1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /* Copyright (c) 1990 Mentat Inc. */
26
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #define _SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/cmn_err.h>
41 #include <sys/debug.h>
42 #include <sys/sdt.h>
43 #include <sys/vtrace.h>
44 #include <sys/kmem.h>
45 #include <sys/ethernet.h>
46 #include <sys/cpuvar.h>
47 #include <sys/dlpi.h>
48 #include <sys/pattr.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/zone.h>
52 #include <sys/sunldi.h>
53
54 #include <sys/errno.h>
55 #include <sys/signal.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sockio.h>
59 #include <sys/isa_defs.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/uio.h>
63 #include <sys/systm.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <inet/ipsec_impl.h>
71
72 #include <inet/common.h>
73 #include <inet/ip.h>
74 #include <inet/ip_impl.h>
75 #include <inet/ip6.h>
76 #include <inet/ip_ndp.h>
77 #include <inet/proto_set.h>
78 #include <inet/mib2.h>
79 #include <inet/optcom.h>
80 #include <inet/snmpcom.h>
81 #include <inet/kstatcom.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/tcp_cluster.h>
85 #include <inet/udp_impl.h>
86 #include <net/pfkeyv2.h>
87 #include <inet/ipdrop.h>
88
89 #include <inet/ipclassifier.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <inet/ip_rts.h>
95 #include <inet/ip_netinfo.h>
96 #include <sys/squeue_impl.h>
97 #include <sys/squeue.h>
98 #include <sys/tsol/label.h>
99 #include <sys/tsol/tnet.h>
100 #include <rpc/pmap_prot.h>
101 #include <sys/callo.h>
102
103 /*
104 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
105 *
106 * (Read the detailed design doc in PSARC case directory)
107 *
108 * The entire tcp state is contained in tcp_t and conn_t structure
109 * which are allocated in tandem using ipcl_conn_create() and passing
110 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
111 * the references on the tcp_t. The tcp_t structure is never compressed
112 * and packets always land on the correct TCP perimeter from the time
113 * eager is created till the time tcp_t dies (as such the old mentat
114 * TCP global queue is not used for detached state and no IPSEC checking
115 * is required). The global queue is still allocated to send out resets
116 * for connection which have no listeners and IP directly calls
117 * tcp_xmit_listeners_reset() which does any policy check.
118 *
119 * Protection and Synchronisation mechanism:
120 *
121 * The tcp data structure does not use any kind of lock for protecting
122 * its state but instead uses 'squeues' for mutual exclusion from various
123 * read and write side threads. To access a tcp member, the thread should
124 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
125 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
126 * can pass any tcp function having prototype of edesc_t as argument
127 * (different from traditional STREAMs model where packets come in only
128 * designated entry points). The list of functions that can be directly
129 * called via squeue are listed before the usual function prototype.
130 *
131 * Referencing:
132 *
133 * TCP is MT-Hot and we use a reference based scheme to make sure that the
134 * tcp structure doesn't disappear when its needed. When the application
135 * creates an outgoing connection or accepts an incoming connection, we
136 * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
137 * The IP reference is just a symbolic reference since ip_tcpclose()
138 * looks at tcp structure after tcp_close_output() returns which could
139 * have dropped the last TCP reference. So as long as the connection is
140 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
141 * conn_t. The classifier puts its own reference when the connection is
142 * inserted in listen or connected hash. Anytime a thread needs to enter
143 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
144 * on write side or by doing a classify on read side and then puts a
145 * reference on the conn before doing squeue_enter/tryenter/fill. For
146 * read side, the classifier itself puts the reference under fanout lock
147 * to make sure that tcp can't disappear before it gets processed. The
148 * squeue will drop this reference automatically so the called function
149 * doesn't have to do a DEC_REF.
150 *
151 * Opening a new connection:
152 *
153 * The outgoing connection open is pretty simple. tcp_open() does the
154 * work in creating the conn/tcp structure and initializing it. The
155 * squeue assignment is done based on the CPU the application
156 * is running on. So for outbound connections, processing is always done
157 * on application CPU which might be different from the incoming CPU
158 * being interrupted by the NIC. An optimal way would be to figure out
159 * the NIC <-> CPU binding at listen time, and assign the outgoing
160 * connection to the squeue attached to the CPU that will be interrupted
161 * for incoming packets (we know the NIC based on the bind IP address).
162 * This might seem like a problem if more data is going out but the
163 * fact is that in most cases the transmit is ACK driven transmit where
164 * the outgoing data normally sits on TCP's xmit queue waiting to be
165 * transmitted.
166 *
167 * Accepting a connection:
168 *
169 * This is a more interesting case because of various races involved in
170 * establishing a eager in its own perimeter. Read the meta comment on
171 * top of tcp_input_listener(). But briefly, the squeue is picked by
172 * ip_fanout based on the ring or the sender (if loopback).
173 *
174 * Closing a connection:
175 *
176 * The close is fairly straight forward. tcp_close() calls tcp_close_output()
177 * via squeue to do the close and mark the tcp as detached if the connection
178 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
179 * reference but tcp_close() drop IP's reference always. So if tcp was
180 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
181 * and 1 because it is in classifier's connected hash. This is the condition
182 * we use to determine that its OK to clean up the tcp outside of squeue
183 * when time wait expires (check the ref under fanout and conn_lock and
184 * if it is 2, remove it from fanout hash and kill it).
185 *
186 * Although close just drops the necessary references and marks the
187 * tcp_detached state, tcp_close needs to know the tcp_detached has been
188 * set (under squeue) before letting the STREAM go away (because a
189 * inbound packet might attempt to go up the STREAM while the close
190 * has happened and tcp_detached is not set). So a special lock and
191 * flag is used along with a condition variable (tcp_closelock, tcp_closed,
192 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
193 * tcp_detached.
194 *
195 * Special provisions and fast paths:
196 *
197 * We make special provisions for sockfs by marking tcp_issocket
198 * whenever we have only sockfs on top of TCP. This allows us to skip
199 * putting the tcp in acceptor hash since a sockfs listener can never
200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
201 * since eager has already been allocated and the accept now happens
202 * on acceptor STREAM. There is a big blob of comment on top of
203 * tcp_input_listener explaining the new accept. When socket is POP'd,
204 * sockfs sends us an ioctl to mark the fact and we go back to old
205 * behaviour. Once tcp_issocket is unset, its never set for the
206 * life of that connection.
207 *
208 * IPsec notes :
209 *
210 * Since a packet is always executed on the correct TCP perimeter
211 * all IPsec processing is defered to IP including checking new
212 * connections and setting IPSEC policies for new connection. The
213 * only exception is tcp_xmit_listeners_reset() which is called
214 * directly from IP and needs to policy check to see if TH_RST
215 * can be sent out.
216 */
217
218 /*
219 * Values for squeue switch:
220 * 1: SQ_NODRAIN
221 * 2: SQ_PROCESS
222 * 3: SQ_FILL
223 */
224 int tcp_squeue_wput = 2; /* /etc/systems */
225 int tcp_squeue_flag;
226
227 /*
228 * To prevent memory hog, limit the number of entries in tcp_free_list
229 * to 1% of available memory / number of cpus
230 */
231 uint_t tcp_free_list_max_cnt = 0;
232
233 #define TCP_XMIT_LOWATER 4096
234 #define TCP_XMIT_HIWATER 49152
235 #define TCP_RECV_LOWATER 2048
236 #define TCP_RECV_HIWATER 128000
237
238 #define TIDUSZ 4096 /* transport interface data unit size */
239
240 /*
241 * Size of acceptor hash list. It has to be a power of 2 for hashing.
242 */
243 #define TCP_ACCEPTOR_FANOUT_SIZE 256
244
245 #ifdef _ILP32
246 #define TCP_ACCEPTOR_HASH(accid) \
247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
248 #else
249 #define TCP_ACCEPTOR_HASH(accid) \
250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
251 #endif /* _ILP32 */
252
253 /*
254 * Minimum number of connections which can be created per listener. Used
255 * when the listener connection count is in effect.
256 */
257 static uint32_t tcp_min_conn_listener = 2;
258
259 uint32_t tcp_early_abort = 30;
260
261 /* TCP Timer control structure */
262 typedef struct tcpt_s {
263 pfv_t tcpt_pfv; /* The routine we are to call */
264 tcp_t *tcpt_tcp; /* The parameter we are to pass in */
265 } tcpt_t;
266
267 /*
268 * Functions called directly via squeue having a prototype of edesc_t.
269 */
270 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
271 ip_recv_attr_t *ira);
272 void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
273 ip_recv_attr_t *ira);
274 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
275 ip_recv_attr_t *dummy);
276
277
278 /* Prototype for TCP functions */
279 static void tcp_random_init(void);
280 int tcp_random(void);
281 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
282 in_port_t dstport, uint_t srcid);
283 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
284 in_port_t dstport, uint32_t flowinfo,
285 uint_t srcid, uint32_t scope_id);
286 static void tcp_iss_init(tcp_t *tcp);
287 static void tcp_reinit(tcp_t *tcp);
288 static void tcp_reinit_values(tcp_t *tcp);
289
290 static void tcp_wsrv(queue_t *q);
291 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
292 static void tcp_update_zcopy(tcp_t *tcp);
293 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
294 ixa_notify_arg_t);
295 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
296 static void tcp_stack_fini(netstackid_t stackid, void *arg);
297
298 static int tcp_squeue_switch(int);
299
300 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
301 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
302 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
303
304 static void tcp_squeue_add(squeue_t *);
305
306 struct module_info tcp_rinfo = {
307 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
308 };
309
310 static struct module_info tcp_winfo = {
311 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
312 };
313
314 /*
315 * Entry points for TCP as a device. The normal case which supports
316 * the TCP functionality.
317 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
318 */
319 struct qinit tcp_rinitv4 = {
320 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
321 };
322
323 struct qinit tcp_rinitv6 = {
324 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
325 };
326
327 struct qinit tcp_winit = {
328 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
329 };
330
331 /* Initial entry point for TCP in socket mode. */
332 struct qinit tcp_sock_winit = {
333 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
334 };
335
336 /* TCP entry point during fallback */
337 struct qinit tcp_fallback_sock_winit = {
338 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
339 };
340
341 /*
342 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
343 * an accept. Avoid allocating data structures since eager has already
344 * been created.
345 */
346 struct qinit tcp_acceptor_rinit = {
347 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
348 };
349
350 struct qinit tcp_acceptor_winit = {
351 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
352 };
353
354 /* For AF_INET aka /dev/tcp */
355 struct streamtab tcpinfov4 = {
356 &tcp_rinitv4, &tcp_winit
357 };
358
359 /* For AF_INET6 aka /dev/tcp6 */
360 struct streamtab tcpinfov6 = {
361 &tcp_rinitv6, &tcp_winit
362 };
363
364 /*
365 * Following assumes TPI alignment requirements stay along 32 bit
366 * boundaries
367 */
368 #define ROUNDUP32(x) \
369 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
370
371 /* Template for response to info request. */
372 struct T_info_ack tcp_g_t_info_ack = {
373 T_INFO_ACK, /* PRIM_type */
374 0, /* TSDU_size */
375 T_INFINITE, /* ETSDU_size */
376 T_INVALID, /* CDATA_size */
377 T_INVALID, /* DDATA_size */
378 sizeof (sin_t), /* ADDR_size */
379 0, /* OPT_size - not initialized here */
380 TIDUSZ, /* TIDU_size */
381 T_COTS_ORD, /* SERV_type */
382 TCPS_IDLE, /* CURRENT_state */
383 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
384 };
385
386 struct T_info_ack tcp_g_t_info_ack_v6 = {
387 T_INFO_ACK, /* PRIM_type */
388 0, /* TSDU_size */
389 T_INFINITE, /* ETSDU_size */
390 T_INVALID, /* CDATA_size */
391 T_INVALID, /* DDATA_size */
392 sizeof (sin6_t), /* ADDR_size */
393 0, /* OPT_size - not initialized here */
394 TIDUSZ, /* TIDU_size */
395 T_COTS_ORD, /* SERV_type */
396 TCPS_IDLE, /* CURRENT_state */
397 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
398 };
399
400 /*
401 * TCP tunables related declarations. Definitions are in tcp_tunables.c
402 */
403 extern mod_prop_info_t tcp_propinfo_tbl[];
404 extern int tcp_propinfo_count;
405
406 #define IS_VMLOANED_MBLK(mp) \
407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
408
409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
410
411 /*
412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier
413 * tunable settable via NDD. Otherwise, the per-connection behavior is
414 * determined dynamically during tcp_set_destination(), which is the default.
415 */
416 boolean_t tcp_static_maxpsz = B_FALSE;
417
418 /*
419 * If the receive buffer size is changed, this function is called to update
420 * the upper socket layer on the new delayed receive wake up threshold.
421 */
422 static void
tcp_set_recv_threshold(tcp_t * tcp,uint32_t new_rcvthresh)423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
424 {
425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
426
427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
428 conn_t *connp = tcp->tcp_connp;
429 struct sock_proto_props sopp;
430
431 /*
432 * only increase rcvthresh upto default_threshold
433 */
434 if (new_rcvthresh > default_threshold)
435 new_rcvthresh = default_threshold;
436
437 sopp.sopp_flags = SOCKOPT_RCVTHRESH;
438 sopp.sopp_rcvthresh = new_rcvthresh;
439
440 (*connp->conn_upcalls->su_set_proto_props)
441 (connp->conn_upper_handle, &sopp);
442 }
443 }
444
445 /*
446 * Figure out the value of window scale opton. Note that the rwnd is
447 * ASSUMED to be rounded up to the nearest MSS before the calculation.
448 * We cannot find the scale value and then do a round up of tcp_rwnd
449 * because the scale value may not be correct after that.
450 *
451 * Set the compiler flag to make this function inline.
452 */
453 void
tcp_set_ws_value(tcp_t * tcp)454 tcp_set_ws_value(tcp_t *tcp)
455 {
456 int i;
457 uint32_t rwnd = tcp->tcp_rwnd;
458
459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
460 i++, rwnd >>= 1)
461 ;
462 tcp->tcp_rcv_ws = i;
463 }
464
465 /*
466 * Remove cached/latched IPsec references.
467 */
468 void
tcp_ipsec_cleanup(tcp_t * tcp)469 tcp_ipsec_cleanup(tcp_t *tcp)
470 {
471 conn_t *connp = tcp->tcp_connp;
472
473 ASSERT(connp->conn_flags & IPCL_TCPCONN);
474
475 if (connp->conn_latch != NULL) {
476 IPLATCH_REFRELE(connp->conn_latch);
477 connp->conn_latch = NULL;
478 }
479 if (connp->conn_latch_in_policy != NULL) {
480 IPPOL_REFRELE(connp->conn_latch_in_policy);
481 connp->conn_latch_in_policy = NULL;
482 }
483 if (connp->conn_latch_in_action != NULL) {
484 IPACT_REFRELE(connp->conn_latch_in_action);
485 connp->conn_latch_in_action = NULL;
486 }
487 if (connp->conn_policy != NULL) {
488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
489 connp->conn_policy = NULL;
490 }
491 }
492
493 /*
494 * Cleaup before placing on free list.
495 * Disassociate from the netstack/tcp_stack_t since the freelist
496 * is per squeue and not per netstack.
497 */
498 void
tcp_cleanup(tcp_t * tcp)499 tcp_cleanup(tcp_t *tcp)
500 {
501 mblk_t *mp;
502 conn_t *connp = tcp->tcp_connp;
503 tcp_stack_t *tcps = tcp->tcp_tcps;
504 netstack_t *ns = tcps->tcps_netstack;
505 mblk_t *tcp_rsrv_mp;
506
507 tcp_bind_hash_remove(tcp);
508
509 /* Cleanup that which needs the netstack first */
510 tcp_ipsec_cleanup(tcp);
511 ixa_cleanup(connp->conn_ixa);
512
513 if (connp->conn_ht_iphc != NULL) {
514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
515 connp->conn_ht_iphc = NULL;
516 connp->conn_ht_iphc_allocated = 0;
517 connp->conn_ht_iphc_len = 0;
518 connp->conn_ht_ulp = NULL;
519 connp->conn_ht_ulp_len = 0;
520 tcp->tcp_ipha = NULL;
521 tcp->tcp_ip6h = NULL;
522 tcp->tcp_tcpha = NULL;
523 }
524
525 /* We clear any IP_OPTIONS and extension headers */
526 ip_pkt_free(&connp->conn_xmit_ipp);
527
528 tcp_free(tcp);
529
530 /*
531 * Since we will bzero the entire structure, we need to
532 * remove it and reinsert it in global hash list. We
533 * know the walkers can't get to this conn because we
534 * had set CONDEMNED flag earlier and checked reference
535 * under conn_lock so walker won't pick it and when we
536 * go the ipcl_globalhash_remove() below, no walker
537 * can get to it.
538 */
539 ipcl_globalhash_remove(connp);
540
541 /* Save some state */
542 mp = tcp->tcp_timercache;
543
544 tcp_rsrv_mp = tcp->tcp_rsrv_mp;
545
546 if (connp->conn_cred != NULL) {
547 crfree(connp->conn_cred);
548 connp->conn_cred = NULL;
549 }
550 ipcl_conn_cleanup(connp);
551 connp->conn_flags = IPCL_TCPCONN;
552
553 /*
554 * Now it is safe to decrement the reference counts.
555 * This might be the last reference on the netstack
556 * in which case it will cause the freeing of the IP Instance.
557 */
558 connp->conn_netstack = NULL;
559 connp->conn_ixa->ixa_ipst = NULL;
560 netstack_rele(ns);
561 ASSERT(tcps != NULL);
562 tcp->tcp_tcps = NULL;
563
564 bzero(tcp, sizeof (tcp_t));
565
566 /* restore the state */
567 tcp->tcp_timercache = mp;
568
569 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
570
571 tcp->tcp_connp = connp;
572
573 ASSERT(connp->conn_tcp == tcp);
574 ASSERT(connp->conn_flags & IPCL_TCPCONN);
575 connp->conn_state_flags = CONN_INCIPIENT;
576 ASSERT(connp->conn_proto == IPPROTO_TCP);
577 ASSERT(connp->conn_ref == 1);
578 }
579
580 /*
581 * Adapt to the information, such as rtt and rtt_sd, provided from the
582 * DCE and IRE maintained by IP.
583 *
584 * Checks for multicast and broadcast destination address.
585 * Returns zero if ok; an errno on failure.
586 *
587 * Note that the MSS calculation here is based on the info given in
588 * the DCE and IRE. We do not do any calculation based on TCP options. They
589 * will be handled in tcp_input_data() when TCP knows which options to use.
590 *
591 * Note on how TCP gets its parameters for a connection.
592 *
593 * When a tcp_t structure is allocated, it gets all the default parameters.
