1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 */
25
26 /*
27 * This file contains the interface control functions for IP.
28 */
29
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/sysmacros.h>
36 #include <sys/strsubr.h>
37 #include <sys/strlog.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/cmn_err.h>
41 #include <sys/kstat.h>
42 #include <sys/debug.h>
43 #include <sys/zone.h>
44 #include <sys/sunldi.h>
45 #include <sys/file.h>
46 #include <sys/bitmap.h>
47 #include <sys/cpuvar.h>
48 #include <sys/time.h>
49 #include <sys/ctype.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 #include <sys/callb.h>
68 #include <sys/md5.h>
69
70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
71 #include <inet/mi.h>
72 #include <inet/nd.h>
73 #include <inet/tunables.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 #include <sys/mac_flow.h>
98
99 #include <sys/systeminfo.h>
100 #include <sys/bootconf.h>
101
102 #include <sys/tsol/tndb.h>
103 #include <sys/tsol/tnet.h>
104
105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
106 #include <inet/udp_impl.h> /* needed for udp_stack_t */
107
108 /* The character which tells where the ill_name ends */
109 #define IPIF_SEPARATOR_CHAR ':'
110
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 int ipft_cmd;
114 pfi_t ipft_pfi;
115 int ipft_min_size;
116 int ipft_flags;
117 } ipft_t;
118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */
120
121 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
122 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
123 char *value, caddr_t cp, cred_t *ioc_cr);
124
125 static boolean_t ill_is_quiescent(ill_t *);
126 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
127 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
128 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
129 mblk_t *mp, boolean_t need_up);
130 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
131 mblk_t *mp, boolean_t need_up);
132 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
133 queue_t *q, mblk_t *mp, boolean_t need_up);
134 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
135 mblk_t *mp);
136 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137 mblk_t *mp);
138 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
139 queue_t *q, mblk_t *mp, boolean_t need_up);
140 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
141 int ioccmd, struct linkblk *li);
142 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
143 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
144 static void ipsq_flush(ill_t *ill);
145
146 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
147 queue_t *q, mblk_t *mp, boolean_t need_up);
148 static void ipsq_delete(ipsq_t *);
149
150 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
151 boolean_t initialize, boolean_t insert, int *errorp);
152 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
153 static void ipif_delete_bcast_ires(ipif_t *ipif);
154 static int ipif_add_ires_v4(ipif_t *, boolean_t);
155 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
156 boolean_t isv6);
157 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
158 static void ipif_free(ipif_t *ipif);
159 static void ipif_free_tail(ipif_t *ipif);
160 static void ipif_set_default(ipif_t *ipif);
161 static int ipif_set_values(queue_t *q, mblk_t *mp,
162 char *interf_name, uint_t *ppa);
163 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
164 queue_t *q);
165 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
166 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
167 ip_stack_t *);
168 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
169 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
170 int *error, ip_stack_t *);
171
172 static int ill_alloc_ppa(ill_if_t *, ill_t *);
173 static void ill_delete_interface_type(ill_if_t *);
174 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
175 static void ill_dl_down(ill_t *ill);
176 static void ill_down(ill_t *ill);
177 static void ill_down_ipifs(ill_t *, boolean_t);
178 static void ill_free_mib(ill_t *ill);
179 static void ill_glist_delete(ill_t *);
180 static void ill_phyint_reinit(ill_t *ill);
181 static void ill_set_nce_router_flags(ill_t *, boolean_t);
182 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
183 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
184
185 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
186 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
187 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
188 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
189 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
190 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
191 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
192 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
193 static ip_v4mapinfo_func_t ip_mbcast_mapping;
194 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
195 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
196 static void phyint_free(phyint_t *);
197
198 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
199 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
200 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
203 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
204 dl_capability_sub_t *);
205 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
206 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
207 static void ill_capability_dld_ack(ill_t *, mblk_t *,
208 dl_capability_sub_t *);
209 static void ill_capability_dld_enable(ill_t *);
210 static void ill_capability_ack_thr(void *);
211 static void ill_capability_lso_enable(ill_t *);
212
213 static ill_t *ill_prev_usesrc(ill_t *);
214 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
215 static void ill_disband_usesrc_group(ill_t *);
216 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
217
218 #ifdef DEBUG
219 static void ill_trace_cleanup(const ill_t *);
220 static void ipif_trace_cleanup(const ipif_t *);
221 #endif
222
223 static void ill_dlpi_clear_deferred(ill_t *ill);
224
225 /*
226 * if we go over the memory footprint limit more than once in this msec
227 * interval, we'll start pruning aggressively.
228 */
229 int ip_min_frag_prune_time = 0;
230
231 static ipft_t ip_ioctl_ftbl[] = {
232 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
233 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
234 IPFT_F_NO_REPLY },
235 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
236 { 0 }
237 };
238
239 /* Simple ICMP IP Header Template */
240 static ipha_t icmp_ipha = {
241 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
242 };
243
244 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
245
246 static ip_m_t ip_m_tbl[] = {
247 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
248 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
249 ip_nodef_v6intfid },
250 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
251 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
252 ip_nodef_v6intfid },
253 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
255 ip_nodef_v6intfid },
256 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
258 ip_nodef_v6intfid },
259 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
261 ip_nodef_v6intfid },
262 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
263 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
264 ip_nodef_v6intfid },
265 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
266 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
267 ip_ipv4_v6destintfid },
268 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
269 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
270 ip_ipv6_v6destintfid },
271 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
273 ip_nodef_v6intfid },
274 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
275 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
276 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
277 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
278 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
279 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
280 ip_nodef_v6intfid }
281 };
282
283 static ill_t ill_null; /* Empty ILL for init. */
284 char ipif_loopback_name[] = "lo0";
285
286 /* These are used by all IP network modules. */
287 sin6_t sin6_null; /* Zero address for quick clears */
288 sin_t sin_null; /* Zero address for quick clears */
289
290 /* When set search for unused ipif_seqid */
291 static ipif_t ipif_zero;
292
293 /*
294 * ppa arena is created after these many
295 * interfaces have been plumbed.
296 */
297 uint_t ill_no_arena = 12; /* Setable in /etc/system */
298
299 /*
300 * Allocate per-interface mibs.
301 * Returns true if ok. False otherwise.
302 * ipsq may not yet be allocated (loopback case ).
303 */
304 static boolean_t
ill_allocate_mibs(ill_t * ill)305 ill_allocate_mibs(ill_t *ill)
306 {
307 /* Already allocated? */
308 if (ill->ill_ip_mib != NULL) {
309 if (ill->ill_isv6)
310 ASSERT(ill->ill_icmp6_mib != NULL);
311 return (B_TRUE);
312 }
313
314 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
315 KM_NOSLEEP);
316 if (ill->ill_ip_mib == NULL) {
317 return (B_FALSE);
318 }
319
320 /* Setup static information */
321 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
322 sizeof (mib2_ipIfStatsEntry_t));
323 if (ill->ill_isv6) {
324 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
325 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
326 sizeof (mib2_ipv6AddrEntry_t));
327 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
328 sizeof (mib2_ipv6RouteEntry_t));
329 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
330 sizeof (mib2_ipv6NetToMediaEntry_t));
331 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
332 sizeof (ipv6_member_t));
333 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
334 sizeof (ipv6_grpsrc_t));
335 } else {
336 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
337 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
338 sizeof (mib2_ipAddrEntry_t));
339 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
340 sizeof (mib2_ipRouteEntry_t));
341 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
342 sizeof (mib2_ipNetToMediaEntry_t));
343 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
344 sizeof (ip_member_t));
345 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
346 sizeof (ip_grpsrc_t));
347
348 /*
349 * For a v4 ill, we are done at this point, because per ill
350 * icmp mibs are only used for v6.
