic SEEPROM get/set access routine
1252 *
1253 * This uses the chip's SEEPROM auto-access method, controlled by the
1254 * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1255 * doesn't have to fiddle with the individual bits.
1256 *
1257 * The caller should hold <genlock> and *also* have already acquired
1258 * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1259 *
1260 * Return value:
1261 * 0 on success,
1262 * ENODATA on access timeout (maybe retryable: device may just be busy)
1263 * EPROTO on other h/w or s/w errors.
1264 *
1265 * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1266 * from a (successful) SEEPROM_ACCESS_READ.
1267 */
1268 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1269 uint32_t *dp);
1270 #pragma no_inline(bge_seeprom_access)
1271
1272 static int
bge_seeprom_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1273 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1274 {
1275 uint32_t tries;
1276 uint32_t regval;
1277
1278 ASSERT(mutex_owned(bgep->genlock));
1279
1280 /*
1281 * On the newer chips that support both SEEPROM & Flash, we need
1282 * to specifically enable SEEPROM access (Flash is the default).
1283 * On older chips, we don't; SEEPROM is the only NVtype supported,
1284 * and the NVM control registers don't exist ...
1285 */
1286 switch (bgep->chipid.nvtype) {
1287 case BGE_NVTYPE_NONE:
1288 case BGE_NVTYPE_UNKNOWN:
1289 _NOTE(NOTREACHED)
1290 case BGE_NVTYPE_SEEPROM:
1291 break;
1292
1293 case BGE_NVTYPE_LEGACY_SEEPROM:
1294 case BGE_NVTYPE_UNBUFFERED_FLASH:
1295 case BGE_NVTYPE_BUFFERED_FLASH:
1296 default:
1297 bge_reg_set32(bgep, NVM_CONFIG1_REG,
1298 NVM_CFG1_LEGACY_SEEPROM_MODE);
1299 break;
1300 }
1301
1302 /*
1303 * Check there's no command in progress.
1304 *
1305 * Note: this *shouldn't* ever find that there is a command
1306 * in progress, because we already hold the <genlock> mutex.
1307 * Also, to ensure we don't have a conflict with the chip's
1308 * internal firmware or a process accessing the same (shared)
1309 * SEEPROM through the other port of a 5704, we've already
1310 * been through the "software arbitration" protocol.
1311 * So this is just a final consistency check: we shouldn't
1312 * see EITHER the START bit (command started but not complete)
1313 * OR the COMPLETE bit (command completed but not cleared).
1314 */
1315 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1316 if (regval & SEEPROM_ACCESS_START)
1317 return (EPROTO);
1318 if (regval & SEEPROM_ACCESS_COMPLETE)
1319 return (EPROTO);
1320
1321 /*
1322 * Assemble the command ...
1323 */
1324 cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1325 addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1326 addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1327 cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1328 cmd |= SEEPROM_ACCESS_START;
1329 cmd |= SEEPROM_ACCESS_COMPLETE;
1330 cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1331
1332 bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1333 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1334
1335 /*
1336 * By observation, a successful access takes ~20us on a 5703/4,
1337 * but apparently much longer (up to 1000us) on the obsolescent
1338 * BCM5700/BCM5701. We want to be sure we don't get any false
1339 * timeouts here; but OTOH, we don't want a bogus access to lock
1340 * out interrupts for longer than necessary. So we'll allow up
1341 * to 1000us ...
1342 */
1343 for (tries = 0; tries < 1000; ++tries) {
1344 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1345 if (regval & SEEPROM_ACCESS_COMPLETE)
1346 break;
1347 drv_usecwait(1);
1348 }
1349
1350 if (regval & SEEPROM_ACCESS_COMPLETE) {
1351 /*
1352 * All OK; read the SEEPROM data register, then write back
1353 * the value read from the address register in order to
1354 * clear the <complete> bit and leave the SEEPROM access
1355 * state machine idle, ready for the next access ...
1356 */
1357 BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1358 *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1359 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1360 return (0);
1361 }
1362
1363 /*
1364 * Hmm ... what happened here?
1365 *
1366 * Most likely, the user addressed a non-existent SEEPROM. Or
1367 * maybe the SEEPROM was busy internally (e.g. processing a write)
1368 * and didn't respond to being addressed. Either way, it's left
1369 * the SEEPROM access state machine wedged. So we'll reset it
1370 * before we leave, so it's ready for next time ...
1371 */
1372 BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1373 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1374 return (ENODATA);
1375 }
1376
1377 /*
1378 * Basic Flash get/set access routine
1379 *
1380 * These use the chip's Flash auto-access method, controlled by the
1381 * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1382 * fiddle with the individual bits.
1383 *
1384 * The caller should hold <genlock> and *also* have already acquired
1385 * the right to access the Flash, via bge_nvmem_acquire() above.
1386 *
1387 * Return value:
1388 * 0 on success,
1389 * ENODATA on access timeout (maybe retryable: device may just be busy)
1390 * ENODEV if the NVmem device is missing or otherwise unusable
1391 *
1392 * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1393 * from a (successful) NVM_FLASH_CMD_RD.
1394 */
1395 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1396 uint32_t *dp);
1397 #pragma no_inline(bge_flash_access)
1398
1399 static int
bge_flash_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1400 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1401 {
1402 uint32_t tries;
1403 uint32_t regval;
1404
1405 ASSERT(mutex_owned(bgep->genlock));
1406
1407 /*
1408 * On the newer chips that support both SEEPROM & Flash, we need
1409 * to specifically disable SEEPROM access while accessing Flash.
1410 * The older chips don't support Flash, and the NVM registers don't
1411 * exist, so we shouldn't be here at all!
1412 */
1413 switch (bgep->chipid.nvtype) {
1414 case BGE_NVTYPE_NONE:
1415 case BGE_NVTYPE_UNKNOWN:
1416 _NOTE(NOTREACHED)
1417 case BGE_NVTYPE_SEEPROM:
1418 return (ENODEV);
1419
1420 case BGE_NVTYPE_LEGACY_SEEPROM:
1421 case BGE_NVTYPE_UNBUFFERED_FLASH:
1422 case BGE_NVTYPE_BUFFERED_FLASH:
1423 default:
1424 bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1425 NVM_CFG1_LEGACY_SEEPROM_MODE);
1426 break;
1427 }
1428
1429 /*
1430 * Assemble the command ...
1431 */
1432 addr &= NVM_FLASH_ADDR_MASK;
1433 cmd |= NVM_FLASH_CMD_DOIT;
1434 cmd |= NVM_FLASH_CMD_FIRST;
1435 cmd |= NVM_FLASH_CMD_LAST;
1436 cmd |= NVM_FLASH_CMD_DONE;
1437
1438 bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1439 bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1440 bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1441
1442 /*
1443 * Allow up to 1000ms ...
1444 */
1445 for (tries = 0; tries < 1000; ++tries) {
1446 regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1447 if (regval & NVM_FLASH_CMD_DONE)
1448 break;
1449 drv_usecwait(1);
1450 }
1451
1452 if (regval & NVM_FLASH_CMD_DONE) {
1453 /*
1454 * All OK; read the data from the Flash read register
1455 */
1456 BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1457 *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1458 return (0);
1459 }
1460
1461 /*
1462 * Hmm ... what happened here?
1463 *
1464 * Most likely, the user addressed a non-existent Flash. Or
1465 * maybe the Flash was busy internally (e.g. processing a write)
1466 * and didn't respond to being addressed. Either way, there's
1467 * nothing we can here ...
1468 */
1469 BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1470 return (ENODATA);
1471 }
1472
1473 /*
1474 * The next two functions regulate access to the NVram (if fitted).
1475 *
1476 * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1477 * (SPI) interface, but they can be accessed through either port. These
1478 * are managed by different instance of this driver and have no software
1479 * state in common.
1480 *
1481 * In addition (and even on a single core chip) the chip's internal
1482 * firmware can access the SEEPROM/Flash, most notably after a RESET
1483 * when it may download code to run internally.
1484 *
1485 * So we need to arbitrate between these various software agents. For
1486 * this purpose, the chip provides the Software Arbitration Register,
1487 * which implements hardware(!) arbitration.
1488 *
1489 * This functionality didn't exist on older (5700/5701) chips, so there's
1490 * nothing we can do by way of arbitration on those; also, if there's no
1491 * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1492 * nothing to do.
1493 *
1494 * The internal firmware appears to use Request 0, which is the highest
1495 * priority. So we'd like to use Request 2, leaving one higher and one
1496 * lower for any future developments ... but apparently this doesn't
1497 * always work. So for now, the code uses Request 1 ;-(
1498 */
1499
1500 #define NVM_READ_REQ NVM_READ_REQ1
1501 #define NVM_RESET_REQ NVM_RESET_REQ1
1502 #define NVM_SET_REQ NVM_SET_REQ1
1503
1504 static void bge_nvmem_relinquish(bge_t *bgep);
1505 #pragma no_inline(bge_nvmem_relinquish)
1506
1507 static void
bge_nvmem_relinquish(bge_t * bgep)1508 bge_nvmem_relinquish(bge_t *bgep)
1509 {
1510 ASSERT(mutex_owned(bgep->genlock));
1511
1512 switch (bgep->chipid.nvtype) {
1513 case BGE_NVTYPE_NONE:
1514 case BGE_NVTYPE_UNKNOWN:
1515 _NOTE(NOTREACHED)
1516 return;
1517
1518 case BGE_NVTYPE_SEEPROM:
1519 /*
1520 * No arbitration performed, no release needed
1521 */
1522 return;
1523
1524 case BGE_NVTYPE_LEGACY_SEEPROM:
1525 case BGE_NVTYPE_UNBUFFERED_FLASH:
1526 case BGE_NVTYPE_BUFFERED_FLASH:
1527 default:
1528 break;
1529 }
1530
1531 /*
1532 * Our own request should be present (whether or not granted) ...
1533 */
1534 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1535
1536 /*
1537 * ... this will make it go away.
1538 */
1539 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1540 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1541 }
1542
1543 /*
1544 * Arbitrate for access to the NVmem, if necessary
1545 *
1546 * Return value:
1547 * 0 on success
1548 * EAGAIN if the device is in use (retryable)
1549 * ENODEV if the NVmem device is missing or otherwise unusable
1550 */
1551 static int bge_nvmem_acquire(bge_t *bgep);
1552 #pragma no_inline(bge_nvmem_acquire)
1553
1554 static int
bge_nvmem_acquire(bge_t * bgep)1555 bge_nvmem_acquire(bge_t *bgep)
1556 {
1557 uint32_t regval;
1558 uint32_t tries;
1559
1560 ASSERT(mutex_owned(bgep->genlock));
1561
1562 switch (bgep->chipid.nvtype) {
1563 case BGE_NVTYPE_NONE:
1564 case BGE_NVTYPE_UNKNOWN:
1565 /*
1566 * Access denied: no (recognisable) device fitted
1567 */
1568 return (ENODEV);
1569
1570 case BGE_NVTYPE_SEEPROM:
1571 /*
1572 * Access granted: no arbitration needed (or possible)
1573 */
1574 return (0);
1575
1576 case BGE_NVTYPE_LEGACY_SEEPROM:
1577 case BGE_NVTYPE_UNBUFFERED_FLASH:
1578 case BGE_NVTYPE_BUFFERED_FLASH:
1579 default:
1580 /*
1581 * Access conditional: conduct arbitration protocol
1582 */
1583 break;
1584 }
1585
1586 /*
1587 * We're holding the per-port mutex <genlock>, so no-one other
1588 * thread can be attempting to access the NVmem through *this*
1589 * port. But it could be in use by the *other* port (of a 5704),
1590 * or by the chip's internal firmware, so we have to go through
1591 * the full (hardware) arbitration protocol ...
1592 *
1593 * Note that *because* we're holding <genlock>, the interrupt handler
1594 * won't be able to progress. So we're only willing to spin for a
1595 * fairly short time. Specifically:
1596 *
1597 * We *must* wait long enough for the hardware to resolve all
1598 * requests and determine the winner. Fortunately, this is
1599 * "almost instantaneous", even as observed by GHz CPUs.
1600 *
1601 * A successful access by another Solaris thread (via either
1602 * port) typically takes ~20us. So waiting a bit longer than
1603 * that will give a good chance of success, if the other user
1604 * *is* another thread on the other port.
1605 *
1606 * However, the internal firmware can hold on to the NVmem
1607 * for *much* longer: at least 10 milliseconds just after a
1608 * RESET, and maybe even longer if the NVmem actually contains
1609 * code to download and run on the internal CPUs.
1610 *
1611 * So, we'll allow 50us; if that's not enough then it's up to the
1612 * caller to retry later (hence the choice of return code EAGAIN).
1613 */
1614 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1615 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1616
1617 for (tries = 0; tries < 50; ++tries) {
1618 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1619 if (regval & NVM_WON_REQ1)
1620 break;
1621 drv_usecwait(1);
1622 }
1623
1624 if (regval & NVM_WON_REQ1) {
1625 BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1626 return (0);
1627 }
1628
1629 /*
1630 * Somebody else must be accessing the NVmem, so abandon our
1631 * attempt take control of it. The caller can try again later ...
1632 */
1633 BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1634 bge_nvmem_relinquish(bgep);
1635 return (EAGAIN);
1636 }
1637
1638 /*
1639 * This code assumes that the GPIO1 bit has been wired up to the NVmem
1640 * write protect line in such a way that the NVmem is protected when
1641 * GPIO1 is an input, or is an output but driven high. Thus, to make the
1642 * NVmem writable we have to change GPIO1 to an output AND drive it low.
1643 *
1644 * Note: there's only one set of GPIO pins on a 5704, even though they
1645 * can be accessed through either port. So the chip has to resolve what
1646 * happens if the two ports program a single pin differently ... the rule
1647 * it uses is that if the ports disagree about the *direction* of a pin,
1648 * "output" wins over "input", but if they disagree about its *value* as
1649 * an output, then the pin is TRISTATED instead! In such a case, no-one
1650 * wins, and the external signal does whatever the external circuitry
1651 * defines as the default -- which we've assumed is the PROTECTED state.
1652 * So, we always change GPIO1 back to being an *input* whenever we're not
1653 * specifically using it to unprotect the NVmem. This allows either port
1654 * to update the NVmem, although obviously only one at a time!
1655 *
1656 * The caller should hold <genlock> and *also* have already acquired the
1657 * right to access the NVmem, via bge_nvmem_acquire() above.
1658 */
1659 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1660 #pragma inline(bge_nvmem_protect)
1661
1662 static void
bge_nvmem_protect(bge_t * bgep,boolean_t protect)1663 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1664 {
1665 uint32_t regval;
1666
1667 ASSERT(mutex_owned(bgep->genlock));
1668
1669 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1670 if (protect) {
1671 regval |= MLCR_MISC_PINS_OUTPUT_1;
1672 regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1673 } else {
1674 regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1675 regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1676 }
1677 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1678 }
1679
1680 /*
1681 * Now put it all together ...
1682 *
1683 * Try to acquire control of the NVmem; if successful, then:
1684 * unprotect it (if we want to write to it)
1685 * perform the requested access
1686 * reprotect it (after a write)
1687 * relinquish control
1688 *
1689 * Return value:
1690 * 0 on success,
1691 * EAGAIN if the device is in use (retryable)
1692 * ENODATA on access timeout (maybe retryable: device may just be busy)
1693 * ENODEV if the NVmem device is missing or otherwise unusable
1694 * EPROTO on other h/w or s/w errors.
1695 */
1696 static int
bge_nvmem_rw32(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1697 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1698 {
1699 int err;
1700
1701 if ((err = bge_nvmem_acquire(bgep)) == 0) {
1702 switch (cmd) {
1703 case BGE_SEE_READ:
1704 err = bge_seeprom_access(bgep,
1705 SEEPROM_ACCESS_READ, addr, dp);
1706 break;
1707
1708 case BGE_SEE_WRITE:
1709 bge_nvmem_protect(bgep, B_FALSE);
1710 err = bge_seeprom_access(bgep,
1711 SEEPROM_ACCESS_WRITE, addr, dp);
1712 bge_nvmem_protect(bgep, B_TRUE);
1713 break;
1714
1715 case BGE_FLASH_READ:
1716 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1717 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1718 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1719 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1720 bge_reg_set32(bgep, NVM_ACCESS_REG,
1721 NVM_ACCESS_ENABLE);
1722 }
1723 err = bge_flash_access(bgep,
1724 NVM_FLASH_CMD_RD, addr, dp);
1725 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1726 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1727 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1728 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1729 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1730 NVM_ACCESS_ENABLE);
1731 }
1732 break;
1733
1734 case BGE_FLASH_WRITE:
1735 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1736 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1737 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1738 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1739 bge_reg_set32(bgep, NVM_ACCESS_REG,
1740 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1741 }
1742 bge_nvmem_protect(bgep, B_FALSE);
1743 err = bge_flash_access(bgep,
1744 NVM_FLASH_CMD_WR, addr, dp);
1745 bge_nvmem_protect(bgep, B_TRUE);
1746 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1747 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1748 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1749 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1750 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1751 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1752 }
1753
1754 break;
1755
1756 default:
1757 _NOTE(NOTREACHED)
1758 break;
1759 }
1760 bge_nvmem_relinquish(bgep);
1761 }
1762
1763 BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1764 return (err);
1765 }
1766
1767 /*
1768 * Attempt to get a MAC address from the SEEPROM or Flash, if any
1769 */
1770 static uint64_t bge_get_nvmac(bge_t *bgep);
1771 #pragma no_inline(bge_get_nvmac)
1772
1773 static uint64_t
bge_get_nvmac(bge_t * bgep)1774 bge_get_nvmac(bge_t *bgep)
1775 {
1776 uint32_t mac_high;
1777 uint32_t mac_low;
1778 uint32_t addr;
1779 uint32_t cmd;
1780 uint64_t mac;
1781
1782 BGE_TRACE(("bge_get_nvmac($%p)",
1783 (void *)bgep));
1784
1785 switch (bgep->chipid.nvtype) {
1786 case BGE_NVTYPE_NONE:
1787 case BGE_NVTYPE_UNKNOWN:
1788 default:
1789 return (0ULL);
1790
1791 case BGE_NVTYPE_SEEPROM:
1792 case BGE_NVTYPE_LEGACY_SEEPROM:
1793 cmd = BGE_SEE_READ;
1794 break;
1795
1796 case BGE_NVTYPE_UNBUFFERED_FLASH:
1797 case BGE_NVTYPE_BUFFERED_FLASH:
1798 cmd = BGE_FLASH_READ;
1799 break;
1800 }
1801
1802 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1803 addr = NVMEM_DATA_MAC_ADDRESS_5906;
1804 else
1805 addr = NVMEM_DATA_MAC_ADDRESS;
1806
1807 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1808 return (0ULL);
1809 addr += 4;
1810 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1811 return (0ULL);
1812
1813 /*
1814 * The Broadcom chip is natively BIG-endian, so that's how the
1815 * MAC address is represented in NVmem. We may need to swap it
1816 * around on a little-endian host ...