594 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
595 * spipe, rpipe, ... from the route metrics. Route metric overrides the
596 * default.
597 *
598 * An incoming SYN with a multicast or broadcast destination address is dropped
599 * in ip_fanout_v4/v6.
600 *
601 * An incoming SYN with a multicast or broadcast source address is always
602 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
603 * conn_connect.
604 * The same logic in tcp_set_destination also serves to
605 * reject an attempt to connect to a broadcast or multicast (destination)
606 * address.
607 */
608 int
tcp_set_destination(tcp_t * tcp)609 tcp_set_destination(tcp_t *tcp)
610 {
611 uint32_t mss_max;
612 uint32_t mss;
613 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
614 conn_t *connp = tcp->tcp_connp;
615 tcp_stack_t *tcps = tcp->tcp_tcps;
616 iulp_t uinfo;
617 int error;
618 uint32_t flags;
619
620 flags = IPDF_LSO | IPDF_ZCOPY;
621 /*
622 * Make sure we have a dce for the destination to avoid dce_ident
623 * contention for connected sockets.
624 */
625 flags |= IPDF_UNIQUE_DCE;
626
627 if (!tcps->tcps_ignore_path_mtu)
628 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
629
630 /* Use conn_lock to satify ASSERT; tcp is already serialized */
631 mutex_enter(&connp->conn_lock);
632 error = conn_connect(connp, &uinfo, flags);
633 mutex_exit(&connp->conn_lock);
634 if (error != 0)
635 return (error);
636
637 error = tcp_build_hdrs(tcp);
638 if (error != 0)
639 return (error);
640
641 tcp->tcp_localnet = uinfo.iulp_localnet;
642
643 if (uinfo.iulp_rtt != 0) {
644 clock_t rto;
645
646 tcp->tcp_rtt_sa = uinfo.iulp_rtt;
647 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
648 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
649 tcps->tcps_rexmit_interval_extra +
650 (tcp->tcp_rtt_sa >> 5);
651
652 TCP_SET_RTO(tcp, rto);
653 }
654 if (uinfo.iulp_ssthresh != 0)
655 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
656 else
657 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
658 if (uinfo.iulp_spipe > 0) {
659 connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
660 tcps->tcps_max_buf);
661 if (tcps->tcps_snd_lowat_fraction != 0) {
662 connp->conn_sndlowat = connp->conn_sndbuf /
663 tcps->tcps_snd_lowat_fraction;
664 }
665 (void) tcp_maxpsz_set(tcp, B_TRUE);
666 }
667 /*
668 * Note that up till now, acceptor always inherits receive
669 * window from the listener. But if there is a metrics
670 * associated with a host, we should use that instead of
671 * inheriting it from listener. Thus we need to pass this
672 * info back to the caller.
673 */
674 if (uinfo.iulp_rpipe > 0) {
675 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
676 tcps->tcps_max_buf);
677 }
678
679 if (uinfo.iulp_rtomax > 0) {
680 tcp->tcp_second_timer_threshold =
681 uinfo.iulp_rtomax;
682 }
683
684 /*
685 * Use the metric option settings, iulp_tstamp_ok and
686 * iulp_wscale_ok, only for active open. What this means
687 * is that if the other side uses timestamp or window
688 * scale option, TCP will also use those options. That
689 * is for passive open. If the application sets a
690 * large window, window scale is enabled regardless of
691 * the value in iulp_wscale_ok. This is the behavior
692 * since 2.6. So we keep it.
693 * The only case left in passive open processing is the
694 * check for SACK.
695 * For ECN, it should probably be like SACK. But the
696 * current value is binary, so we treat it like the other
697 * cases. The metric only controls active open.For passive
698 * open, the ndd param, tcp_ecn_permitted, controls the
699 * behavior.
700 */
701 if (!tcp_detached) {
702 /*
703 * The if check means that the following can only
704 * be turned on by the metrics only IRE, but not off.
705 */
706 if (uinfo.iulp_tstamp_ok)
707 tcp->tcp_snd_ts_ok = B_TRUE;
708 if (uinfo.iulp_wscale_ok)
709 tcp->tcp_snd_ws_ok = B_TRUE;
710 if (uinfo.iulp_sack == 2)
711 tcp->tcp_snd_sack_ok = B_TRUE;
712 if (uinfo.iulp_ecn_ok)
713 tcp->tcp_ecn_ok = B_TRUE;
714 } else {
715 /*
716 * Passive open.
717 *
718 * As above, the if check means that SACK can only be
719 * turned on by the metric only IRE.
720 */
721 if (uinfo.iulp_sack > 0) {
722 tcp->tcp_snd_sack_ok = B_TRUE;
723 }
724 }
725
726 /*
727 * XXX Note that currently, iulp_mtu can be as small as 68
728 * because of PMTUd. So tcp_mss may go to negative if combined
729 * length of all those options exceeds 28 bytes. But because
730 * of the tcp_mss_min check below, we may not have a problem if
731 * tcp_mss_min is of a reasonable value. The default is 1 so
732 * the negative problem still exists. And the check defeats PMTUd.
733 * In fact, if PMTUd finds that the MSS should be smaller than
734 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
735 * value.
736 *
737 * We do not deal with that now. All those problems related to
738 * PMTUd will be fixed later.
739 */
740 ASSERT(uinfo.iulp_mtu != 0);
741 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
742
743 /* Sanity check for MSS value. */
744 if (connp->conn_ipversion == IPV4_VERSION)
745 mss_max = tcps->tcps_mss_max_ipv4;
746 else
747 mss_max = tcps->tcps_mss_max_ipv6;
748
749 if (tcp->tcp_ipsec_overhead == 0)
750 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
751
752 mss -= tcp->tcp_ipsec_overhead;
753
754 if (mss < tcps->tcps_mss_min)
755 mss = tcps->tcps_mss_min;
756 if (mss > mss_max)
757 mss = mss_max;
758
759 /* Note that this is the maximum MSS, excluding all options. */
760 tcp->tcp_mss = mss;
761
762 /*
763 * Update the tcp connection with LSO capability.
764 */
765 tcp_update_lso(tcp, connp->conn_ixa);
766
767 /*
768 * Initialize the ISS here now that we have the full connection ID.
769 * The RFC 1948 method of initial sequence number generation requires
770 * knowledge of the full connection ID before setting the ISS.
771 */
772 tcp_iss_init(tcp);
773
774 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
775
776 /*
777 * Make sure that conn is not marked incipient
778 * for incoming connections. A blind
779 * removal of incipient flag is cheaper than
780 * check and removal.
781 */
782 mutex_enter(&connp->conn_lock);
783 connp->conn_state_flags &= ~CONN_INCIPIENT;
784 mutex_exit(&connp->conn_lock);
785 return (0);
786 }
787
788 /*
789 * tcp_clean_death / tcp_close_detached must not be called more than once
790 * on a tcp. Thus every function that potentially calls tcp_clean_death
791 * must check for the tcp state before calling tcp_clean_death.
792 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
793 * tcp_timer_handler, all check for the tcp state.
794 */
795 /* ARGSUSED */
796 void
tcp_clean_death_wrapper(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
798 ip_recv_attr_t *dummy)
799 {
800 tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
801
802 freemsg(mp);
803 if (tcp->tcp_state > TCPS_BOUND)
804 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
805 }
806
807 /*
808 * We are dying for some reason. Try to do it gracefully. (May be called
809 * as writer.)
810 *
811 * Return -1 if the structure was not cleaned up (if the cleanup had to be
812 * done by a service procedure).
813 * TBD - Should the return value distinguish between the tcp_t being
814 * freed and it being reinitialized?
815 */
816 int
tcp_clean_death(tcp_t * tcp,int err)817 tcp_clean_death(tcp_t *tcp, int err)
818 {
819 mblk_t *mp;
820 queue_t *q;
821 conn_t *connp = tcp->tcp_connp;
822 tcp_stack_t *tcps = tcp->tcp_tcps;
823
824 if (tcp->tcp_fused)
825 tcp_unfuse(tcp);
826
827 if (tcp->tcp_linger_tid != 0 &&
828 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
829 tcp_stop_lingering(tcp);
830 }
831
832 ASSERT(tcp != NULL);
833 ASSERT((connp->conn_family == AF_INET &&
834 connp->conn_ipversion == IPV4_VERSION) ||
835 (connp->conn_family == AF_INET6 &&
836 (connp->conn_ipversion == IPV4_VERSION ||
837 connp->conn_ipversion == IPV6_VERSION)));
838
839 if (TCP_IS_DETACHED(tcp)) {
840 if (tcp->tcp_hard_binding) {
841 /*
842 * Its an eager that we are dealing with. We close the
843 * eager but in case a conn_ind has already gone to the
844 * listener, let tcp_accept_finish() send a discon_ind
845 * to the listener and drop the last reference. If the
846 * listener doesn't even know about the eager i.e. the
847 * conn_ind hasn't gone up, blow away the eager and drop
848 * the last reference as well. If the conn_ind has gone
849 * up, state should be BOUND. tcp_accept_finish
850 * will figure out that the connection has received a
851 * RST and will send a DISCON_IND to the application.
852 */
853 tcp_closei_local(tcp);
854 if (!tcp->tcp_tconnind_started) {
855 CONN_DEC_REF(connp);
856 } else {
857 tcp->tcp_state = TCPS_BOUND;
858 DTRACE_TCP6(state__change, void, NULL,
859 ip_xmit_attr_t *, connp->conn_ixa,
860 void, NULL, tcp_t *, tcp, void, NULL,
861 int32_t, TCPS_CLOSED);
862 }
863 } else {
864 tcp_close_detached(tcp);
865 }
866 return (0);
867 }
868
869 TCP_STAT(tcps, tcp_clean_death_nondetached);
870
871 /*
872 * The connection is dead. Decrement listener connection counter if
873 * necessary.
874 */
875 if (tcp->tcp_listen_cnt != NULL)
876 TCP_DECR_LISTEN_CNT(tcp);
877
878 /*
879 * When a connection is moved to TIME_WAIT state, the connection
880 * counter is already decremented. So no need to decrement here
881 * again. See SET_TIME_WAIT() macro.
882 */
883 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
884 tcp->tcp_state < TCPS_TIME_WAIT) {
885 TCPS_CONN_DEC(tcps);
886 }
887
888 q = connp->conn_rq;
889
890 /* Trash all inbound data */
891 if (!IPCL_IS_NONSTR(connp)) {
892 ASSERT(q != NULL);
893 flushq(q, FLUSHALL);
894 }
895
896 /*
897 * If we are at least part way open and there is error
898 * (err==0 implies no error)
899 * notify our client by a T_DISCON_IND.
900 */
901 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
902 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
903 !TCP_IS_SOCKET(tcp)) {
904 /*
905 * Send M_FLUSH according to TPI. Because sockets will
906 * (and must) ignore FLUSHR we do that only for TPI
907 * endpoints and sockets in STREAMS mode.
908 */
909 (void) putnextctl1(q, M_FLUSH, FLUSHR);
910 }
911 if (connp->conn_debug) {
912 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
913 "tcp_clean_death: discon err %d", err);
914 }
915 if (IPCL_IS_NONSTR(connp)) {
916 /* Direct socket, use upcall */
917 (*connp->conn_upcalls->su_disconnected)(
918 connp->conn_upper_handle, tcp->tcp_connid, err);
919 } else {
920 mp = mi_tpi_discon_ind(NULL, err, 0);
921 if (mp != NULL) {
922 putnext(q, mp);
923 } else {
924 if (connp->conn_debug) {
925 (void) strlog(TCP_MOD_ID, 0, 1,
926 SL_ERROR|SL_TRACE,
927 "tcp_clean_death, sending M_ERROR");
928 }
929 (void) putnextctl1(q, M_ERROR, EPROTO);
930 }
931 }
932 if (tcp->tcp_state <= TCPS_SYN_RCVD) {
933 /* SYN_SENT or SYN_RCVD */
934 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
935 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
936 /* ESTABLISHED or CLOSE_WAIT */
937 TCPS_BUMP_MIB(tcps, tcpEstabResets);
938 }
939 }
940
941 /*
942 * ESTABLISHED non-STREAMS eagers are not 'detached' because
943 * an upper handle is obtained when the SYN-ACK comes in. So it
944 * should receive the 'disconnected' upcall, but tcp_reinit should
945 * not be called since this is an eager.
946 */
947 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
948 tcp_closei_local(tcp);
949 tcp->tcp_state = TCPS_BOUND;
950 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
951 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
952 int32_t, TCPS_CLOSED);
953 return (0);
954 }
955
956 tcp_reinit(tcp);
957 if (IPCL_IS_NONSTR(connp))
958 (void) tcp_do_unbind(connp);
959
960 return (-1);
961 }
962
963 /*
964 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
965 * to expire, stop the wait and finish the close.
966 */
967 void
tcp_stop_lingering(tcp_t * tcp)968 tcp_stop_lingering(tcp_t *tcp)
969 {
970 clock_t delta = 0;
971 tcp_stack_t *tcps = tcp->tcp_tcps;
972 conn_t *connp = tcp->tcp_connp;
973
974 tcp->tcp_linger_tid = 0;
975 if (tcp->tcp_state > TCPS_LISTEN) {
976 tcp_acceptor_hash_remove(tcp);
977 mutex_enter(&tcp->tcp_non_sq_lock);
978 if (tcp->tcp_flow_stopped) {
979 tcp_clrqfull(tcp);
980 }
981 mutex_exit(&tcp->tcp_non_sq_lock);
982
983 if (tcp->tcp_timer_tid != 0) {
984 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
985 tcp->tcp_timer_tid = 0;
986 }
987 /*
988 * Need to cancel those timers which will not be used when
989 * TCP is detached. This has to be done before the conn_wq
990 * is cleared.
991 */
992 tcp_timers_stop(tcp);
993
994 tcp->tcp_detached = B_TRUE;
995 connp->conn_rq = NULL;
996 connp->conn_wq = NULL;
997
998 if (tcp->tcp_state == TCPS_TIME_WAIT) {
999 tcp_time_wait_append(tcp);
1000 TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1001 goto finish;
1002 }
1003
1004 /*
1005 * If delta is zero the timer event wasn't executed and was
1006 * successfully canceled. In this case we need to restart it
1007 * with the minimal delta possible.
1008 */
1009 if (delta >= 0) {
1010 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1011 delta ? delta : 1);
1012 }
1013 } else {
1014 tcp_closei_local(tcp);
1015 CONN_DEC_REF(connp);
1016 }
1017 finish:
1018 tcp->tcp_detached = B_TRUE;
1019 connp->conn_rq = NULL;
1020 connp->conn_wq = NULL;
1021
1022 /* Signal closing thread that it can complete close */
1023 mutex_enter(&tcp->tcp_closelock);
1024 tcp->tcp_closed = 1;
1025 cv_signal(&tcp->tcp_closecv);
1026 mutex_exit(&tcp->tcp_closelock);
1027
1028 /* If we have an upper handle (socket), release it */
1029 if (IPCL_IS_NONSTR(connp)) {
1030 ASSERT(connp->conn_upper_handle != NULL);
1031 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1032 connp->conn_upper_handle = NULL;
1033 connp->conn_upcalls = NULL;
1034 }
1035 }
1036
1037 void
tcp_close_common(conn_t * connp,int flags)1038 tcp_close_common(conn_t *connp, int flags)
1039 {
1040 tcp_t *tcp = connp->conn_tcp;
1041 mblk_t *mp = &tcp->tcp_closemp;
1042 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
1043 mblk_t *bp;
1044
1045 ASSERT(connp->conn_ref >= 2);
1046
1047 /*
1048 * Mark the conn as closing. ipsq_pending_mp_add will not
1049 * add any mp to the pending mp list, after this conn has
1050 * started closing.
1051 */
1052 mutex_enter(&connp->conn_lock);
1053 connp->conn_state_flags |= CONN_CLOSING;
1054 if (connp->conn_oper_pending_ill != NULL)
1055 conn_ioctl_cleanup_reqd = B_TRUE;
1056 CONN_INC_REF_LOCKED(connp);
1057 mutex_exit(&connp->conn_lock);
1058 tcp->tcp_closeflags = (uint8_t)flags;
1059 ASSERT(connp->conn_ref >= 3);
1060
1061 /*
1062 * tcp_closemp_used is used below without any protection of a lock
1063 * as we don't expect any one else to use it concurrently at this
1064 * point otherwise it would be a major defect.
1065 */
1066
1067 if (mp->b_prev == NULL)
1068 tcp->tcp_closemp_used = B_TRUE;
1069 else
1070 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1071 "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1072
1073 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1074
1075 /*
1076 * Cleanup any queued ioctls here. This must be done before the wq/rq
1077 * are re-written by tcp_close_output().
1078 */
1079 if (conn_ioctl_cleanup_reqd)
1080 conn_ioctl_cleanup(connp);
1081
1082 /*
1083 * As CONN_CLOSING is set, no further ioctls should be passed down to
1084 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1085 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1086 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1087 * was still in flight at the time, we wait for it here. See comments
1088 * for CONN_INC_IOCTLREF in ip.h for details.
1089 */
1090 mutex_enter(&connp->conn_lock);
1091 while (connp->conn_ioctlref > 0)
1092 cv_wait(&connp->conn_cv, &connp->conn_lock);
1093 ASSERT(connp->conn_ioctlref == 0);
1094 ASSERT(connp->conn_oper_pending_ill == NULL);
1095 mutex_exit(&connp->conn_lock);
1096
1097 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1098 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1099
1100 /*
1101 * For non-STREAMS sockets, the normal case is that the conn makes
1102 * an upcall when it's finally closed, so there is no need to wait
1103 * in the protocol. But in case of SO_LINGER the thread sleeps here
1104 * so it can properly deal with the thread being interrupted.
1105 */
1106 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1107 goto nowait;
1108
1109 mutex_enter(&tcp->tcp_closelock);
1110 while (!tcp->tcp_closed) {
1111 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1112 /*
1113 * The cv_wait_sig() was interrupted. We now do the
1114 * following:
1115 *
1116 * 1) If the endpoint was lingering, we allow this
1117 * to be interrupted by cancelling the linger timeout
1118 * and closing normally.
1119 *
1120 * 2) Revert to calling cv_wait()
1121 *
1122 * We revert to using cv_wait() to avoid an
1123 * infinite loop which can occur if the calling
1124 * thread is higher priority than the squeue worker
1125 * thread and is bound to the same cpu.