351 */
352 return (B_TRUE);
353 }
354
355 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
356 KM_NOSLEEP);
357 if (ill->ill_icmp6_mib == NULL) {
358 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
359 ill->ill_ip_mib = NULL;
360 return (B_FALSE);
361 }
362 /* static icmp info */
363 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
364 sizeof (mib2_ipv6IfIcmpEntry_t);
365 /*
366 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
367 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
368 * -> ill_phyint_reinit
369 */
370 return (B_TRUE);
371 }
372
373 /*
374 * Completely vaporize a lower level tap and all associated interfaces.
375 * ill_delete is called only out of ip_close when the device control
376 * stream is being closed.
377 */
378 void
ill_delete(ill_t * ill)379 ill_delete(ill_t *ill)
380 {
381 ipif_t *ipif;
382 ill_t *prev_ill;
383 ip_stack_t *ipst = ill->ill_ipst;
384
385 /*
386 * ill_delete may be forcibly entering the ipsq. The previous
387 * ioctl may not have completed and may need to be aborted.
388 * ipsq_flush takes care of it. If we don't need to enter the
389 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
390 * ill_delete_tail is sufficient.
391 */
392 ipsq_flush(ill);
393
394 /*
395 * Nuke all interfaces. ipif_free will take down the interface,
396 * remove it from the list, and free the data structure.
397 * Walk down the ipif list and remove the logical interfaces
398 * first before removing the main ipif. We can't unplumb
399 * zeroth interface first in the case of IPv6 as update_conn_ill
400 * -> ip_ll_multireq de-references ill_ipif for checking
401 * POINTOPOINT.
402 *
403 * If ill_ipif was not properly initialized (i.e low on memory),
404 * then no interfaces to clean up. In this case just clean up the
405 * ill.
406 */
407 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
408 ipif_free(ipif);
409
410 /*
411 * clean out all the nce_t entries that depend on this
412 * ill for the ill_phys_addr.
413 */
414 nce_flush(ill, B_TRUE);
415
416 /* Clean up msgs on pending upcalls for mrouted */
417 reset_mrt_ill(ill);
418
419 update_conn_ill(ill, ipst);
420
421 /*
422 * Remove multicast references added as a result of calls to
423 * ip_join_allmulti().
424 */
425 ip_purge_allmulti(ill);
426
427 /*
428 * If the ill being deleted is under IPMP, boot it out of the illgrp.
429 */
430 if (IS_UNDER_IPMP(ill))
431 ipmp_ill_leave_illgrp(ill);
432
433 /*
434 * ill_down will arrange to blow off any IRE's dependent on this
435 * ILL, and shut down fragmentation reassembly.
436 */
437 ill_down(ill);
438
439 /* Let SCTP know, so that it can remove this from its list. */
440 sctp_update_ill(ill, SCTP_ILL_REMOVE);
441
442 /*
443 * Walk all CONNs that can have a reference on an ire or nce for this
444 * ill (we actually walk all that now have stale references).
445 */
446 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
447
448 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
449 if (ill->ill_isv6)
450 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
451
452 /*
453 * If an address on this ILL is being used as a source address then
454 * clear out the pointers in other ILLs that point to this ILL.
455 */
456 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
457 if (ill->ill_usesrc_grp_next != NULL) {
458 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
459 ill_disband_usesrc_group(ill);
460 } else { /* consumer of the usesrc ILL */
461 prev_ill = ill_prev_usesrc(ill);
462 prev_ill->ill_usesrc_grp_next =
463 ill->ill_usesrc_grp_next;
464 }
465 }
466 rw_exit(&ipst->ips_ill_g_usesrc_lock);
467 }
468
469 static void
ipif_non_duplicate(ipif_t * ipif)470 ipif_non_duplicate(ipif_t *ipif)
471 {
472 ill_t *ill = ipif->ipif_ill;
473 mutex_enter(&ill->ill_lock);
474 if (ipif->ipif_flags & IPIF_DUPLICATE) {
475 ipif->ipif_flags &= ~IPIF_DUPLICATE;
476 ASSERT(ill->ill_ipif_dup_count > 0);
477 ill->ill_ipif_dup_count--;
478 }
479 mutex_exit(&ill->ill_lock);
480 }
481
482 /*
483 * ill_delete_tail is called from ip_modclose after all references
484 * to the closing ill are gone. The wait is done in ip_modclose
485 */
486 void
ill_delete_tail(ill_t * ill)487 ill_delete_tail(ill_t *ill)
488 {
489 mblk_t **mpp;
490 ipif_t *ipif;
491 ip_stack_t *ipst = ill->ill_ipst;
492
493 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
494 ipif_non_duplicate(ipif);
495 (void) ipif_down_tail(ipif);
496 }
497
498 ASSERT(ill->ill_ipif_dup_count == 0);
499
500 /*
501 * If polling capability is enabled (which signifies direct
502 * upcall into IP and driver has ill saved as a handle),
503 * we need to make sure that unbind has completed before we
504 * let the ill disappear and driver no longer has any reference
505 * to this ill.
506 */
507 mutex_enter(&ill->ill_lock);
508 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
509 cv_wait(&ill->ill_cv, &ill->ill_lock);
510 mutex_exit(&ill->ill_lock);
511 ASSERT(!(ill->ill_capabilities &
512 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
513
514 if (ill->ill_net_type != IRE_LOOPBACK)
515 qprocsoff(ill->ill_rq);
516
517 /*
518 * We do an ipsq_flush once again now. New messages could have
519 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
520 * could also have landed up if an ioctl thread had looked up
521 * the ill before we set the ILL_CONDEMNED flag, but not yet
522 * enqueued the ioctl when we did the ipsq_flush last time.
523 */
524 ipsq_flush(ill);
525
526 /*
527 * Free capabilities.
528 */
529 if (ill->ill_hcksum_capab != NULL) {
530 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
531 ill->ill_hcksum_capab = NULL;
532 }
533
534 if (ill->ill_zerocopy_capab != NULL) {
535 kmem_free(ill->ill_zerocopy_capab,
536 sizeof (ill_zerocopy_capab_t));
537 ill->ill_zerocopy_capab = NULL;
538 }
539
540 if (ill->ill_lso_capab != NULL) {
541 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
542 ill->ill_lso_capab = NULL;
543 }
544
545 if (ill->ill_dld_capab != NULL) {
546 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
547 ill->ill_dld_capab = NULL;
548 }
549
550 /* Clean up ill_allowed_ips* related state */
551 if (ill->ill_allowed_ips != NULL) {
552 ASSERT(ill->ill_allowed_ips_cnt > 0);
553 kmem_free(ill->ill_allowed_ips,
554 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
555 ill->ill_allowed_ips = NULL;
556 ill->ill_allowed_ips_cnt = 0;
557 }
558
559 while (ill->ill_ipif != NULL)
560 ipif_free_tail(ill->ill_ipif);
561
562 /*
563 * We have removed all references to ilm from conn and the ones joined
564 * within the kernel.