1817 */
1818 #ifdef _BIG_ENDIAN
1819 mac = mac_high;
1820 mac = mac << 32;
1821 mac |= mac_low;
1822 #else
1823 mac = BGE_BSWAP_32(mac_high);
1824 mac = mac << 32;
1825 mac |= BGE_BSWAP_32(mac_low);
1826 #endif /* _BIG_ENDIAN */
1827
1828 return (mac);
1829 }
1830
1831 #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1832
1833 /*
1834 * Dummy version for when we're not supporting NVmem access
1835 */
1836 static uint64_t bge_get_nvmac(bge_t *bgep);
1837 #pragma inline(bge_get_nvmac)
1838
1839 static uint64_t
bge_get_nvmac(bge_t * bgep)1840 bge_get_nvmac(bge_t *bgep)
1841 {
1842 _NOTE(ARGUNUSED(bgep))
1843 return (0ULL);
1844 }
1845
1846 #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1847
1848 /*
1849 * Determine the type of NVmem that is (or may be) attached to this chip,
1850 */
1851 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1852 #pragma no_inline(bge_nvmem_id)
1853
1854 static enum bge_nvmem_type
bge_nvmem_id(bge_t * bgep)1855 bge_nvmem_id(bge_t *bgep)
1856 {
1857 enum bge_nvmem_type nvtype;
1858 uint32_t config1;
1859
1860 BGE_TRACE(("bge_nvmem_id($%p)",
1861 (void *)bgep));
1862
1863 switch (bgep->chipid.device) {
1864 default:
1865 /*
1866 * We shouldn't get here; it means we don't recognise
1867 * the chip, which means we don't know how to determine
1868 * what sort of NVmem (if any) it has. So we'll say
1869 * NONE, to disable the NVmem access code ...
1870 */
1871 nvtype = BGE_NVTYPE_NONE;
1872 break;
1873
1874 case DEVICE_ID_5700:
1875 case DEVICE_ID_5700x:
1876 case DEVICE_ID_5701:
1877 /*
1878 * These devices support *only* SEEPROMs
1879 */
1880 nvtype = BGE_NVTYPE_SEEPROM;
1881 break;
1882
1883 case DEVICE_ID_5702:
1884 case DEVICE_ID_5702fe:
1885 case DEVICE_ID_5703C:
1886 case DEVICE_ID_5703S:
1887 case DEVICE_ID_5704C:
1888 case DEVICE_ID_5704S:
1889 case DEVICE_ID_5704:
1890 case DEVICE_ID_5705M:
1891 case DEVICE_ID_5705C:
1892 case DEVICE_ID_5705_2:
1893 case DEVICE_ID_5717:
1894 case DEVICE_ID_5718:
1895 case DEVICE_ID_5724:
1896 case DEVICE_ID_57780:
1897 case DEVICE_ID_5780:
1898 case DEVICE_ID_5782:
1899 case DEVICE_ID_5785:
1900 case DEVICE_ID_5787:
1901 case DEVICE_ID_5787M:
1902 case DEVICE_ID_5788:
1903 case DEVICE_ID_5789:
1904 case DEVICE_ID_5751:
1905 case DEVICE_ID_5751M:
1906 case DEVICE_ID_5752:
1907 case DEVICE_ID_5752M:
1908 case DEVICE_ID_5754:
1909 case DEVICE_ID_5755:
1910 case DEVICE_ID_5755M:
1911 case DEVICE_ID_5756M:
1912 case DEVICE_ID_5721:
1913 case DEVICE_ID_5722:
1914 case DEVICE_ID_5723:
1915 case DEVICE_ID_5761:
1916 case DEVICE_ID_5761E:
1917 case DEVICE_ID_5764:
1918 case DEVICE_ID_5714C:
1919 case DEVICE_ID_5714S:
1920 case DEVICE_ID_5715C:
1921 case DEVICE_ID_5715S:
1922 config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1923 if (config1 & NVM_CFG1_FLASH_MODE)
1924 if (config1 & NVM_CFG1_BUFFERED_MODE)
1925 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1926 else
1927 nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1928 else
1929 nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1930 break;
1931 case DEVICE_ID_5906:
1932 case DEVICE_ID_5906M:
1933 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1934 break;
1935 }
1936
1937 return (nvtype);
1938 }
1939
1940 #undef BGE_DBG
1941 #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */
1942
1943 static void
bge_init_recv_rule(bge_t * bgep)1944 bge_init_recv_rule(bge_t *bgep)
1945 {
1946 bge_recv_rule_t *rulep = bgep->recv_rules;
1947 uint32_t i;
1948
1949 /*
1950 * Initialize receive rule registers.
1951 * Note that rules may persist across each bge_m_start/stop() call.
1952 */
1953 for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1954 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1955 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1956 }
1957 }
1958
1959 /*
1960 * Using the values captured by bge_chip_cfg_init(), and additional probes
1961 * as required, characterise the chip fully: determine the label by which
1962 * to refer to this chip, the correct settings for various registers, and
1963 * of course whether the device and/or subsystem are supported!
1964 */
1965 int bge_chip_id_init(bge_t *bgep);
1966 #pragma no_inline(bge_chip_id_init)
1967
1968 int
bge_chip_id_init(bge_t * bgep)1969 bge_chip_id_init(bge_t *bgep)
1970 {
1971 char buf[MAXPATHLEN]; /* any risk of stack overflow? */
1972 boolean_t sys_ok;
1973 boolean_t dev_ok;
1974 chip_id_t *cidp;
1975 uint32_t subid;
1976 char *devname;
1977 char *sysname;
1978 int *ids;
1979 int err;
1980 uint_t i;
1981
1982 sys_ok = dev_ok = B_FALSE;
1983 cidp = &bgep->chipid;
1984
1985 /*
1986 * Check the PCI device ID to determine the generic chip type and
1987 * select parameters that depend on this.
1988 *
1989 * Note: because the SPARC platforms in general don't fit the
1990 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1991 * as zero - which is why we use <asic_rev> rather than <revision>
1992 * below ...
1993 *
1994 * Note: in general we can't distinguish between the Copper/SerDes
1995 * versions by ID alone, as some Copper devices (e.g. some but not
1996 * all 5703Cs) have the same ID as the SerDes equivalents. So we
1997 * treat them the same here, and the MII code works out the media
1998 * type later on ...
1999 */
2000 cidp->mbuf_base = bge_mbuf_pool_base;
2001 cidp->mbuf_length = bge_mbuf_pool_len;
2002 cidp->recv_slots = BGE_RECV_SLOTS_USED;
2003 cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2004 cidp->pci_type = BGE_PCI_X;
2005 cidp->statistic_type = BGE_STAT_BLK;
2006 cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2007 cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2008 cidp->mbuf_hi_water = bge_mbuf_hi_water;
2009 cidp->rx_ticks_norm = bge_rx_ticks_norm;
2010 cidp->rx_count_norm = bge_rx_count_norm;
2011 cidp->tx_ticks_norm = bge_tx_ticks_norm;
2012 cidp->tx_count_norm = bge_tx_count_norm;
2013 cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2014
2015 if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2016 cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2017 if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2018 cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2019
2020 cidp->msi_enabled = B_FALSE;
2021
2022 switch (cidp->device) {
2023 case DEVICE_ID_5717:
2024 case DEVICE_ID_5718:
2025 case DEVICE_ID_5724:
2026 if (cidp->device == DEVICE_ID_5717)
2027 cidp->chip_label = 5717;
2028 else if (cidp->device == DEVICE_ID_5718)
2029 cidp->chip_label = 5718;
2030 else
2031 cidp->chip_label = 5724;
2032 cidp->msi_enabled = bge_enable_msi;
2033 #ifdef __sparc
2034 cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2035 #endif
2036 cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2037 cidp->pci_type = BGE_PCI_E;
2038 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2039 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2040 cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2041 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2042 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2043 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2044 cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2045 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2046 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2047 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2048 cidp->statistic_type = BGE_STAT_REG;
2049 dev_ok = B_TRUE;
2050 break;
2051
2052 case DEVICE_ID_5700:
2053 case DEVICE_ID_5700x:
2054 cidp->chip_label = 5700;
2055 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2056 break;
2057
2058 case DEVICE_ID_5701:
2059 cidp->chip_label = 5701;
2060 dev_ok = B_TRUE;
2061 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2062 break;
2063
2064 case DEVICE_ID_5702:
2065 case DEVICE_ID_5702fe:
2066 cidp->chip_label = 5702;
2067 dev_ok = B_TRUE;
2068 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2069 cidp->pci_type = BGE_PCI;
2070 break;
2071
2072 case DEVICE_ID_5703C:
2073 case DEVICE_ID_5703S:
2074 case DEVICE_ID_5703:
2075 /*
2076 * Revision A0 of the 5703/5793 had various errata
2077 * that we can't or don't work around, so it's not
2078 * supported, but all later versions are
2079 */
2080 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2081 if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2082 dev_ok = B_TRUE;
2083 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2084 break;
2085
2086 case DEVICE_ID_5704C:
2087 case DEVICE_ID_5704S:
2088 case DEVICE_ID_5704:
2089 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2090 cidp->mbuf_base = bge_mbuf_pool_base_5704;
2091 cidp->mbuf_length = bge_mbuf_pool_len_5704;
2092 dev_ok = B_TRUE;
2093 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2094 break;
2095
2096 case DEVICE_ID_5705C:
2097 case DEVICE_ID_5705M:
2098 case DEVICE_ID_5705MA3:
2099 case DEVICE_ID_5705F:
2100 case DEVICE_ID_5705_2:
2101 case DEVICE_ID_5754:
2102 if (cidp->device == DEVICE_ID_5754) {
2103 cidp->chip_label = 5754;
2104 cidp->pci_type = BGE_PCI_E;
2105 } else {
2106 cidp->chip_label = 5705;
2107 cidp->pci_type = BGE_PCI;
2108 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2109 }
2110 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2111 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2112 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2113 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2114 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2115 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2116 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2117 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2118 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2119 cidp->statistic_type = BGE_STAT_REG;
2120 dev_ok = B_TRUE;
2121 break;
2122
2123 case DEVICE_ID_5906:
2124 case DEVICE_ID_5906M:
2125 cidp->chip_label = 5906;
2126 cidp->pci_type = BGE_PCI_E;
2127 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2128 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2129 cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2130 cidp->mbuf_base = bge_mbuf_pool_base;
2131 cidp->mbuf_length = bge_mbuf_pool_len;
2132 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2133 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2134 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2135 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2136 cidp->statistic_type = BGE_STAT_REG;
2137 dev_ok = B_TRUE;
2138 break;
2139
2140 case DEVICE_ID_5753:
2141 cidp->chip_label = 5753;
2142 cidp->pci_type = BGE_PCI_E;
2143 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2144 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2145 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2146 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2147 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2148 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2149 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2150 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2151 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2152 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2153 cidp->statistic_type = BGE_STAT_REG;
2154 dev_ok = B_TRUE;
2155 break;
2156
2157 case DEVICE_ID_5755:
2158 case DEVICE_ID_5755M:
2159 cidp->chip_label = 5755;
2160 cidp->pci_type = BGE_PCI_E;
2161 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2162 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2163 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2164 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2165 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2166 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2167 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2168 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2169 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2170 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2171 if (cidp->device == DEVICE_ID_5755M)
2172 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2173 cidp->statistic_type = BGE_STAT_REG;
2174 dev_ok = B_TRUE;
2175 break;
2176
2177 case DEVICE_ID_5756M:
2178 /*
2179 * This is nearly identical to the 5755M.
2180 * (Actually reports the 5755 chip ID.)
2181 */
2182 cidp->chip_label = 5756;
2183 cidp->pci_type = BGE_PCI_E;
2184 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2185 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2186 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2187 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2188 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2189 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2190 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2191 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2192 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2193 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2194 cidp->statistic_type = BGE_STAT_REG;
2195 dev_ok = B_TRUE;
2196 break;
2197
2198 case DEVICE_ID_5787:
2199 case DEVICE_ID_5787M:
2200 cidp->chip_label = 5787;
2201 cidp->pci_type = BGE_PCI_E;
2202 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2203 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2204 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2205 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2206 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2207 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2208 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2209 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2210 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2211 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2212 cidp->statistic_type = BGE_STAT_REG;
2213 dev_ok = B_TRUE;
2214 break;
2215
2216 case DEVICE_ID_5723:
2217 case DEVICE_ID_5761:
2218 case DEVICE_ID_5761E:
2219 case DEVICE_ID_57780:
2220 cidp->msi_enabled = bge_enable_msi;
2221 /*
2222 * We don't use MSI for BCM5764 and BCM5785, as the
2223 * status block may fail to update when the network
2224 * traffic is heavy.
2225 */
2226 /* FALLTHRU */
2227 case DEVICE_ID_5785:
2228 case DEVICE_ID_5764:
2229 if (cidp->device == DEVICE_ID_5723)
2230 cidp->chip_label = 5723;
2231 else if (cidp->device == DEVICE_ID_5764)
2232 cidp->chip_label = 5764;
2233 else if (cidp->device == DEVICE_ID_5785)
2234 cidp->chip_label = 5785;
2235 else if (cidp->device == DEVICE_ID_57780)
2236 cidp->chip_label = 57780;
2237 else
2238 cidp->chip_label = 5761;
2239 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2240 cidp->pci_type = BGE_PCI_E;
2241 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2242 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2243 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2244 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2245 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2246 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2247 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2248 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2249 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2250 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2251 cidp->statistic_type = BGE_STAT_REG;
2252 dev_ok = B_TRUE;
2253 break;
2254
2255 /* PCI-X device, identical to 5714 */
2256 case DEVICE_ID_5780:
2257 cidp->chip_label = 5780;
2258 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2259 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2260 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2261 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2262 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2263 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2264 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2265 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2266 cidp->statistic_type = BGE_STAT_REG;
2267 dev_ok = B_TRUE;
2268 break;
2269
2270 case DEVICE_ID_5782:
2271 /*
2272 * Apart from the label, we treat this as a 5705(?)
2273 */
2274 cidp->chip_label = 5782;
2275 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2276 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2277 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2278 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2279 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2280 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2281 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2282 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2283 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2284 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2285 cidp->statistic_type = BGE_STAT_REG;
2286 dev_ok = B_TRUE;
2287 break;
2288
2289 case DEVICE_ID_5788:
2290 /*
2291 * Apart from the label, we treat this as a 5705(?)
2292 */
2293 cidp->chip_label = 5788;
2294 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2295 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2296 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2297 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2298 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2299 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2300 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2301 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2302 cidp->statistic_type = BGE_STAT_REG;
2303 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2304 dev_ok = B_TRUE;
2305 break;
2306
2307 case DEVICE_ID_5714C:
2308 if (cidp->revision >= REVISION_ID_5714_A2)
2309 cidp->msi_enabled = bge_enable_msi;
2310 /* FALLTHRU */
2311 case DEVICE_ID_5714S:
2312 cidp->chip_label = 5714;
2313 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2314 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2315 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2316 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2317 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2318 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2319 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2320 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2321 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2322 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2323 cidp->pci_type = BGE_PCI_E;
2324 cidp->statistic_type = BGE_STAT_REG;
2325 dev_ok = B_TRUE;
2326 break;
2327
2328 case DEVICE_ID_5715C:
2329 case DEVICE_ID_5715S:
2330 cidp->chip_label = 5715;
2331 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2332 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2333 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2334 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2335 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2336 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2337 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2338 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2339 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2340 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2341 cidp->pci_type = BGE_PCI_E;
2342 cidp->statistic_type = BGE_STAT_REG;
2343 if (cidp->revision >= REVISION_ID_5715_A2)
2344 cidp->msi_enabled = bge_enable_msi;
2345 dev_ok = B_TRUE;
2346 break;
2347
2348 case DEVICE_ID_5721:
2349 cidp->chip_label = 5721;
2350 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2351 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2352 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2353 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2354 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2355 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2356 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2357 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2358 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2359 cidp->pci_type = BGE_PCI_E;
2360 cidp->statistic_type = BGE_STAT_REG;
2361 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2362 dev_ok = B_TRUE;
2363 break;
2364
2365 case DEVICE_ID_5722:
2366 cidp->chip_label = 5722;
2367 cidp->pci_type = BGE_PCI_E;
2368 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2369 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2370 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2371 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2372 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2373 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2374 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2375 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2376 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2377 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2378 cidp->statistic_type = BGE_STAT_REG;
2379 dev_ok = B_TRUE;
2380 break;
2381
2382 case DEVICE_ID_5751:
2383 case DEVICE_ID_5751M:
2384 cidp->chip_label = 5751;
2385 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2386 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2387 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2388 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2389 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2390 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2391 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2392 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2393 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2394 cidp->pci_type = BGE_PCI_E;
2395 cidp->statistic_type = BGE_STAT_REG;
2396 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2397 dev_ok = B_TRUE;
2398 break;
2399
2400 case DEVICE_ID_5752:
2401 case DEVICE_ID_5752M:
2402 cidp->chip_label = 5752;
2403 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2404 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2405 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2406 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2407 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2408 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2409 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2410 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2411 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2412 cidp->pci_type = BGE_PCI_E;
2413 cidp->statistic_type = BGE_STAT_REG;
2414 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2415 dev_ok = B_TRUE;
2416 break;
2417
2418 case DEVICE_ID_5789:
2419 cidp->chip_label = 5789;
2420 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2421 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2422 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2423 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2424 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2425 cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2426 cidp->pci_type = BGE_PCI_E;
2427 cidp->statistic_type = BGE_STAT_REG;
2428 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2429 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2430 cidp->msi_enabled = B_TRUE;
2431 dev_ok = B_TRUE;
2432 break;
2433
2434 }
2435
2436 /*
2437 * Setup the default jumbo parameter.