1126 */
1127 if (connp->conn_linger && connp->conn_lingertime > 0) {
1128 mutex_exit(&tcp->tcp_closelock);
1129 /* Entering squeue, bump ref count. */
1130 CONN_INC_REF(connp);
1131 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1132 SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1133 tcp_linger_interrupted, connp, NULL,
1134 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1135 mutex_enter(&tcp->tcp_closelock);
1136 }
1137 break;
1138 }
1139 }
1140 while (!tcp->tcp_closed)
1141 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1142 mutex_exit(&tcp->tcp_closelock);
1143
1144 /*
1145 * In the case of listener streams that have eagers in the q or q0
1146 * we wait for the eagers to drop their reference to us. conn_rq and
1147 * conn_wq of the eagers point to our queues. By waiting for the
1148 * refcnt to drop to 1, we are sure that the eagers have cleaned
1149 * up their queue pointers and also dropped their references to us.
1150 *
1151 * For non-STREAMS sockets we do not have to wait here; the
1152 * listener will instead make a su_closed upcall when the last
1153 * reference is dropped.
1154 */
1155 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1156 mutex_enter(&connp->conn_lock);
1157 while (connp->conn_ref != 1) {
1158 cv_wait(&connp->conn_cv, &connp->conn_lock);
1159 }
1160 mutex_exit(&connp->conn_lock);
1161 }
1162
1163 nowait:
1164 connp->conn_cpid = NOPID;
1165 }
1166
1167 /*
1168 * Called by tcp_close() routine via squeue when lingering is
1169 * interrupted by a signal.
1170 */
1171
1172 /* ARGSUSED */
1173 static void
tcp_linger_interrupted(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)1174 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1175 {
1176 conn_t *connp = (conn_t *)arg;
1177 tcp_t *tcp = connp->conn_tcp;
1178
1179 freeb(mp);
1180 if (tcp->tcp_linger_tid != 0 &&
1181 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1182 tcp_stop_lingering(tcp);
1183 tcp->tcp_client_errno = EINTR;
1184 }
1185 }
1186
1187 /*
1188 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1189 * Some stream heads get upset if they see these later on as anything but NULL.
1190 */
1191 void
tcp_close_mpp(mblk_t ** mpp)1192 tcp_close_mpp(mblk_t **mpp)
1193 {
1194 mblk_t *mp;
1195
1196 if ((mp = *mpp) != NULL) {
1197 do {
1198 mp->b_next = NULL;
1199 mp->b_prev = NULL;
1200 } while ((mp = mp->b_cont) != NULL);
1201
1202 mp = *mpp;
1203 *mpp = NULL;
1204 freemsg(mp);
1205 }
1206 }
1207
1208 /* Do detached close. */
1209 void
tcp_close_detached(tcp_t * tcp)1210 tcp_close_detached(tcp_t *tcp)
1211 {
1212 if (tcp->tcp_fused)
1213 tcp_unfuse(tcp);
1214
1215 /*
1216 * Clustering code serializes TCP disconnect callbacks and
1217 * cluster tcp list walks by blocking a TCP disconnect callback
1218 * if a cluster tcp list walk is in progress. This ensures
1219 * accurate accounting of TCPs in the cluster code even though
1220 * the TCP list walk itself is not atomic.
1221 */
1222 tcp_closei_local(tcp);
1223 CONN_DEC_REF(tcp->tcp_connp);
1224 }
1225
1226 /*
1227 * The tcp_t is going away. Remove it from all lists and set it
1228 * to TCPS_CLOSED. The freeing up of memory is deferred until
1229 * tcp_inactive. This is needed since a thread in tcp_rput might have
1230 * done a CONN_INC_REF on this structure before it was removed from the
1231 * hashes.
1232 */
1233 void
tcp_closei_local(tcp_t * tcp)1234 tcp_closei_local(tcp_t *tcp)
1235 {
1236 conn_t *connp = tcp->tcp_connp;
1237 tcp_stack_t *tcps = tcp->tcp_tcps;
1238 int32_t oldstate;
1239
1240 if (!TCP_IS_SOCKET(tcp))
1241 tcp_acceptor_hash_remove(tcp);
1242
1243 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1244 tcp->tcp_ibsegs = 0;
1245 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1246 tcp->tcp_obsegs = 0;
1247
1248 /*
1249 * This can be called via tcp_time_wait_processing() if TCP gets a
1250 * SYN with sequence number outside the TIME-WAIT connection's
1251 * window. So we need to check for TIME-WAIT state here as the
1252 * connection counter is already decremented. See SET_TIME_WAIT()
1253 * macro
1254 */
1255 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1256 tcp->tcp_state < TCPS_TIME_WAIT) {
1257 TCPS_CONN_DEC(tcps);
1258 }
1259
1260 /*
1261 * If we are an eager connection hanging off a listener that
1262 * hasn't formally accepted the connection yet, get off his
1263 * list and blow off any data that we have accumulated.
1264 */
1265 if (tcp->tcp_listener != NULL) {
1266 tcp_t *listener = tcp->tcp_listener;
1267 mutex_enter(&listener->tcp_eager_lock);
1268 /*
1269 * tcp_tconnind_started == B_TRUE means that the
1270 * conn_ind has already gone to listener. At
1271 * this point, eager will be closed but we
1272 * leave it in listeners eager list so that
1273 * if listener decides to close without doing
1274 * accept, we can clean this up. In tcp_tli_accept
1275 * we take care of the case of accept on closed
1276 * eager.
1277 */
1278 if (!tcp->tcp_tconnind_started) {
1279 tcp_eager_unlink(tcp);
1280 mutex_exit(&listener->tcp_eager_lock);
1281 /*
1282 * We don't want to have any pointers to the
1283 * listener queue, after we have released our
1284 * reference on the listener
1285 */
1286 ASSERT(tcp->tcp_detached);
1287 connp->conn_rq = NULL;
1288 connp->conn_wq = NULL;
1289 CONN_DEC_REF(listener->tcp_connp);
1290 } else {
1291 mutex_exit(&listener->tcp_eager_lock);
1292 }
1293 }
1294
1295 /* Stop all the timers */
1296 tcp_timers_stop(tcp);
1297
1298 if (tcp->tcp_state == TCPS_LISTEN) {
1299 if (tcp->tcp_ip_addr_cache) {
1300 kmem_free((void *)tcp->tcp_ip_addr_cache,
1301 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1302 tcp->tcp_ip_addr_cache = NULL;
1303 }
1304 }
1305
1306 /* Decrement listerner connection counter if necessary. */
1307 if (tcp->tcp_listen_cnt != NULL)
1308 TCP_DECR_LISTEN_CNT(tcp);
1309
1310 mutex_enter(&tcp->tcp_non_sq_lock);
1311 if (tcp->tcp_flow_stopped)
1312 tcp_clrqfull(tcp);
1313 mutex_exit(&tcp->tcp_non_sq_lock);
1314
1315 tcp_bind_hash_remove(tcp);
1316 /*
1317 * If the tcp_time_wait_collector (which runs outside the squeue)
1318 * is trying to remove this tcp from the time wait list, we will
1319 * block in tcp_time_wait_remove while trying to acquire the
1320 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1321 * requires the ipcl_hash_remove to be ordered after the
1322 * tcp_time_wait_remove for the refcnt checks to work correctly.
1323 */
1324 if (tcp->tcp_state == TCPS_TIME_WAIT)
1325 (void) tcp_time_wait_remove(tcp, NULL);
1326 CL_INET_DISCONNECT(connp);
1327 ipcl_hash_remove(connp);
1328 oldstate = tcp->tcp_state;
1329 tcp->tcp_state = TCPS_CLOSED;
1330 /* Need to probe before ixa_cleanup() is called */
1331 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1332 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1333 int32_t, oldstate);
1334 ixa_cleanup(connp->conn_ixa);
1335
1336 /*
1337 * Mark the conn as CONDEMNED
1338 */
1339 mutex_enter(&connp->conn_lock);
1340 connp->conn_state_flags |= CONN_CONDEMNED;
1341 mutex_exit(&connp->conn_lock);
1342
1343 ASSERT(tcp->tcp_time_wait_next == NULL);
1344 ASSERT(tcp->tcp_time_wait_prev == NULL);
1345 ASSERT(tcp->tcp_time_wait_expire == 0);
1346
1347 tcp_ipsec_cleanup(tcp);
1348 }
1349
1350 /*
1351 * tcp is dying (called from ipcl_conn_destroy and error cases).
1352 * Free the tcp_t in either case.
1353 */
1354 void
tcp_free(tcp_t * tcp)1355 tcp_free(tcp_t *tcp)
1356 {
1357 mblk_t *mp;
1358 conn_t *connp = tcp->tcp_connp;
1359
1360 ASSERT(tcp != NULL);
1361 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1362
1363 connp->conn_rq = NULL;
1364 connp->conn_wq = NULL;
1365
1366 tcp_close_mpp(&tcp->tcp_xmit_head);
1367 tcp_close_mpp(&tcp->tcp_reass_head);
1368 if (tcp->tcp_rcv_list != NULL) {
1369 /* Free b_next chain */
1370 tcp_close_mpp(&tcp->tcp_rcv_list);
1371 }
1372 if ((mp = tcp->tcp_urp_mp) != NULL) {
1373 freemsg(mp);
1374 }
1375 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1376 freemsg(mp);
1377 }
1378
1379 if (tcp->tcp_fused_sigurg_mp != NULL) {
1380 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1381 freeb(tcp->tcp_fused_sigurg_mp);
1382 tcp->tcp_fused_sigurg_mp = NULL;
1383 }
1384
1385 if (tcp->tcp_ordrel_mp != NULL) {
1386 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1387 freeb(tcp->tcp_ordrel_mp);
1388 tcp->tcp_ordrel_mp = NULL;
1389 }
1390
1391 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1392 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1393
1394 if (tcp->tcp_hopopts != NULL) {
1395 mi_free(tcp->tcp_hopopts);
1396 tcp->tcp_hopopts = NULL;
1397 tcp->tcp_hopoptslen = 0;
1398 }
1399 ASSERT(tcp->tcp_hopoptslen == 0);
1400 if (tcp->tcp_dstopts != NULL) {
1401 mi_free(tcp->tcp_dstopts);
1402 tcp->tcp_dstopts = NULL;
1403 tcp->tcp_dstoptslen = 0;
1404 }
1405 ASSERT(tcp->tcp_dstoptslen == 0);
1406 if (tcp->tcp_rthdrdstopts != NULL) {
1407 mi_free(tcp->tcp_rthdrdstopts);
1408 tcp->tcp_rthdrdstopts = NULL;
1409 tcp->tcp_rthdrdstoptslen = 0;
1410 }
1411 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1412 if (tcp->tcp_rthdr != NULL) {
1413 mi_free(tcp->tcp_rthdr);
1414 tcp->tcp_rthdr = NULL;
1415 tcp->tcp_rthdrlen = 0;
1416 }
1417 ASSERT(tcp->tcp_rthdrlen == 0);
1418
1419 /*
1420 * Following is really a blowing away a union.
1421 * It happens to have exactly two members of identical size
1422 * the following code is enough.
1423 */
1424 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1425
1426 /*
1427 * If this is a non-STREAM socket still holding on to an upper
1428 * handle, release it. As a result of fallback we might also see
1429 * STREAMS based conns with upper handles, in which case there is
1430 * nothing to do other than clearing the field.
1431 */
1432 if (connp->conn_upper_handle != NULL) {
1433 if (IPCL_IS_NONSTR(connp)) {
1434 (*connp->conn_upcalls->su_closed)(
1435 connp->conn_upper_handle);
1436 tcp->tcp_detached = B_TRUE;
1437 }
1438 connp->conn_upper_handle = NULL;
1439 connp->conn_upcalls = NULL;
1440 }
1441 }
1442
1443 /*
1444 * tcp_get_conn/tcp_free_conn
1445 *
1446 * tcp_get_conn is used to get a clean tcp connection structure.
1447 * It tries to reuse the connections put on the freelist by the
1448 * time_wait_collector failing which it goes to kmem_cache. This
1449 * way has two benefits compared to just allocating from and
1450 * freeing to kmem_cache.
1451 * 1) The time_wait_collector can free (which includes the cleanup)
1452 * outside the squeue. So when the interrupt comes, we have a clean
1453 * connection sitting in the freelist. Obviously, this buys us
1454 * performance.
1455 *
1456 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1457 * has multiple disadvantages - tying up the squeue during alloc.
1458 * But allocating the conn/tcp in IP land is also not the best since
1459 * we can't check the 'q' and 'q0' which are protected by squeue and
1460 * blindly allocate memory which might have to be freed here if we are
1461 * not allowed to accept the connection. By using the freelist and
1462 * putting the conn/tcp back in freelist, we don't pay a penalty for
1463 * allocating memory without checking 'q/q0' and freeing it if we can't
1464 * accept the connection.
1465 *
1466 * Care should be taken to put the conn back in the same squeue's freelist
1467 * from which it was allocated. Best results are obtained if conn is
1468 * allocated from listener's squeue and freed to the same. Time wait
1469 * collector will free up the freelist is the connection ends up sitting
1470 * there for too long.
1471 */
1472 void *
tcp_get_conn(void * arg,tcp_stack_t * tcps)1473 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1474 {
1475 tcp_t *tcp = NULL;
1476 conn_t *connp = NULL;
1477 squeue_t *sqp = (squeue_t *)arg;
1478 tcp_squeue_priv_t *tcp_time_wait;
1479 netstack_t *ns;
1480 mblk_t *tcp_rsrv_mp = NULL;
1481
1482 tcp_time_wait =
1483 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1484
1485 mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1486 tcp = tcp_time_wait->tcp_free_list;
1487 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1488 if (tcp != NULL) {
1489 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1490 tcp_time_wait->tcp_free_list_cnt--;
1491 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1492 tcp->tcp_time_wait_next = NULL;
1493 connp = tcp->tcp_connp;
1494 connp->conn_flags |= IPCL_REUSED;
1495
1496 ASSERT(tcp->tcp_tcps == NULL);
1497 ASSERT(connp->conn_netstack == NULL);
1498 ASSERT(tcp->tcp_rsrv_mp != NULL);
1499 ns = tcps->tcps_netstack;
1500 netstack_hold(ns);
1501 connp->conn_netstack = ns;
1502 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1503 tcp->tcp_tcps = tcps;
1504 ipcl_globalhash_insert(connp);
1505
1506 connp->conn_ixa->ixa_notify_cookie = tcp;
1507 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1508 connp->conn_recv = tcp_input_data;
1509 ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1510 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1511 return ((void *)connp);
1512 }
1513 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1514 /*
1515 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1516 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1517 */
1518 tcp_rsrv_mp = allocb(0, BPRI_HI);
1519 if (tcp_rsrv_mp == NULL)
1520 return (NULL);
1521
1522 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1523 tcps->tcps_netstack)) == NULL) {
1524 freeb(tcp_rsrv_mp);
1525 return (NULL);
1526 }
1527
1528 tcp = connp->conn_tcp;
1529 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1530 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1531
1532 tcp->tcp_tcps = tcps;
1533
1534 connp->conn_recv = tcp_input_data;
1535 connp->conn_recvicmp = tcp_icmp_input;
1536 connp->conn_verifyicmp = tcp_verifyicmp;
1537
1538 /*
1539 * Register tcp_notify to listen to capability changes detected by IP.
1540 * This upcall is made in the context of the call to conn_ip_output
1541 * thus it is inside the squeue.
1542 */
1543 connp->conn_ixa->ixa_notify = tcp_notify;
1544 connp->conn_ixa->ixa_notify_cookie = tcp;
1545
1546 return ((void *)connp);
1547 }
1548
1549 /*
1550 * Handle connect to IPv4 destinations, including connections for AF_INET6
1551 * sockets connecting to IPv4 mapped IPv6 destinations.
1552 * Returns zero if OK, a positive errno, or a negative TLI error.
1553 */
1554 static int
tcp_connect_ipv4(tcp_t * tcp,ipaddr_t * dstaddrp,in_port_t dstport,uint_t srcid)1555 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1556 uint_t srcid)
1557 {
1558 ipaddr_t dstaddr = *dstaddrp;
1559 uint16_t lport;
1560 conn_t *connp = tcp->tcp_connp;
1561 tcp_stack_t *tcps = tcp->tcp_tcps;
1562 int error;
1563
1564 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1565
1566 /* Check for attempt to connect to INADDR_ANY */
1567 if (dstaddr == INADDR_ANY) {
1568 /*
1569 * SunOS 4.x and 4.3 BSD allow an application
1570 * to connect a TCP socket to INADDR_ANY.
1571 * When they do this, the kernel picks the
1572 * address of one interface and uses it
1573 * instead. The kernel usually ends up
1574 * picking the address of the loopback
1575 * interface. This is an undocumented feature.
1576 * However, we provide the same thing here
1577 * in order to have source and binary
1578 * compatibility with SunOS 4.x.
1579 * Update the T_CONN_REQ (sin/sin6) since it is used to
1580 * generate the T_CONN_CON.
1581 */
1582 dstaddr = htonl(INADDR_LOOPBACK);
1583 *dstaddrp = dstaddr;
1584 }
1585
1586 /* Handle __sin6_src_id if socket not bound to an IP address */
1587 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1588 ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1589 IPCL_ZONEID(connp), tcps->tcps_netstack);
1590 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1591 }
1592
1593 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1594 connp->conn_fport = dstport;
1595
1596 /*
1597 * At this point the remote destination address and remote port fields
1598 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1599 * have to see which state tcp was in so we can take appropriate action.
1600 */
1601 if (tcp->tcp_state == TCPS_IDLE) {
1602 /*
1603 * We support a quick connect capability here, allowing
1604 * clients to transition directly from IDLE to SYN_SENT
1605 * tcp_bindi will pick an unused port, insert the connection
1606 * in the bind hash and transition to BOUND state.
1607 */
1608 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1609 tcp, B_TRUE);
1610 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1611 B_FALSE, B_FALSE);
1612 if (lport == 0)
1613 return (-TNOADDR);
1614 }
1615
1616 /*
1617 * Lookup the route to determine a source address and the uinfo.
1618 * Setup TCP parameters based on the metrics/DCE.
1619 */
1620 error = tcp_set_destination(tcp);
1621 if (error != 0)
1622 return (error);
1623
1624 /*
1625 * Don't let an endpoint connect to itself.
1626 */
1627 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1628 connp->conn_fport == connp->conn_lport)
1629 return (-TBADADDR);
1630
1631 tcp->tcp_state = TCPS_SYN_SENT;
1632
1633 return (ipcl_conn_insert_v4(connp));
1634 }
1635
1636 /*
1637 * Handle connect to IPv6 destinations.
1638 * Returns zero if OK, a positive errno, or a negative TLI error.