565 *
566 * We don't walk conns, mrts and ires because
567 *
568 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
569 * 2) ill_down ->ill_downi walks all the ires and cleans up
570 * ill references.
571 */
572
573 /*
574 * If this ill is an IPMP meta-interface, blow away the illgrp. This
575 * is safe to do because the illgrp has already been unlinked from the
576 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
577 */
578 if (IS_IPMP(ill)) {
579 ipmp_illgrp_destroy(ill->ill_grp);
580 ill->ill_grp = NULL;
581 }
582
583 if (ill->ill_mphysaddr_list != NULL) {
584 multiphysaddr_t *mpa, *tmpa;
585
586 mpa = ill->ill_mphysaddr_list;
587 ill->ill_mphysaddr_list = NULL;
588 while (mpa) {
589 tmpa = mpa->mpa_next;
590 kmem_free(mpa, sizeof (*mpa));
591 mpa = tmpa;
592 }
593 }
594 /*
595 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
596 * could free the phyint. No more reference to the phyint after this
597 * point.
598 */
599 (void) ill_glist_delete(ill);
600
601 if (ill->ill_frag_ptr != NULL) {
602 uint_t count;
603
604 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
605 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
606 }
607 mi_free(ill->ill_frag_ptr);
608 ill->ill_frag_ptr = NULL;
609 ill->ill_frag_hash_tbl = NULL;
610 }
611
612 freemsg(ill->ill_nd_lla_mp);
613 /* Free all retained control messages. */
614 mpp = &ill->ill_first_mp_to_free;
615 do {
616 while (mpp[0]) {
617 mblk_t *mp;
618 mblk_t *mp1;
619
620 mp = mpp[0];
621 mpp[0] = mp->b_next;
622 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
623 mp1->b_next = NULL;
624 mp1->b_prev = NULL;
625 }
626 freemsg(mp);
627 }
628 } while (mpp++ != &ill->ill_last_mp_to_free);
629
630 ill_free_mib(ill);
631
632 #ifdef DEBUG
633 ill_trace_cleanup(ill);
634 #endif
635
636 /* The default multicast interface might have changed */
637 ire_increment_multicast_generation(ipst, ill->ill_isv6);
638
639 /* Drop refcnt here */
640 netstack_rele(ill->ill_ipst->ips_netstack);
641 ill->ill_ipst = NULL;
642 }
643
644 static void
ill_free_mib(ill_t * ill)645 ill_free_mib(ill_t *ill)
646 {
647 ip_stack_t *ipst = ill->ill_ipst;
648
649 /*
650 * MIB statistics must not be lost, so when an interface
651 * goes away the counter values will be added to the global
652 * MIBs.
653 */
654 if (ill->ill_ip_mib != NULL) {
655 if (ill->ill_isv6) {
656 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
657 ill->ill_ip_mib);
658 } else {
659 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
660 ill->ill_ip_mib);
661 }
662
663 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
664 ill->ill_ip_mib = NULL;
665 }
666 if (ill->ill_icmp6_mib != NULL) {
667 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
668 ill->ill_icmp6_mib);
669 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
670 ill->ill_icmp6_mib = NULL;
671 }
672 }
673
674 /*
675 * Concatenate together a physical address and a sap.
676 *
677 * Sap_lengths are interpreted as follows:
678 * sap_length == 0 ==> no sap
679 * sap_length > 0 ==> sap is at the head of the dlpi address
680 * sap_length < 0 ==> sap is at the tail of the dlpi address
681 */
682 static void
ill_dlur_copy_address(uchar_t * phys_src,uint_t phys_length,t_scalar_t sap_src,t_scalar_t sap_length,uchar_t * dst)683 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
684 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
685 {
686 uint16_t sap_addr = (uint16_t)sap_src;
687
688 if (sap_length == 0) {
689 if (phys_src == NULL)
690 bzero(dst, phys_length);
691 else
692 bcopy(phys_src, dst, phys_length);
693 } else if (sap_length < 0) {
694 if (phys_src == NULL)
695 bzero(dst, phys_length);
696 else
697 bcopy(phys_src, dst, phys_length);
698 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
699 } else {
700 bcopy(&sap_addr, dst, sizeof (sap_addr));
701 if (phys_src == NULL)
702 bzero((char *)dst + sap_length, phys_length);
703 else
704 bcopy(phys_src, (char *)dst + sap_length, phys_length);
705 }
706 }
707
708 /*
709 * Generate a dl_unitdata_req mblk for the device and address given.
710 * addr_length is the length of the physical portion of the address.
711 * If addr is NULL include an all zero address of the specified length.
712 * TRUE? In any case, addr_length is taken to be the entire length of the
713 * dlpi address, including the absolute value of sap_length.
714 */
715 mblk_t *
ill_dlur_gen(uchar_t * addr,uint_t addr_length,t_uscalar_t sap,t_scalar_t sap_length)716 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
717 t_scalar_t sap_length)
718 {
719 dl_unitdata_req_t *dlur;
720 mblk_t *mp;
721 t_scalar_t abs_sap_length; /* absolute value */
722
723 abs_sap_length = ABS(sap_length);
724 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
725 DL_UNITDATA_REQ);
726 if (mp == NULL)
727 return (NULL);
728 dlur = (dl_unitdata_req_t *)mp->b_rptr;
729 /* HACK: accomodate incompatible DLPI drivers */
730 if (addr_length == 8)
731 addr_length = 6;
732 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
733 dlur->dl_dest_addr_offset = sizeof (*dlur);
734 dlur->dl_priority.dl_min = 0;
735 dlur->dl_priority.dl_max = 0;
736 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
737 (uchar_t *)&dlur[1]);
738 return (mp);
739 }
740
741 /*
742 * Add the pending mp to the list. There can be only 1 pending mp
743 * in the list. Any exclusive ioctl that needs to wait for a response
744 * from another module or driver needs to use this function to set
745 * the ipx_pending_mp to the ioctl mblk and wait for the response from
746 * the other module/driver. This is also used while waiting for the
747 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
748 */
749 boolean_t
ipsq_pending_mp_add(conn_t * connp,ipif_t * ipif,queue_t * q,mblk_t * add_mp,int waitfor)750 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
751 int waitfor)
752 {
753 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
754
755 ASSERT(IAM_WRITER_IPIF(ipif));
756 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
757 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
758 ASSERT(ipx->ipx_pending_mp == NULL);
759 /*
760 * The caller may be using a different ipif than the one passed into
761 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
762 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT
763 * that `ipx_current_ipif == ipif'.
764 */
765 ASSERT(ipx->ipx_current_ipif != NULL);
766
767 /*
768 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
769 * driver.
770 */
771 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
772 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
773 (DB_TYPE(add_mp) == M_PCPROTO));
774
775 if (connp != NULL) {
776 ASSERT(MUTEX_HELD(&connp->conn_lock));
777 /*
778 * Return error if the conn has started closing. The conn
779 * could have finished cleaning up the pending mp list,
780 * If so we should not add another mp to the list negating
781 * the cleanup.