2438 */
2439 cidp->ethmax_size = ETHERMAX;
2440 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2441 cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2442
2443 /*
2444 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2445 * setup below jumbo specific parameters.
2446 *
2447 * For BCM5714/5715, there is only one standard receive ring. So the
2448 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2449 * feature is enabled.
2450 */
2451 if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2452 (cidp->default_mtu > BGE_DEFAULT_MTU)) {
2453 if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2454 cidp->mbuf_lo_water_rdma =
2455 RDMA_MBUF_LOWAT_5714_JUMBO;
2456 cidp->mbuf_lo_water_rmac =
2457 MAC_RX_MBUF_LOWAT_5714_JUMBO;
2458 cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2459 cidp->jumbo_slots = 0;
2460 cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2461 } else {
2462 cidp->mbuf_lo_water_rdma =
2463 RDMA_MBUF_LOWAT_JUMBO;
2464 cidp->mbuf_lo_water_rmac =
2465 MAC_RX_MBUF_LOWAT_JUMBO;
2466 cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2467 cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2468 }
2469 cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2470 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2471 cidp->ethmax_size = cidp->default_mtu +
2472 sizeof (struct ether_header);
2473 }
2474
2475 /*
2476 * Identify the NV memory type: SEEPROM or Flash?
2477 */
2478 cidp->nvtype = bge_nvmem_id(bgep);
2479
2480 /*
2481 * Now, we want to check whether this device is part of a
2482 * supported subsystem (e.g., on the motherboard of a Sun
2483 * branded platform).
2484 *
2485 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2486 */
2487 if (cidp->subven == VENDOR_ID_SUN)
2488 sys_ok = B_TRUE;
2489
2490 /*
2491 * Rule 2: If it's on the list on known subsystems, then it's OK.
2492 * Note: 0x14e41647 should *not* appear in the list, but the code
2493 * doesn't enforce that.
2494 */
2495 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2496 DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2497 if (err == DDI_PROP_SUCCESS) {
2498 /*
2499 * Got the list; scan for a matching subsystem vendor/device
2500 */
2501 subid = (cidp->subven << 16) | cidp->subdev;
2502 while (i--)
2503 if (ids[i] == subid)
2504 sys_ok = B_TRUE;
2505 ddi_prop_free(ids);
2506 }
2507
2508 /*
2509 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2510 *
2511 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2512 * the Subsystem Vendor ID, so it defaults to Broadcom. Therefore,
2513 * we have to check specially for the exact device paths to the
2514 * motherboard devices on those platforms ;-(
2515 *
2516 * Note: we can't just use the "supported-subsystems" mechanism
2517 * above, because the entry would have to be 0x14e41647 -- which
2518 * would then accept *any* plugin card that *didn't* contain a
2519 * (valid) SEEPROM ;-(
2520 */
2521 sysname = ddi_node_name(ddi_root_node());
2522 devname = ddi_pathname(bgep->devinfo, buf);
2523 ASSERT(strlen(devname) > 0);
2524 if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0) /* Taco */
2525 if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2526 sys_ok = B_TRUE;
2527 if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0) /* ENWS */
2528 if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2529 sys_ok = B_TRUE;
2530
2531 /*
2532 * Now check what we've discovered: is this truly a supported
2533 * chip on (the motherboard of) a supported platform?
2534 *
2535 * Possible problems here:
2536 * 1) it's a completely unheard-of chip
2537 * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2538 * 3) it's a chip we would support if it were on the motherboard
2539 * of a Sun platform, but this one isn't ;-(
2540 */
2541 if (cidp->chip_label == 0)
2542 bge_problem(bgep,
2543 "Device 'pci%04x,%04x' not recognized (%d?)",
2544 cidp->vendor, cidp->device, cidp->device);
2545 else if (!dev_ok)
2546 bge_problem(bgep,
2547 "Device 'pci%04x,%04x' (%d) revision %d not supported",
2548 cidp->vendor, cidp->device, cidp->chip_label,
2549 cidp->revision);
2550 #if BGE_DEBUGGING
2551 else if (!sys_ok)
2552 bge_problem(bgep,
2553 "%d-based subsystem 'pci%04x,%04x' not validated",
2554 cidp->chip_label, cidp->subven, cidp->subdev);
2555 #endif
2556 else
2557 cidp->flags |= CHIP_FLAG_SUPPORTED;
2558 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2559 return (EIO);
2560 return (0);
2561 }
2562
2563 void
bge_chip_msi_trig(bge_t * bgep)2564 bge_chip_msi_trig(bge_t *bgep)
2565 {
2566 uint32_t regval;
2567
2568 regval = bgep->param_msi_cnt<<4;
2569 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2570 BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2571 }
2572
2573 /*
2574 * Various registers that control the chip's internal engines (state
2575 * machines) have a <reset> and <enable> bits (fortunately, in the
2576 * same place in each such register :-).
2577 *
2578 * To reset the state machine, the <reset> bit must be written with 1;
2579 * it will then read back as 1 while the reset is in progress, but
2580 * self-clear to 0 when the reset completes.
2581 *
2582 * To enable a state machine, one must set the <enable> bit, which
2583 * will continue to read back as 0 until the state machine is running.
2584 *
2585 * To disable a state machine, the <enable> bit must be cleared, but
2586 * it will continue to read back as 1 until the state machine actually
2587 * stops.
2588 *
2589 * This routine implements polling for completion of a reset, enable
2590 * or disable operation, returning B_TRUE on success (bit reached the
2591 * required state) or B_FALSE on timeout (200*100us == 20ms).
2592 */
2593 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2594 uint32_t mask, uint32_t val);
2595 #pragma no_inline(bge_chip_poll_engine)
2596
2597 static boolean_t
bge_chip_poll_engine(bge_t * bgep,bge_regno_t regno,uint32_t mask,uint32_t val)2598 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2599 uint32_t mask, uint32_t val)
2600 {
2601 uint32_t regval;
2602 uint32_t n;
2603
2604 BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2605 (void *)bgep, regno, mask, val));
2606
2607 for (n = 200; n; --n) {
2608 regval = bge_reg_get32(bgep, regno);
2609 if ((regval & mask) == val)
2610 return (B_TRUE);
2611 drv_usecwait(100);
2612 }
2613
2614 bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
2615 bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2616 return (B_FALSE);
2617 }
2618
2619 /*
2620 * Various registers that control the chip's internal engines (state
2621 * machines) have a <reset> bit (fortunately, in the same place in
2622 * each such register :-). To reset the state machine, this bit must
2623 * be written with 1; it will then read back as 1 while the reset is
2624 * in progress, but self-clear to 0 when the reset completes.
2625 *
2626 * This code sets the bit, then polls for it to read back as zero.
2627 * The return value is B_TRUE on success (reset bit cleared itself),
2628 * or B_FALSE if the state machine didn't recover :(
2629 *
2630 * NOTE: the Core reset is similar to other resets, except that we
2631 * can't poll for completion, since the Core reset disables memory
2632 * access! So we just have to assume that it will all complete in
2633 * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5.
2634 */
2635 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2636 #pragma no_inline(bge_chip_reset_engine)
2637
2638 static boolean_t
bge_chip_reset_engine(bge_t * bgep,bge_regno_t regno)2639 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2640 {
2641 uint32_t regval;
2642 uint32_t val32;
2643
2644 regval = bge_reg_get32(bgep, regno);
2645
2646 BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2647 (void *)bgep, regno));
2648 BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2649 regno, regval));
2650
2651 regval |= STATE_MACHINE_RESET_BIT;
2652
2653 switch (regno) {
2654 case MISC_CONFIG_REG:
2655 /*
2656 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2657 * resetting PCIE block and bringing PCIE link down, bit 29
2658 * in the register needs to be set first, and then set it again
2659 * while the reset bit is written.
2660 * See:P500 of 57xx-PG102-RDS.pdf.
2661 */
2662 if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2663 DEVICE_5717_SERIES_CHIPSETS(bgep)||
2664 DEVICE_5721_SERIES_CHIPSETS(bgep)||
2665 DEVICE_5723_SERIES_CHIPSETS(bgep)||
2666 DEVICE_5714_SERIES_CHIPSETS(bgep)||
2667 DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2668 regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2669 if (bgep->chipid.pci_type == BGE_PCI_E) {
2670 if (bgep->chipid.asic_rev ==
2671 MHCR_CHIP_REV_5751_A0 ||
2672 bgep->chipid.asic_rev ==
2673 MHCR_CHIP_REV_5721_A0 ||
2674 bgep->chipid.asic_rev ==
2675 MHCR_CHIP_REV_5755_A0) {
2676 val32 = bge_reg_get32(bgep,
2677 PHY_TEST_CTRL_REG);
2678 if (val32 == (PHY_PCIE_SCRAM_MODE |
2679 PHY_PCIE_LTASS_MODE))
2680 bge_reg_put32(bgep,
2681 PHY_TEST_CTRL_REG,
2682 PHY_PCIE_SCRAM_MODE);
2683 val32 = pci_config_get32
2684 (bgep->cfg_handle,
2685 PCI_CONF_BGE_CLKCTL);
2686 val32 |= CLKCTL_PCIE_A0_FIX;
2687 pci_config_put32(bgep->cfg_handle,
2688 PCI_CONF_BGE_CLKCTL, val32);
2689 }
2690 bge_reg_set32(bgep, regno,
2691 MISC_CONFIG_GRC_RESET_DISABLE);
2692 regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2693 }
2694 }
2695
2696 /*
2697 * Special case - causes Core reset
2698 *
2699 * On SPARC v9 we want to ensure that we don't start
2700 * timing until the I/O access has actually reached
2701 * the chip, otherwise we might make the next access
2702 * too early. And we can't just force the write out
2703 * by following it with a read (even to config space)
2704 * because that would cause the fault we're trying
2705 * to avoid. Hence the need for membar_sync() here.
2706 */
2707 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2708 #ifdef __sparcv9
2709 membar_sync();
2710 #endif /* __sparcv9 */
2711 /*
2712 * On some platforms,system need about 300us for
2713 * link setup.
2714 */
2715 drv_usecwait(300);
2716 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2717 bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2718 bge_reg_clr32(
2719 bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2720 }
2721
2722 if (bgep->chipid.pci_type == BGE_PCI_E) {
2723 /* PCI-E device need more reset time */
2724 drv_usecwait(120000);
2725
2726 /* Set PCIE max payload size and clear error status. */
2727 if ((bgep->chipid.chip_label == 5721) ||
2728 (bgep->chipid.chip_label == 5751) ||
2729 (bgep->chipid.chip_label == 5752) ||
2730 (bgep->chipid.chip_label == 5789) ||
2731 (bgep->chipid.chip_label == 5906)) {
2732 pci_config_put16(bgep->cfg_handle,
2733 PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2734 pci_config_put16(bgep->cfg_handle,
2735 PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2736 }
2737
2738 if ((bgep->chipid.chip_label == 5723) ||
2739 (bgep->chipid.chip_label == 5761)) {
2740 pci_config_put16(bgep->cfg_handle,
2741 PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
2742 pci_config_put16(bgep->cfg_handle,
2743 PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
2744 }
2745 }
2746
2747 BGE_PCICHK(bgep);
2748 return (B_TRUE);
2749
2750 default:
2751 bge_reg_put32(bgep, regno, regval);
2752 return (bge_chip_poll_engine(bgep, regno,
2753 STATE_MACHINE_RESET_BIT, 0));
2754 }
2755 }
2756
2757 /*
2758 * Various registers that control the chip's internal engines (state
2759 * machines) have an <enable> bit (fortunately, in the same place in
2760 * each such register :-). To stop the state machine, this bit must
2761 * be written with 0, then polled to see when the state machine has
2762 * actually stopped.
2763 *
2764 * The return value is B_TRUE on success (enable bit cleared), or
2765 * B_FALSE if the state machine didn't stop :(
2766 */
2767 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2768 uint32_t morebits);
2769 #pragma no_inline(bge_chip_disable_engine)
2770
2771 static boolean_t
bge_chip_disable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)2772 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2773 {
2774 uint32_t regval;
2775
2776 BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2777 (void *)bgep, regno, morebits));
2778
2779 switch (regno) {
2780 case FTQ_RESET_REG:
2781 /*
2782 * For Schumacher's bugfix CR6490108
2783 */
2784 #ifdef BGE_IPMI_ASF
2785 #ifdef BGE_NETCONSOLE
2786 if (bgep->asf_enabled)
2787 return (B_TRUE);
2788 #endif
2789 #endif
2790 /*
2791 * Not quite like the others; it doesn't
2792 * have an <enable> bit, but instead we
2793 * have to set and then clear all the bits
2794 */
2795 bge_reg_put32(bgep, regno, ~(uint32_t)0);
2796 drv_usecwait(100);
2797 bge_reg_put32(bgep, regno, 0);
2798 return (B_TRUE);
2799
2800 default:
2801 regval = bge_reg_get32(bgep, regno);
2802 regval &= ~STATE_MACHINE_ENABLE_BIT;
2803 regval &= ~morebits;
2804 bge_reg_put32(bgep, regno, regval);
2805 return (bge_chip_poll_engine(bgep, regno,
2806 STATE_MACHINE_ENABLE_BIT, 0));
2807 }
2808 }
2809
2810 /*
2811 * Various registers that control the chip's internal engines (state
2812 * machines) have an <enable> bit (fortunately, in the same place in
2813 * each such register :-). To start the state machine, this bit must
2814 * be written with 1, then polled to see when the state machine has
2815 * actually started.
2816 *
2817 * The return value is B_TRUE on success (enable bit set), or
2818 * B_FALSE if the state machine didn't start :(
2819 */
2820 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2821 uint32_t morebits);
2822 #pragma no_inline(bge_chip_enable_engine)
2823
2824 static boolean_t
bge_chip_enable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)2825 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2826 {
2827 uint32_t regval;
2828
2829 BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2830 (void *)bgep, regno, morebits));
2831
2832 switch (regno) {
2833 case FTQ_RESET_REG:
2834 #ifdef BGE_IPMI_ASF
2835 #ifdef BGE_NETCONSOLE
2836 if (bgep->asf_enabled)
2837 return (B_TRUE);
2838 #endif
2839 #endif
2840 /*
2841 * Not quite like the others; it doesn't
2842 * have an <enable> bit, but instead we
2843 * have to set and then clear all the bits
2844 */
2845 bge_reg_put32(bgep, regno, ~(uint32_t)0);
2846 drv_usecwait(100);
2847 bge_reg_put32(bgep, regno, 0);
2848 return (B_TRUE);
2849
2850 default:
2851 regval = bge_reg_get32(bgep, regno);
2852 regval |= STATE_MACHINE_ENABLE_BIT;
2853 regval |= morebits;
2854 bge_reg_put32(bgep, regno, regval);
2855 return (bge_chip_poll_engine(bgep, regno,
2856 STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2857 }
2858 }
2859
2860 /*
2861 * Reprogram the Ethernet, Transmit, and Receive MAC
2862 * modes to match the param_* variables
2863 */
2864 void bge_sync_mac_modes(bge_t *bgep);
2865 #pragma no_inline(bge_sync_mac_modes)
2866
2867 void
bge_sync_mac_modes(bge_t * bgep)2868 bge_sync_mac_modes(bge_t *bgep)
2869 {
2870 uint32_t macmode;
2871 uint32_t regval;
2872
2873 ASSERT(mutex_owned(bgep->genlock));
2874
2875 /*
2876 * Reprogram the Ethernet MAC mode ...
2877 */
2878 macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2879 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2880 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2881 if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2882 macmode |= ETHERNET_MODE_LINK_POLARITY;
2883 else
2884 macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2885 else
2886 macmode |= ETHERNET_MODE_LINK_POLARITY;
2887 macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2888 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2889 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2890 if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2891 macmode |= ETHERNET_MODE_PORTMODE_GMII;
2892 else
2893 macmode |= ETHERNET_MODE_PORTMODE_TBI;
2894 } else if (bgep->param_link_speed == 10 ||
2895 bgep->param_link_speed == 100)
2896 macmode |= ETHERNET_MODE_PORTMODE_MII;
2897 else
2898 macmode |= ETHERNET_MODE_PORTMODE_GMII;
2899 if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2900 macmode |= ETHERNET_MODE_HALF_DUPLEX;
2901 else
2902 macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2903 if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2904 macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2905 else
2906 macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2907 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2908 BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2909 (void *)bgep, regval, macmode));
2910
2911 /*
2912 * ... the Transmit MAC mode ...
2913 */
2914 macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2915 if (bgep->param_link_tx_pause)
2916 macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2917 else
2918 macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2919 bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2920 BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2921 (void *)bgep, regval, macmode));
2922
2923 /*
2924 * ... and the Receive MAC mode
2925 */
2926 macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2927 if (bgep->param_link_rx_pause)
2928 macmode |= RECEIVE_MODE_FLOW_CONTROL;
2929 else
2930 macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2931 bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2932 BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2933 (void *)bgep, regval, macmode));
2934
2935 /*
2936 * For BCM5785, we need to configure the link status in the MI Status
2937 * register with a write command when auto-polling is disabled.
2938 */
2939 if (bgep->chipid.device == DEVICE_ID_5785)
2940 if (bgep->param_link_speed == 10)
2941 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
2942 | MI_STATUS_10MBPS);
2943 else
2944 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
2945 }
2946
2947 /*
2948 * bge_chip_sync() -- program the chip with the unicast MAC address,
2949 * the multicast hash table, the required level of promiscuity, and
2950 * the current loopback mode ...