1639 */
1640 static int
tcp_connect_ipv6(tcp_t * tcp,in6_addr_t * dstaddrp,in_port_t dstport,uint32_t flowinfo,uint_t srcid,uint32_t scope_id)1641 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1642 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1643 {
1644 uint16_t lport;
1645 conn_t *connp = tcp->tcp_connp;
1646 tcp_stack_t *tcps = tcp->tcp_tcps;
1647 int error;
1648
1649 ASSERT(connp->conn_family == AF_INET6);
1650
1651 /*
1652 * If we're here, it means that the destination address is a native
1653 * IPv6 address. Return an error if conn_ipversion is not IPv6. A
1654 * reason why it might not be IPv6 is if the socket was bound to an
1655 * IPv4-mapped IPv6 address.
1656 */
1657 if (connp->conn_ipversion != IPV6_VERSION)
1658 return (-TBADADDR);
1659
1660 /*
1661 * Interpret a zero destination to mean loopback.
1662 * Update the T_CONN_REQ (sin/sin6) since it is used to
1663 * generate the T_CONN_CON.
1664 */
1665 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1666 *dstaddrp = ipv6_loopback;
1667
1668 /* Handle __sin6_src_id if socket not bound to an IP address */
1669 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1670 ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1671 IPCL_ZONEID(connp), tcps->tcps_netstack);
1672 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1673 }
1674
1675 /*
1676 * Take care of the scope_id now.
1677 */
1678 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1679 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1680 connp->conn_ixa->ixa_scopeid = scope_id;
1681 } else {
1682 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1683 }
1684
1685 connp->conn_flowinfo = flowinfo;
1686 connp->conn_faddr_v6 = *dstaddrp;
1687 connp->conn_fport = dstport;
1688
1689 /*
1690 * At this point the remote destination address and remote port fields
1691 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1692 * have to see which state tcp was in so we can take appropriate action.
1693 */
1694 if (tcp->tcp_state == TCPS_IDLE) {
1695 /*
1696 * We support a quick connect capability here, allowing
1697 * clients to transition directly from IDLE to SYN_SENT
1698 * tcp_bindi will pick an unused port, insert the connection
1699 * in the bind hash and transition to BOUND state.
1700 */
1701 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1702 tcp, B_TRUE);
1703 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1704 B_FALSE, B_FALSE);
1705 if (lport == 0)
1706 return (-TNOADDR);
1707 }
1708
1709 /*
1710 * Lookup the route to determine a source address and the uinfo.
1711 * Setup TCP parameters based on the metrics/DCE.
1712 */
1713 error = tcp_set_destination(tcp);
1714 if (error != 0)
1715 return (error);
1716
1717 /*
1718 * Don't let an endpoint connect to itself.
1719 */
1720 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1721 connp->conn_fport == connp->conn_lport)
1722 return (-TBADADDR);
1723
1724 tcp->tcp_state = TCPS_SYN_SENT;
1725
1726 return (ipcl_conn_insert_v6(connp));
1727 }
1728
1729 /*
1730 * Disconnect
1731 * Note that unlike other functions this returns a positive tli error
1732 * when it fails; it never returns an errno.
1733 */
1734 static int
tcp_disconnect_common(tcp_t * tcp,t_scalar_t seqnum)1735 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1736 {
1737 conn_t *lconnp;
1738 tcp_stack_t *tcps = tcp->tcp_tcps;
1739 conn_t *connp = tcp->tcp_connp;
1740
1741 /*
1742 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1743 * when the stream is in BOUND state. Do not send a reset,
1744 * since the destination IP address is not valid, and it can
1745 * be the initialized value of all zeros (broadcast address).
1746 */
1747 if (tcp->tcp_state <= TCPS_BOUND) {
1748 if (connp->conn_debug) {
1749 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1750 "tcp_disconnect: bad state, %d", tcp->tcp_state);
1751 }
1752 return (TOUTSTATE);
1753 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1754 TCPS_CONN_DEC(tcps);
1755 }
1756
1757 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1758
1759 /*
1760 * According to TPI, for non-listeners, ignore seqnum
1761 * and disconnect.
1762 * Following interpretation of -1 seqnum is historical
1763 * and implied TPI ? (TPI only states that for T_CONN_IND,
1764 * a valid seqnum should not be -1).
1765 *
1766 * -1 means disconnect everything
1767 * regardless even on a listener.
1768 */
1769
1770 int old_state = tcp->tcp_state;
1771 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1772
1773 /*
1774 * The connection can't be on the tcp_time_wait_head list
1775 * since it is not detached.
1776 */
1777 ASSERT(tcp->tcp_time_wait_next == NULL);
1778 ASSERT(tcp->tcp_time_wait_prev == NULL);
1779 ASSERT(tcp->tcp_time_wait_expire == 0);
1780 /*
1781 * If it used to be a listener, check to make sure no one else
1782 * has taken the port before switching back to LISTEN state.
1783 */
1784 if (connp->conn_ipversion == IPV4_VERSION) {
1785 lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1786 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1787 } else {
1788 uint_t ifindex = 0;
1789
1790 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1791 ifindex = connp->conn_ixa->ixa_scopeid;
1792
1793 /* Allow conn_bound_if listeners? */
1794 lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1795 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1796 ipst);
1797 }
1798 if (tcp->tcp_conn_req_max && lconnp == NULL) {
1799 tcp->tcp_state = TCPS_LISTEN;
1800 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1801 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1802 NULL, int32_t, old_state);
1803 } else if (old_state > TCPS_BOUND) {
1804 tcp->tcp_conn_req_max = 0;
1805 tcp->tcp_state = TCPS_BOUND;
1806 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1807 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1808 NULL, int32_t, old_state);
1809
1810 /*
1811 * If this end point is not going to become a listener,
1812 * decrement the listener connection count if
1813 * necessary. Note that we do not do this if it is
1814 * going to be a listner (the above if case) since
1815 * then it may remove the counter struct.
1816 */
1817 if (tcp->tcp_listen_cnt != NULL)
1818 TCP_DECR_LISTEN_CNT(tcp);
1819 }
1820 if (lconnp != NULL)
1821 CONN_DEC_REF(lconnp);
1822 switch (old_state) {
1823 case TCPS_SYN_SENT:
1824 case TCPS_SYN_RCVD:
1825 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1826 break;
1827 case TCPS_ESTABLISHED:
1828 case TCPS_CLOSE_WAIT:
1829 TCPS_BUMP_MIB(tcps, tcpEstabResets);
1830 break;
1831 }
1832
1833 if (tcp->tcp_fused)
1834 tcp_unfuse(tcp);
1835
1836 mutex_enter(&tcp->tcp_eager_lock);
1837 if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1838 (tcp->tcp_conn_req_cnt_q != 0)) {
1839 tcp_eager_cleanup(tcp, 0);
1840 }
1841 mutex_exit(&tcp->tcp_eager_lock);
1842
1843 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1844 tcp->tcp_rnxt, TH_RST | TH_ACK);
1845
1846 tcp_reinit(tcp);
1847
1848 return (0);
1849 } else if (!tcp_eager_blowoff(tcp, seqnum)) {
1850 return (TBADSEQ);
1851 }
1852 return (0);
1853 }
1854
1855 /*
1856 * Our client hereby directs us to reject the connection request
1857 * that tcp_input_listener() marked with 'seqnum'. Rejection consists
1858 * of sending the appropriate RST, not an ICMP error.
1859 */
1860 void
tcp_disconnect(tcp_t * tcp,mblk_t * mp)1861 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1862 {
1863 t_scalar_t seqnum;
1864 int error;
1865 conn_t *connp = tcp->tcp_connp;
1866
1867 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1868 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1869 tcp_err_ack(tcp, mp, TPROTO, 0);
1870 return;
1871 }
1872 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1873 error = tcp_disconnect_common(tcp, seqnum);
1874 if (error != 0)
1875 tcp_err_ack(tcp, mp, error, 0);
1876 else {
1877 if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1878 /* Send M_FLUSH according to TPI */
1879 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1880 }
1881 mp = mi_tpi_ok_ack_alloc(mp);
1882 if (mp != NULL)
1883 putnext(connp->conn_rq, mp);
1884 }
1885 }
1886
1887 /*
1888 * Handle reinitialization of a tcp structure.
1889 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1890 */
1891 static void
tcp_reinit(tcp_t * tcp)1892 tcp_reinit(tcp_t *tcp)
1893 {
1894 mblk_t *mp;
1895 tcp_stack_t *tcps = tcp->tcp_tcps;
1896 conn_t *connp = tcp->tcp_connp;
1897 int32_t oldstate;
1898
1899 /* tcp_reinit should never be called for detached tcp_t's */
1900 ASSERT(tcp->tcp_listener == NULL);
1901 ASSERT((connp->conn_family == AF_INET &&
1902 connp->conn_ipversion == IPV4_VERSION) ||
1903 (connp->conn_family == AF_INET6 &&
1904 (connp->conn_ipversion == IPV4_VERSION ||
1905 connp->conn_ipversion == IPV6_VERSION)));
1906
1907 /* Cancel outstanding timers */
1908 tcp_timers_stop(tcp);
1909
1910 /*
1911 * Reset everything in the state vector, after updating global
1912 * MIB data from instance counters.
1913 */
1914 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1915 tcp->tcp_ibsegs = 0;
1916 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1917 tcp->tcp_obsegs = 0;
1918
1919 tcp_close_mpp(&tcp->tcp_xmit_head);
1920 if (tcp->tcp_snd_zcopy_aware)
1921 tcp_zcopy_notify(tcp);
1922 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1923 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1924 mutex_enter(&tcp->tcp_non_sq_lock);
1925 if (tcp->tcp_flow_stopped &&
1926 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1927 tcp_clrqfull(tcp);
1928 }
1929 mutex_exit(&tcp->tcp_non_sq_lock);
1930 tcp_close_mpp(&tcp->tcp_reass_head);
1931 tcp->tcp_reass_tail = NULL;
1932 if (tcp->tcp_rcv_list != NULL) {
1933 /* Free b_next chain */
1934 tcp_close_mpp(&tcp->tcp_rcv_list);
1935 tcp->tcp_rcv_last_head = NULL;
1936 tcp->tcp_rcv_last_tail = NULL;
1937 tcp->tcp_rcv_cnt = 0;
1938 }
1939 tcp->tcp_rcv_last_tail = NULL;
1940
1941 if ((mp = tcp->tcp_urp_mp) != NULL) {
1942 freemsg(mp);
1943 tcp->tcp_urp_mp = NULL;
1944 }
1945 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1946 freemsg(mp);
1947 tcp->tcp_urp_mark_mp = NULL;
1948 }
1949 if (tcp->tcp_fused_sigurg_mp != NULL) {
1950 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1951 freeb(tcp->tcp_fused_sigurg_mp);
1952 tcp->tcp_fused_sigurg_mp = NULL;
1953 }
1954 if (tcp->tcp_ordrel_mp != NULL) {
1955 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1956 freeb(tcp->tcp_ordrel_mp);
1957 tcp->tcp_ordrel_mp = NULL;
1958 }
1959
1960 /*
1961 * Following is a union with two members which are
1962 * identical types and size so the following cleanup
1963 * is enough.
1964 */
1965 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1966
1967 CL_INET_DISCONNECT(connp);
1968
1969 /*
1970 * The connection can't be on the tcp_time_wait_head list
1971 * since it is not detached.
1972 */
1973 ASSERT(tcp->tcp_time_wait_next == NULL);
1974 ASSERT(tcp->tcp_time_wait_prev == NULL);
1975 ASSERT(tcp->tcp_time_wait_expire == 0);
1976
1977 /*
1978 * Reset/preserve other values
1979 */
1980 tcp_reinit_values(tcp);
1981 ipcl_hash_remove(connp);
1982 /* Note that ixa_cred gets cleared in ixa_cleanup */
1983 ixa_cleanup(connp->conn_ixa);
1984 tcp_ipsec_cleanup(tcp);
1985
1986 connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1987 connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1988 oldstate = tcp->tcp_state;
1989
1990 if (tcp->tcp_conn_req_max != 0) {
1991 /*
1992 * This is the case when a TLI program uses the same
1993 * transport end point to accept a connection. This
1994 * makes the TCP both a listener and acceptor. When
1995 * this connection is closed, we need to set the state
1996 * back to TCPS_LISTEN. Make sure that the eager list
1997 * is reinitialized.
1998 *
1999 * Note that this stream is still bound to the four
2000 * tuples of the previous connection in IP. If a new
2001 * SYN with different foreign address comes in, IP will
2002 * not find it and will send it to the global queue. In
2003 * the global queue, TCP will do a tcp_lookup_listener()
2004 * to find this stream. This works because this stream
2005 * is only removed from connected hash.
2006 *
2007 */
2008 tcp->tcp_state = TCPS_LISTEN;
2009 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2010 tcp->tcp_eager_next_drop_q0 = tcp;
2011 tcp->tcp_eager_prev_drop_q0 = tcp;
2012 /*
2013 * Initially set conn_recv to tcp_input_listener_unbound to try
2014 * to pick a good squeue for the listener when the first SYN
2015 * arrives. tcp_input_listener_unbound sets it to
2016 * tcp_input_listener on that first SYN.
2017 */
2018 connp->conn_recv = tcp_input_listener_unbound;
2019
2020 connp->conn_proto = IPPROTO_TCP;
2021 connp->conn_faddr_v6 = ipv6_all_zeros;
2022 connp->conn_fport = 0;
2023
2024 (void) ipcl_bind_insert(connp);
2025 } else {
2026 tcp->tcp_state = TCPS_BOUND;
2027 }
2028
2029 /*
2030 * Initialize to default values
2031 */
2032 tcp_init_values(tcp, NULL);
2033
2034 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2035 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2036 int32_t, oldstate);
2037
2038 ASSERT(tcp->tcp_ptpbhn != NULL);
2039 tcp->tcp_rwnd = connp->conn_rcvbuf;
2040 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2041 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2042 }
2043
2044 /*
2045 * Force values to zero that need be zero.
2046 * Do not touch values asociated with the BOUND or LISTEN state
2047 * since the connection will end up in that state after the reinit.
2048 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2049 * structure!