782 */
783 if (connp->conn_state_flags & CONN_CLOSING)
784 return (B_FALSE);
785 }
786 mutex_enter(&ipx->ipx_lock);
787 ipx->ipx_pending_ipif = ipif;
788 /*
789 * Note down the queue in b_queue. This will be returned by
790 * ipsq_pending_mp_get. Caller will then use these values to restart
791 * the processing
792 */
793 add_mp->b_next = NULL;
794 add_mp->b_queue = q;
795 ipx->ipx_pending_mp = add_mp;
796 ipx->ipx_waitfor = waitfor;
797 mutex_exit(&ipx->ipx_lock);
798
799 if (connp != NULL)
800 connp->conn_oper_pending_ill = ipif->ipif_ill;
801
802 return (B_TRUE);
803 }
804
805 /*
806 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
807 * queued in the list.
808 */
809 mblk_t *
ipsq_pending_mp_get(ipsq_t * ipsq,conn_t ** connpp)810 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
811 {
812 mblk_t *curr = NULL;
813 ipxop_t *ipx = ipsq->ipsq_xop;
814
815 *connpp = NULL;
816 mutex_enter(&ipx->ipx_lock);
817 if (ipx->ipx_pending_mp == NULL) {
818 mutex_exit(&ipx->ipx_lock);
819 return (NULL);
820 }
821
822 /* There can be only 1 such excl message */
823 curr = ipx->ipx_pending_mp;
824 ASSERT(curr->b_next == NULL);
825 ipx->ipx_pending_ipif = NULL;
826 ipx->ipx_pending_mp = NULL;
827 ipx->ipx_waitfor = 0;
828 mutex_exit(&ipx->ipx_lock);
829
830 if (CONN_Q(curr->b_queue)) {
831 /*
832 * This mp did a refhold on the conn, at the start of the ioctl.
833 * So we can safely return a pointer to the conn to the caller.
834 */
835 *connpp = Q_TO_CONN(curr->b_queue);
836 } else {
837 *connpp = NULL;
838 }
839 curr->b_next = NULL;
840 curr->b_prev = NULL;
841 return (curr);
842 }
843
844 /*
845 * Cleanup the ioctl mp queued in ipx_pending_mp
846 * - Called in the ill_delete path
847 * - Called in the M_ERROR or M_HANGUP path on the ill.
848 * - Called in the conn close path.
849 *
850 * Returns success on finding the pending mblk associated with the ioctl or
851 * exclusive operation in progress, failure otherwise.
852 */
853 boolean_t
ipsq_pending_mp_cleanup(ill_t * ill,conn_t * connp)854 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
855 {
856 mblk_t *mp;
857 ipxop_t *ipx;
858 queue_t *q;
859 ipif_t *ipif;
860 int cmd;
861
862 ASSERT(IAM_WRITER_ILL(ill));
863 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
864
865 mutex_enter(&ipx->ipx_lock);
866 mp = ipx->ipx_pending_mp;
867 if (connp != NULL) {
868 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
869 /*
870 * Nothing to clean since the conn that is closing
871 * does not have a matching pending mblk in
872 * ipx_pending_mp.
873 */
874 mutex_exit(&ipx->ipx_lock);
875 return (B_FALSE);
876 }
877 } else {
878 /*
879 * A non-zero ill_error signifies we are called in the
880 * M_ERROR or M_HANGUP path and we need to unconditionally
881 * abort any current ioctl and do the corresponding cleanup.
882 * A zero ill_error means we are in the ill_delete path and
883 * we do the cleanup only if there is a pending mp.
884 */
885 if (mp == NULL && ill->ill_error == 0) {
886 mutex_exit(&ipx->ipx_lock);
887 return (B_FALSE);
888 }
889 }
890
891 /* Now remove from the ipx_pending_mp */
892 ipx->ipx_pending_mp = NULL;
893 ipif = ipx->ipx_pending_ipif;
894 ipx->ipx_pending_ipif = NULL;
895 ipx->ipx_waitfor = 0;
896 ipx->ipx_current_ipif = NULL;
897 cmd = ipx->ipx_current_ioctl;
898 ipx->ipx_current_ioctl = 0;
899 ipx->ipx_current_done = B_TRUE;
900 mutex_exit(&ipx->ipx_lock);
901
902 if (mp == NULL)
903 return (B_FALSE);
904
905 q = mp->b_queue;
906 mp->b_next = NULL;
907 mp->b_prev = NULL;
908 mp->b_queue = NULL;
909
910 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
911 DTRACE_PROBE4(ipif__ioctl,
912 char *, "ipsq_pending_mp_cleanup",
913 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
914 ipif_t *, ipif);
915 if (connp == NULL) {
916 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
917 } else {
918 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
919 mutex_enter(&ipif->ipif_ill->ill_lock);
920 ipif->ipif_state_flags &= ~IPIF_CHANGING;
921 mutex_exit(&ipif->ipif_ill->ill_lock);
922 }
923 } else {
924 inet_freemsg(mp);
925 }
926 return (B_TRUE);
927 }
928
929 /*
930 * Called in the conn close path and ill delete path
931 */
932 static void
ipsq_xopq_mp_cleanup(ill_t * ill,conn_t * connp)933 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
934 {
935 ipsq_t *ipsq;
936 mblk_t *prev;
937 mblk_t *curr;
938 mblk_t *next;
939 queue_t *wq, *rq = NULL;
940 mblk_t *tmp_list = NULL;
941
942 ASSERT(IAM_WRITER_ILL(ill));
943 if (connp != NULL)
944 wq = CONNP_TO_WQ(connp);
945 else
946 wq = ill->ill_wq;
947
948 /*
949 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
950 * against this here.
951 */
952 if (wq != NULL)
953 rq = RD(wq);
954
955 ipsq = ill->ill_phyint->phyint_ipsq;
956 /*
957 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
958 * In the case of ioctl from a conn, there can be only 1 mp
959 * queued on the ipsq. If an ill is being unplumbed flush all
960 * the messages.
961 */
962 mutex_enter(&ipsq->ipsq_lock);
963 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
964 curr = next) {
965 next = curr->b_next;
966 if (connp == NULL ||
967 (curr->b_queue == wq || curr->b_queue == rq)) {
968 /* Unlink the mblk from the pending mp list */
969 if (prev != NULL) {
970 prev->b_next = curr->b_next;
971 } else {
972 ASSERT(ipsq->ipsq_xopq_mphead == curr);
973 ipsq->ipsq_xopq_mphead = curr->b_next;
974 }
975 if (ipsq->ipsq_xopq_mptail == curr)
976 ipsq->ipsq_xopq_mptail = prev;
977 /*
978 * Create a temporary list and release the ipsq lock
979 * New elements are added to the head of the tmp_list
980 */
981 curr->b_next = tmp_list;
982 tmp_list = curr;
983 } else {
984 prev = curr;
985 }
986 }
987 mutex_exit(&ipsq->ipsq_lock);
988
989 while (tmp_list != NULL) {
990 curr = tmp_list;
991 tmp_list = curr->b_next;
992 curr->b_next = NULL;
993 curr->b_prev = NULL;
994 wq = curr->b_queue;
995 curr->b_queue = NULL;
996 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
997 DTRACE_PROBE4(ipif__ioctl,
998 char *, "ipsq_xopq_mp_cleanup",
999 int, 0, ill_t *, NULL, ipif_t *, NULL);
1000 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1001 CONN_CLOSE : NO_COPYOUT, NULL);
1002 } else {
1003 /*
1004 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1005 * this can't be just inet_freemsg. we have to
1006 * restart it otherwise the thread will be stuck.