2951 */
2952 #ifdef BGE_IPMI_ASF
2953 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2954 #else
2955 int bge_chip_sync(bge_t *bgep);
2956 #endif
2957 #pragma no_inline(bge_chip_sync)
2958
2959 int
2960 #ifdef BGE_IPMI_ASF
bge_chip_sync(bge_t * bgep,boolean_t asf_keeplive)2961 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2962 #else
2963 bge_chip_sync(bge_t *bgep)
2964 #endif
2965 {
2966 void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2967 boolean_t promisc;
2968 uint64_t macaddr;
2969 uint32_t fill = 0;
2970 int i, j;
2971 int retval = DDI_SUCCESS;
2972
2973 BGE_TRACE(("bge_chip_sync($%p)",
2974 (void *)bgep));
2975
2976 ASSERT(mutex_owned(bgep->genlock));
2977
2978 promisc = B_FALSE;
2979 fill = ~(uint32_t)0;
2980
2981 if (bgep->promisc)
2982 promisc = B_TRUE;
2983 else
2984 fill = (uint32_t)0;
2985
2986 /*
2987 * If the TX/RX MAC engines are already running, we should stop
2988 * them (and reset the RX engine) before changing the parameters.
2989 * If they're not running, this will have no effect ...
2990 *
2991 * NOTE: this is currently disabled by default because stopping
2992 * and restarting the Tx engine may cause an outgoing packet in
2993 * transit to be truncated. Also, stopping and restarting the
2994 * Rx engine seems to not work correctly on the 5705. Testing
2995 * has not (yet!) revealed any problems with NOT stopping and
2996 * restarting these engines (and Broadcom say their drivers don't
2997 * do this), but if it is found to cause problems, this variable
2998 * can be patched to re-enable the old behaviour ...
2999 */
3000 if (bge_stop_start_on_sync) {
3001 #ifdef BGE_IPMI_ASF
3002 if (!bgep->asf_enabled) {
3003 if (!bge_chip_disable_engine(bgep,
3004 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3005 retval = DDI_FAILURE;
3006 } else {
3007 if (!bge_chip_disable_engine(bgep,
3008 RECEIVE_MAC_MODE_REG, 0))
3009 retval = DDI_FAILURE;
3010 }
3011 #else
3012 if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3013 RECEIVE_MODE_KEEP_VLAN_TAG))
3014 retval = DDI_FAILURE;
3015 #endif
3016 if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3017 retval = DDI_FAILURE;
3018 if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3019 retval = DDI_FAILURE;
3020 }
3021
3022 /*
3023 * Reprogram the hashed multicast address table ...
3024 */
3025 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3026 bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3027
3028 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3029 bge_reg_put32(bgep, MAC_HASH_REG(i),
3030 bgep->mcast_hash[i] | fill);
3031
3032 #ifdef BGE_IPMI_ASF
3033 if (!bgep->asf_enabled || !asf_keeplive) {
3034 #endif
3035 /*
3036 * Transform the MAC address(es) from host to chip format, then
3037 * reprogram the transmit random backoff seed and the unicast
3038 * MAC address(es) ...
3039 */
3040 for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3041 for (i = 0, macaddr = 0ull;
3042 i < ETHERADDRL; ++i) {
3043 macaddr <<= 8;
3044 macaddr |= bgep->curr_addr[j].addr[i];
3045 }
3046 fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3047 bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3048
3049 BGE_DEBUG(("bge_chip_sync($%p) "
3050 "setting MAC address %012llx",
3051 (void *)bgep, macaddr));
3052 }
3053 #ifdef BGE_IPMI_ASF
3054 }
3055 #endif
3056 /*
3057 * Set random seed of backoff interval
3058 * - Writing zero means no backoff interval
3059 */
3060 fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3061 if (fill == 0)
3062 fill = 1;
3063 bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3064
3065 /*
3066 * Set or clear the PROMISCUOUS mode bit
3067 */
3068 opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3069 (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3070
3071 /*
3072 * Sync the rest of the MAC modes too ...
3073 */
3074 bge_sync_mac_modes(bgep);
3075
3076 /*
3077 * Restart RX/TX MAC engines if required ...
3078 */
3079 if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3080 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3081 retval = DDI_FAILURE;
3082 #ifdef BGE_IPMI_ASF
3083 if (!bgep->asf_enabled) {
3084 if (!bge_chip_enable_engine(bgep,
3085 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3086 retval = DDI_FAILURE;
3087 } else {
3088 if (!bge_chip_enable_engine(bgep,
3089 RECEIVE_MAC_MODE_REG, 0))
3090 retval = DDI_FAILURE;
3091 }
3092 #else
3093 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3094 RECEIVE_MODE_KEEP_VLAN_TAG))
3095 retval = DDI_FAILURE;
3096 #endif
3097 }
3098 return (retval);
3099 }
3100
3101 /*
3102 * This array defines the sequence of state machine control registers
3103 * in which the <enable> bit must be cleared to bring the chip to a
3104 * clean stop. Taken from Broadcom document 570X-PG102-R, p116.
3105 */
3106 static bge_regno_t shutdown_engine_regs[] = {
3107 RECEIVE_MAC_MODE_REG,
3108 RCV_BD_INITIATOR_MODE_REG,
3109 RCV_LIST_PLACEMENT_MODE_REG,
3110 RCV_LIST_SELECTOR_MODE_REG, /* BCM5704 series only */
3111 RCV_DATA_BD_INITIATOR_MODE_REG,
3112 RCV_DATA_COMPLETION_MODE_REG,
3113 RCV_BD_COMPLETION_MODE_REG,
3114
3115 SEND_BD_SELECTOR_MODE_REG,
3116 SEND_BD_INITIATOR_MODE_REG,
3117 SEND_DATA_INITIATOR_MODE_REG,
3118 READ_DMA_MODE_REG,
3119 SEND_DATA_COMPLETION_MODE_REG,
3120 DMA_COMPLETION_MODE_REG, /* BCM5704 series only */
3121 SEND_BD_COMPLETION_MODE_REG,
3122 TRANSMIT_MAC_MODE_REG,
3123
3124 HOST_COALESCE_MODE_REG,
3125 WRITE_DMA_MODE_REG,
3126 MBUF_CLUSTER_FREE_MODE_REG, /* BCM5704 series only */
3127 FTQ_RESET_REG, /* special - see code */
3128 BUFFER_MANAGER_MODE_REG, /* BCM5704 series only */
3129 MEMORY_ARBITER_MODE_REG, /* BCM5704 series only */
3130 BGE_REGNO_NONE /* terminator */
3131 };
3132
3133 #ifndef __sparc
3134 static bge_regno_t quiesce_regs[] = {
3135 READ_DMA_MODE_REG,
3136 DMA_COMPLETION_MODE_REG,
3137 WRITE_DMA_MODE_REG,
3138 BGE_REGNO_NONE
3139 };
3140
3141 void bge_chip_stop_nonblocking(bge_t *bgep);
3142 #pragma no_inline(bge_chip_stop_nonblocking)
3143
3144 /*
3145 * This function is called by bge_quiesce(). We
3146 * turn off all the DMA engines here.
3147 */
3148 void
bge_chip_stop_nonblocking(bge_t * bgep)3149 bge_chip_stop_nonblocking(bge_t *bgep)
3150 {
3151 bge_regno_t *rbp;
3152
3153 /*
3154 * Flag that no more activity may be initiated
3155 */
3156 bgep->progress &= ~PROGRESS_READY;
3157
3158 rbp = quiesce_regs;
3159 while (*rbp != BGE_REGNO_NONE) {
3160 (void) bge_chip_disable_engine(bgep, *rbp, 0);
3161 ++rbp;
3162 }
3163
3164 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3165 }
3166
3167 #endif
3168
3169 /*
3170 * bge_chip_stop() -- stop all chip processing
3171 *
3172 * If the <fault> parameter is B_TRUE, we're stopping the chip because
3173 * we've detected a problem internally; otherwise, this is a normal
3174 * (clean) stop (at user request i.e. the last STREAM has been closed).
3175 */
3176 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3177 #pragma no_inline(bge_chip_stop)
3178
3179 void
bge_chip_stop(bge_t * bgep,boolean_t fault)3180 bge_chip_stop(bge_t *bgep, boolean_t fault)
3181 {
3182 bge_regno_t regno;
3183 bge_regno_t *rbp;
3184 boolean_t ok;
3185
3186 BGE_TRACE(("bge_chip_stop($%p)",
3187 (void *)bgep));
3188
3189 ASSERT(mutex_owned(bgep->genlock));
3190
3191 rbp = shutdown_engine_regs;
3192 /*
3193 * When driver try to shutdown the BCM5705/5788/5721/5751/
3194 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3195 * -ory arbiter should not be disabled.
3196 */
3197 for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3198 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3199 ok &= bge_chip_disable_engine(bgep, regno, 0);
3200 else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3201 (regno != DMA_COMPLETION_MODE_REG) &&
3202 (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3203 (regno != BUFFER_MANAGER_MODE_REG) &&
3204 (regno != MEMORY_ARBITER_MODE_REG))
3205 ok &= bge_chip_disable_engine(bgep,
3206 regno, 0);
3207 }
3208
3209 if (!ok && !fault)
3210 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3211
3212 /*
3213 * Finally, disable (all) MAC events & clear the MAC status
3214 */
3215 bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3216 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3217
3218 /*
3219 * if we're stopping the chip because of a detected fault then do
3220 * appropriate actions
3221 */
3222 if (fault) {
3223 if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3224 bgep->bge_chip_state = BGE_CHIP_FAULT;
3225 if (!bgep->manual_reset)
3226 ddi_fm_service_impact(bgep->devinfo,
3227 DDI_SERVICE_LOST);
3228 if (bgep->bge_dma_error) {
3229 /*
3230 * need to free buffers in case the fault was
3231 * due to a memory error in a buffer - got to
3232 * do a fair bit of tidying first
3233 */
3234 if (bgep->progress & PROGRESS_KSTATS) {
3235 bge_fini_kstats(bgep);
3236 bgep->progress &= ~PROGRESS_KSTATS;
3237 }
3238 if (bgep->progress & PROGRESS_INTR) {
3239 bge_intr_disable(bgep);
3240 rw_enter(bgep->errlock, RW_WRITER);
3241 bge_fini_rings(bgep);
3242 rw_exit(bgep->errlock);
3243 bgep->progress &= ~PROGRESS_INTR;
3244 }
3245 if (bgep->progress & PROGRESS_BUFS) {
3246 bge_free_bufs(bgep);
3247 bgep->progress &= ~PROGRESS_BUFS;
3248 }
3249 bgep->bge_dma_error = B_FALSE;
3250 }
3251 }
3252 } else
3253 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3254 }
3255
3256 /*
3257 * Poll for completion of chip's ROM firmware; also, at least on the
3258 * first time through, find and return the hardware MAC address, if any.
3259 */
3260 static uint64_t bge_poll_firmware(bge_t *bgep);
3261 #pragma no_inline(bge_poll_firmware)
3262
3263 static uint64_t
bge_poll_firmware(bge_t * bgep)3264 bge_poll_firmware(bge_t *bgep)
3265 {
3266 uint64_t magic;
3267 uint64_t mac;
3268 uint32_t gen, val;
3269 uint32_t i;
3270
3271 /*
3272 * Step 19: poll for firmware completion (GENCOMM port set
3273 * to the ones complement of T3_MAGIC_NUMBER).
3274 *
3275 * While we're at it, we also read the MAC address register;
3276 * at some stage the firmware will load this with the
3277 * factory-set value.
3278 *
3279 * When both the magic number and the MAC address are set,
3280 * we're done; but we impose a time limit of one second
3281 * (1000*1000us) in case the firmware fails in some fashion
3282 * or the SEEPROM that provides that MAC address isn't fitted.
3283 *
3284 * After the first time through (chip state != INITIAL), we
3285 * don't need the MAC address to be set (we've already got it
3286 * or not, from the first time), so we don't wait for it, but
3287 * we still have to wait for the T3_MAGIC_NUMBER.
3288 *
3289 * Note: the magic number is only a 32-bit quantity, but the NIC
3290 * memory is 64-bit (and big-endian) internally. Addressing the
3291 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3292 * it work correctly on both big- and little-endian hosts.
3293 */
3294 if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3295 MHCR_CHIP_ASIC_REV_5906) {
3296 for (i = 0; i < 1000; ++i) {
3297 drv_usecwait(1000);
3298 val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3299 if (val & VCPU_INIT_DONE)
3300 break;
3301 }
3302 BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3303 (void *)bgep, i));
3304 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3305 } else {
3306 for (i = 0; i < 1000; ++i) {
3307 drv_usecwait(1000);
3308 gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3309 if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3310 drv_usecwait(100000);
3311 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3312 #ifdef BGE_IPMI_ASF
3313 if (!bgep->asf_enabled) {
3314 #endif
3315 if (gen != ~T3_MAGIC_NUMBER)
3316 continue;
3317 #ifdef BGE_IPMI_ASF
3318 }
3319 #endif
3320 if (mac != 0ULL)
3321 break;
3322 if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3323 break;
3324 }
3325 }
3326
3327 magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3328 BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3329 (void *)bgep, gen, i));
3330 BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3331 mac, magic));
3332
3333 return (mac);
3334 }
3335
3336 /*
3337 * Maximum times of trying to get the NVRAM access lock
3338 * by calling bge_nvmem_acquire()
3339 */
3340 #define MAX_TRY_NVMEM_ACQUIRE 10000
3341
3342 #ifdef BGE_IPMI_ASF
3343 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3344 #else
3345 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3346 #endif
3347 #pragma no_inline(bge_chip_reset)
3348
3349 int
3350 #ifdef BGE_IPMI_ASF
bge_chip_reset(bge_t * bgep,boolean_t enable_dma,uint_t asf_mode)3351 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3352 #else
3353 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3354 #endif
3355 {
3356 chip_id_t chipid;
3357 uint64_t mac;
3358 uint64_t magic;
3359 uint32_t modeflags;
3360 uint32_t mhcr;
3361 uint32_t sx0;
3362 uint32_t i, tries;
3363 #ifdef BGE_IPMI_ASF
3364 uint32_t mailbox;
3365 #endif
3366 int retval = DDI_SUCCESS;
3367
3368 BGE_TRACE(("bge_chip_reset($%p, %d)",
3369 (void *)bgep, enable_dma));
3370
3371 ASSERT(mutex_owned(bgep->genlock));
3372
3373 BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3374 (void *)bgep, enable_dma, bgep->bge_chip_state));
3375
3376 /*
3377 * Do we need to stop the chip cleanly before resetting?
3378 */
3379 switch (bgep->bge_chip_state) {
3380 default:
3381 _NOTE(NOTREACHED)
3382 return (DDI_FAILURE);
3383
3384 case BGE_CHIP_INITIAL:
3385 case BGE_CHIP_STOPPED:
3386 case BGE_CHIP_RESET:
3387 break;
3388
3389 case BGE_CHIP_RUNNING:
3390 case BGE_CHIP_ERROR:
3391 case BGE_CHIP_FAULT:
3392 bge_chip_stop(bgep, B_FALSE);
3393 break;
3394 }
3395
3396 #ifdef BGE_IPMI_ASF
3397 if (bgep->asf_enabled) {
3398 #ifdef __sparc
3399 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3400 MHCR_ENABLE_TAGGED_STATUS_MODE |
3401 MHCR_MASK_INTERRUPT_MODE |
3402 MHCR_MASK_PCI_INT_OUTPUT |
3403 MHCR_CLEAR_INTERRUPT_INTA |
3404 MHCR_ENABLE_ENDIAN_WORD_SWAP |
3405 MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3406 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
3407 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3408 0);
3409 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3410 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3411 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3412 MEMORY_ARBITER_ENABLE);
3413 #endif
3414 if (asf_mode == ASF_MODE_INIT) {
3415 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3416 } else if (asf_mode == ASF_MODE_SHUTDOWN) {
3417 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3418 }
3419 }
3420 #endif
3421 /*
3422 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3423 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3424 *
3425 * Before reset Core clock,it is
3426 * also required to initialize the Memory Arbiter as specified in step9
3427 * and Misc Host Control Register as specified in step-13
3428 * Step 4-5: reset Core clock & wait for completion
3429 * Steps 6-8: are done by bge_chip_cfg_init()
3430 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3431 */
3432 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3433 retval = DDI_FAILURE;
3434
3435 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3436 MHCR_ENABLE_TAGGED_STATUS_MODE |
3437 MHCR_MASK_INTERRUPT_MODE |
3438 MHCR_MASK_PCI_INT_OUTPUT |
3439 MHCR_CLEAR_INTERRUPT_INTA;
3440 #ifdef _BIG_ENDIAN
3441 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3442 #endif /* _BIG_ENDIAN */
3443 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
3444 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, 0);
3445 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3446 #ifdef BGE_IPMI_ASF
3447 if (bgep->asf_enabled)
3448 bgep->asf_wordswapped = B_FALSE;
3449 #endif
3450 /*
3451 * NVRAM Corruption Workaround
3452 */
3453 for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3454 if (bge_nvmem_acquire(bgep) != EAGAIN)
3455 break;
3456 if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3457 BGE_DEBUG(("%s: fail to acquire nvram lock",
3458 bgep->ifname));
3459
3460 #ifdef BGE_IPMI_ASF
3461 if (!bgep->asf_enabled) {
3462 #endif
3463 magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3464 bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3465 #ifdef BGE_IPMI_ASF
3466 }
3467 #endif
3468
3469 if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3470 retval = DDI_FAILURE;
3471 bge_chip_cfg_init(bgep, &chipid, enable_dma);
3472
3473 /*
3474 * Step 8a: This may belong elsewhere, but BCM5721 needs
3475 * a bit set to avoid a fifo overflow/underflow bug.
3476 */
3477 if ((bgep->chipid.chip_label == 5721) ||
3478 (bgep->chipid.chip_label == 5751) ||
3479 (bgep->chipid.chip_label == 5752) ||
3480 (bgep->chipid.chip_label == 5755) ||
3481 (bgep->chipid.chip_label == 5756) ||
3482 (bgep->chipid.chip_label == 5789) ||
3483 (bgep->chipid.chip_label == 5906))
3484 bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3485
3486
3487 /*
3488 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3489 * not be changed.