2050 */
2051 static void
tcp_reinit_values(tcp)2052 tcp_reinit_values(tcp)
2053 tcp_t *tcp;
2054 {
2055 tcp_stack_t *tcps = tcp->tcp_tcps;
2056 conn_t *connp = tcp->tcp_connp;
2057
2058 #ifndef lint
2059 #define DONTCARE(x)
2060 #define PRESERVE(x)
2061 #else
2062 #define DONTCARE(x) ((x) = (x))
2063 #define PRESERVE(x) ((x) = (x))
2064 #endif /* lint */
2065
2066 PRESERVE(tcp->tcp_bind_hash_port);
2067 PRESERVE(tcp->tcp_bind_hash);
2068 PRESERVE(tcp->tcp_ptpbhn);
2069 PRESERVE(tcp->tcp_acceptor_hash);
2070 PRESERVE(tcp->tcp_ptpahn);
2071
2072 /* Should be ASSERT NULL on these with new code! */
2073 ASSERT(tcp->tcp_time_wait_next == NULL);
2074 ASSERT(tcp->tcp_time_wait_prev == NULL);
2075 ASSERT(tcp->tcp_time_wait_expire == 0);
2076 PRESERVE(tcp->tcp_state);
2077 PRESERVE(connp->conn_rq);
2078 PRESERVE(connp->conn_wq);
2079
2080 ASSERT(tcp->tcp_xmit_head == NULL);
2081 ASSERT(tcp->tcp_xmit_last == NULL);
2082 ASSERT(tcp->tcp_unsent == 0);
2083 ASSERT(tcp->tcp_xmit_tail == NULL);
2084 ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2085
2086 tcp->tcp_snxt = 0; /* Displayed in mib */
2087 tcp->tcp_suna = 0; /* Displayed in mib */
2088 tcp->tcp_swnd = 0;
2089 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
2090
2091 ASSERT(tcp->tcp_ibsegs == 0);
2092 ASSERT(tcp->tcp_obsegs == 0);
2093
2094 if (connp->conn_ht_iphc != NULL) {
2095 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2096 connp->conn_ht_iphc = NULL;
2097 connp->conn_ht_iphc_allocated = 0;
2098 connp->conn_ht_iphc_len = 0;
2099 connp->conn_ht_ulp = NULL;
2100 connp->conn_ht_ulp_len = 0;
2101 tcp->tcp_ipha = NULL;
2102 tcp->tcp_ip6h = NULL;
2103 tcp->tcp_tcpha = NULL;
2104 }
2105
2106 /* We clear any IP_OPTIONS and extension headers */
2107 ip_pkt_free(&connp->conn_xmit_ipp);
2108
2109 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
2110 DONTCARE(tcp->tcp_ipha);
2111 DONTCARE(tcp->tcp_ip6h);
2112 DONTCARE(tcp->tcp_tcpha);
2113 tcp->tcp_valid_bits = 0;
2114
2115 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
2116 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
2117 tcp->tcp_last_rcv_lbolt = 0;
2118
2119 tcp->tcp_init_cwnd = 0;
2120
2121 tcp->tcp_urp_last_valid = 0;
2122 tcp->tcp_hard_binding = 0;
2123
2124 tcp->tcp_fin_acked = 0;
2125 tcp->tcp_fin_rcvd = 0;
2126 tcp->tcp_fin_sent = 0;
2127 tcp->tcp_ordrel_done = 0;
2128
2129 tcp->tcp_detached = 0;
2130
2131 tcp->tcp_snd_ws_ok = B_FALSE;
2132 tcp->tcp_snd_ts_ok = B_FALSE;
2133 tcp->tcp_zero_win_probe = 0;
2134
2135 tcp->tcp_loopback = 0;
2136 tcp->tcp_localnet = 0;
2137 tcp->tcp_syn_defense = 0;
2138 tcp->tcp_set_timer = 0;
2139
2140 tcp->tcp_active_open = 0;
2141 tcp->tcp_rexmit = B_FALSE;
2142 tcp->tcp_xmit_zc_clean = B_FALSE;
2143
2144 tcp->tcp_snd_sack_ok = B_FALSE;
2145 tcp->tcp_hwcksum = B_FALSE;
2146
2147 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
2148
2149 tcp->tcp_conn_def_q0 = 0;
2150 tcp->tcp_ip_forward_progress = B_FALSE;
2151 tcp->tcp_ecn_ok = B_FALSE;
2152
2153 tcp->tcp_cwr = B_FALSE;
2154 tcp->tcp_ecn_echo_on = B_FALSE;
2155 tcp->tcp_is_wnd_shrnk = B_FALSE;
2156
2157 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2158 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2159
2160 tcp->tcp_rcv_ws = 0;
2161 tcp->tcp_snd_ws = 0;
2162 tcp->tcp_ts_recent = 0;
2163 tcp->tcp_rnxt = 0; /* Displayed in mib */
2164 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
2165 tcp->tcp_initial_pmtu = 0;
2166
2167 ASSERT(tcp->tcp_reass_head == NULL);
2168 ASSERT(tcp->tcp_reass_tail == NULL);
2169
2170 tcp->tcp_cwnd_cnt = 0;
2171
2172 ASSERT(tcp->tcp_rcv_list == NULL);
2173 ASSERT(tcp->tcp_rcv_last_head == NULL);
2174 ASSERT(tcp->tcp_rcv_last_tail == NULL);
2175 ASSERT(tcp->tcp_rcv_cnt == 0);
2176
2177 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2178 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
2179 tcp->tcp_csuna = 0;
2180
2181 tcp->tcp_rto = 0; /* Displayed in MIB */
2182 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
2183 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
2184 tcp->tcp_rtt_update = 0;
2185
2186 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2187 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2188
2189 tcp->tcp_rack = 0; /* Displayed in mib */
2190 tcp->tcp_rack_cnt = 0;
2191 tcp->tcp_rack_cur_max = 0;
2192 tcp->tcp_rack_abs_max = 0;
2193
2194 tcp->tcp_max_swnd = 0;
2195
2196 ASSERT(tcp->tcp_listener == NULL);
2197
2198 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
2199 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
2200 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
2201 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
2202
2203 ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2204 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2205 PRESERVE(tcp->tcp_conn_req_max);
2206 PRESERVE(tcp->tcp_conn_req_seqnum);
2207
2208 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2209 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2210 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2211 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2212
2213 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
2214 ASSERT(tcp->tcp_urp_mp == NULL);
2215 ASSERT(tcp->tcp_urp_mark_mp == NULL);
2216 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2217
2218 ASSERT(tcp->tcp_eager_next_q == NULL);
2219 ASSERT(tcp->tcp_eager_last_q == NULL);
2220 ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2221 tcp->tcp_eager_prev_q0 == NULL) ||
2222 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2223 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2224
2225 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2226 tcp->tcp_eager_prev_drop_q0 == NULL) ||
2227 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2228
2229 tcp->tcp_client_errno = 0;
2230
2231 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
2232
2233 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
2234
2235 PRESERVE(connp->conn_bound_addr_v6);
2236 tcp->tcp_last_sent_len = 0;
2237 tcp->tcp_dupack_cnt = 0;
2238
2239 connp->conn_fport = 0; /* Displayed in MIB */
2240 PRESERVE(connp->conn_lport);
2241
2242 PRESERVE(tcp->tcp_acceptor_lockp);
2243
2244 ASSERT(tcp->tcp_ordrel_mp == NULL);
2245 PRESERVE(tcp->tcp_acceptor_id);
2246 DONTCARE(tcp->tcp_ipsec_overhead);
2247
2248 PRESERVE(connp->conn_family);
2249 /* Remove any remnants of mapped address binding */
2250 if (connp->conn_family == AF_INET6) {
2251 connp->conn_ipversion = IPV6_VERSION;
2252 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2253 } else {
2254 connp->conn_ipversion = IPV4_VERSION;
2255 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2256 }
2257
2258 connp->conn_bound_if = 0;
2259 connp->conn_recv_ancillary.crb_all = 0;
2260 tcp->tcp_recvifindex = 0;
2261 tcp->tcp_recvhops = 0;
2262 tcp->tcp_closed = 0;
2263 if (tcp->tcp_hopopts != NULL) {
2264 mi_free(tcp->tcp_hopopts);
2265 tcp->tcp_hopopts = NULL;
2266 tcp->tcp_hopoptslen = 0;
2267 }
2268 ASSERT(tcp->tcp_hopoptslen == 0);
2269 if (tcp->tcp_dstopts != NULL) {
2270 mi_free(tcp->tcp_dstopts);
2271 tcp->tcp_dstopts = NULL;
2272 tcp->tcp_dstoptslen = 0;
2273 }
2274 ASSERT(tcp->tcp_dstoptslen == 0);
2275 if (tcp->tcp_rthdrdstopts != NULL) {
2276 mi_free(tcp->tcp_rthdrdstopts);
2277 tcp->tcp_rthdrdstopts = NULL;
2278 tcp->tcp_rthdrdstoptslen = 0;
2279 }
2280 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2281 if (tcp->tcp_rthdr != NULL) {
2282 mi_free(tcp->tcp_rthdr);
2283 tcp->tcp_rthdr = NULL;
2284 tcp->tcp_rthdrlen = 0;
2285 }
2286 ASSERT(tcp->tcp_rthdrlen == 0);
2287
2288 /* Reset fusion-related fields */
2289 tcp->tcp_fused = B_FALSE;
2290 tcp->tcp_unfusable = B_FALSE;
2291 tcp->tcp_fused_sigurg = B_FALSE;
2292 tcp->tcp_loopback_peer = NULL;
2293
2294 tcp->tcp_lso = B_FALSE;
2295
2296 tcp->tcp_in_ack_unsent = 0;
2297 tcp->tcp_cork = B_FALSE;
2298 tcp->tcp_tconnind_started = B_FALSE;
2299
2300 PRESERVE(tcp->tcp_squeue_bytes);
2301
2302 tcp->tcp_closemp_used = B_FALSE;
2303
2304 PRESERVE(tcp->tcp_rsrv_mp);
2305 PRESERVE(tcp->tcp_rsrv_mp_lock);
2306
2307 #ifdef DEBUG
2308 DONTCARE(tcp->tcmp_stk[0]);
2309 #endif
2310
2311 PRESERVE(tcp->tcp_connid);
2312
2313 ASSERT(tcp->tcp_listen_cnt == NULL);
2314 ASSERT(tcp->tcp_reass_tid == 0);
2315
2316 #undef DONTCARE
2317 #undef PRESERVE
2318 }
2319
2320 /*
2321 * Initialize the various fields in tcp_t. If parent (the listener) is non
2322 * NULL, certain values will be inheritted from it.
2323 */
2324 void
tcp_init_values(tcp_t * tcp,tcp_t * parent)2325 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2326 {
2327 tcp_stack_t *tcps = tcp->tcp_tcps;
2328 conn_t *connp = tcp->tcp_connp;
2329 clock_t rto;
2330
2331 ASSERT((connp->conn_family == AF_INET &&
2332 connp->conn_ipversion == IPV4_VERSION) ||
2333 (connp->conn_family == AF_INET6 &&
2334 (connp->conn_ipversion == IPV4_VERSION ||
2335 connp->conn_ipversion == IPV6_VERSION)));
2336
2337 if (parent == NULL) {
2338 tcp->tcp_naglim = tcps->tcps_naglim_def;
2339
2340 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2341 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2342 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2343
2344 tcp->tcp_first_ctimer_threshold =
2345 tcps->tcps_ip_notify_cinterval;
2346 tcp->tcp_second_ctimer_threshold =
2347 tcps->tcps_ip_abort_cinterval;
2348 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2349 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2350
2351 tcp->tcp_fin_wait_2_flush_interval =
2352 tcps->tcps_fin_wait_2_flush_interval;
2353
2354 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2355 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2356
2357 /*
2358 * Default value of tcp_init_cwnd is 0, so no need to set here
2359 * if parent is NULL. But we need to inherit it from parent.
2360 */
2361 } else {
2362 /* Inherit various TCP parameters from the parent. */
2363 tcp->tcp_naglim = parent->tcp_naglim;
2364
2365 tcp->tcp_rto_initial = parent->tcp_rto_initial;
2366 tcp->tcp_rto_min = parent->tcp_rto_min;
2367 tcp->tcp_rto_max = parent->tcp_rto_max;
2368
2369 tcp->tcp_first_ctimer_threshold =
2370 parent->tcp_first_ctimer_threshold;
2371 tcp->tcp_second_ctimer_threshold =
2372 parent->tcp_second_ctimer_threshold;
2373 tcp->tcp_first_timer_threshold =
2374 parent->tcp_first_timer_threshold;
2375 tcp->tcp_second_timer_threshold =
2376 parent->tcp_second_timer_threshold;
2377
2378 tcp->tcp_fin_wait_2_flush_interval =
2379 parent->tcp_fin_wait_2_flush_interval;
2380
2381 tcp->tcp_ka_interval = parent->tcp_ka_interval;
2382 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2383
2384 tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2385 }
2386
2387 /*
2388 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2389 * will be close to tcp_rexmit_interval_initial. By doing this, we
2390 * allow the algorithm to adjust slowly to large fluctuations of RTT
2391 * during first few transmissions of a connection as seen in slow
2392 * links.
2393 */
2394 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2395 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2396 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2397 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2398 tcps->tcps_conn_grace_period;
2399 TCP_SET_RTO(tcp, rto);
2400
2401 tcp->tcp_timer_backoff = 0;
2402 tcp->tcp_ms_we_have_waited = 0;
2403 tcp->tcp_last_recv_time = ddi_get_lbolt();
2404 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2405 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2406 tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2407
2408 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2409
2410 /* NOTE: ISS is now set in tcp_set_destination(). */
2411
2412 /* Reset fusion-related fields */
2413 tcp->tcp_fused = B_FALSE;
2414 tcp->tcp_unfusable = B_FALSE;
2415 tcp->tcp_fused_sigurg = B_FALSE;
2416 tcp->tcp_loopback_peer = NULL;
2417
2418 /* We rebuild the header template on the next connect/conn_request */
2419
2420 connp->conn_mlp_type = mlptSingle;
2421
2422 /*
2423 * Init the window scale to the max so tcp_rwnd_set() won't pare
2424 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2425 */
2426 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2427 tcp->tcp_rwnd = connp->conn_rcvbuf;
2428
2429 tcp->tcp_cork = B_FALSE;
2430 /*
2431 * Init the tcp_debug option if it wasn't already set. This value
2432 * determines whether TCP
2433 * calls strlog() to print out debug messages. Doing this
2434 * initialization here means that this value is not inherited thru
2435 * tcp_reinit().
2436 */
2437 if (!connp->conn_debug)
2438 connp->conn_debug = tcps->tcps_dbg;
2439 }
2440
2441 /*
2442 * Update the TCP connection according to change of PMTU.
2443 *
2444 * Path MTU might have changed by either increase or decrease, so need to
2445 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2446 * or negative MSS, since tcp_mss_set() will do it.
2447 */
2448 void
tcp_update_pmtu(tcp_t * tcp,boolean_t decrease_only)2449 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2450 {
2451 uint32_t pmtu;
2452 int32_t mss;
2453 conn_t *connp = tcp->tcp_connp;
2454 ip_xmit_attr_t *ixa = connp->conn_ixa;
2455 iaflags_t ixaflags;
2456
2457 if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2458 return;
2459
2460 if (tcp->tcp_state < TCPS_ESTABLISHED)
2461 return;
2462
2463 /*
2464 * Always call ip_get_pmtu() to make sure that IP has updated
2465 * ixa_flags properly.
2466 */
2467 pmtu = ip_get_pmtu(ixa);
2468 ixaflags = ixa->ixa_flags;
2469
2470 /*
2471 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2472 * IPsec overhead if applied. Make sure to use the most recent
2473 * IPsec information.
2474 */
2475 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2476
2477 /*
2478 * Nothing to change, so just return.
2479 */
2480 if (mss == tcp->tcp_mss)
2481 return;
2482
2483 /*
2484 * Currently, for ICMP errors, only PMTU decrease is handled.
2485 */
2486 if (mss > tcp->tcp_mss && decrease_only)
2487 return;
2488
2489 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2490
2491 /*
2492 * Update ixa_fragsize and ixa_pmtu.
2493 */
2494 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2495
2496 /*
2497 * Adjust MSS and all relevant variables.
2498 */
2499 tcp_mss_set(tcp, mss);
2500
2501 /*
2502 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2503 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2504 * has a (potentially different) min size we do the same. Make sure to
2505 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2506 * fragment the packet.
2507 *
2508 * LSO over IPv6 can not be fragmented. So need to disable LSO
2509 * when IPv6 fragmentation is needed.
2510 */
2511 if (mss < tcp->tcp_tcps->tcps_mss_min)
2512 ixaflags |= IXAF_PMTU_TOO_SMALL;
2513
2514 if (ixaflags & IXAF_PMTU_TOO_SMALL)
2515 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2516
2517 if ((connp->conn_ipversion == IPV4_VERSION) &&
2518 !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2519 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2520 }
2521 ixa->ixa_flags = ixaflags;
2522 }
2523
2524 int
tcp_maxpsz_set(tcp_t * tcp,boolean_t set_maxblk)2525 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2526 {
2527 conn_t *connp = tcp->tcp_connp;
2528 queue_t *q = connp->conn_rq;
2529 int32_t mss = tcp->tcp_mss;
2530 int maxpsz;
2531
2532 if (TCP_IS_DETACHED(tcp))
2533 return (mss);
2534 if (tcp->tcp_fused) {
2535 maxpsz = tcp_fuse_maxpsz(tcp);
2536 mss = INFPSZ;
2537 } else if (tcp->tcp_maxpsz_multiplier == 0) {
2538 /*
2539 * Set the sd_qn_maxpsz according to the socket send buffer
2540 * size, and sd_maxblk to INFPSZ (-1). This will essentially
2541 * instruct the stream head to copyin user data into contiguous
2542 * kernel-allocated buffers without breaking it up into smaller
2543 * chunks. We round up the buffer size to the nearest SMSS.
2544 */
2545 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2546 mss = INFPSZ;
2547 } else {
2548 /*
2549 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2550 * (and a multiple of the mss). This instructs the stream
2551 * head to break down larger than SMSS writes into SMSS-
2552 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2553 */
2554 maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2555 if (maxpsz > connp->conn_sndbuf / 2) {
2556 maxpsz = connp->conn_sndbuf / 2;
2557 /* Round up to nearest mss */
2558 maxpsz = MSS_ROUNDUP(maxpsz, mss);
2559 }
2560 }
2561
2562 (void) proto_set_maxpsz(q, connp, maxpsz);
2563 if (!(IPCL_IS_NONSTR(connp)))
2564 connp->conn_wq->q_maxpsz = maxpsz;
2565 if (set_maxblk)
2566 (void) proto_set_tx_maxblk(q, connp, mss);
2567 return (mss);
2568 }
2569
2570 /* For /dev/tcp aka AF_INET open */
2571 static int
tcp_openv4(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2572 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2573 {
2574 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2575 }
2576
2577 /* For /dev/tcp6 aka AF_INET6 open */
2578 static int
tcp_openv6(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2579 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2580 {
2581 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2582 }
2583
2584 conn_t *
tcp_create_common(cred_t * credp,boolean_t isv6,boolean_t issocket,int * errorp)2585 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2586 int *errorp)
2587 {
2588 tcp_t *tcp = NULL;
2589 conn_t *connp;
2590 zoneid_t zoneid;
2591 tcp_stack_t *tcps;
2592 squeue_t *sqp;
2593
2594 ASSERT(errorp != NULL);
2595 /*
2596 * Find the proper zoneid and netstack.
2597 */
2598 /*
2599 * Special case for install: miniroot needs to be able to
2600 * access files via NFS as though it were always in the
2601 * global zone.
2602 */
2603 if (credp == kcred && nfs_global_client_only != 0) {
2604 zoneid = GLOBAL_ZONEID;
2605 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2606 netstack_tcp;
2607 ASSERT(tcps != NULL);
2608 } else {
2609 netstack_t *ns;
2610 int err;
2611
2612 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2613 *errorp = err;
2614 return (NULL);
2615 }
2616
2617 ns = netstack_find_by_cred(credp);
2618 ASSERT(ns != NULL);
2619 tcps = ns->netstack_tcp;
2620 ASSERT(tcps != NULL);
2621
2622 /*
2623 * For exclusive stacks we set the zoneid to zero
2624 * to make TCP operate as if in the global zone.
2625 */
2626 if (tcps->tcps_netstack->netstack_stackid !=
2627 GLOBAL_NETSTACKID)
2628 zoneid = GLOBAL_ZONEID;
2629 else
2630 zoneid = crgetzoneid(credp);
2631 }
2632
2633 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2634 connp = (conn_t *)tcp_get_conn(sqp, tcps);
2635 /*
2636 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2637 * so we drop it by one.
2638 */
2639 netstack_rele(tcps->tcps_netstack);
2640 if (connp == NULL) {
2641 *errorp = ENOSR;
2642 return (NULL);
2643 }
2644 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2645
2646 connp->conn_sqp = sqp;
2647 connp->conn_initial_sqp = connp->conn_sqp;
2648 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2649 tcp = connp->conn_tcp;
2650
2651 /*
2652 * Besides asking IP to set the checksum for us, have conn_ip_output
2653 * to do the following checks when necessary:
2654 *
2655 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2656 * IXAF_VERIFY_PMTU: verify PMTU changes
2657 * IXAF_VERIFY_LSO: verify LSO capability changes
2658 */
2659 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2660 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2661
2662 if (!tcps->tcps_dev_flow_ctl)
2663 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2664
2665 if (isv6) {
2666 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2667 connp->conn_ipversion = IPV6_VERSION;
2668 connp->conn_family = AF_INET6;
2669 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2670 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2671 } else {
2672 connp->conn_ipversion = IPV4_VERSION;
2673 connp->conn_family = AF_INET;
2674 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2675 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2676 }
2677 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2678
2679 crhold(credp);
2680 connp->conn_cred = credp;
2681 connp->conn_cpid = curproc->p_pid;
2682 connp->conn_open_time = ddi_get_lbolt64();
2683
2684 /* Cache things in the ixa without any refhold */
2685 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2686 connp->conn_ixa->ixa_cred = credp;
2687 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2688
2689 connp->conn_zoneid = zoneid;
2690 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2691 connp->conn_ixa->ixa_zoneid = zoneid;
2692 connp->conn_mlp_type = mlptSingle;
2693 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2694 ASSERT(tcp->tcp_tcps == tcps);
2695
2696 /*
2697 * If the caller has the process-wide flag set, then default to MAC
2698 * exempt mode. This allows read-down to unlabeled hosts.
2699 */
2700 if (getpflags(NET_MAC_AWARE, credp) != 0)
2701 connp->conn_mac_mode = CONN_MAC_AWARE;
2702
2703 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2704
2705 if (issocket) {
2706 tcp->tcp_issocket = 1;
2707 }
2708
2709 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2710 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2711 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2712 connp->conn_so_type = SOCK_STREAM;
2713 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2714 tcps->tcps_wroff_xtra;
2715
2716 SOCK_CONNID_INIT(tcp->tcp_connid);
2717 /* DTrace ignores this - it isn't a tcp:::state-change */
2718 tcp->tcp_state = TCPS_IDLE;
2719 tcp_init_values(tcp, NULL);
2720 return (connp);
2721 }
2722
2723 static int
tcp_open(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp,boolean_t isv6)2724 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2725 boolean_t isv6)
2726 {
2727 tcp_t *tcp = NULL;
2728 conn_t *connp = NULL;
2729 int err;
2730 vmem_t *minor_arena = NULL;
2731 dev_t conn_dev;
2732 boolean_t issocket;
2733
2734 if (q->q_ptr != NULL)
2735 return (0);
2736
2737 if (sflag == MODOPEN)
2738 return (EINVAL);
2739
2740 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2741 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2742 minor_arena = ip_minor_arena_la;
2743 } else {
2744 /*
2745 * Either minor numbers in the large arena were exhausted
2746 * or a non socket application is doing the open.