1007 */
1008 inet_freemsg(curr);
1009 }
1010 }
1011 }
1012
1013 /*
1014 * This conn has started closing. Cleanup any pending ioctl from this conn.
1015 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1016 */
1017 void
conn_ioctl_cleanup(conn_t * connp)1018 conn_ioctl_cleanup(conn_t *connp)
1019 {
1020 ipsq_t *ipsq;
1021 ill_t *ill;
1022 boolean_t refheld;
1023
1024 /*
1025 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1026 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1027 * started the mp could be present in ipx_pending_mp. Note that if
1028 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1029 * not yet queued anywhere. In this case, the conn close code will wait
1030 * until the conn_ref is dropped. If the stream was a tcp stream, then
1031 * tcp_close will wait first until all ioctls have completed for this
1032 * conn.
1033 */
1034 mutex_enter(&connp->conn_lock);
1035 ill = connp->conn_oper_pending_ill;
1036 if (ill == NULL) {
1037 mutex_exit(&connp->conn_lock);
1038 return;
1039 }
1040
1041 /*
1042 * We may not be able to refhold the ill if the ill/ipif
1043 * is changing. But we need to make sure that the ill will
1044 * not vanish. So we just bump up the ill_waiter count.
1045 */
1046 refheld = ill_waiter_inc(ill);
1047 mutex_exit(&connp->conn_lock);
1048 if (refheld) {
1049 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1050 ill_waiter_dcr(ill);
1051 /*
1052 * Check whether this ioctl has started and is
1053 * pending. If it is not found there then check
1054 * whether this ioctl has not even started and is in
1055 * the ipsq_xopq list.
1056 */
1057 if (!ipsq_pending_mp_cleanup(ill, connp))
1058 ipsq_xopq_mp_cleanup(ill, connp);
1059 ipsq = ill->ill_phyint->phyint_ipsq;
1060 ipsq_exit(ipsq);
1061 return;
1062 }
1063 }
1064
1065 /*
1066 * The ill is also closing and we could not bump up the
1067 * ill_waiter_count or we could not enter the ipsq. Leave
1068 * the cleanup to ill_delete
1069 */
1070 mutex_enter(&connp->conn_lock);
1071 while (connp->conn_oper_pending_ill != NULL)
1072 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1073 mutex_exit(&connp->conn_lock);
1074 if (refheld)
1075 ill_waiter_dcr(ill);
1076 }
1077
1078 /*
1079 * ipcl_walk function for cleaning up conn_*_ill fields.
1080 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1081 * conn_bound_if in place. We prefer dropping
1082 * packets instead of sending them out the wrong interface, or accepting
1083 * packets from the wrong ifindex.
1084 */
1085 static void
conn_cleanup_ill(conn_t * connp,caddr_t arg)1086 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1087 {
1088 ill_t *ill = (ill_t *)arg;
1089
1090 mutex_enter(&connp->conn_lock);
1091 if (connp->conn_dhcpinit_ill == ill) {
1092 connp->conn_dhcpinit_ill = NULL;
1093 ASSERT(ill->ill_dhcpinit != 0);
1094 atomic_dec_32(&ill->ill_dhcpinit);
1095 ill_set_inputfn(ill);
1096 }
1097 mutex_exit(&connp->conn_lock);
1098 }
1099
1100 static int
ill_down_ipifs_tail(ill_t * ill)1101 ill_down_ipifs_tail(ill_t *ill)
1102 {
1103 ipif_t *ipif;
1104 int err;
1105
1106 ASSERT(IAM_WRITER_ILL(ill));
1107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1108 ipif_non_duplicate(ipif);
1109 /*
1110 * ipif_down_tail will call arp_ll_down on the last ipif
1111 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1112 */
1113 if ((err = ipif_down_tail(ipif)) != 0)
1114 return (err);
1115 }
1116 return (0);
1117 }
1118
1119 /* ARGSUSED */
1120 void
ipif_all_down_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)1121 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1122 {
1123 ASSERT(IAM_WRITER_IPSQ(ipsq));
1124 (void) ill_down_ipifs_tail(q->q_ptr);
1125 freemsg(mp);
1126 ipsq_current_finish(ipsq);
1127 }
1128
1129 /*
1130 * ill_down_start is called when we want to down this ill and bring it up again
1131 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1132 * all interfaces, but don't tear down any plumbing.
1133 */
1134 boolean_t
ill_down_start(queue_t * q,mblk_t * mp)1135 ill_down_start(queue_t *q, mblk_t *mp)
1136 {
1137 ill_t *ill = q->q_ptr;
1138 ipif_t *ipif;
1139
1140 ASSERT(IAM_WRITER_ILL(ill));
1141 /*
1142 * It is possible that some ioctl is already in progress while we
1143 * received the M_ERROR / M_HANGUP in which case, we need to abort
1144 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1145 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1146 * the in progress ioctl from ever completing.
1147 *
1148 * The thread that started the ioctl (if any) must have returned,
1149 * since we are now executing as writer. After the 2 calls below,
1150 * the state of the ipsq and the ill would reflect no trace of any
1151 * pending operation. Subsequently if there is any response to the
1152 * original ioctl from the driver, it would be discarded as an
1153 * unsolicited message from the driver.
1154 */
1155 (void) ipsq_pending_mp_cleanup(ill, NULL);
1156 ill_dlpi_clear_deferred(ill);
1157
1158 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1159 (void) ipif_down(ipif, NULL, NULL);
1160
1161 ill_down(ill);
1162
1163 /*
1164 * Walk all CONNs that can have a reference on an ire or nce for this
1165 * ill (we actually walk all that now have stale references).
1166 */
1167 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1168
1169 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1170 if (ill->ill_isv6)
1171 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1172
1173 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1174
1175 /*
1176 * Atomically test and add the pending mp if references are active.
1177 */
1178 mutex_enter(&ill->ill_lock);
1179 if (!ill_is_quiescent(ill)) {
1180 /* call cannot fail since `conn_t *' argument is NULL */
1181 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1182 mp, ILL_DOWN);
1183 mutex_exit(&ill->ill_lock);
1184 return (B_FALSE);
1185 }
1186 mutex_exit(&ill->ill_lock);
1187 return (B_TRUE);
1188 }
1189
1190 static void
ill_down(ill_t * ill)1191 ill_down(ill_t *ill)
1192 {
1193 mblk_t *mp;
1194 ip_stack_t *ipst = ill->ill_ipst;
1195
1196 /*
1197 * Blow off any IREs dependent on this ILL.
1198 * The caller needs to handle conn_ixa_cleanup
1199 */
1200 ill_delete_ires(ill);
1201
1202 ire_walk_ill(0, 0, ill_downi, ill, ill);
1203
1204 /* Remove any conn_*_ill depending on this ill */
1205 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1206
1207 /*
1208 * Free state for additional IREs.
1209 */
1210 mutex_enter(&ill->ill_saved_ire_lock);
1211 mp = ill->ill_saved_ire_mp;
1212 ill->ill_saved_ire_mp = NULL;
1213 ill->ill_saved_ire_cnt = 0;
1214 mutex_exit(&ill->ill_saved_ire_lock);
1215 freemsg(mp);
1216 }
1217
1218 /*
1219 * ire_walk routine used to delete every IRE that depends on
1220 * 'ill'. (Always called as writer, and may only be called from ire_walk.)