3490 */
3491 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3492 retval = DDI_FAILURE;
3493
3494 /*
3495 * Steps 10-11: configure PIO endianness options and
3496 * enable indirect register access -- already done
3497 * Steps 12-13: enable writing to the PCI state & clock
3498 * control registers -- not required; we aren't going to
3499 * use those features.
3500 * Steps 14-15: Configure DMA endianness options. See
3501 * the comments on the setting of the MHCR above.
3502 */
3503 #ifdef _BIG_ENDIAN
3504 modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3505 MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3506 #else
3507 modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3508 #endif /* _BIG_ENDIAN */
3509 #ifdef BGE_IPMI_ASF
3510 if (bgep->asf_enabled)
3511 modeflags |= MODE_HOST_STACK_UP;
3512 #endif
3513 bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3514
3515 #ifdef BGE_IPMI_ASF
3516 if (bgep->asf_enabled) {
3517 #ifdef __sparc
3518 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3519 MEMORY_ARBITER_ENABLE |
3520 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3521 #endif
3522
3523 #ifdef BGE_NETCONSOLE
3524 if (!bgep->asf_newhandshake) {
3525 if ((asf_mode == ASF_MODE_INIT) ||
3526 (asf_mode == ASF_MODE_POST_INIT)) {
3527 bge_asf_post_reset_old_mode(bgep,
3528 BGE_INIT_RESET);
3529 } else {
3530 bge_asf_post_reset_old_mode(bgep,
3531 BGE_SHUTDOWN_RESET);
3532 }
3533 }
3534 #endif
3535
3536 /* Wait for NVRAM init */
3537 i = 0;
3538 drv_usecwait(5000);
3539 mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3540
3541 while ((mailbox != (uint32_t)
3542 ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3543 (i < 10000)) {
3544 drv_usecwait(100);
3545 mailbox = bge_nic_get32(bgep,
3546 BGE_FIRMWARE_MAILBOX);
3547 i++;
3548 }
3549
3550 #ifndef BGE_NETCONSOLE
3551 if (!bgep->asf_newhandshake) {
3552 if ((asf_mode == ASF_MODE_INIT) ||
3553 (asf_mode == ASF_MODE_POST_INIT)) {
3554
3555 bge_asf_post_reset_old_mode(bgep,
3556 BGE_INIT_RESET);
3557 } else {
3558 bge_asf_post_reset_old_mode(bgep,
3559 BGE_SHUTDOWN_RESET);
3560 }
3561 }
3562 #endif
3563 }
3564 #endif
3565 /*
3566 * Steps 16-17: poll for firmware completion
3567 */
3568 mac = bge_poll_firmware(bgep);
3569
3570 /*
3571 * Step 18: enable external memory -- doesn't apply.
3572 *
3573 * However we take the opportunity to set the MLCR anyway, as
3574 * this register also controls the SEEPROM auto-access method
3575 * which we may want to use later ...
3576 *
3577 * The proper value here depends on the way the chip is wired
3578 * into the circuit board, as this register *also* controls which
3579 * of the "Miscellaneous I/O" pins are driven as outputs and the
3580 * values driven onto those pins!
3581 *
3582 * See also step 74 in the PRM ...
3583 */
3584 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3585 bgep->chipid.bge_mlcr_default);
3586 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3587
3588 /*
3589 * Step 20: clear the Ethernet MAC mode register
3590 */
3591 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3592
3593 /*
3594 * Step 21: restore cache-line-size, latency timer, and
3595 * subsystem ID registers to their original values (not
3596 * those read into the local structure <chipid>, 'cos
3597 * that was after they were cleared by the RESET).
3598 *
3599 * Note: the Subsystem Vendor/Device ID registers are not
3600 * directly writable in config space, so we use the shadow
3601 * copy in "Page Zero" of register space to restore them
3602 * both in one go ...
3603 */
3604 pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3605 bgep->chipid.clsize);
3606 pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3607 bgep->chipid.latency);
3608 bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3609 (bgep->chipid.subdev << 16) | bgep->chipid.subven);
3610
3611 /*
3612 * The SEND INDEX registers should be reset to zero by the
3613 * global chip reset; if they're not, there'll be trouble
3614 * later on.
3615 */
3616 sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3617 if (sx0 != 0) {
3618 BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3619 bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3620 retval = DDI_FAILURE;
3621 }
3622
3623 /* Enable MSI code */
3624 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3625 bge_reg_set32(bgep, MSI_MODE_REG,
3626 MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3627
3628 /*
3629 * On the first time through, save the factory-set MAC address
3630 * (if any). If bge_poll_firmware() above didn't return one
3631 * (from a chip register) consider looking in the attached NV
3632 * memory device, if any. Once we have it, we save it in both
3633 * register-image (64-bit) and byte-array forms. All-zero and
3634 * all-one addresses are not valid, and we refuse to stash those.
3635 */
3636 if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3637 if (mac == 0ULL)
3638 mac = bge_get_nvmac(bgep);
3639 if (mac != 0ULL && mac != ~0ULL) {
3640 bgep->chipid.hw_mac_addr = mac;
3641 for (i = ETHERADDRL; i-- != 0; ) {
3642 bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3643 mac >>= 8;
3644 }
3645 bgep->chipid.vendor_addr.set = B_TRUE;
3646 }
3647 }
3648
3649 #ifdef BGE_IPMI_ASF
3650 if (bgep->asf_enabled && bgep->asf_newhandshake) {
3651 if (asf_mode != ASF_MODE_NONE) {
3652 if ((asf_mode == ASF_MODE_INIT) ||
3653 (asf_mode == ASF_MODE_POST_INIT)) {
3654
3655 bge_asf_post_reset_new_mode(bgep,
3656 BGE_INIT_RESET);
3657 } else {
3658 bge_asf_post_reset_new_mode(bgep,
3659 BGE_SHUTDOWN_RESET);
3660 }
3661 }
3662 }
3663 #endif
3664
3665 /*
3666 * Record the new state
3667 */
3668 bgep->chip_resets += 1;
3669 bgep->bge_chip_state = BGE_CHIP_RESET;
3670 return (retval);
3671 }
3672
3673 /*
3674 * bge_chip_start() -- start the chip transmitting and/or receiving,
3675 * including enabling interrupts
3676 */
3677 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3678 #pragma no_inline(bge_chip_start)
3679
3680 void
bge_chip_coalesce_update(bge_t * bgep)3681 bge_chip_coalesce_update(bge_t *bgep)
3682 {
3683 bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
3684 bgep->chipid.tx_count_norm);
3685 bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
3686 bgep->chipid.tx_ticks_norm);
3687 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
3688 bgep->chipid.rx_count_norm);
3689 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
3690 bgep->chipid.rx_ticks_norm);
3691 }
3692
3693 int
bge_chip_start(bge_t * bgep,boolean_t reset_phys)3694 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3695 {
3696 uint32_t coalmode;
3697 uint32_t ledctl;
3698 uint32_t mtu;
3699 uint32_t maxring;
3700 uint32_t stats_mask;
3701 uint32_t dma_wrprio;
3702 uint64_t ring;
3703 uint32_t regval;
3704 int retval = DDI_SUCCESS;
3705
3706 BGE_TRACE(("bge_chip_start($%p)",
3707 (void *)bgep));
3708
3709 ASSERT(mutex_owned(bgep->genlock));
3710 ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3711
3712 /*
3713 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3714 * The document specifies 95 separate steps to fully
3715 * initialise the chip!!!!
3716 *
3717 * The reset code above has already got us as far as step
3718 * 21, so we continue with ...
3719 *
3720 * Step 22: clear the MAC statistics block
3721 * (0x0300-0x0aff in NIC-local memory)
3722 */
3723 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3724 bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3725 NIC_MEM_STATISTICS_SIZE);
3726
3727 /*
3728 * Step 23: clear the status block (in host memory)
3729 */
3730 DMA_ZERO(bgep->status_block);
3731
3732 /*
3733 * Step 24: set DMA read/write control register
3734 */
3735 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3736 bgep->chipid.bge_dma_rwctrl);
3737
3738 /*
3739 * Step 25: Configure DMA endianness -- already done (16/17)
3740 * Step 26: Configure Host-Based Send Rings
3741 * Step 27: Indicate Host Stack Up
3742 */
3743 bge_reg_set32(bgep, MODE_CONTROL_REG,
3744 MODE_HOST_SEND_BDS |
3745 MODE_HOST_STACK_UP);
3746
3747 /*
3748 * Step 28: Configure checksum options:
3749 * Solaris supports the hardware default checksum options.
3750 *
3751 * Workaround for Incorrect pseudo-header checksum calculation.
3752 */
3753 if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3754 bge_reg_set32(bgep, MODE_CONTROL_REG,
3755 MODE_SEND_NO_PSEUDO_HDR_CSUM);
3756
3757 /*
3758 * Step 29: configure Timer Prescaler. The value is always the
3759 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3760 * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit
3761 * for the whole chip!
3762 */
3763 regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
3764 regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
3765 bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
3766
3767 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3768 drv_usecwait(40);
3769 /* put PHY into ready state */
3770 bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3771 (void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3772 drv_usecwait(40);
3773 }
3774
3775 /*
3776 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3777 *
3778 * If the mbuf_length is specified as 0, we just leave these at
3779 * their hardware defaults, rather than explicitly setting them.
3780 * As the Broadcom HRM,driver better not change the parameters
3781 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3782 */
3783 if ((bgep->chipid.mbuf_length != 0) &&
3784 (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3785 bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3786 bgep->chipid.mbuf_base);
3787 bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3788 bgep->chipid.mbuf_length);
3789 bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3790 DMAD_POOL_BASE_DEFAULT);
3791 bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3792 DMAD_POOL_LENGTH_DEFAULT);
3793 }
3794
3795 /*
3796 * Step 32: configure MAC memory pool watermarks
3797 */
3798 bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3799 bgep->chipid.mbuf_lo_water_rdma);
3800 bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3801 bgep->chipid.mbuf_lo_water_rmac);
3802 bge_reg_put32(bgep, MBUF_HIWAT_REG,
3803 bgep->chipid.mbuf_hi_water);
3804
3805 /*
3806 * Step 33: configure DMA resource watermarks
3807 */
3808 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3809 bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3810 bge_dmad_lo_water);
3811 bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3812 bge_dmad_hi_water);
3813 }
3814 bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3815
3816 /*
3817 * Steps 34-36: enable buffer manager & internal h/w queues
3818 */
3819 if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3820 STATE_MACHINE_ATTN_ENABLE_BIT))
3821 retval = DDI_FAILURE;
3822 if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3823 retval = DDI_FAILURE;
3824
3825 /*
3826 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3827 */
3828 if (DEVICE_5717_SERIES_CHIPSETS(bgep)) {
3829 buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
3830 bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
3831 brp->desc.cookie.dmac_laddress);
3832 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
3833 (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
3834 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
3835 NIC_MEM_SHADOW_BUFF_STD_5717);
3836 } else
3837 bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3838 &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3839
3840 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3841 bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3842 &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3843 bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3844 &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3845 }
3846
3847 /*
3848 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3849 */
3850 bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3851 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3852 bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3853 bge_replenish_jumbo);
3854 bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3855 bge_replenish_mini);
3856 }
3857
3858 /*
3859 * Steps 41-43: clear Send Ring Producer Indices and initialise
3860 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3861 */
3862 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3863 maxring = BGE_SEND_RINGS_MAX;
3864 else
3865 maxring = BGE_SEND_RINGS_MAX_5705;
3866 for (ring = 0; ring < maxring; ++ring) {
3867 bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3868 bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3869 bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3870 &bgep->send[ring].hw_rcb);
3871 }
3872
3873 /*
3874 * Steps 44-45: initialise Receive Return Rings
3875 * (0x0200-0x02ff in NIC-local memory)
3876 */
3877 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3878 maxring = BGE_RECV_RINGS_MAX;
3879 else
3880 maxring = BGE_RECV_RINGS_MAX_5705;
3881 for (ring = 0; ring < maxring; ++ring)
3882 bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3883 &bgep->recv[ring].hw_rcb);
3884
3885 /*
3886 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3887 */
3888 bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3889 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3890 bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3891 bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3892 }
3893 /*
3894 * Step 47: configure the MAC unicast address
3895 * Step 48: configure the random backoff seed
3896 * Step 96: set up multicast filters
3897 */
3898 #ifdef BGE_IPMI_ASF
3899 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3900 #else
3901 if (bge_chip_sync(bgep) == DDI_FAILURE)
3902 #endif
3903 retval = DDI_FAILURE;
3904
3905 /*
3906 * Step 49: configure the MTU
3907 */
3908 mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3909 bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3910
3911 /*
3912 * Step 50: configure the IPG et al
3913 */
3914 bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3915
3916 /*
3917 * Step 51: configure the default Rx Return Ring
3918 */
3919 bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3920
3921 /*
3922 * Steps 52-54: configure Receive List Placement,
3923 * and enable Receive List Placement Statistics
3924 */
3925 bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3926 RCV_LP_CONFIG(bgep->chipid.rx_rings));
3927 switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3928 case MHCR_CHIP_ASIC_REV_5700:
3929 case MHCR_CHIP_ASIC_REV_5701:
3930 case MHCR_CHIP_ASIC_REV_5703:
3931 case MHCR_CHIP_ASIC_REV_5704:
3932 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3933 break;
3934 case MHCR_CHIP_ASIC_REV_5705:
3935 break;
3936 default:
3937 stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3938 stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3939 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3940 break;
3941 }
3942 bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3943
3944 if (bgep->chipid.rx_rings > 1)
3945 bge_init_recv_rule(bgep);
3946
3947 /*
3948 * Steps 55-56: enable Send Data Initiator Statistics
3949 */
3950 bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3951 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3952 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3953 SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3954 } else {
3955 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3956 SEND_INIT_STATS_ENABLE);
3957 }
3958 /*
3959 * Steps 57-58: stop (?) the Host Coalescing Engine
3960 */
3961 if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3962 retval = DDI_FAILURE;
3963
3964 /*
3965 * Steps 59-62: initialise Host Coalescing parameters
3966 */
3967 bge_chip_coalesce_update(bgep);
3968 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3969 bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3970 bge_tx_count_intr);
3971 bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3972 bge_tx_ticks_intr);
3973 bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3974 bge_rx_count_intr);
3975 bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3976 bge_rx_ticks_intr);
3977 }
3978
3979 /*
3980 * Steps 63-64: initialise status block & statistics
3981 * host memory addresses
3982 * The statistic block does not exist in some chipsets
3983 * Step 65: initialise Statistics Coalescing Tick Counter
3984 */
3985 bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3986 bgep->status_block.cookie.dmac_laddress);
3987
3988 /*
3989 * Steps 66-67: initialise status block & statistics
3990 * NIC-local memory addresses
3991 */
3992 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3993 bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3994 bgep->statistics.cookie.dmac_laddress);
3995 bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3996 STATISTICS_TICKS_DEFAULT);
3997 bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3998 NIC_MEM_STATUS_BLOCK);
3999 bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4000 NIC_MEM_STATISTICS);
4001 }
4002
4003 /*
4004 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4005 * Completion Engine, the Receive List Placement Engine, and the
4006 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4007 * and BCM5715.
4008 */
4009 if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4010 bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4011 coalmode = COALESCE_64_BYTE_STATUS;
4012 else
4013 coalmode = 0;
4014 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
4015 coalmode = COALESCE_CLR_TICKS_RX;
4016 if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4017 retval = DDI_FAILURE;
4018 if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4019 STATE_MACHINE_ATTN_ENABLE_BIT))
4020 retval = DDI_FAILURE;
4021 if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4022 retval = DDI_FAILURE;
4023
4024 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4025 if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4026 STATE_MACHINE_ATTN_ENABLE_BIT))
4027 retval = DDI_FAILURE;
4028
4029 /*
4030 * Step 72: Enable MAC DMA engines
4031 * Step 73: Clear & enable MAC statistics
4032 */
4033 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4034 ETHERNET_MODE_ENABLE_FHDE |
4035 ETHERNET_MODE_ENABLE_RDE |
4036 ETHERNET_MODE_ENABLE_TDE);
4037 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4038 ETHERNET_MODE_ENABLE_TX_STATS |
4039 ETHERNET_MODE_ENABLE_RX_STATS |
4040 ETHERNET_MODE_CLEAR_TX_STATS |
4041 ETHERNET_MODE_CLEAR_RX_STATS);
4042
4043 /*
4044 * Step 74: configure the MLCR (Miscellaneous Local Control
4045 * Register); not required, as we set up the MLCR in step 10
4046 * (part of the reset code) above.
4047 *
4048 * Step 75: clear Interrupt Mailbox 0
4049 */
4050 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4051
4052 /*
4053 * Steps 76-87: Gentlemen, start your engines ...
4054 *
4055 * Enable the DMA Completion Engine, the Write DMA Engine,
4056 * the Read DMA Engine, Receive Data Completion Engine,
4057 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4058 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4059 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4060 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4061 *
4062 * Beware exhaust fumes?