2747 * Try to allocate from the small arena.
2748 */
2749 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2750 return (EBUSY);
2751 }
2752 minor_arena = ip_minor_arena_sa;
2753 }
2754
2755 ASSERT(minor_arena != NULL);
2756
2757 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2758
2759 if (flag & SO_FALLBACK) {
2760 /*
2761 * Non streams socket needs a stream to fallback to
2762 */
2763 RD(q)->q_ptr = (void *)conn_dev;
2764 WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2765 WR(q)->q_ptr = (void *)minor_arena;
2766 qprocson(q);
2767 return (0);
2768 } else if (flag & SO_ACCEPTOR) {
2769 q->q_qinfo = &tcp_acceptor_rinit;
2770 /*
2771 * the conn_dev and minor_arena will be subsequently used by
2772 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2773 * the minor device number for this connection from the q_ptr.
2774 */
2775 RD(q)->q_ptr = (void *)conn_dev;
2776 WR(q)->q_qinfo = &tcp_acceptor_winit;
2777 WR(q)->q_ptr = (void *)minor_arena;
2778 qprocson(q);
2779 return (0);
2780 }
2781
2782 issocket = flag & SO_SOCKSTR;
2783 connp = tcp_create_common(credp, isv6, issocket, &err);
2784
2785 if (connp == NULL) {
2786 inet_minor_free(minor_arena, conn_dev);
2787 q->q_ptr = WR(q)->q_ptr = NULL;
2788 return (err);
2789 }
2790
2791 connp->conn_rq = q;
2792 connp->conn_wq = WR(q);
2793 q->q_ptr = WR(q)->q_ptr = connp;
2794
2795 connp->conn_dev = conn_dev;
2796 connp->conn_minor_arena = minor_arena;
2797
2798 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2799 ASSERT(WR(q)->q_qinfo == &tcp_winit);
2800
2801 tcp = connp->conn_tcp;
2802
2803 if (issocket) {
2804 WR(q)->q_qinfo = &tcp_sock_winit;
2805 } else {
2806 #ifdef _ILP32
2807 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2808 #else
2809 tcp->tcp_acceptor_id = conn_dev;
2810 #endif /* _ILP32 */
2811 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2812 }
2813
2814 /*
2815 * Put the ref for TCP. Ref for IP was already put
2816 * by ipcl_conn_create. Also Make the conn_t globally
2817 * visible to walkers
2818 */
2819 mutex_enter(&connp->conn_lock);
2820 CONN_INC_REF_LOCKED(connp);
2821 ASSERT(connp->conn_ref == 2);
2822 connp->conn_state_flags &= ~CONN_INCIPIENT;
2823 mutex_exit(&connp->conn_lock);
2824
2825 qprocson(q);
2826 return (0);
2827 }
2828
2829 /*
2830 * Build/update the tcp header template (in conn_ht_iphc) based on
2831 * conn_xmit_ipp. The headers include ip6_t, any extension
2832 * headers, and the maximum size tcp header (to avoid reallocation
2833 * on the fly for additional tcp options).
2834 *
2835 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2836 * Returns failure if can't allocate memory.
2837 */
2838 int
tcp_build_hdrs(tcp_t * tcp)2839 tcp_build_hdrs(tcp_t *tcp)
2840 {
2841 tcp_stack_t *tcps = tcp->tcp_tcps;
2842 conn_t *connp = tcp->tcp_connp;
2843 char buf[TCP_MAX_HDR_LENGTH];
2844 uint_t buflen;
2845 uint_t ulplen = TCP_MIN_HEADER_LENGTH;
2846 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2847 tcpha_t *tcpha;
2848 uint32_t cksum;
2849 int error;
2850
2851 /*
2852 * We might be called after the connection is set up, and we might
2853 * have TS options already in the TCP header. Thus we save any
2854 * existing tcp header.
2855 */
2856 buflen = connp->conn_ht_ulp_len;
2857 if (buflen != 0) {
2858 bcopy(connp->conn_ht_ulp, buf, buflen);
2859 extralen -= buflen - ulplen;
2860 ulplen = buflen;
2861 }
2862
2863 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2864 mutex_enter(&connp->conn_lock);
2865 error = conn_build_hdr_template(connp, ulplen, extralen,
2866 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2867 mutex_exit(&connp->conn_lock);
2868 if (error != 0)
2869 return (error);
2870
2871 /*
2872 * Any routing header/option has been massaged. The checksum difference
2873 * is stored in conn_sum for later use.
2874 */
2875 tcpha = (tcpha_t *)connp->conn_ht_ulp;
2876 tcp->tcp_tcpha = tcpha;
2877
2878 /* restore any old tcp header */
2879 if (buflen != 0) {
2880 bcopy(buf, connp->conn_ht_ulp, buflen);
2881 } else {
2882 tcpha->tha_sum = 0;
2883 tcpha->tha_urp = 0;
2884 tcpha->tha_ack = 0;
2885 tcpha->tha_offset_and_reserved = (5 << 4);
2886 tcpha->tha_lport = connp->conn_lport;
2887 tcpha->tha_fport = connp->conn_fport;
2888 }
2889
2890 /*
2891 * IP wants our header length in the checksum field to
2892 * allow it to perform a single pseudo-header+checksum
2893 * calculation on behalf of TCP.
2894 * Include the adjustment for a source route once IP_OPTIONS is set.
2895 */
2896 cksum = sizeof (tcpha_t) + connp->conn_sum;
2897 cksum = (cksum >> 16) + (cksum & 0xFFFF);
2898 ASSERT(cksum < 0x10000);
2899 tcpha->tha_sum = htons(cksum);
2900
2901 if (connp->conn_ipversion == IPV4_VERSION)
2902 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2903 else
2904 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2905
2906 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2907 connp->conn_wroff) {
2908 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2909 tcps->tcps_wroff_xtra;
2910 (void) proto_set_tx_wroff(connp->conn_rq, connp,
2911 connp->conn_wroff);
2912 }
2913 return (0);
2914 }
2915
2916 /*
2917 * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2918 * We do not allow the receive window to shrink. After setting rwnd,
2919 * set the flow control hiwat of the stream.
2920 *
2921 * This function is called in 2 cases:
2922 *
2923 * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2924 * connection (passive open) and in tcp_input_data() for active connect.
2925 * This is called after tcp_mss_set() when the desired MSS value is known.
2926 * This makes sure that our window size is a mutiple of the other side's
2927 * MSS.
2928 * 2) Handling SO_RCVBUF option.
2929 *
2930 * It is ASSUMED that the requested size is a multiple of the current MSS.
2931 *
2932 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2933 * user requests so.
2934 */
2935 int
tcp_rwnd_set(tcp_t * tcp,uint32_t rwnd)2936 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2937 {
2938 uint32_t mss = tcp->tcp_mss;
2939 uint32_t old_max_rwnd;
2940 uint32_t max_transmittable_rwnd;
2941 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
2942 tcp_stack_t *tcps = tcp->tcp_tcps;
2943 conn_t *connp = tcp->tcp_connp;
2944
2945 /*
2946 * Insist on a receive window that is at least
2947 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2948 * funny TCP interactions of Nagle algorithm, SWS avoidance
2949 * and delayed acknowledgement.
2950 */
2951 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2952
2953 if (tcp->tcp_fused) {
2954 size_t sth_hiwat;
2955 tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2956
2957 ASSERT(peer_tcp != NULL);
2958 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2959 if (!tcp_detached) {
2960 (void) proto_set_rx_hiwat(connp->conn_rq, connp,
2961 sth_hiwat);
2962 tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2963 }
2964
2965 /* Caller could have changed tcp_rwnd; update tha_win */
2966 if (tcp->tcp_tcpha != NULL) {
2967 tcp->tcp_tcpha->tha_win =
2968 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2969 }
2970 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2971 tcp->tcp_cwnd_max = rwnd;
2972
2973 /*
2974 * In the fusion case, the maxpsz stream head value of
2975 * our peer is set according to its send buffer size
2976 * and our receive buffer size; since the latter may
2977 * have changed we need to update the peer's maxpsz.
2978 */
2979 (void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2980 return (sth_hiwat);
2981 }
2982
2983 if (tcp_detached)
2984 old_max_rwnd = tcp->tcp_rwnd;
2985 else
2986 old_max_rwnd = connp->conn_rcvbuf;
2987
2988
2989 /*
2990 * If window size info has already been exchanged, TCP should not
2991 * shrink the window. Shrinking window is doable if done carefully.
2992 * We may add that support later. But so far there is not a real
2993 * need to do that.
2994 */
2995 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
2996 /* MSS may have changed, do a round up again. */
2997 rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
2998 }
2999
3000 /*
3001 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3002 * can be applied even before the window scale option is decided.
3003 */
3004 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3005 if (rwnd > max_transmittable_rwnd) {
3006 rwnd = max_transmittable_rwnd -
3007 (max_transmittable_rwnd % mss);
3008 if (rwnd < mss)
3009 rwnd = max_transmittable_rwnd;
3010 /*
3011 * If we're over the limit we may have to back down tcp_rwnd.
3012 * The increment below won't work for us. So we set all three
3013 * here and the increment below will have no effect.
3014 */
3015 tcp->tcp_rwnd = old_max_rwnd = rwnd;
3016 }
3017 if (tcp->tcp_localnet) {
3018 tcp->tcp_rack_abs_max =
3019 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3020 } else {
3021 /*
3022 * For a remote host on a different subnet (through a router),
3023 * we ack every other packet to be conforming to RFC1122.
3024 * tcp_deferred_acks_max is default to 2.
3025 */
3026 tcp->tcp_rack_abs_max =
3027 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3028 }
3029 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3030 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3031 else
3032 tcp->tcp_rack_cur_max = 0;
3033 /*
3034 * Increment the current rwnd by the amount the maximum grew (we
3035 * can not overwrite it since we might be in the middle of a
3036 * connection.)
3037 */
3038 tcp->tcp_rwnd += rwnd - old_max_rwnd;
3039 connp->conn_rcvbuf = rwnd;
3040
3041 /* Are we already connected? */
3042 if (tcp->tcp_tcpha != NULL) {
3043 tcp->tcp_tcpha->tha_win =
3044 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3045 }
3046
3047 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3048 tcp->tcp_cwnd_max = rwnd;
3049
3050 if (tcp_detached)
3051 return (rwnd);
3052
3053 tcp_set_recv_threshold(tcp, rwnd >> 3);
3054
3055 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3056 return (rwnd);
3057 }
3058
3059 int
tcp_do_unbind(conn_t * connp)3060 tcp_do_unbind(conn_t *connp)
3061 {
3062 tcp_t *tcp = connp->conn_tcp;
3063 int32_t oldstate;
3064
3065 switch (tcp->tcp_state) {
3066 case TCPS_BOUND:
3067 case TCPS_LISTEN:
3068 break;
3069 default:
3070 return (-TOUTSTATE);
3071 }
3072
3073 /*
3074 * Need to clean up all the eagers since after the unbind, segments
3075 * will no longer be delivered to this listener stream.
3076 */
3077 mutex_enter(&tcp->tcp_eager_lock);
3078 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3079 tcp_eager_cleanup(tcp, 0);
3080 }
3081 mutex_exit(&tcp->tcp_eager_lock);
3082
3083 /* Clean up the listener connection counter if necessary. */
3084 if (tcp->tcp_listen_cnt != NULL)
3085 TCP_DECR_LISTEN_CNT(tcp);
3086 connp->conn_laddr_v6 = ipv6_all_zeros;
3087 connp->conn_saddr_v6 = ipv6_all_zeros;
3088 tcp_bind_hash_remove(tcp);
3089 oldstate = tcp->tcp_state;
3090 tcp->tcp_state = TCPS_IDLE;
3091 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3092 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3093 int32_t, oldstate);
3094
3095 ip_unbind(connp);
3096 bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3097
3098 return (0);
3099 }
3100
3101 /*
3102 * Collect protocol properties to send to the upper handle.
3103 */
3104 void
tcp_get_proto_props(tcp_t * tcp,struct sock_proto_props * sopp)3105 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3106 {
3107 conn_t *connp = tcp->tcp_connp;
3108
3109 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3110 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3111
3112 sopp->sopp_rxhiwat = tcp->tcp_fused ?
3113 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3114 connp->conn_rcvbuf;
3115 /*
3116 * Determine what write offset value to use depending on SACK and
3117 * whether the endpoint is fused or not.
3118 */
3119 if (tcp->tcp_fused) {
3120 ASSERT(tcp->tcp_loopback);
3121 ASSERT(tcp->tcp_loopback_peer != NULL);
3122 /*
3123 * For fused tcp loopback, set the stream head's write
3124 * offset value to zero since we won't be needing any room
3125 * for TCP/IP headers. This would also improve performance
3126 * since it would reduce the amount of work done by kmem.
3127 * Non-fused tcp loopback case is handled separately below.
3128 */
3129 sopp->sopp_wroff = 0;
3130 /*
3131 * Update the peer's transmit parameters according to
3132 * our recently calculated high water mark value.
3133 */
3134 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3135 } else if (tcp->tcp_snd_sack_ok) {
3136 sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3137 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3138 } else {
3139 sopp->sopp_wroff = connp->conn_ht_iphc_len +
3140 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3141 }
3142
3143 if (tcp->tcp_loopback) {
3144 sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3145 sopp->sopp_loopback = B_TRUE;
3146 }
3147 }
3148
3149 /*
3150 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3151 */
3152 boolean_t
tcp_zcopy_check(tcp_t * tcp)3153 tcp_zcopy_check(tcp_t *tcp)
3154 {
3155 conn_t *connp = tcp->tcp_connp;
3156 ip_xmit_attr_t *ixa = connp->conn_ixa;
3157 boolean_t zc_enabled = B_FALSE;
3158 tcp_stack_t *tcps = tcp->tcp_tcps;
3159
3160 if (do_tcpzcopy == 2)
3161 zc_enabled = B_TRUE;
3162 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3163 zc_enabled = B_TRUE;
3164
3165 tcp->tcp_snd_zcopy_on = zc_enabled;
3166 if (!TCP_IS_DETACHED(tcp)) {
3167 if (zc_enabled) {
3168 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3169 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3170 ZCVMSAFE);
3171 TCP_STAT(tcps, tcp_zcopy_on);
3172 } else {
3173 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3174 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3175 ZCVMUNSAFE);
3176 TCP_STAT(tcps, tcp_zcopy_off);
3177 }
3178 }
3179 return (zc_enabled);
3180 }
3181
3182 /*
3183 * Backoff from a zero-copy message by copying data to a new allocated
3184 * message and freeing the original desballoca'ed segmapped message.
3185 *
3186 * This function is called by following two callers:
3187 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3188 * the origial desballoca'ed message and notify sockfs. This is in re-
3189 * transmit state.
3190 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3191 * to be copied to new message.
3192 */
3193 mblk_t *
tcp_zcopy_backoff(tcp_t * tcp,mblk_t * bp,boolean_t fix_xmitlist)3194 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3195 {
3196 mblk_t *nbp;
3197 mblk_t *head = NULL;
3198 mblk_t *tail = NULL;
3199 tcp_stack_t *tcps = tcp->tcp_tcps;
3200
3201 ASSERT(bp != NULL);
3202 while (bp != NULL) {
3203 if (IS_VMLOANED_MBLK(bp)) {
3204 TCP_STAT(tcps, tcp_zcopy_backoff);
3205 if ((nbp = copyb(bp)) == NULL) {
3206 tcp->tcp_xmit_zc_clean = B_FALSE;
3207 if (tail != NULL)
3208 tail->b_cont = bp;
3209 return ((head == NULL) ? bp : head);
3210 }
3211
3212 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3213 if (fix_xmitlist)
3214 tcp_zcopy_notify(tcp);
3215 else
3216 nbp->b_datap->db_struioflag |=
3217 STRUIO_ZCNOTIFY;
3218 }
3219 nbp->b_cont = bp->b_cont;
3220
3221 /*
3222 * Copy saved information and adjust tcp_xmit_tail
3223 * if needed.
3224 */
3225 if (fix_xmitlist) {
3226 nbp->b_prev = bp->b_prev;
3227 nbp->b_next = bp->b_next;
3228
3229 if (tcp->tcp_xmit_tail == bp)
3230 tcp->tcp_xmit_tail = nbp;
3231 }
3232
3233 /* Free the original message. */
3234 bp->b_prev = NULL;
3235 bp->b_next = NULL;
3236 freeb(bp);
3237
3238 bp = nbp;
3239 }
3240
3241 if (head == NULL) {
3242 head = bp;
3243 }
3244 if (tail == NULL) {
3245 tail = bp;
3246 } else {
3247 tail->b_cont = bp;
3248 tail = bp;
3249 }
3250
3251 /* Move forward. */
3252 bp = bp->b_cont;
3253 }
3254
3255 if (fix_xmitlist) {
3256 tcp->tcp_xmit_last = tail;
3257 tcp->tcp_xmit_zc_clean = B_TRUE;
3258 }
3259
3260 return (head);
3261 }
3262
3263 void
tcp_zcopy_notify(tcp_t * tcp)3264 tcp_zcopy_notify(tcp_t *tcp)
3265 {
3266 struct stdata *stp;
3267 conn_t *connp;
3268
3269 if (tcp->tcp_detached)
3270 return;
3271 connp = tcp->tcp_connp;
3272 if (IPCL_IS_NONSTR(connp)) {
3273 (*connp->conn_upcalls->su_zcopy_notify)
3274 (connp->conn_upper_handle);
3275 return;
3276 }
3277 stp = STREAM(connp->conn_rq);
3278 mutex_enter(&stp->sd_lock);
3279 stp->sd_flag |= STZCNOTIFY;
3280 cv_broadcast(&stp->sd_zcopy_wait);
3281 mutex_exit(&stp->sd_lock);
3282 }
3283
3284 /*
3285 * Update the TCP connection according to change of LSO capability.
3286 */
3287 static void
tcp_update_lso(tcp_t * tcp,ip_xmit_attr_t * ixa)3288 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3289 {
3290 /*
3291 * We check against IPv4 header length to preserve the old behavior
3292 * of only enabling LSO when there are no IP options.
3293 * But this restriction might not be necessary at all. Before removing
3294 * it, need to verify how LSO is handled for source routing case, with
3295 * which IP does software checksum.
3296 *
3297 * For IPv6, whenever any extension header is needed, LSO is supressed.