1221 *
1222 * Note: since the routes added by the kernel are deleted separately,
1223 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1224 *
1225 * We also remove references on ire_nce_cache entries that refer to the ill.
1226 */
1227 void
ill_downi(ire_t * ire,char * ill_arg)1228 ill_downi(ire_t *ire, char *ill_arg)
1229 {
1230 ill_t *ill = (ill_t *)ill_arg;
1231 nce_t *nce;
1232
1233 mutex_enter(&ire->ire_lock);
1234 nce = ire->ire_nce_cache;
1235 if (nce != NULL && nce->nce_ill == ill)
1236 ire->ire_nce_cache = NULL;
1237 else
1238 nce = NULL;
1239 mutex_exit(&ire->ire_lock);
1240 if (nce != NULL)
1241 nce_refrele(nce);
1242 if (ire->ire_ill == ill) {
1243 /*
1244 * The existing interface binding for ire must be
1245 * deleted before trying to bind the route to another
1246 * interface. However, since we are using the contents of the
1247 * ire after ire_delete, the caller has to ensure that
1248 * CONDEMNED (deleted) ire's are not removed from the list
1249 * when ire_delete() returns. Currently ill_downi() is
1250 * only called as part of ire_walk*() routines, so that
1251 * the irb_refhold() done by ire_walk*() will ensure that
1252 * ire_delete() does not lead to ire_inactive().
1253 */
1254 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1255 ire_delete(ire);
1256 if (ire->ire_unbound)
1257 ire_rebind(ire);
1258 }
1259 }
1260
1261 /* Remove IRE_IF_CLONE on this ill */
1262 void
ill_downi_if_clone(ire_t * ire,char * ill_arg)1263 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1264 {
1265 ill_t *ill = (ill_t *)ill_arg;
1266
1267 ASSERT(ire->ire_type & IRE_IF_CLONE);
1268 if (ire->ire_ill == ill)
1269 ire_delete(ire);
1270 }
1271
1272 /* Consume an M_IOCACK of the fastpath probe. */
1273 void
ill_fastpath_ack(ill_t * ill,mblk_t * mp)1274 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1275 {
1276 mblk_t *mp1 = mp;
1277
1278 /*
1279 * If this was the first attempt turn on the fastpath probing.
1280 */
1281 mutex_enter(&ill->ill_lock);
1282 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1283 ill->ill_dlpi_fastpath_state = IDS_OK;
1284 mutex_exit(&ill->ill_lock);
1285
1286 /* Free the M_IOCACK mblk, hold on to the data */
1287 mp = mp->b_cont;
1288 freeb(mp1);
1289 if (mp == NULL)
1290 return;
1291 if (mp->b_cont != NULL)
1292 nce_fastpath_update(ill, mp);
1293 else
1294 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1295 freemsg(mp);
1296 }
1297
1298 /*
1299 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1300 * The data portion of the request is a dl_unitdata_req_t template for
1301 * what we would send downstream in the absence of a fastpath confirmation.
1302 */
1303 int
ill_fastpath_probe(ill_t * ill,mblk_t * dlur_mp)1304 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1305 {
1306 struct iocblk *ioc;
1307 mblk_t *mp;
1308
1309 if (dlur_mp == NULL)
1310 return (EINVAL);
1311
1312 mutex_enter(&ill->ill_lock);
1313 switch (ill->ill_dlpi_fastpath_state) {
1314 case IDS_FAILED:
1315 /*
1316 * Driver NAKed the first fastpath ioctl - assume it doesn't
1317 * support it.
1318 */
1319 mutex_exit(&ill->ill_lock);
1320 return (ENOTSUP);
1321 case IDS_UNKNOWN:
1322 /* This is the first probe */
1323 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1324 break;
1325 default:
1326 break;
1327 }
1328 mutex_exit(&ill->ill_lock);
1329
1330 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1331 return (EAGAIN);
1332
1333 mp->b_cont = copyb(dlur_mp);
1334 if (mp->b_cont == NULL) {
1335 freeb(mp);
1336 return (EAGAIN);
1337 }
1338
1339 ioc = (struct iocblk *)mp->b_rptr;
1340 ioc->ioc_count = msgdsize(mp->b_cont);
1341
1342 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1343 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1344 putnext(ill->ill_wq, mp);
1345 return (0);
1346 }
1347
1348 void
ill_capability_probe(ill_t * ill)1349 ill_capability_probe(ill_t *ill)
1350 {
1351 mblk_t *mp;
1352
1353 ASSERT(IAM_WRITER_ILL(ill));
1354
1355 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1356 ill->ill_dlpi_capab_state != IDCS_FAILED)
1357 return;
1358
1359 /*
1360 * We are starting a new cycle of capability negotiation.
1361 * Free up the capab reset messages of any previous incarnation.
1362 * We will do a fresh allocation when we get the response to our probe
1363 */
1364 if (ill->ill_capab_reset_mp != NULL) {
1365 freemsg(ill->ill_capab_reset_mp);
1366 ill->ill_capab_reset_mp = NULL;
1367 }
1368
1369 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1370
1371 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1372 if (mp == NULL)
1373 return;
1374
1375 ill_capability_send(ill, mp);
1376 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1377 }
1378
1379 void
ill_capability_reset(ill_t * ill,boolean_t reneg)1380 ill_capability_reset(ill_t *ill, boolean_t reneg)
1381 {
1382 ASSERT(IAM_WRITER_ILL(ill));
1383
1384 if (ill->ill_dlpi_capab_state != IDCS_OK)
1385 return;
1386
1387 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1388
1389 ill_capability_send(ill, ill->ill_capab_reset_mp);
1390 ill->ill_capab_reset_mp = NULL;
1391 /*
1392 * We turn off all capabilities except those pertaining to
1393 * direct function call capabilities viz. ILL_CAPAB_DLD*
1394 * which will be turned off by the corresponding reset functions.
1395 */
1396 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1397 }
1398
1399 static void
ill_capability_reset_alloc(ill_t * ill)1400 ill_capability_reset_alloc(ill_t *ill)
1401 {
1402 mblk_t *mp;
1403 size_t size = 0;
1404 int err;
1405 dl_capability_req_t *capb;
1406
1407 ASSERT(IAM_WRITER_ILL(ill));
1408 ASSERT(ill->ill_capab_reset_mp == NULL);
1409
1410 if (ILL_HCKSUM_CAPABLE(ill)) {
1411 size += sizeof (dl_capability_sub_t) +
1412 sizeof (dl_capab_hcksum_t);
1413 }
1414
1415 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1416 size += sizeof (dl_capability_sub_t) +
1417 sizeof (dl_capab_zerocopy_t);
1418 }
1419
1420 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1421 size += sizeof (dl_capability_sub_t) +
1422 sizeof (dl_capab_dld_t);
1423 }
1424
1425 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1426 STR_NOSIG, &err);
1427
1428 mp->b_datap->db_type = M_PROTO;
1429 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1430
1431 capb = (dl_capability_req_t *)mp->b_rptr;
1432 capb->dl_primitive = DL_CAPABILITY_REQ;
1433 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1434 capb->dl_sub_length = size;
1435
1436 mp->b_wptr += sizeof (dl_capability_req_t);
1437
1438 /*
1439 * Each handler fills in the corresponding dl_capability_sub_t
1440 * inside the mblk,
1441 */
1442 ill_capability_hcksum_reset_fill(ill, mp);
1443 ill_capability_zerocopy_reset_fill(ill, mp);
1444 ill_capability_dld_reset_fill(ill, mp);
1445
1446 ill->ill_capab_reset_mp = mp;
1447 }
1448
1449 static void
ill_capability_id_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * outers)1450 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1451 {
1452 dl_capab_id_t *id_ic;
1453 uint_t sub_dl_cap = outers->dl_cap;
1454 dl_capability_sub_t *inners;
1455 uint8_t *capend;
1456
1457 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1458
1459 /*
1460 * Note: range checks here are not absolutely sufficient to
1461 * make us robust against malformed messages sent by drivers;
1462 * this is in keeping with the rest of IP's dlpi handling.