4063 */
4064 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4065 if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4066 retval = DDI_FAILURE;
4067 dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4068 ALL_DMA_ATTN_BITS;
4069 if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4070 MHCR_CHIP_ASIC_REV_5755) ||
4071 (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4072 MHCR_CHIP_ASIC_REV_5723) ||
4073 (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
4074 MHCR_CHIP_ASIC_REV_5906)) {
4075 dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4076 }
4077 if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4078 dma_wrprio))
4079 retval = DDI_FAILURE;
4080 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4081 DEVICE_5717_SERIES_CHIPSETS(bgep))
4082 bge_dma_rdprio = 0;
4083 if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4084 (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4085 retval = DDI_FAILURE;
4086 if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4087 STATE_MACHINE_ATTN_ENABLE_BIT))
4088 retval = DDI_FAILURE;
4089 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4090 if (!bge_chip_enable_engine(bgep,
4091 MBUF_CLUSTER_FREE_MODE_REG, 0))
4092 retval = DDI_FAILURE;
4093 if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4094 retval = DDI_FAILURE;
4095 if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4096 STATE_MACHINE_ATTN_ENABLE_BIT))
4097 retval = DDI_FAILURE;
4098 if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4099 RCV_BD_DISABLED_RING_ATTN))
4100 retval = DDI_FAILURE;
4101 if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4102 RCV_DATA_BD_ILL_RING_ATTN))
4103 retval = DDI_FAILURE;
4104 if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4105 retval = DDI_FAILURE;
4106 if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4107 STATE_MACHINE_ATTN_ENABLE_BIT))
4108 retval = DDI_FAILURE;
4109 if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4110 STATE_MACHINE_ATTN_ENABLE_BIT))
4111 retval = DDI_FAILURE;
4112
4113 /*
4114 * Step 88: download firmware -- doesn't apply
4115 * Steps 89-90: enable Transmit & Receive MAC Engines
4116 */
4117 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
4118 retval = DDI_FAILURE;
4119 #ifdef BGE_IPMI_ASF
4120 if (!bgep->asf_enabled) {
4121 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4122 RECEIVE_MODE_KEEP_VLAN_TAG))
4123 retval = DDI_FAILURE;
4124 } else {
4125 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4126 retval = DDI_FAILURE;
4127 }
4128 #else
4129 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4130 RECEIVE_MODE_KEEP_VLAN_TAG))
4131 retval = DDI_FAILURE;
4132 #endif
4133
4134 /*
4135 * Step 91: disable auto-polling of PHY status
4136 */
4137 bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4138
4139 /*
4140 * Step 92: configure D0 power state (not required)
4141 * Step 93: initialise LED control register ()
4142 */
4143 ledctl = LED_CONTROL_DEFAULT;
4144 switch (bgep->chipid.device) {
4145 case DEVICE_ID_5700:
4146 case DEVICE_ID_5700x:
4147 case DEVICE_ID_5701:
4148 /*
4149 * Switch to 5700 (MAC) mode on these older chips
4150 */
4151 ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4152 ledctl |= LED_CONTROL_LED_MODE_5700;
4153 break;
4154
4155 default:
4156 break;
4157 }
4158 bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4159
4160 /*
4161 * Step 94: activate link
4162 */
4163 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4164
4165 /*
4166 * Step 95: set up physical layer (PHY/SerDes)
4167 * restart autoneg (if required)
4168 */
4169 if (reset_phys)
4170 if (bge_phys_update(bgep) == DDI_FAILURE)
4171 retval = DDI_FAILURE;
4172
4173 /*
4174 * Extra step (DSG): hand over all the Receive Buffers to the chip
4175 */
4176 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4177 bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4178 bgep->buff[ring].rf_next);
4179
4180 /*
4181 * MSI bits:The least significant MSI 16-bit word.
4182 * ISR will be triggered different.
4183 */
4184 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4185 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4186
4187 /*
4188 * Extra step (DSG): select which interrupts are enabled
4189 *
4190 * Program the Ethernet MAC engine to signal attention on
4191 * Link Change events, then enable interrupts on MAC, DMA,
4192 * and FLOW attention signals.
4193 */
4194 bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4195 ETHERNET_EVENT_LINK_INT |
4196 ETHERNET_STATUS_PCS_ERROR_INT);
4197 #ifdef BGE_IPMI_ASF
4198 if (bgep->asf_enabled) {
4199 bge_reg_set32(bgep, MODE_CONTROL_REG,
4200 MODE_INT_ON_FLOW_ATTN |
4201 MODE_INT_ON_DMA_ATTN |
4202 MODE_HOST_STACK_UP|
4203 MODE_INT_ON_MAC_ATTN);
4204 } else {
4205 #endif
4206 bge_reg_set32(bgep, MODE_CONTROL_REG,
4207 MODE_INT_ON_FLOW_ATTN |
4208 MODE_INT_ON_DMA_ATTN |
4209 MODE_INT_ON_MAC_ATTN);
4210 #ifdef BGE_IPMI_ASF
4211 }
4212 #endif
4213
4214 /*
4215 * Step 97: enable PCI interrupts!!!
4216 */
4217 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4218 bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4219 bgep->chipid.mask_pci_int);
4220
4221 /*
4222 * All done!
4223 */
4224 bgep->bge_chip_state = BGE_CHIP_RUNNING;
4225 return (retval);
4226 }
4227
4228
4229 /*
4230 * ========== Hardware interrupt handler ==========
4231 */
4232
4233 #undef BGE_DBG
4234 #define BGE_DBG BGE_DBG_INT /* debug flag for this code */
4235
4236 /*
4237 * Sync the status block, then atomically clear the specified bits in
4238 * the <flags-and-tag> field of the status block.
4239 * the <flags> word of the status block, returning the value of the
4240 * <tag> and the <flags> before the bits were cleared.
4241 */
4242 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4243 #pragma inline(bge_status_sync)
4244
4245 static int
bge_status_sync(bge_t * bgep,uint64_t bits,uint64_t * flags)4246 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4247 {
4248 bge_status_t *bsp;
4249 int retval;
4250
4251 BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4252 (void *)bgep, bits));
4253
4254 ASSERT(bgep->bge_guard == BGE_GUARD);
4255
4256 DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4257 retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4258 if (retval != DDI_FM_OK)
4259 return (retval);
4260
4261 bsp = DMA_VPTR(bgep->status_block);
4262 *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4263
4264 BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4265 (void *)bgep, bits, *flags));
4266
4267 return (retval);
4268 }
4269
4270 void bge_wake_factotum(bge_t *bgep);
4271 #pragma inline(bge_wake_factotum)
4272
4273 void
bge_wake_factotum(bge_t * bgep)4274 bge_wake_factotum(bge_t *bgep)
4275 {
4276 mutex_enter(bgep->softintrlock);
4277 if (bgep->factotum_flag == 0) {
4278 bgep->factotum_flag = 1;
4279 ddi_trigger_softintr(bgep->factotum_id);
4280 }
4281 mutex_exit(bgep->softintrlock);
4282 }
4283
4284 /*
4285 * bge_intr() -- handle chip interrupts
4286 */
4287 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4288 #pragma no_inline(bge_intr)
4289
4290 uint_t
bge_intr(caddr_t arg1,caddr_t arg2)4291 bge_intr(caddr_t arg1, caddr_t arg2)
4292 {
4293 bge_t *bgep = (void *)arg1; /* private device info */
4294 bge_status_t *bsp;
4295 uint64_t flags;
4296 uint32_t regval;
4297 uint_t result;
4298 int retval, loop_cnt = 0;
4299
4300 BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4301
4302 /*
4303 * GLD v2 checks that s/w setup is complete before passing
4304 * interrupts to this routine, thus eliminating the old
4305 * (and well-known) race condition around ddi_add_intr()
4306 */
4307 ASSERT(bgep->progress & PROGRESS_HWINT);
4308
4309 result = DDI_INTR_UNCLAIMED;
4310 mutex_enter(bgep->genlock);
4311
4312 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4313 /*
4314 * Check whether chip's says it's asserting #INTA;
4315 * if not, don't process or claim the interrupt.
4316 *
4317 * Note that the PCI signal is active low, so the
4318 * bit is *zero* when the interrupt is asserted.
4319 */
4320 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4321 if (!(DEVICE_5717_SERIES_CHIPSETS(bgep)) &&
4322 (regval & MLCR_INTA_STATE)) {
4323 if (bge_check_acc_handle(bgep, bgep->io_handle)
4324 != DDI_FM_OK)
4325 goto chip_stop;
4326 mutex_exit(bgep->genlock);
4327 return (result);
4328 }
4329
4330 /*
4331 * Block further PCI interrupts ...
4332 */
4333 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4334 bgep->chipid.mask_pci_int);
4335
4336 } else {
4337 /*
4338 * Check MSI status
4339 */
4340 regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4341 if (regval & MSI_ERROR_ATTENTION) {
4342 BGE_REPORT((bgep, "msi error attention,"
4343 " status=0x%x", regval));
4344 bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4345 }
4346 }
4347
4348 result = DDI_INTR_CLAIMED;
4349
4350 BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4351
4352 /*
4353 * Sync the status block and grab the flags-n-tag from it.
4354 * We count the number of interrupts where there doesn't
4355 * seem to have been a DMA update of the status block; if
4356 * it *has* been updated, the counter will be cleared in
4357 * the while() loop below ...
4358 */
4359 bgep->missed_dmas += 1;
4360 bsp = DMA_VPTR(bgep->status_block);
4361 for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4362 if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4363 /*
4364 * bge_chip_stop() may have freed dma area etc
4365 * while we were in this interrupt handler -
4366 * better not call bge_status_sync()
4367 */
4368 (void) bge_check_acc_handle(bgep,
4369 bgep->io_handle);
4370 mutex_exit(bgep->genlock);
4371 return (DDI_INTR_CLAIMED);
4372 }
4373 retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4374 &flags);
4375 if (retval != DDI_FM_OK) {
4376 bgep->bge_dma_error = B_TRUE;
4377 goto chip_stop;
4378 }
4379
4380 if (!(flags & STATUS_FLAG_UPDATED))
4381 break;
4382
4383 /*
4384 * Tell the chip that we're processing the interrupt
4385 */
4386 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4387 INTERRUPT_MBOX_DISABLE(flags));
4388 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4389 DDI_FM_OK)
4390 goto chip_stop;
4391
4392 /*
4393 * Drop the mutex while we:
4394 * Receive any newly-arrived packets
4395 * Recycle any newly-finished send buffers
4396 */
4397 bgep->bge_intr_running = B_TRUE;
4398 mutex_exit(bgep->genlock);
4399 bge_receive(bgep, bsp);
4400 (void) bge_recycle(bgep, bsp);
4401 mutex_enter(bgep->genlock);
4402 bgep->bge_intr_running = B_FALSE;
4403
4404 /*
4405 * Tell the chip we've finished processing, and
4406 * give it the tag that we got from the status
4407 * block earlier, so that it knows just how far
4408 * we've gone. If it's got more for us to do,
4409 * it will now update the status block and try
4410 * to assert an interrupt (but we've got the
4411 * #INTA blocked at present). If we see the
4412 * update, we'll loop around to do some more.
4413 * Eventually we'll get out of here ...
4414 */
4415 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4416 INTERRUPT_MBOX_ENABLE(flags));
4417 if (bgep->chipid.pci_type == BGE_PCI_E)
4418 (void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4419 bgep->missed_dmas = 0;
4420 }
4421
4422 /*
4423 * Check for exceptional conditions that we need to handle
4424 *
4425 * Link status changed
4426 * Status block not updated
4427 */
4428 if (flags & STATUS_FLAG_LINK_CHANGED)
4429 bge_wake_factotum(bgep);
4430
4431 if (bgep->missed_dmas) {
4432 /*
4433 * Probably due to the internal status tag not
4434 * being reset. Force a status block update now;
4435 * this should ensure that we get an update and
4436 * a new interrupt. After that, we should be in
4437 * sync again ...
4438 */
4439 BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4440 "not updated?", flags));
4441 bgep->missed_updates++;
4442 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4443 COALESCE_NOW);
4444
4445 if (bgep->missed_dmas >= bge_dma_miss_limit) {
4446 /*
4447 * If this happens multiple times in a row,
4448 * it means DMA is just not working. Maybe
4449 * the chip's failed, or maybe there's a
4450 * problem on the PCI bus or in the host-PCI
4451 * bridge (Tomatillo).
4452 *
4453 * At all events, we want to stop further
4454 * interrupts and let the recovery code take
4455 * over to see whether anything can be done
4456 * about it ...
4457 */
4458 bge_fm_ereport(bgep,
4459 DDI_FM_DEVICE_BADINT_LIMIT);
4460 goto chip_stop;
4461 }
4462 }
4463
4464 /*
4465 * Reenable assertion of #INTA, unless there's a DMA fault
4466 */
4467 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4468 bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4469 bgep->chipid.mask_pci_int);
4470 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4471 DDI_FM_OK)
4472 goto chip_stop;
4473 }
4474
4475 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4476 goto chip_stop;
4477
4478 mutex_exit(bgep->genlock);
4479 return (result);
4480
4481 chip_stop:
4482 #ifdef BGE_IPMI_ASF
4483 if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4484 /*
4485 * We must stop ASF heart beat before
4486 * bge_chip_stop(), otherwise some
4487 * computers (ex. IBM HS20 blade
4488 * server) may crash.
4489 */
4490 bge_asf_update_status(bgep);
4491 bge_asf_stop_timer(bgep);
4492 bgep->asf_status = ASF_STAT_STOP;
4493
4494 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4495 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4496 }
4497 #endif
4498 bge_chip_stop(bgep, B_TRUE);
4499 (void) bge_check_acc_handle(bgep, bgep->io_handle);
4500 mutex_exit(bgep->genlock);
4501 return (result);
4502 }
4503
4504 /*
4505 * ========== Factotum, implemented as a softint handler ==========
4506 */
4507
4508 #undef BGE_DBG
4509 #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */
4510
4511 static void bge_factotum_error_handler(bge_t *bgep);
4512 #pragma no_inline(bge_factotum_error_handler)
4513
4514 static void
bge_factotum_error_handler(bge_t * bgep)4515 bge_factotum_error_handler(bge_t *bgep)
4516 {
4517 uint32_t flow;
4518 uint32_t rdma;
4519 uint32_t wdma;
4520 uint32_t tmac;
4521 uint32_t rmac;
4522 uint32_t rxrs;
4523 uint32_t txrs = 0;
4524
4525 ASSERT(mutex_owned(bgep->genlock));
4526
4527 /*
4528 * Read all the registers that show the possible
4529 * reasons for the ERROR bit to be asserted
4530 */
4531 flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4532 rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4533 wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4534 tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4535 rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4536 rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4537 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4538 txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4539
4540 BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4541 (void *)bgep, flow, rdma, wdma));
4542 BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4543 (void *)bgep, tmac, rmac, rxrs, txrs));
4544
4545 /*
4546 * For now, just clear all the errors ...
4547 */
4548 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4549 bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4550 bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4551 bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4552 bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4553 bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4554 bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4555 }
4556
4557 /*
4558 * Handler for hardware link state change.
4559 *
4560 * When this routine is called, the hardware link state has changed
4561 * and the new state is reflected in the param_* variables. Here
4562 * we must update the softstate and reprogram the MAC to match.
4563 */
4564 static void bge_factotum_link_handler(bge_t *bgep);
4565 #pragma no_inline(bge_factotum_link_handler)
4566
4567 static void
bge_factotum_link_handler(bge_t * bgep)4568 bge_factotum_link_handler(bge_t *bgep)
4569 {
4570 ASSERT(mutex_owned(bgep->genlock));
4571
4572 /*
4573 * Update the s/w link_state
4574 */
4575 if (bgep->param_link_up)
4576 bgep->link_state = LINK_STATE_UP;
4577 else
4578 bgep->link_state = LINK_STATE_DOWN;
4579
4580 /*
4581 * Reprogram the MAC modes to match
4582 */
4583 bge_sync_mac_modes(bgep);
4584 }
4585
4586 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4587 #pragma no_inline(bge_factotum_link_check)
4588
4589 static boolean_t
bge_factotum_link_check(bge_t * bgep,int * dma_state)4590 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4591 {
4592 boolean_t check;
4593 uint64_t flags;
4594 uint32_t tmac_status;
4595
4596 ASSERT(mutex_owned(bgep->genlock));
4597
4598 /*
4599 * Get & clear the writable status bits in the Tx status register
4600 * (some bits are write-1-to-clear, others are just readonly).
4601 */
4602 tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4603 bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4604
4605 /*
4606 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4607 */
4608 *dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4609 STATUS_FLAG_LINK_CHANGED, &flags);
4610 if (*dma_state != DDI_FM_OK)
4611 return (B_FALSE);
4612
4613 /*
4614 * Clear any errors flagged in the status block ...
4615 */
4616 if (flags & STATUS_FLAG_ERROR)
4617 bge_factotum_error_handler(bgep);
4618
4619 /*
4620 * We need to check the link status if:
4621 * the status block says there's been a link change
4622 * or there's any discrepancy between the various
4623 * flags indicating the link state (link_state,
4624 * param_link_up, and the LINK STATE bit in the
4625 * Transmit MAC status register).
4626 */
4627 check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4628 switch (bgep->link_state) {
4629 case LINK_STATE_UP:
4630 check |= (bgep->param_link_up == B_FALSE);
4631 check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4632 break;
4633
4634 case LINK_STATE_DOWN:
4635 check |= (bgep->param_link_up != B_FALSE);
4636 check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4637 break;
4638
4639 default:
4640 check = B_TRUE;
4641 break;
4642 }
4643
4644 /*
4645 * If <check> is false, we're sure the link hasn't changed.
4646 * If true, however, it's not yet definitive; we have to call
4647 * bge_phys_check() to determine whether the link has settled
4648 * into a new state yet ... and if it has, then call the link
4649 * state change handler.But when the chip is 5700 in Dell 6650
4650 * ,even if check is false, the link may have changed.So we
4651 * have to call bge_phys_check() to determine the link state.
4652 */
4653 if (check || bgep->chipid.device == DEVICE_ID_5700) {
4654 check = bge_phys_check(bgep);
4655 if (check)
4656 bge_factotum_link_handler(bgep);
4657 }
4658
4659 return (check);
4660 }
4661
4662 /*
4663 * Factotum routine to check for Tx stall, using the 'watchdog' counter
4664 */
4665 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4666 #pragma no_inline(bge_factotum_stall_check)
4667
4668 static boolean_t
bge_factotum_stall_check(bge_t * bgep)4669 bge_factotum_stall_check(bge_t *bgep)
4670 {
4671 uint32_t dogval;
4672 bge_status_t *bsp;
4673 uint64_t now = gethrtime();
4674
4675 if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
4676 return (B_FALSE);
4677
4678 bgep->timestamp = now;
4679
4680 ASSERT(mutex_owned(bgep->genlock));
4681
4682 /*
4683 * Specific check for Tx stall ...
4684 *
4685 * The 'watchdog' counter is incremented whenever a packet
4686 * is queued, reset to 1 when some (but not all) buffers
4687 * are reclaimed, reset to 0 (disabled) when all buffers
4688 * are reclaimed, and shifted left here. If it exceeds the
4689 * threshold value, the chip is assumed to have stalled and
4690 * is put into the ERROR state. The factotum will then reset
4691 * it on the next pass.