3298 */
3299 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3300 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3301 return;
3302
3303 /*
3304 * Either the LSO capability newly became usable, or it has changed.
3305 */
3306 if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3307 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab;
3308
3309 ASSERT(lsoc->ill_lso_max > 0);
3310 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3311
3312 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3313 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3314
3315 /*
3316 * If LSO to be enabled, notify the STREAM header with larger
3317 * data block.
3318 */
3319 if (!tcp->tcp_lso)
3320 tcp->tcp_maxpsz_multiplier = 0;
3321
3322 tcp->tcp_lso = B_TRUE;
3323 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3324 } else { /* LSO capability is not usable any more. */
3325 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3326 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3327
3328 /*
3329 * If LSO to be disabled, notify the STREAM header with smaller
3330 * data block. And need to restore fragsize to PMTU.
3331 */
3332 if (tcp->tcp_lso) {
3333 tcp->tcp_maxpsz_multiplier =
3334 tcp->tcp_tcps->tcps_maxpsz_multiplier;
3335 ixa->ixa_fragsize = ixa->ixa_pmtu;
3336 tcp->tcp_lso = B_FALSE;
3337 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3338 }
3339 }
3340
3341 (void) tcp_maxpsz_set(tcp, B_TRUE);
3342 }
3343
3344 /*
3345 * Update the TCP connection according to change of ZEROCOPY capability.
3346 */
3347 static void
tcp_update_zcopy(tcp_t * tcp)3348 tcp_update_zcopy(tcp_t *tcp)
3349 {
3350 conn_t *connp = tcp->tcp_connp;
3351 tcp_stack_t *tcps = tcp->tcp_tcps;
3352
3353 if (tcp->tcp_snd_zcopy_on) {
3354 tcp->tcp_snd_zcopy_on = B_FALSE;
3355 if (!TCP_IS_DETACHED(tcp)) {
3356 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3357 ZCVMUNSAFE);
3358 TCP_STAT(tcps, tcp_zcopy_off);
3359 }
3360 } else {
3361 tcp->tcp_snd_zcopy_on = B_TRUE;
3362 if (!TCP_IS_DETACHED(tcp)) {
3363 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3364 ZCVMSAFE);
3365 TCP_STAT(tcps, tcp_zcopy_on);
3366 }
3367 }
3368 }
3369
3370 /*
3371 * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3372 * so it's safe to update the TCP connection.
3373 */
3374 /* ARGSUSED1 */
3375 static void
tcp_notify(void * arg,ip_xmit_attr_t * ixa,ixa_notify_type_t ntype,ixa_notify_arg_t narg)3376 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3377 ixa_notify_arg_t narg)
3378 {
3379 tcp_t *tcp = (tcp_t *)arg;
3380 conn_t *connp = tcp->tcp_connp;
3381
3382 switch (ntype) {
3383 case IXAN_LSO:
3384 tcp_update_lso(tcp, connp->conn_ixa);
3385 break;
3386 case IXAN_PMTU:
3387 tcp_update_pmtu(tcp, B_FALSE);
3388 break;
3389 case IXAN_ZCOPY:
3390 tcp_update_zcopy(tcp);
3391 break;
3392 default:
3393 break;
3394 }
3395 }
3396
3397 /*
3398 * The TCP write service routine should never be called...
3399 */
3400 /* ARGSUSED */
3401 static void
tcp_wsrv(queue_t * q)3402 tcp_wsrv(queue_t *q)
3403 {
3404 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;
3405
3406 TCP_STAT(tcps, tcp_wsrv_called);
3407 }
3408
3409 /*
3410 * Hash list lookup routine for tcp_t structures.
3411 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3412 */
3413 tcp_t *
tcp_acceptor_hash_lookup(t_uscalar_t id,tcp_stack_t * tcps)3414 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3415 {
3416 tf_t *tf;
3417 tcp_t *tcp;
3418
3419 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3420 mutex_enter(&tf->tf_lock);
3421 for (tcp = tf->tf_tcp; tcp != NULL;
3422 tcp = tcp->tcp_acceptor_hash) {
3423 if (tcp->tcp_acceptor_id == id) {
3424 CONN_INC_REF(tcp->tcp_connp);
3425 mutex_exit(&tf->tf_lock);
3426 return (tcp);
3427 }
3428 }
3429 mutex_exit(&tf->tf_lock);
3430 return (NULL);
3431 }
3432
3433 /*
3434 * Hash list insertion routine for tcp_t structures.
3435 */
3436 void
tcp_acceptor_hash_insert(t_uscalar_t id,tcp_t * tcp)3437 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3438 {
3439 tf_t *tf;
3440 tcp_t **tcpp;
3441 tcp_t *tcpnext;
3442 tcp_stack_t *tcps = tcp->tcp_tcps;
3443
3444 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3445
3446 if (tcp->tcp_ptpahn != NULL)
3447 tcp_acceptor_hash_remove(tcp);
3448 tcpp = &tf->tf_tcp;
3449 mutex_enter(&tf->tf_lock);
3450 tcpnext = tcpp[0];
3451 if (tcpnext)
3452 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3453 tcp->tcp_acceptor_hash = tcpnext;
3454 tcp->tcp_ptpahn = tcpp;
3455 tcpp[0] = tcp;
3456 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */
3457 mutex_exit(&tf->tf_lock);
3458 }
3459
3460 /*
3461 * Hash list removal routine for tcp_t structures.
3462 */
3463 void
tcp_acceptor_hash_remove(tcp_t * tcp)3464 tcp_acceptor_hash_remove(tcp_t *tcp)
3465 {
3466 tcp_t *tcpnext;
3467 kmutex_t *lockp;
3468
3469 /*
3470 * Extract the lock pointer in case there are concurrent
3471 * hash_remove's for this instance.
3472 */
3473 lockp = tcp->tcp_acceptor_lockp;
3474
3475 if (tcp->tcp_ptpahn == NULL)
3476 return;
3477
3478 ASSERT(lockp != NULL);
3479 mutex_enter(lockp);
3480 if (tcp->tcp_ptpahn) {
3481 tcpnext = tcp->tcp_acceptor_hash;
3482 if (tcpnext) {
3483 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3484 tcp->tcp_acceptor_hash = NULL;
3485 }
3486 *tcp->tcp_ptpahn = tcpnext;
3487 tcp->tcp_ptpahn = NULL;
3488 }
3489 mutex_exit(lockp);
3490 tcp->tcp_acceptor_lockp = NULL;
3491 }
3492
3493 /*
3494 * Type three generator adapted from the random() function in 4.4 BSD:
3495 */
3496
3497 /*
3498 * Copyright (c) 1983, 1993
3499 * The Regents of the University of California. All rights reserved.
3500 *
3501 * Redistribution and use in source and binary forms, with or without
3502 * modification, are permitted provided that the following conditions
3503 * are met:
3504 * 1. Redistributions of source code must retain the above copyright
3505 * notice, this list of conditions and the following disclaimer.
3506 * 2. Redistributions in binary form must reproduce the above copyright
3507 * notice, this list of conditions and the following disclaimer in the
3508 * documentation and/or other materials provided with the distribution.
3509 * 3. All advertising materials mentioning features or use of this software
3510 * must display the following acknowledgement:
3511 * This product includes software developed by the University of
3512 * California, Berkeley and its contributors.
3513 * 4. Neither the name of the University nor the names of its contributors
3514 * may be used to endorse or promote products derived from this software
3515 * without specific prior written permission.
3516 *
3517 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3518 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3519 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3520 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3521 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3522 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3523 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3524 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3525 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3526 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3527 * SUCH DAMAGE.
3528 */
3529
3530 /* Type 3 -- x**31 + x**3 + 1 */
3531 #define DEG_3 31
3532 #define SEP_3 3
3533
3534
3535 /* Protected by tcp_random_lock */
3536 static int tcp_randtbl[DEG_3 + 1];
3537
3538 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3539 static int *tcp_random_rptr = &tcp_randtbl[1];
3540
3541 static int *tcp_random_state = &tcp_randtbl[1];
3542 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3543
3544 kmutex_t tcp_random_lock;
3545
3546 void
tcp_random_init(void)3547 tcp_random_init(void)
3548 {
3549 int i;
3550 hrtime_t hrt;
3551 time_t wallclock;
3552 uint64_t result;
3553
3554 /*
3555 * Use high-res timer and current time for seed. Gethrtime() returns
3556 * a longlong, which may contain resolution down to nanoseconds.
3557 * The current time will either be a 32-bit or a 64-bit quantity.
3558 * XOR the two together in a 64-bit result variable.
3559 * Convert the result to a 32-bit value by multiplying the high-order
3560 * 32-bits by the low-order 32-bits.
3561 */
3562
3563 hrt = gethrtime();
3564 (void) drv_getparm(TIME, &wallclock);
3565 result = (uint64_t)wallclock ^ (uint64_t)hrt;
3566 mutex_enter(&tcp_random_lock);
3567 tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3568 (result & 0xffffffff);
3569
3570 for (i = 1; i < DEG_3; i++)
3571 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3572 + 12345;
3573 tcp_random_fptr = &tcp_random_state[SEP_3];
3574 tcp_random_rptr = &tcp_random_state[0];
3575 mutex_exit(&tcp_random_lock);
3576 for (i = 0; i < 10 * DEG_3; i++)
3577 (void) tcp_random();
3578 }
3579
3580 /*
3581 * tcp_random: Return a random number in the range [1 - (128K + 1)].
3582 * This range is selected to be approximately centered on TCP_ISS / 2,
3583 * and easy to compute. We get this value by generating a 32-bit random
3584 * number, selecting out the high-order 17 bits, and then adding one so
3585 * that we never return zero.
3586 */
3587 int
tcp_random(void)3588 tcp_random(void)
3589 {
3590 int i;
3591
3592 mutex_enter(&tcp_random_lock);
3593 *tcp_random_fptr += *tcp_random_rptr;
3594
3595 /*
3596 * The high-order bits are more random than the low-order bits,
3597 * so we select out the high-order 17 bits and add one so that
3598 * we never return zero.
3599 */
3600 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3601 if (++tcp_random_fptr >= tcp_random_end_ptr) {
3602 tcp_random_fptr = tcp_random_state;
3603 ++tcp_random_rptr;
3604 } else if (++tcp_random_rptr >= tcp_random_end_ptr)
3605 tcp_random_rptr = tcp_random_state;
3606
3607 mutex_exit(&tcp_random_lock);
3608 return (i);
3609 }
3610
3611 /*
3612 * Split this function out so that if the secret changes, I'm okay.
3613 *
3614 * Initialize the tcp_iss_cookie and tcp_iss_key.
3615 */
3616
3617 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */
3618
3619 void
tcp_iss_key_init(uint8_t * phrase,int len,tcp_stack_t * tcps)3620 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3621 {
3622 struct {
3623 int32_t current_time;
3624 uint32_t randnum;
3625 uint16_t pad;
3626 uint8_t ether[6];
3627 uint8_t passwd[PASSWD_SIZE];
3628 } tcp_iss_cookie;
3629 time_t t;
3630
3631 /*
3632 * Start with the current absolute time.
3633 */
3634 (void) drv_getparm(TIME, &t);
3635 tcp_iss_cookie.current_time = t;
3636
3637 /*
3638 * XXX - Need a more random number per RFC 1750, not this crap.
3639 * OTOH, if what follows is pretty random, then I'm in better shape.
3640 */
3641 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3642 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */
3643
3644 /*
3645 * The cpu_type_info is pretty non-random. Ugggh. It does serve
3646 * as a good template.
3647 */
3648 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3649 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3650
3651 /*
3652 * The pass-phrase. Normally this is supplied by user-called NDD.
3653 */
3654 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3655
3656 /*
3657 * See 4010593 if this section becomes a problem again,
3658 * but the local ethernet address is useful here.
3659 */
3660 (void) localetheraddr(NULL,
3661 (struct ether_addr *)&tcp_iss_cookie.ether);
3662
3663 /*
3664 * Hash 'em all together. The MD5Final is called per-connection.
3665 */
3666 mutex_enter(&tcps->tcps_iss_key_lock);
3667 MD5Init(&tcps->tcps_iss_key);
3668 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3669 sizeof (tcp_iss_cookie));
3670 mutex_exit(&tcps->tcps_iss_key_lock);
3671 }
3672
3673 /*
3674 * Called by IP when IP is loaded into the kernel
3675 */
3676 void
tcp_ddi_g_init(void)3677 tcp_ddi_g_init(void)
3678 {
3679 tcp_timercache = kmem_cache_create("tcp_timercache",
3680 sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3681 NULL, NULL, NULL, NULL, NULL, 0);
3682
3683 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3684 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3685
3686 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3687
3688 /* Initialize the random number generator */
3689 tcp_random_init();
3690
3691 /* A single callback independently of how many netstacks we have */
3692 ip_squeue_init(tcp_squeue_add);
3693
3694 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3695
3696 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3697
3698 /*
3699 * We want to be informed each time a stack is created or
3700 * destroyed in the kernel, so we can maintain the
3701 * set of tcp_stack_t's.
3702 */
3703 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3704 }
3705
3706
3707 #define INET_NAME "ip"
3708
3709 /*
3710 * Initialize the TCP stack instance.
3711 */
3712 static void *
tcp_stack_init(netstackid_t stackid,netstack_t * ns)3713 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3714 {
3715 tcp_stack_t *tcps;
3716 int i;
3717 int error = 0;
3718 major_t major;
3719 size_t arrsz;
3720
3721 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3722 tcps->tcps_netstack = ns;
3723
3724 /* Initialize locks */
3725 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3726 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3727
3728 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3729 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3730 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3731 tcps->tcps_min_anonpriv_port = 512;
3732
3733 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3734 TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3735 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3736 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3737
3738 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3739 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3740 MUTEX_DEFAULT, NULL);
3741 }
3742
3743 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3744 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3745 MUTEX_DEFAULT, NULL);
3746 }
3747
3748 /* TCP's IPsec code calls the packet dropper. */
3749 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3750
3751 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3752 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3753 KM_SLEEP);
3754 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3755
3756 /*
3757 * Note: To really walk the device tree you need the devinfo
3758 * pointer to your device which is only available after probe/attach.
3759 * The following is safe only because it uses ddi_root_node()
3760 */
3761 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3762 tcp_opt_obj.odb_opt_arr_cnt);
3763
3764 /*
3765 * Initialize RFC 1948 secret values. This will probably be reset once
3766 * by the boot scripts.
3767 *
3768 * Use NULL name, as the name is caught by the new lockstats.
3769 *
3770 * Initialize with some random, non-guessable string, like the global
3771 * T_INFO_ACK.
3772 */
3773
3774 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3775 sizeof (tcp_g_t_info_ack), tcps);
3776
3777 tcps->tcps_kstat = tcp_kstat2_init(stackid);
3778 tcps->tcps_mibkp = tcp_kstat_init(stackid);
3779
3780 major = mod_name_to_major(INET_NAME);
3781 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3782 ASSERT(error == 0);
3783 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3784 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3785 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
3786 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3787
3788 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3789 tcps->tcps_reclaim = B_FALSE;
3790 tcps->tcps_reclaim_tid = 0;
3791 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3792
3793 /*
3794 * ncpus is the current number of CPUs, which can be bigger than
3795 * boot_ncpus. But we don't want to use ncpus to allocate all the
3796 * tcp_stats_cpu_t at system boot up time since it will be 1. While
3797 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3798 * there are many CPUs as we will be adding them 1 by 1.
3799 *
3800 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3801 * are not freed until the stack is going away. So there is no need
3802 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3803 */
3804 mutex_enter(&cpu_lock);
3805 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3806 mutex_exit(&cpu_lock);
3807 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *),
3808 KM_SLEEP);
3809 for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3810 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3811 KM_SLEEP);
3812 }
3813
3814 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3815 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3816 offsetof(tcp_listener_t, tl_link));
3817
3818 return (tcps);
3819 }
3820
3821 /*
3822 * Called when the IP module is about to be unloaded.
3823 */
3824 void
tcp_ddi_g_destroy(void)3825 tcp_ddi_g_destroy(void)
3826 {
3827 tcp_g_kstat_fini(tcp_g_kstat);
3828 tcp_g_kstat = NULL;
3829 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3830
3831 mutex_destroy(&tcp_random_lock);
3832
3833 kmem_cache_destroy(tcp_timercache);
3834 kmem_cache_destroy(tcp_notsack_blk_cache);
3835
3836 netstack_unregister(NS_TCP);
3837 }
3838
3839 /*
3840 * Free the TCP stack instance.
3841 */
3842 static void
tcp_stack_fini(netstackid_t stackid,void * arg)3843 tcp_stack_fini(netstackid_t stackid, void *arg)
3844 {
3845 tcp_stack_t *tcps = (tcp_stack_t *)arg;
3846 int i;
3847
3848 freeb(tcps->tcps_ixa_cleanup_mp);
3849 tcps->tcps_ixa_cleanup_mp = NULL;
3850 cv_destroy(&tcps->tcps_ixa_cleanup_cv);
3851 mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3852
3853 /*
3854 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3855 * the timer.
3856 */
3857 mutex_enter(&tcps->tcps_reclaim_lock);
3858 tcps->tcps_reclaim = B_FALSE;
3859 mutex_exit(&tcps->tcps_reclaim_lock);
3860 if (tcps->tcps_reclaim_tid != 0)
3861 (void) untimeout(tcps->tcps_reclaim_tid);
3862 mutex_destroy(&tcps->tcps_reclaim_lock);
3863
3864 tcp_listener_conf_cleanup(tcps);
3865
3866 for (i = 0; i < tcps->tcps_sc_cnt; i++)
3867 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3868 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3869
3870 kmem_free(tcps->tcps_propinfo_tbl,
3871 tcp_propinfo_count * sizeof (mod_prop_info_t));
3872 tcps->tcps_propinfo_tbl = NULL;
3873
3874 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3875 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3876 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3877 }
3878
3879 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3880 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3881 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3882 }
3883
3884 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3885 tcps->tcps_bind_fanout = NULL;
3886
3887 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3888 TCP_ACCEPTOR_FANOUT_SIZE);
3889 tcps->tcps_acceptor_fanout = NULL;
3890
3891 mutex_destroy(&tcps->tcps_iss_key_lock);
3892 mutex_destroy(&tcps->tcps_epriv_port_lock);
3893
3894 ip_drop_unregister(&tcps->tcps_dropper);
3895
3896 tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3897 tcps->tcps_kstat = NULL;
3898
3899 tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3900 tcps->tcps_mibkp = NULL;
3901
3902 ldi_ident_release(tcps->tcps_ldi_ident);
3903 kmem_free(tcps, sizeof (*tcps));
3904 }
3905
3906 /*
3907 * Generate ISS, taking into account NDD changes may happen halfway through.