1463 * (Remember, it's coming from something else in the kernel
1464 * address space)
1465 */
1466
1467 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1468 if (capend > mp->b_wptr) {
1469 cmn_err(CE_WARN, "ill_capability_id_ack: "
1470 "malformed sub-capability too long for mblk");
1471 return;
1472 }
1473
1474 id_ic = (dl_capab_id_t *)(outers + 1);
1475
1476 if (outers->dl_length < sizeof (*id_ic) ||
1477 (inners = &id_ic->id_subcap,
1478 inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1479 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1480 "encapsulated capab type %d too long for mblk",
1481 inners->dl_cap);
1482 return;
1483 }
1484
1485 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1486 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1487 "isn't as expected; pass-thru module(s) detected, "
1488 "discarding capability\n", inners->dl_cap));
1489 return;
1490 }
1491
1492 /* Process the encapsulated sub-capability */
1493 ill_capability_dispatch(ill, mp, inners);
1494 }
1495
1496 static void
ill_capability_dld_reset_fill(ill_t * ill,mblk_t * mp)1497 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1498 {
1499 dl_capability_sub_t *dl_subcap;
1500
1501 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1502 return;
1503
1504 /*
1505 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1506 * initialized below since it is not used by DLD.
1507 */
1508 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1509 dl_subcap->dl_cap = DL_CAPAB_DLD;
1510 dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1511
1512 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1513 }
1514
1515 static void
ill_capability_dispatch(ill_t * ill,mblk_t * mp,dl_capability_sub_t * subp)1516 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1517 {
1518 /*
1519 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1520 * is only to get the VRRP capability.
1521 *
1522 * Note that we cannot check ill_ipif_up_count here since
1523 * ill_ipif_up_count is only incremented when the resolver is setup.
1524 * That is done asynchronously, and can race with this function.
1525 */
1526 if (!ill->ill_dl_up) {
1527 if (subp->dl_cap == DL_CAPAB_VRRP)
1528 ill_capability_vrrp_ack(ill, mp, subp);
1529 return;
1530 }
1531
1532 switch (subp->dl_cap) {
1533 case DL_CAPAB_HCKSUM:
1534 ill_capability_hcksum_ack(ill, mp, subp);
1535 break;
1536 case DL_CAPAB_ZEROCOPY:
1537 ill_capability_zerocopy_ack(ill, mp, subp);
1538 break;
1539 case DL_CAPAB_DLD:
1540 ill_capability_dld_ack(ill, mp, subp);
1541 break;
1542 case DL_CAPAB_VRRP:
1543 break;
1544 default:
1545 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1546 subp->dl_cap));
1547 }
1548 }
1549
1550 /*
1551 * Process the vrrp capability received from a DLS Provider. isub must point
1552 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1553 */
1554 static void
ill_capability_vrrp_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1555 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1556 {
1557 dl_capab_vrrp_t *vrrp;
1558 uint_t sub_dl_cap = isub->dl_cap;
1559 uint8_t *capend;
1560
1561 ASSERT(IAM_WRITER_ILL(ill));
1562 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1563
1564 /*
1565 * Note: range checks here are not absolutely sufficient to
1566 * make us robust against malformed messages sent by drivers;
1567 * this is in keeping with the rest of IP's dlpi handling.
1568 * (Remember, it's coming from something else in the kernel
1569 * address space)
1570 */
1571 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1572 if (capend > mp->b_wptr) {
1573 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1574 "malformed sub-capability too long for mblk");
1575 return;
1576 }
1577 vrrp = (dl_capab_vrrp_t *)(isub + 1);
1578
1579 /*
1580 * Compare the IP address family and set ILLF_VRRP for the right ill.
1581 */
1582 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1583 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1584 ill->ill_flags |= ILLF_VRRP;
1585 }
1586 }
1587
1588 /*
1589 * Process a hardware checksum offload capability negotiation ack received
1590 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1591 * of a DL_CAPABILITY_ACK message.
1592 */
1593 static void
ill_capability_hcksum_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1594 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1595 {
1596 dl_capability_req_t *ocap;
1597 dl_capab_hcksum_t *ihck, *ohck;
1598 ill_hcksum_capab_t **ill_hcksum;
1599 mblk_t *nmp = NULL;
1600 uint_t sub_dl_cap = isub->dl_cap;
1601 uint8_t *capend;
1602
1603 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1604
1605 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1606
1607 /*
1608 * Note: range checks here are not absolutely sufficient to
1609 * make us robust against malformed messages sent by drivers;
1610 * this is in keeping with the rest of IP's dlpi handling.
1611 * (Remember, it's coming from something else in the kernel
1612 * address space)
1613 */
1614 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1615 if (capend > mp->b_wptr) {
1616 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1617 "malformed sub-capability too long for mblk");
1618 return;
1619 }
1620
1621 /*
1622 * There are two types of acks we process here:
1623 * 1. acks in reply to a (first form) generic capability req
1624 * (no ENABLE flag set)
1625 * 2. acks in reply to a ENABLE capability req.
1626 * (ENABLE flag set)
1627 */
1628 ihck = (dl_capab_hcksum_t *)(isub + 1);
1629
1630 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1631 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1632 "unsupported hardware checksum "
1633 "sub-capability (version %d, expected %d)",
1634 ihck->hcksum_version, HCKSUM_VERSION_1);
1635 return;
1636 }
1637
1638 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1639 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1640 "checksum capability isn't as expected; pass-thru "
1641 "module(s) detected, discarding capability\n"));
1642 return;
1643 }
1644
1645 #define CURR_HCKSUM_CAPAB \
1646 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1647 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1648
1649 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1650 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1651 /* do ENABLE processing */
1652 if (*ill_hcksum == NULL) {
1653 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1654 KM_NOSLEEP);
1655
1656 if (*ill_hcksum == NULL) {
1657 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1658 "could not enable hcksum version %d "
1659 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1660 ill->ill_name);
1661 return;
1662 }
1663 }
1664
1665 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1666 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1667 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1668 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1669 "has enabled hardware checksumming\n ",
1670 ill->ill_name));
1671 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1672 /*
1673 * Enabling hardware checksum offload
1674 * Currently IP supports {TCP,UDP}/IPv4
1675 * partial and full cksum offload and
1676 * IPv4 header checksum offload.
1677 * Allocate new mblk which will
1678 * contain a new capability request
1679 * to enable hardware checksum offload.