4692 *
4693 * All of which should ensure that we don't get into a state
4694 * where packets are left pending indefinitely!
4695 */
4696 dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4697 bsp = DMA_VPTR(bgep->status_block);
4698 if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
4699 return (B_FALSE);
4700
4701 #if !defined(BGE_NETCONSOLE)
4702 BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4703 #endif
4704 bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4705 return (B_TRUE);
4706 }
4707
4708 /*
4709 * The factotum is woken up when there's something to do that we'd rather
4710 * not do from inside a hardware interrupt handler or high-level cyclic.
4711 * Its two main tasks are:
4712 * reset & restart the chip after an error
4713 * check the link status whenever necessary
4714 */
4715 uint_t bge_chip_factotum(caddr_t arg);
4716 #pragma no_inline(bge_chip_factotum)
4717
4718 uint_t
bge_chip_factotum(caddr_t arg)4719 bge_chip_factotum(caddr_t arg)
4720 {
4721 bge_t *bgep;
4722 uint_t result;
4723 boolean_t error;
4724 boolean_t linkchg;
4725 int dma_state;
4726
4727 bgep = (void *)arg;
4728
4729 BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4730
4731 mutex_enter(bgep->softintrlock);
4732 if (bgep->factotum_flag == 0) {
4733 mutex_exit(bgep->softintrlock);
4734 return (DDI_INTR_UNCLAIMED);
4735 }
4736 bgep->factotum_flag = 0;
4737 mutex_exit(bgep->softintrlock);
4738
4739 result = DDI_INTR_CLAIMED;
4740 error = B_FALSE;
4741 linkchg = B_FALSE;
4742
4743 mutex_enter(bgep->genlock);
4744 switch (bgep->bge_chip_state) {
4745 default:
4746 break;
4747
4748 case BGE_CHIP_RUNNING:
4749 linkchg = bge_factotum_link_check(bgep, &dma_state);
4750 error = bge_factotum_stall_check(bgep);
4751 if (dma_state != DDI_FM_OK) {
4752 bgep->bge_dma_error = B_TRUE;
4753 error = B_TRUE;
4754 }
4755 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4756 error = B_TRUE;
4757 if (error)
4758 bgep->bge_chip_state = BGE_CHIP_ERROR;
4759 break;
4760
4761 case BGE_CHIP_ERROR:
4762 error = B_TRUE;
4763 break;
4764
4765 case BGE_CHIP_FAULT:
4766 /*
4767 * Fault detected, time to reset ...
4768 */
4769 if (bge_autorecover) {
4770 if (!(bgep->progress & PROGRESS_BUFS)) {
4771 /*
4772 * if we can't allocate the ring buffers,
4773 * try later
4774 */
4775 if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4776 mutex_exit(bgep->genlock);
4777 return (result);
4778 }
4779 bgep->progress |= PROGRESS_BUFS;
4780 }
4781 if (!(bgep->progress & PROGRESS_INTR)) {
4782 bge_init_rings(bgep);
4783 bge_intr_enable(bgep);
4784 bgep->progress |= PROGRESS_INTR;
4785 }
4786 if (!(bgep->progress & PROGRESS_KSTATS)) {
4787 bge_init_kstats(bgep,
4788 ddi_get_instance(bgep->devinfo));
4789 bgep->progress |= PROGRESS_KSTATS;
4790 }
4791
4792 BGE_REPORT((bgep, "automatic recovery activated"));
4793
4794 if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4795 bgep->bge_chip_state = BGE_CHIP_ERROR;
4796 error = B_TRUE;
4797 }
4798 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4799 DDI_FM_OK) {
4800 bgep->bge_chip_state = BGE_CHIP_ERROR;
4801 error = B_TRUE;
4802 }
4803 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4804 DDI_FM_OK) {
4805 bgep->bge_chip_state = BGE_CHIP_ERROR;
4806 error = B_TRUE;
4807 }
4808 if (error == B_FALSE) {
4809 #ifdef BGE_IPMI_ASF
4810 if (bgep->asf_enabled &&
4811 bgep->asf_status != ASF_STAT_RUN) {
4812 bgep->asf_timeout_id = timeout(
4813 bge_asf_heartbeat, (void *)bgep,
4814 drv_usectohz(
4815 BGE_ASF_HEARTBEAT_INTERVAL));
4816 bgep->asf_status = ASF_STAT_RUN;
4817 }
4818 #endif
4819 if (!bgep->manual_reset) {
4820 ddi_fm_service_impact(bgep->devinfo,
4821 DDI_SERVICE_RESTORED);
4822 }
4823 }
4824 }
4825 break;
4826 }
4827
4828
4829 /*
4830 * If an error is detected, stop the chip now, marking it as
4831 * faulty, so that it will be reset next time through ...
4832 *
4833 * Note that if intr_running is set, then bge_intr() has dropped
4834 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4835 * this point so have to wait until the next time the factotum runs.
4836 */
4837 if (error && !bgep->bge_intr_running) {
4838 #ifdef BGE_IPMI_ASF
4839 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4840 /*
4841 * We must stop ASF heart beat before bge_chip_stop(),
4842 * otherwise some computers (ex. IBM HS20 blade server)
4843 * may crash.
4844 */
4845 bge_asf_update_status(bgep);
4846 bge_asf_stop_timer(bgep);
4847 bgep->asf_status = ASF_STAT_STOP;
4848
4849 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4850 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4851 }
4852 #endif
4853 bge_chip_stop(bgep, B_TRUE);
4854 (void) bge_check_acc_handle(bgep, bgep->io_handle);
4855 }
4856 mutex_exit(bgep->genlock);
4857
4858 /*
4859 * If the link state changed, tell the world about it.
4860 * Note: can't do this while still holding the mutex.
4861 */
4862 if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4863 bgep->link_state != LINK_STATE_UNKNOWN)
4864 linkchg = B_TRUE;
4865 else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4866 bgep->link_state == LINK_STATE_DOWN)
4867 linkchg = B_FALSE;
4868
4869 if (linkchg) {
4870 mac_link_update(bgep->mh, bgep->link_state);
4871 bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4872 }
4873 if (bgep->manual_reset) {
4874 bgep->manual_reset = B_FALSE;
4875 }
4876
4877 return (result);
4878 }
4879
4880 /*
4881 * High-level cyclic handler
4882 *
4883 * This routine schedules a (low-level) softint callback to the
4884 * factotum, and prods the chip to update the status block (which
4885 * will cause a hardware interrupt when complete).
4886 */
4887 void bge_chip_cyclic(void *arg);
4888 #pragma no_inline(bge_chip_cyclic)
4889
4890 void
bge_chip_cyclic(void * arg)4891 bge_chip_cyclic(void *arg)
4892 {
4893 bge_t *bgep;
4894
4895 bgep = arg;
4896
4897 switch (bgep->bge_chip_state) {
4898 default:
4899 return;
4900
4901 case BGE_CHIP_RUNNING:
4902 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4903 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4904 ddi_fm_service_impact(bgep->devinfo,
4905 DDI_SERVICE_UNAFFECTED);
4906
4907 if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4908 bgep->link_update_timer++;
4909
4910 break;
4911
4912 case BGE_CHIP_FAULT:
4913 case BGE_CHIP_ERROR:
4914 break;
4915 }
4916
4917 bge_wake_factotum(bgep);
4918 }
4919
4920
4921 /*
4922 * ========== Ioctl subfunctions ==========
4923 */
4924
4925 #undef BGE_DBG
4926 #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */
4927
4928 #if BGE_DEBUGGING || BGE_DO_PPIO
4929
4930 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4931 #pragma no_inline(bge_chip_peek_cfg)
4932
4933 static void
bge_chip_peek_cfg(bge_t * bgep,bge_peekpoke_t * ppd)4934 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4935 {
4936 uint64_t regval;
4937 uint64_t regno;
4938
4939 BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4940 (void *)bgep, (void *)ppd));
4941
4942 regno = ppd->pp_acc_offset;
4943
4944 switch (ppd->pp_acc_size) {
4945 case 1:
4946 regval = pci_config_get8(bgep->cfg_handle, regno);
4947 break;
4948
4949 case 2:
4950 regval = pci_config_get16(bgep->cfg_handle, regno);
4951 break;
4952
4953 case 4:
4954 regval = pci_config_get32(bgep->cfg_handle, regno);
4955 break;
4956
4957 case 8:
4958 regval = pci_config_get64(bgep->cfg_handle, regno);
4959 break;
4960 }
4961
4962 ppd->pp_acc_data = regval;
4963 }
4964
4965 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4966 #pragma no_inline(bge_chip_poke_cfg)
4967
4968 static void
bge_chip_poke_cfg(bge_t * bgep,bge_peekpoke_t * ppd)4969 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4970 {
4971 uint64_t regval;
4972 uint64_t regno;
4973
4974 BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4975 (void *)bgep, (void *)ppd));
4976
4977 regno = ppd->pp_acc_offset;
4978 regval = ppd->pp_acc_data;
4979
4980 switch (ppd->pp_acc_size) {
4981 case 1:
4982 pci_config_put8(bgep->cfg_handle, regno, regval);
4983 break;
4984
4985 case 2:
4986 pci_config_put16(bgep->cfg_handle, regno, regval);
4987 break;
4988
4989 case 4:
4990 pci_config_put32(bgep->cfg_handle, regno, regval);
4991 break;
4992
4993 case 8:
4994 pci_config_put64(bgep->cfg_handle, regno, regval);
4995 break;
4996 }
4997 }
4998
4999 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5000 #pragma no_inline(bge_chip_peek_reg)
5001
5002 static void
bge_chip_peek_reg(bge_t * bgep,bge_peekpoke_t * ppd)5003 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5004 {
5005 uint64_t regval;
5006 void *regaddr;
5007
5008 BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5009 (void *)bgep, (void *)ppd));
5010
5011 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5012
5013 switch (ppd->pp_acc_size) {
5014 case 1:
5015 regval = ddi_get8(bgep->io_handle, regaddr);
5016 break;
5017
5018 case 2:
5019 regval = ddi_get16(bgep->io_handle, regaddr);
5020 break;
5021
5022 case 4:
5023 regval = ddi_get32(bgep->io_handle, regaddr);
5024 break;
5025
5026 case 8:
5027 regval = ddi_get64(bgep->io_handle, regaddr);
5028 break;
5029 }
5030
5031 ppd->pp_acc_data = regval;
5032 }
5033
5034 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5035 #pragma no_inline(bge_chip_peek_reg)
5036
5037 static void
bge_chip_poke_reg(bge_t * bgep,bge_peekpoke_t * ppd)5038 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5039 {
5040 uint64_t regval;
5041 void *regaddr;
5042
5043 BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5044 (void *)bgep, (void *)ppd));
5045
5046 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5047 regval = ppd->pp_acc_data;
5048
5049 switch (ppd->pp_acc_size) {
5050 case 1:
5051 ddi_put8(bgep->io_handle, regaddr, regval);
5052 break;
5053
5054 case 2:
5055 ddi_put16(bgep->io_handle, regaddr, regval);
5056 break;
5057
5058 case 4:
5059 ddi_put32(bgep->io_handle, regaddr, regval);
5060 break;
5061
5062 case 8:
5063 ddi_put64(bgep->io_handle, regaddr, regval);
5064 break;
5065 }
5066 BGE_PCICHK(bgep);
5067 }
5068
5069 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5070 #pragma no_inline(bge_chip_peek_nic)
5071
5072 static void
bge_chip_peek_nic(bge_t * bgep,bge_peekpoke_t * ppd)5073 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5074 {
5075 uint64_t regoff;
5076 uint64_t regval;
5077 void *regaddr;
5078
5079 BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5080 (void *)bgep, (void *)ppd));
5081
5082 regoff = ppd->pp_acc_offset;
5083 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5084 regoff &= MWBAR_GRANULE_MASK;
5085 regoff += NIC_MEM_WINDOW_OFFSET;
5086 regaddr = PIO_ADDR(bgep, regoff);
5087
5088 switch (ppd->pp_acc_size) {
5089 case 1:
5090 regval = ddi_get8(bgep->io_handle, regaddr);
5091 break;
5092
5093 case 2:
5094 regval = ddi_get16(bgep->io_handle, regaddr);
5095 break;
5096
5097 case 4:
5098 regval = ddi_get32(bgep->io_handle, regaddr);
5099 break;
5100
5101 case 8:
5102 regval = ddi_get64(bgep->io_handle, regaddr);
5103 break;
5104 }
5105
5106 ppd->pp_acc_data = regval;
5107 }
5108
5109 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5110 #pragma no_inline(bge_chip_poke_nic)
5111
5112 static void
bge_chip_poke_nic(bge_t * bgep,bge_peekpoke_t * ppd)5113 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5114 {
5115 uint64_t regoff;
5116 uint64_t regval;
5117 void *regaddr;
5118
5119 BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5120 (void *)bgep, (void *)ppd));
5121
5122 regoff = ppd->pp_acc_offset;
5123 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5124 regoff &= MWBAR_GRANULE_MASK;
5125 regoff += NIC_MEM_WINDOW_OFFSET;
5126 regaddr = PIO_ADDR(bgep, regoff);
5127 regval = ppd->pp_acc_data;
5128
5129 switch (ppd->pp_acc_size) {
5130 case 1:
5131 ddi_put8(bgep->io_handle, regaddr, regval);
5132 break;
5133
5134 case 2:
5135 ddi_put16(bgep->io_handle, regaddr, regval);
5136 break;
5137
5138 case 4:
5139 ddi_put32(bgep->io_handle, regaddr, regval);
5140 break;
5141
5142 case 8:
5143 ddi_put64(bgep->io_handle, regaddr, regval);
5144 break;
5145 }
5146 BGE_PCICHK(bgep);
5147 }
5148
5149 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5150 #pragma no_inline(bge_chip_peek_mii)
5151
5152 static void
bge_chip_peek_mii(bge_t * bgep,bge_peekpoke_t * ppd)5153 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5154 {
5155 BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5156 (void *)bgep, (void *)ppd));
5157
5158 ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5159 }
5160
5161 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5162 #pragma no_inline(bge_chip_poke_mii)
5163
5164 static void
bge_chip_poke_mii(bge_t * bgep,bge_peekpoke_t * ppd)5165 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5166 {
5167 BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5168 (void *)bgep, (void *)ppd));
5169
5170 bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5171 }
5172
5173 #if BGE_SEE_IO32
5174
5175 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5176 #pragma no_inline(bge_chip_peek_seeprom)
5177
5178 static void
bge_chip_peek_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5179 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5180 {
5181 uint32_t data;
5182 int err;
5183
5184 BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5185 (void *)bgep, (void *)ppd));
5186
5187 err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5188 ppd->pp_acc_data = err ? ~0ull : data;
5189 }
5190
5191 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5192 #pragma no_inline(bge_chip_poke_seeprom)
5193
5194 static void
bge_chip_poke_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5195 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5196 {
5197 uint32_t data;
5198
5199 BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5200 (void *)bgep, (void *)ppd));
5201
5202 data = ppd->pp_acc_data;
5203 (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5204 }
5205 #endif /* BGE_SEE_IO32 */
5206
5207 #if BGE_FLASH_IO32
5208
5209 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5210 #pragma no_inline(bge_chip_peek_flash)
5211
5212 static void
bge_chip_peek_flash(bge_t * bgep,bge_peekpoke_t * ppd)5213 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5214 {
5215 uint32_t data;
5216 int err;
5217
5218 BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5219 (void *)bgep, (void *)ppd));
5220
5221 err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5222 ppd->pp_acc_data = err ? ~0ull : data;
5223 }
5224
5225 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5226 #pragma no_inline(bge_chip_poke_flash)
5227
5228 static void
bge_chip_poke_flash(bge_t * bgep,bge_peekpoke_t * ppd)5229 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5230 {
5231 uint32_t data;
5232
5233 BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5234 (void *)bgep, (void *)ppd));
5235
5236 data = ppd->pp_acc_data;
5237 (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5238 ppd->pp_acc_offset, &data);
5239 }
5240 #endif /* BGE_FLASH_IO32 */
5241
5242 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5243 #pragma no_inline(bge_chip_peek_mem)
5244
5245 static void
bge_chip_peek_mem(bge_t * bgep,bge_peekpoke_t * ppd)5246 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5247 {
5248 uint64_t regval;
5249 void *vaddr;
5250
5251 BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5252 (void *)bgep, (void *)ppd));
5253
5254 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5255
5256 switch (ppd->pp_acc_size) {
5257 case 1:
5258 regval = *(uint8_t *)vaddr;
5259 break;
5260
5261 case 2:
5262 regval = *(uint16_t *)vaddr;
5263 break;
5264
5265 case 4:
5266 regval = *(uint32_t *)vaddr;
5267 break;
5268
5269 case 8:
5270 regval = *(uint64_t *)vaddr;
5271 break;
5272 }
5273
5274 BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5275 (void *)bgep, (void *)ppd, regval, vaddr));
5276
5277 ppd->pp_acc_data = regval;
5278 }
5279
5280 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5281 #pragma no_inline(bge_chip_poke_mem)
5282
5283 static void
bge_chip_poke_mem(bge_t * bgep,bge_peekpoke_t * ppd)5284 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5285 {
5286 uint64_t regval;
5287 void *vaddr;
5288
5289 BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5290 (void *)bgep, (void *)ppd));
5291
5292 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5293 regval = ppd->pp_acc_data;
5294
5295 BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5296 (void *)bgep, (void *)ppd, regval, vaddr));
5297
5298 switch (ppd->pp_acc_size) {
5299 case 1:
5300 *(uint8_t *)vaddr = (uint8_t)regval;
5301 break;
5302
5303 case 2:
5304 *(uint16_t *)vaddr = (uint16_t)regval;
5305 break;
5306
5307 case 4:
5308 *(uint32_t *)vaddr = (uint32_t)regval;
5309 break;
5310
5311 case 8:
5312 *(uint64_t *)vaddr = (uint64_t)regval;
5313 break;
5314 }
5315 }
5316
5317 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5318 struct iocblk *iocp);
5319 #pragma no_inline(bge_pp_ioctl)
5320
5321 static enum ioc_reply
bge_pp_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5322 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5323 {
5324 void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5325 bge_peekpoke_t *ppd;
5326 dma_area_t *areap;
5327 uint64_t sizemask;
5328 uint64_t mem_va;
5329 uint64_t maxoff;
5330 boolean_t peek;
5331
5332 switch (cmd) {
5333 default:
5334 /* NOTREACHED */
5335 bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5336 return (IOC_INVAL);
5337
5338 case BGE_PEEK:
5339 peek = B_TRUE;
5340 break;
5341
5342 case BGE_POKE:
5343 peek = B_FALSE;
5344 break;
5345 }
5346
5347 /*
5348 * Validate format of ioctl
5349 */
5350 if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5351 return (IOC_INVAL);
5352 if (mp->b_cont == NULL)
5353 return (IOC_INVAL);
5354 ppd = (void *)mp->b_cont->b_rptr;
5355
5356 /*
5357 * Validate request parameters
5358 */
5359 switch (ppd->pp_acc_space) {
5360 default:
5361 return (IOC_INVAL);
5362
5363 case BGE_PP_SPACE_CFG:
5364 /*
5365 * Config space
5366 */
5367 sizemask = 8|4|2|1;
5368 mem_va = 0;
5369 maxoff = PCI_CONF_HDR_SIZE;
5370 ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5371 break;
5372
5373 case BGE_PP_SPACE_REG:
5374 /*
5375 * Memory-mapped I/O space
5376 */
5377 sizemask = 8|4|2|1;
5378 mem_va = 0;
5379 maxoff = RIAAR_REGISTER_MAX;
5380 ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5381 break;
5382
5383 case BGE_PP_SPACE_NIC:
5384 /*
5385 * NIC on-chip memory
5386 */
5387 sizemask = 8|4|2|1;
5388 mem_va = 0;
5389 maxoff = MWBAR_ONCHIP_MAX;
5390 ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5391 break;
5392
5393 case BGE_PP_SPACE_MII:
5394 /*
5395 * PHY's MII registers
5396 * NB: all PHY registers are two bytes, but the
5397 * addresses increment in ones (word addressing).