3908 * (If the iss is not zero, set it.)
3909 */
3910
3911 static void
tcp_iss_init(tcp_t * tcp)3912 tcp_iss_init(tcp_t *tcp)
3913 {
3914 MD5_CTX context;
3915 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3916 uint32_t answer[4];
3917 tcp_stack_t *tcps = tcp->tcp_tcps;
3918 conn_t *connp = tcp->tcp_connp;
3919
3920 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
3921 tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3922 switch (tcps->tcps_strong_iss) {
3923 case 2:
3924 mutex_enter(&tcps->tcps_iss_key_lock);
3925 context = tcps->tcps_iss_key;
3926 mutex_exit(&tcps->tcps_iss_key_lock);
3927 arg.ports = connp->conn_ports;
3928 arg.src = connp->conn_laddr_v6;
3929 arg.dst = connp->conn_faddr_v6;
3930 MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3931 MD5Final((uchar_t *)answer, &context);
3932 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3933 /*
3934 * Now that we've hashed into a unique per-connection sequence
3935 * space, add a random increment per strong_iss == 1. So I
3936 * guess we'll have to...
3937 */
3938 /* FALLTHRU */
3939 case 1:
3940 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3941 break;
3942 default:
3943 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
3944 break;
3945 }
3946 tcp->tcp_valid_bits = TCP_ISS_VALID;
3947 tcp->tcp_fss = tcp->tcp_iss - 1;
3948 tcp->tcp_suna = tcp->tcp_iss;
3949 tcp->tcp_snxt = tcp->tcp_iss + 1;
3950 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3951 tcp->tcp_csuna = tcp->tcp_snxt;
3952 }
3953
3954 /*
3955 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3956 * on the specified backing STREAMS q. Note, the caller may make the
3957 * decision to call based on the tcp_t.tcp_flow_stopped value which
3958 * when check outside the q's lock is only an advisory check ...
3959 */
3960 void
tcp_setqfull(tcp_t * tcp)3961 tcp_setqfull(tcp_t *tcp)
3962 {
3963 tcp_stack_t *tcps = tcp->tcp_tcps;
3964 conn_t *connp = tcp->tcp_connp;
3965
3966 if (tcp->tcp_closed)
3967 return;
3968
3969 conn_setqfull(connp, &tcp->tcp_flow_stopped);
3970 if (tcp->tcp_flow_stopped)
3971 TCP_STAT(tcps, tcp_flwctl_on);
3972 }
3973
3974 void
tcp_clrqfull(tcp_t * tcp)3975 tcp_clrqfull(tcp_t *tcp)
3976 {
3977 conn_t *connp = tcp->tcp_connp;
3978
3979 if (tcp->tcp_closed)
3980 return;
3981 conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3982 }
3983
3984 static int
tcp_squeue_switch(int val)3985 tcp_squeue_switch(int val)
3986 {
3987 int rval = SQ_FILL;
3988
3989 switch (val) {
3990 case 1:
3991 rval = SQ_NODRAIN;
3992 break;
3993 case 2:
3994 rval = SQ_PROCESS;
3995 break;
3996 default:
3997 break;
3998 }
3999 return (rval);
4000 }
4001
4002 /*
4003 * This is called once for each squeue - globally for all stack
4004 * instances.
4005 */
4006 static void
tcp_squeue_add(squeue_t * sqp)4007 tcp_squeue_add(squeue_t *sqp)
4008 {
4009 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4010 sizeof (tcp_squeue_priv_t), KM_SLEEP);
4011
4012 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4013 if (tcp_free_list_max_cnt == 0) {
4014 int tcp_ncpus = ((boot_max_ncpus == -1) ?
4015 max_ncpus : boot_max_ncpus);
4016
4017 /*
4018 * Limit number of entries to 1% of availble memory / tcp_ncpus
4019 */
4020 tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4021 (tcp_ncpus * sizeof (tcp_t) * 100);
4022 }
4023 tcp_time_wait->tcp_free_list_cnt = 0;
4024 }
4025 /*
4026 * Return unix error is tli error is TSYSERR, otherwise return a negative
4027 * tli error.
4028 */
4029 int
tcp_do_bind(conn_t * connp,struct sockaddr * sa,socklen_t len,cred_t * cr,boolean_t bind_to_req_port_only)4030 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4031 boolean_t bind_to_req_port_only)
4032 {
4033 int error;
4034 tcp_t *tcp = connp->conn_tcp;
4035
4036 if (tcp->tcp_state >= TCPS_BOUND) {
4037 if (connp->conn_debug) {
4038 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4039 "tcp_bind: bad state, %d", tcp->tcp_state);
4040 }
4041 return (-TOUTSTATE);
4042 }
4043
4044 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4045 if (error != 0)
4046 return (error);
4047
4048 ASSERT(tcp->tcp_state == TCPS_BOUND);
4049 tcp->tcp_conn_req_max = 0;
4050 return (0);
4051 }
4052
4053 /*
4054 * If the return value from this function is positive, it's a UNIX error.
4055 * Otherwise, if it's negative, then the absolute value is a TLI error.
4056 * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4057 */
4058 int
tcp_do_connect(conn_t * connp,const struct sockaddr * sa,socklen_t len,cred_t * cr,pid_t pid)4059 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4060 cred_t *cr, pid_t pid)
4061 {
4062 tcp_t *tcp = connp->conn_tcp;
4063 sin_t *sin = (sin_t *)sa;
4064 sin6_t *sin6 = (sin6_t *)sa;
4065 ipaddr_t *dstaddrp;
4066 in_port_t dstport;
4067 uint_t srcid;
4068 int error;
4069 uint32_t mss;
4070 mblk_t *syn_mp;
4071 tcp_stack_t *tcps = tcp->tcp_tcps;
4072 int32_t oldstate;
4073 ip_xmit_attr_t *ixa = connp->conn_ixa;
4074
4075 oldstate = tcp->tcp_state;
4076
4077 switch (len) {
4078 default:
4079 /*
4080 * Should never happen
4081 */
4082 return (EINVAL);
4083
4084 case sizeof (sin_t):
4085 sin = (sin_t *)sa;
4086 if (sin->sin_port == 0) {
4087 return (-TBADADDR);
4088 }
4089 if (connp->conn_ipv6_v6only) {
4090 return (EAFNOSUPPORT);
4091 }
4092 break;
4093
4094 case sizeof (sin6_t):
4095 sin6 = (sin6_t *)sa;
4096 if (sin6->sin6_port == 0) {
4097 return (-TBADADDR);
4098 }
4099 break;
4100 }
4101 /*
4102 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4103 * make sure that the conn_ipversion is IPV4_VERSION. We
4104 * need to this before we call tcp_bindi() so that the port lookup
4105 * code will look for ports in the correct port space (IPv4 and
4106 * IPv6 have separate port spaces).
4107 */
4108 if (connp->conn_family == AF_INET6 &&
4109 connp->conn_ipversion == IPV6_VERSION &&
4110 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4111 if (connp->conn_ipv6_v6only)
4112 return (EADDRNOTAVAIL);
4113
4114 connp->conn_ipversion = IPV4_VERSION;
4115 }
4116
4117 switch (tcp->tcp_state) {
4118 case TCPS_LISTEN:
4119 /*
4120 * Listening sockets are not allowed to issue connect().
4121 */
4122 if (IPCL_IS_NONSTR(connp))
4123 return (EOPNOTSUPP);
4124 /* FALLTHRU */
4125 case TCPS_IDLE:
4126 /*
4127 * We support quick connect, refer to comments in
4128 * tcp_connect_*()
4129 */
4130 /* FALLTHRU */
4131 case TCPS_BOUND:
4132 break;
4133 default:
4134 return (-TOUTSTATE);
4135 }
4136
4137 /*
4138 * We update our cred/cpid based on the caller of connect
4139 */
4140 if (connp->conn_cred != cr) {
4141 crhold(cr);
4142 crfree(connp->conn_cred);
4143 connp->conn_cred = cr;
4144 }
4145 connp->conn_cpid = pid;
4146
4147 /* Cache things in the ixa without any refhold */
4148 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4149 ixa->ixa_cred = cr;
4150 ixa->ixa_cpid = pid;
4151 if (is_system_labeled()) {
4152 /* We need to restart with a label based on the cred */
4153 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4154 }
4155
4156 if (connp->conn_family == AF_INET6) {
4157 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4158 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4159 sin6->sin6_port, sin6->sin6_flowinfo,
4160 sin6->__sin6_src_id, sin6->sin6_scope_id);
4161 } else {
4162 /*
4163 * Destination adress is mapped IPv6 address.
4164 * Source bound address should be unspecified or
4165 * IPv6 mapped address as well.
4166 */
4167 if (!IN6_IS_ADDR_UNSPECIFIED(
4168 &connp->conn_bound_addr_v6) &&
4169 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4170 return (EADDRNOTAVAIL);
4171 }
4172 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4173 dstport = sin6->sin6_port;
4174 srcid = sin6->__sin6_src_id;
4175 error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4176 srcid);
4177 }
4178 } else {
4179 dstaddrp = &sin->sin_addr.s_addr;
4180 dstport = sin->sin_port;
4181 srcid = 0;
4182 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4183 }
4184
4185 if (error != 0)
4186 goto connect_failed;
4187
4188 CL_INET_CONNECT(connp, B_TRUE, error);
4189 if (error != 0)
4190 goto connect_failed;
4191
4192 /* connect succeeded */
4193 TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4194 tcp->tcp_active_open = 1;
4195
4196 /*
4197 * tcp_set_destination() does not adjust for TCP/IP header length.
4198 */
4199 mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4200
4201 /*
4202 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4203 * to the nearest MSS.
4204 *
4205 * We do the round up here because we need to get the interface MTU
4206 * first before we can do the round up.
4207 */
4208 tcp->tcp_rwnd = connp->conn_rcvbuf;
4209 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4210 tcps->tcps_recv_hiwat_minmss * mss);
4211 connp->conn_rcvbuf = tcp->tcp_rwnd;
4212 tcp_set_ws_value(tcp);
4213 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4214 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4215 tcp->tcp_snd_ws_ok = B_TRUE;
4216
4217 /*
4218 * Set tcp_snd_ts_ok to true
4219 * so that tcp_xmit_mp will
4220 * include the timestamp
4221 * option in the SYN segment.
4222 */
4223 if (tcps->tcps_tstamp_always ||
4224 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4225 tcp->tcp_snd_ts_ok = B_TRUE;
4226 }
4227
4228 /*
4229 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4230 * the SACK metric is set. So here we just check the per stack SACK
4231 * permitted param.
4232 */
4233 if (tcps->tcps_sack_permitted == 2) {
4234 ASSERT(tcp->tcp_num_sack_blk == 0);
4235 ASSERT(tcp->tcp_notsack_list == NULL);
4236 tcp->tcp_snd_sack_ok = B_TRUE;
4237 }
4238
4239 /*
4240 * Should we use ECN? Note that the current
4241 * default value (SunOS 5.9) of tcp_ecn_permitted
4242 * is 1. The reason for doing this is that there
4243 * are equipments out there that will drop ECN
4244 * enabled IP packets. Setting it to 1 avoids
4245 * compatibility problems.
4246 */
4247 if (tcps->tcps_ecn_permitted == 2)
4248 tcp->tcp_ecn_ok = B_TRUE;
4249
4250 /* Trace change from BOUND -> SYN_SENT here */
4251 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4252 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4253 int32_t, TCPS_BOUND);
4254
4255 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4256 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4257 tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4258 if (syn_mp != NULL) {
4259 /*
4260 * We must bump the generation before sending the syn
4261 * to ensure that we use the right generation in case
4262 * this thread issues a "connected" up call.
4263 */
4264 SOCK_CONNID_BUMP(tcp->tcp_connid);
4265 /*
4266 * DTrace sending the first SYN as a
4267 * tcp:::connect-request event.
4268 */
4269 DTRACE_TCP5(connect__request, mblk_t *, NULL,
4270 ip_xmit_attr_t *, connp->conn_ixa,
4271 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4272 tcph_t *,
4273 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4274 tcp_send_data(tcp, syn_mp);
4275 }
4276
4277 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4278 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4279 return (0);
4280
4281 connect_failed:
4282 connp->conn_faddr_v6 = ipv6_all_zeros;
4283 connp->conn_fport = 0;
4284 tcp->tcp_state = oldstate;
4285 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4286 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4287 return (error);
4288 }
4289
4290 int
tcp_do_listen(conn_t * connp,struct sockaddr * sa,socklen_t len,int backlog,cred_t * cr,boolean_t bind_to_req_port_only)4291 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4292 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4293 {
4294 tcp_t *tcp = connp->conn_tcp;
4295 int error = 0;
4296 tcp_stack_t *tcps = tcp->tcp_tcps;
4297 int32_t oldstate;
4298
4299 /* All Solaris components should pass a cred for this operation. */
4300 ASSERT(cr != NULL);
4301
4302 if (tcp->tcp_state >= TCPS_BOUND) {
4303 if ((tcp->tcp_state == TCPS_BOUND ||
4304 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4305 /*
4306 * Handle listen() increasing backlog.
4307 * This is more "liberal" then what the TPI spec
4308 * requires but is needed to avoid a t_unbind
4309 * when handling listen() since the port number
4310 * might be "stolen" between the unbind and bind.
4311 */
4312 goto do_listen;
4313 }
4314 if (connp->conn_debug) {
4315 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4316 "tcp_listen: bad state, %d", tcp->tcp_state);
4317 }
4318 return (-TOUTSTATE);
4319 } else {
4320 if (sa == NULL) {
4321 sin6_t addr;
4322 sin_t *sin;
4323 sin6_t *sin6;
4324
4325 ASSERT(IPCL_IS_NONSTR(connp));
4326 /* Do an implicit bind: Request for a generic port. */
4327 if (connp->conn_family == AF_INET) {
4328 len = sizeof (sin_t);
4329 sin = (sin_t *)&addr;
4330 *sin = sin_null;
4331 sin->sin_family = AF_INET;
4332 } else {
4333 ASSERT(connp->conn_family == AF_INET6);
4334 len = sizeof (sin6_t);
4335 sin6 = (sin6_t *)&addr;
4336 *sin6 = sin6_null;
4337 sin6->sin6_family = AF_INET6;
4338 }
4339 sa = (struct sockaddr *)&addr;
4340 }
4341
4342 error = tcp_bind_check(connp, sa, len, cr,
4343 bind_to_req_port_only);
4344 if (error)
4345 return (error);
4346 /* Fall through and do the fanout insertion */
4347 }
4348
4349 do_listen:
4350 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4351 tcp->tcp_conn_req_max = backlog;
4352 if (tcp->tcp_conn_req_max) {
4353 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4354 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4355 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4356 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4357 /*
4358 * If this is a listener, do not reset the eager list
4359 * and other stuffs. Note that we don't check if the
4360 * existing eager list meets the new tcp_conn_req_max
4361 * requirement.
4362 */
4363 if (tcp->tcp_state != TCPS_LISTEN) {
4364 tcp->tcp_state = TCPS_LISTEN;
4365 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4366 connp->conn_ixa, void, NULL, tcp_t *, tcp,
4367 void, NULL, int32_t, TCPS_BOUND);
4368 /* Initialize the chain. Don't need the eager_lock */
4369 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4370 tcp->tcp_eager_next_drop_q0 = tcp;
4371 tcp->tcp_eager_prev_drop_q0 = tcp;
4372 tcp->tcp_second_ctimer_threshold =
4373 tcps->tcps_ip_abort_linterval;
4374 }
4375 }
4376
4377 /*
4378 * We need to make sure that the conn_recv is set to a non-null
4379 * value before we insert the conn into the classifier table.
4380 * This is to avoid a race with an incoming packet which does an
4381 * ipcl_classify().
4382 * We initially set it to tcp_input_listener_unbound to try to
4383 * pick a good squeue for the listener when the first SYN arrives.
4384 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4385 * first SYN.
4386 */
4387 connp->conn_recv = tcp_input_listener_unbound;
4388
4389 /* Insert the listener in the classifier table */
4390 error = ip_laddr_fanout_insert(connp);
4391 if (error != 0) {
4392 /* Undo the bind - release the port number */
4393 oldstate = tcp->tcp_state;
4394 tcp->tcp_state = TCPS_IDLE;
4395 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4396 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4397 int32_t, oldstate);
4398 connp->conn_bound_addr_v6 = ipv6_all_zeros;
4399
4400 connp->conn_laddr_v6 = ipv6_all_zeros;
4401 connp->conn_saddr_v6 = ipv6_all_zeros;
4402 connp->conn_ports = 0;
4403
4404 if (connp->conn_anon_port) {
4405 zone_t *zone;
4406
4407 zone = crgetzone(cr);
4408 connp->conn_anon_port = B_FALSE;
4409 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4410 connp->conn_proto, connp->conn_lport, B_FALSE);
4411 }
4412 connp->conn_mlp_type = mlptSingle;
4413
4414 tcp_bind_hash_remove(tcp);
4415 return (error);
4416 } else {
4417 /*
4418 * If there is a connection limit, allocate and initialize
4419 * the counter struct. Note that since listen can be called
4420 * multiple times, the struct may have been allready allocated.
4421 */
4422 if (!list_is_empty(&tcps->tcps_listener_conf) &&
4423 tcp->tcp_listen_cnt == NULL) {
4424 tcp_listen_cnt_t *tlc;
4425 uint32_t ratio;
4426
4427 ratio = tcp_find_listener_conf(tcps,
4428 ntohs(connp->conn_lport));
4429 if (ratio != 0) {
4430 uint32_t mem_ratio, tot_buf;
4431
4432 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4433 KM_SLEEP);
4434 /*
4435 * Calculate the connection limit based on
4436 * the configured ratio and maxusers. Maxusers
4437 * are calculated based on memory size,
4438 * ~ 1 user per MB. Note that the conn_rcvbuf
4439 * and conn_sndbuf may change after a
4440 * connection is accepted. So what we have
4441 * is only an approximation.
4442 */
4443 if ((tot_buf = connp->conn_rcvbuf +
4444 connp->conn_sndbuf) < MB) {
4445 mem_ratio = MB / tot_buf;
4446 tlc->tlc_max = maxusers / ratio *
4447 mem_ratio;
4448 } else {
4449 mem_ratio = tot_buf / MB;
4450 tlc->tlc_max = maxusers / ratio /
4451 mem_ratio;
4452 }
4453 /* At least we should allow two connections! */
4454 if (tlc->tlc_max <= tcp_min_conn_listener)
4455 tlc->tlc_max = tcp_min_conn_listener;
4456 tlc->tlc_cnt = 1;
4457 tlc->tlc_drop = 0;
4458 tcp->tcp_listen_cnt = tlc;
4459 }
4460 }
4461 }
4462 return (error);
4463 }
4464