5398 * So we scale the address here, then undo the
5399 * transformation inside the peek/poke functions.
5400 */
5401 ppd->pp_acc_offset *= 2;
5402 sizemask = 2;
5403 mem_va = 0;
5404 maxoff = (MII_MAXREG+1)*2;
5405 ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5406 break;
5407
5408 #if BGE_SEE_IO32
5409 case BGE_PP_SPACE_SEEPROM:
5410 /*
5411 * Attached SEEPROM(s), if any.
5412 * NB: we use the high-order bits of the 'address' as
5413 * a device select to accommodate multiple SEEPROMS,
5414 * If each one is the maximum size (64kbytes), this
5415 * makes them appear contiguous. Otherwise, there may
5416 * be holes in the mapping. ENxS doesn't have any
5417 * SEEPROMs anyway ...
5418 */
5419 sizemask = 4;
5420 mem_va = 0;
5421 maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5422 ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5423 break;
5424 #endif /* BGE_SEE_IO32 */
5425
5426 #if BGE_FLASH_IO32
5427 case BGE_PP_SPACE_FLASH:
5428 /*
5429 * Attached Flash device (if any); a maximum of one device
5430 * is currently supported. But it can be up to 1MB (unlike
5431 * the 64k limit on SEEPROMs) so why would you need more ;-)
5432 */
5433 sizemask = 4;
5434 mem_va = 0;
5435 maxoff = NVM_FLASH_ADDR_MASK;
5436 ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5437 break;
5438 #endif /* BGE_FLASH_IO32 */
5439
5440 case BGE_PP_SPACE_BGE:
5441 /*
5442 * BGE data structure!
5443 */
5444 sizemask = 8|4|2|1;
5445 mem_va = (uintptr_t)bgep;
5446 maxoff = sizeof (*bgep);
5447 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5448 break;
5449
5450 case BGE_PP_SPACE_STATUS:
5451 case BGE_PP_SPACE_STATISTICS:
5452 case BGE_PP_SPACE_TXDESC:
5453 case BGE_PP_SPACE_TXBUFF:
5454 case BGE_PP_SPACE_RXDESC:
5455 case BGE_PP_SPACE_RXBUFF:
5456 /*
5457 * Various DMA_AREAs
5458 */
5459 switch (ppd->pp_acc_space) {
5460 case BGE_PP_SPACE_TXDESC:
5461 areap = &bgep->tx_desc;
5462 break;
5463 case BGE_PP_SPACE_TXBUFF:
5464 areap = &bgep->tx_buff[0];
5465 break;
5466 case BGE_PP_SPACE_RXDESC:
5467 areap = &bgep->rx_desc[0];
5468 break;
5469 case BGE_PP_SPACE_RXBUFF:
5470 areap = &bgep->rx_buff[0];
5471 break;
5472 case BGE_PP_SPACE_STATUS:
5473 areap = &bgep->status_block;
5474 break;
5475 case BGE_PP_SPACE_STATISTICS:
5476 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5477 areap = &bgep->statistics;
5478 break;
5479 }
5480
5481 sizemask = 8|4|2|1;
5482 mem_va = (uintptr_t)areap->mem_va;
5483 maxoff = areap->alength;
5484 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5485 break;
5486 }
5487
5488 switch (ppd->pp_acc_size) {
5489 default:
5490 return (IOC_INVAL);
5491
5492 case 8:
5493 case 4:
5494 case 2:
5495 case 1:
5496 if ((ppd->pp_acc_size & sizemask) == 0)
5497 return (IOC_INVAL);
5498 break;
5499 }
5500
5501 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5502 return (IOC_INVAL);
5503
5504 if (ppd->pp_acc_offset >= maxoff)
5505 return (IOC_INVAL);
5506
5507 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5508 return (IOC_INVAL);
5509
5510 /*
5511 * All OK - go do it!
5512 */
5513 ppd->pp_acc_offset += mem_va;
5514 (*ppfn)(bgep, ppd);
5515 return (peek ? IOC_REPLY : IOC_ACK);
5516 }
5517
5518 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5519 struct iocblk *iocp);
5520 #pragma no_inline(bge_diag_ioctl)
5521
5522 static enum ioc_reply
bge_diag_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5523 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5524 {
5525 ASSERT(mutex_owned(bgep->genlock));
5526
5527 switch (cmd) {
5528 default:
5529 /* NOTREACHED */
5530 bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5531 return (IOC_INVAL);
5532
5533 case BGE_DIAG:
5534 /*
5535 * Currently a no-op
5536 */
5537 return (IOC_ACK);
5538
5539 case BGE_PEEK:
5540 case BGE_POKE:
5541 return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5542
5543 case BGE_PHY_RESET:
5544 return (IOC_RESTART_ACK);
5545
5546 case BGE_SOFT_RESET:
5547 case BGE_HARD_RESET:
5548 /*
5549 * Reset and reinitialise the 570x hardware
5550 */
5551 bgep->bge_chip_state = BGE_CHIP_FAULT;
5552 ddi_trigger_softintr(bgep->factotum_id);
5553 (void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5554 return (IOC_ACK);
5555 }
5556
5557 /* NOTREACHED */
5558 }
5559
5560 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
5561
5562 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5563 struct iocblk *iocp);
5564 #pragma no_inline(bge_mii_ioctl)
5565
5566 static enum ioc_reply
bge_mii_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5567 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5568 {
5569 struct bge_mii_rw *miirwp;
5570
5571 /*
5572 * Validate format of ioctl
5573 */
5574 if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5575 return (IOC_INVAL);
5576 if (mp->b_cont == NULL)
5577 return (IOC_INVAL);
5578 miirwp = (void *)mp->b_cont->b_rptr;
5579
5580 /*
5581 * Validate request parameters ...
5582 */
5583 if (miirwp->mii_reg > MII_MAXREG)
5584 return (IOC_INVAL);
5585
5586 switch (cmd) {
5587 default:
5588 /* NOTREACHED */
5589 bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5590 return (IOC_INVAL);
5591
5592 case BGE_MII_READ:
5593 miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5594 return (IOC_REPLY);
5595
5596 case BGE_MII_WRITE:
5597 bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5598 return (IOC_ACK);
5599 }
5600
5601 /* NOTREACHED */
5602 }
5603
5604 #if BGE_SEE_IO32
5605
5606 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5607 struct iocblk *iocp);
5608 #pragma no_inline(bge_see_ioctl)
5609
5610 static enum ioc_reply
bge_see_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5611 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5612 {
5613 struct bge_see_rw *seerwp;
5614
5615 /*
5616 * Validate format of ioctl
5617 */
5618 if (iocp->ioc_count != sizeof (struct bge_see_rw))
5619 return (IOC_INVAL);
5620 if (mp->b_cont == NULL)
5621 return (IOC_INVAL);
5622 seerwp = (void *)mp->b_cont->b_rptr;
5623
5624 /*
5625 * Validate request parameters ...
5626 */
5627 if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5628 return (IOC_INVAL);
5629
5630 switch (cmd) {
5631 default:
5632 /* NOTREACHED */
5633 bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5634 return (IOC_INVAL);
5635
5636 case BGE_SEE_READ:
5637 case BGE_SEE_WRITE:
5638 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5639 seerwp->see_addr, &seerwp->see_data);
5640 return (IOC_REPLY);
5641 }
5642
5643 /* NOTREACHED */
5644 }
5645
5646 #endif /* BGE_SEE_IO32 */
5647
5648 #if BGE_FLASH_IO32
5649
5650 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5651 struct iocblk *iocp);
5652 #pragma no_inline(bge_flash_ioctl)
5653
5654 static enum ioc_reply
bge_flash_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5655 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5656 {
5657 struct bge_flash_rw *flashrwp;
5658
5659 /*
5660 * Validate format of ioctl
5661 */
5662 if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5663 return (IOC_INVAL);
5664 if (mp->b_cont == NULL)
5665 return (IOC_INVAL);
5666 flashrwp = (void *)mp->b_cont->b_rptr;
5667
5668 /*
5669 * Validate request parameters ...
5670 */
5671 if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5672 return (IOC_INVAL);
5673
5674 switch (cmd) {
5675 default:
5676 /* NOTREACHED */
5677 bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5678 return (IOC_INVAL);
5679
5680 case BGE_FLASH_READ:
5681 case BGE_FLASH_WRITE:
5682 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5683 flashrwp->flash_addr, &flashrwp->flash_data);
5684 return (IOC_REPLY);
5685 }
5686
5687 /* NOTREACHED */
5688 }
5689
5690 #endif /* BGE_FLASH_IO32 */
5691
5692 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5693 struct iocblk *iocp);
5694 #pragma no_inline(bge_chip_ioctl)
5695
5696 enum ioc_reply
bge_chip_ioctl(bge_t * bgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)5697 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5698 {
5699 int cmd;
5700
5701 BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5702 (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5703
5704 ASSERT(mutex_owned(bgep->genlock));
5705
5706 cmd = iocp->ioc_cmd;
5707 switch (cmd) {
5708 default:
5709 /* NOTREACHED */
5710 bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5711 return (IOC_INVAL);
5712
5713 case BGE_DIAG:
5714 case BGE_PEEK:
5715 case BGE_POKE:
5716 case BGE_PHY_RESET:
5717 case BGE_SOFT_RESET:
5718 case BGE_HARD_RESET:
5719 #if BGE_DEBUGGING || BGE_DO_PPIO
5720 return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5721 #else
5722 return (IOC_INVAL);
5723 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
5724
5725 case BGE_MII_READ:
5726 case BGE_MII_WRITE:
5727 return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5728
5729 #if BGE_SEE_IO32
5730 case BGE_SEE_READ:
5731 case BGE_SEE_WRITE:
5732 return (bge_see_ioctl(bgep, cmd, mp, iocp));
5733 #endif /* BGE_SEE_IO32 */
5734
5735 #if BGE_FLASH_IO32
5736 case BGE_FLASH_READ:
5737 case BGE_FLASH_WRITE:
5738 return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5739 #endif /* BGE_FLASH_IO32 */
5740 }
5741
5742 /* NOTREACHED */
5743 }
5744
5745 /* ARGSUSED */
5746 void
bge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)5747 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
5748 {
5749 recv_ring_t *rrp = arg;
5750 bge_t *bgep = rrp->bgep;
5751
5752 mutex_enter(bgep->genlock);
5753 rrp->poll_flag = flag;
5754 #ifdef NOT_YET
5755 /*
5756 * XXX-Sunay: Since most broadcom cards support only one
5757 * interrupt but multiple rx rings, we can't disable the
5758 * physical interrupt. This need to be done via capability
5759 * negotiation depending on the NIC.
5760 */
5761 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5762 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5763 #endif
5764 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5765 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5766 mutex_exit(bgep->genlock);
5767 }
5768
5769 #ifdef BGE_IPMI_ASF
5770
5771 uint32_t
bge_nic_read32(bge_t * bgep,bge_regno_t addr)5772 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5773 {
5774 uint32_t data;
5775
5776 #ifndef __sparc
5777 if (!bgep->asf_wordswapped) {
5778 /* a workaround word swap error */
5779 if (addr & 4)
5780 addr = addr - 4;
5781 else
5782 addr = addr + 4;
5783 }
5784 #else
5785 if (DEVICE_5717_SERIES_CHIPSETS(bgep))
5786 addr = LE_32(addr);
5787 #endif
5788
5789 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5790 data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5791 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5792
5793 data = LE_32(data);
5794
5795 BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
5796 (void *)bgep, addr, data));
5797
5798 return (data);
5799 }
5800
5801 void
bge_asf_update_status(bge_t * bgep)5802 bge_asf_update_status(bge_t *bgep)
5803 {
5804 uint32_t event;
5805
5806 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5807 bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5808 bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3);
5809
5810 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5811 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5812 }
5813
5814
5815 /*
5816 * The driver is supposed to notify ASF that the OS is still running
5817 * every three seconds, otherwise the management server may attempt
5818 * to reboot the machine. If it hasn't actually failed, this is
5819 * not a desirable result. However, this isn't running as a real-time
5820 * thread, and even if it were, it might not be able to generate the
5821 * heartbeat in a timely manner due to system load. As it isn't a
5822 * significant strain on the machine, we will set the interval to half
5823 * of the required value.
5824 */
5825 void
bge_asf_heartbeat(void * arg)5826 bge_asf_heartbeat(void *arg)
5827 {
5828 bge_t *bgep = (bge_t *)arg;
5829
5830 mutex_enter(bgep->genlock);
5831 bge_asf_update_status((bge_t *)bgep);
5832 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5833 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5834 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5835 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5836 mutex_exit(bgep->genlock);
5837 ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5838 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5839 }
5840
5841
5842 void
bge_asf_stop_timer(bge_t * bgep)5843 bge_asf_stop_timer(bge_t *bgep)
5844 {
5845 timeout_id_t tmp_id = 0;
5846
5847 while ((bgep->asf_timeout_id != 0) &&
5848 (tmp_id != bgep->asf_timeout_id)) {
5849 tmp_id = bgep->asf_timeout_id;
5850 (void) untimeout(tmp_id);
5851 }
5852 bgep->asf_timeout_id = 0;
5853 }
5854
5855
5856
5857 /*
5858 * This function should be placed at the earliest position of bge_attach().
5859 */
5860 void
bge_asf_get_config(bge_t * bgep)5861 bge_asf_get_config(bge_t *bgep)
5862 {
5863 uint32_t nicsig;
5864 uint32_t niccfg;
5865
5866 bgep->asf_enabled = B_FALSE;
5867 nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5868 if (nicsig == BGE_NIC_DATA_SIG) {
5869 niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5870 if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5871 /*
5872 * Here, we don't consider BAXTER, because BGE haven't
5873 * supported BAXTER (that is 5752). Also, as I know,
5874 * BAXTER doesn't support ASF feature.
5875 */
5876 bgep->asf_enabled = B_TRUE;
5877 else
5878 bgep->asf_enabled = B_FALSE;
5879 } else
5880 bgep->asf_enabled = B_FALSE;
5881 }
5882
5883
5884 void
bge_asf_pre_reset_operations(bge_t * bgep,uint32_t mode)5885 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5886 {
5887 uint32_t tries;
5888 uint32_t event;
5889
5890 ASSERT(bgep->asf_enabled);
5891
5892 /* Issues "pause firmware" command and wait for ACK */
5893 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5894 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5895 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5896
5897 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5898 tries = 0;
5899 while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5900 drv_usecwait(1);
5901 tries ++;
5902 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5903 }
5904
5905 bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5906 BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5907
5908 if (bgep->asf_newhandshake) {
5909 switch (mode) {
5910 case BGE_INIT_RESET:
5911 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5912 BGE_DRV_STATE_START);
5913 break;
5914 case BGE_SHUTDOWN_RESET:
5915 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5916 BGE_DRV_STATE_UNLOAD);
5917 break;
5918 case BGE_SUSPEND_RESET:
5919 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5920 BGE_DRV_STATE_SUSPEND);
5921 break;
5922 default:
5923 break;
5924 }
5925 }
5926 }
5927
5928
5929 void
bge_asf_post_reset_old_mode(bge_t * bgep,uint32_t mode)5930 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5931 {
5932 switch (mode) {
5933 case BGE_INIT_RESET:
5934 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5935 BGE_DRV_STATE_START);
5936 break;
5937 case BGE_SHUTDOWN_RESET:
5938 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5939 BGE_DRV_STATE_UNLOAD);
5940 break;
5941 case BGE_SUSPEND_RESET:
5942 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5943 BGE_DRV_STATE_SUSPEND);
5944 break;
5945 default:
5946 break;
5947 }
5948 }
5949
5950
5951 void
bge_asf_post_reset_new_mode(bge_t * bgep,uint32_t mode)5952 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5953 {
5954 switch (mode) {
5955 case BGE_INIT_RESET:
5956 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5957 BGE_DRV_STATE_START_DONE);
5958 break;
5959 case BGE_SHUTDOWN_RESET:
5960 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5961 BGE_DRV_STATE_UNLOAD_DONE);
5962 break;
5963 default:
5964 break;
5965 }
5966 }
5967
5968 #endif /* BGE_IPMI_ASF */
5969