1680 */
1681 uint_t size;
1682 uchar_t *rptr;
1683
1684 size = sizeof (dl_capability_req_t) +
1685 sizeof (dl_capability_sub_t) + isub->dl_length;
1686
1687 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1688 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1689 "could not enable hardware cksum for %s (ENOMEM)\n",
1690 ill->ill_name);
1691 return;
1692 }
1693
1694 rptr = nmp->b_rptr;
1695 /* initialize dl_capability_req_t */
1696 ocap = (dl_capability_req_t *)nmp->b_rptr;
1697 ocap->dl_sub_offset =
1698 sizeof (dl_capability_req_t);
1699 ocap->dl_sub_length =
1700 sizeof (dl_capability_sub_t) +
1701 isub->dl_length;
1702 nmp->b_rptr += sizeof (dl_capability_req_t);
1703
1704 /* initialize dl_capability_sub_t */
1705 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1706 nmp->b_rptr += sizeof (*isub);
1707
1708 /* initialize dl_capab_hcksum_t */
1709 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1710 bcopy(ihck, ohck, sizeof (*ihck));
1711
1712 nmp->b_rptr = rptr;
1713 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1714
1715 /* Set ENABLE flag */
1716 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1717 ohck->hcksum_txflags |= HCKSUM_ENABLE;
1718
1719 /*
1720 * nmp points to a DL_CAPABILITY_REQ message to enable
1721 * hardware checksum acceleration.
1722 */
1723 ill_capability_send(ill, nmp);
1724 } else {
1725 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1726 "advertised %x hardware checksum capability flags\n",
1727 ill->ill_name, ihck->hcksum_txflags));
1728 }
1729 }
1730
1731 static void
ill_capability_hcksum_reset_fill(ill_t * ill,mblk_t * mp)1732 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1733 {
1734 dl_capab_hcksum_t *hck_subcap;
1735 dl_capability_sub_t *dl_subcap;
1736
1737 if (!ILL_HCKSUM_CAPABLE(ill))
1738 return;
1739
1740 ASSERT(ill->ill_hcksum_capab != NULL);
1741
1742 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1743 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1744 dl_subcap->dl_length = sizeof (*hck_subcap);
1745
1746 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1747 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1748 hck_subcap->hcksum_txflags = 0;
1749
1750 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1751 }
1752
1753 static void
ill_capability_zerocopy_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1754 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1755 {
1756 mblk_t *nmp = NULL;
1757 dl_capability_req_t *oc;
1758 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1759 ill_zerocopy_capab_t **ill_zerocopy_capab;
1760 uint_t sub_dl_cap = isub->dl_cap;
1761 uint8_t *capend;
1762
1763 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1764
1765 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1766
1767 /*
1768 * Note: range checks here are not absolutely sufficient to
1769 * make us robust against malformed messages sent by drivers;
1770 * this is in keeping with the rest of IP's dlpi handling.
1771 * (Remember, it's coming from something else in the kernel
1772 * address space)
1773 */
1774 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1775 if (capend > mp->b_wptr) {
1776 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1777 "malformed sub-capability too long for mblk");
1778 return;
1779 }
1780
1781 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1782 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1783 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1784 "unsupported ZEROCOPY sub-capability (version %d, "
1785 "expected %d)", zc_ic->zerocopy_version,
1786 ZEROCOPY_VERSION_1);
1787 return;
1788 }
1789
1790 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1791 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1792 "capability isn't as expected; pass-thru module(s) "
1793 "detected, discarding capability\n"));
1794 return;
1795 }
1796
1797 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1798 if (*ill_zerocopy_capab == NULL) {
1799 *ill_zerocopy_capab =
1800 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1801 KM_NOSLEEP);
1802
1803 if (*ill_zerocopy_capab == NULL) {
1804 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1805 "could not enable Zero-copy version %d "
1806 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1807 ill->ill_name);
1808 return;
1809 }
1810 }
1811
1812 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1813 "supports Zero-copy version %d\n", ill->ill_name,
1814 ZEROCOPY_VERSION_1));
1815
1816 (*ill_zerocopy_capab)->ill_zerocopy_version =
1817 zc_ic->zerocopy_version;
1818 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1819 zc_ic->zerocopy_flags;
1820
1821 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1822 } else {
1823 uint_t size;
1824 uchar_t *rptr;
1825
1826 size = sizeof (dl_capability_req_t) +
1827 sizeof (dl_capability_sub_t) +
1828 sizeof (dl_capab_zerocopy_t);
1829
1830 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1831 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1832 "could not enable zerocopy for %s (ENOMEM)\n",
1833 ill->ill_name);
1834 return;
1835 }
1836
1837 rptr = nmp->b_rptr;
1838 /* initialize dl_capability_req_t */
1839 oc = (dl_capability_req_t *)rptr;
1840 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1841 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1842 sizeof (dl_capab_zerocopy_t);
1843 rptr += sizeof (dl_capability_req_t);
1844
1845 /* initialize dl_capability_sub_t */
1846 bcopy(isub, rptr, sizeof (*isub));
1847 rptr += sizeof (*isub);
1848
1849 /* initialize dl_capab_zerocopy_t */
1850 zc_oc = (dl_capab_zerocopy_t *)rptr;
1851 *zc_oc = *zc_ic;
1852
1853 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1854 "to enable zero-copy version %d\n", ill->ill_name,
1855 ZEROCOPY_VERSION_1));
1856
1857 /* set VMSAFE_MEM flag */
1858 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1859
1860 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1861 ill_capability_send(ill, nmp);
1862 }
1863 }
1864
1865 static void
ill_capability_zerocopy_reset_fill(ill_t * ill,mblk_t * mp)1866 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1867 {
1868 dl_capab_zerocopy_t *zerocopy_subcap;
1869 dl_capability_sub_t *dl_subcap;
1870
1871 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1872 return;
1873
1874 ASSERT(ill->ill_zerocopy_capab != NULL);
1875
1876 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1877 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1878 dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1879
1880 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1881 zerocopy_subcap->zerocopy_version =
1882 ill->ill_zerocopy_capab->ill_zerocopy_version;
1883 zerocopy_subcap->zerocopy_flags = 0;
1884
1885 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1886 }
1887
1888 /*
1889 * DLD capability
1890 * Refer to dld.h for more information regarding the purpose and usage
1891 * of this capability.
1892 */
1893 static void
ill_capability_dld_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1894 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1895 {
1896 dl_capab_dld_t *dld_ic, dld;
1897 uint_t sub_dl_cap = isub->dl_cap;
1898 uint8_t *capend;
1899 ill_dld_capab_t *idc;
1900
1901 ASSERT(IAM_WRITER_ILL(ill));
1902 ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1903
1904 /*
1905 * Note: range checks here are not absolutely sufficient to
1906 * make us robust against malformed messages sent by drivers;
1907 * this is in keeping with the rest of IP's dlpi handling.
1908 * (Remember, it's coming from something else in the kernel
1909 * address space)
1910 */
1911 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1912 if (capend > mp->b_wptr) {
1913 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1914 "malformed sub-capability too long for mblk");
1915 return;
1916 }
1917 dld_ic = (dl_capab_dld_t *)(isub + 1);
1918 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1919 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1920 "unsupported DLD sub-capability (version %d, "
1921 "expected %d)", dld_ic->dld_version,
1922 DLD_CURRENT_VERSION);
1923 return;
1924 }
1925 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1926 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1927 "capability isn't as expected; pass-thru module(s) "
1928 "detected, discarding capability\n"));
1929 return;
1930 }
1931
1932 /*
1933 * Copy locally to ensure alignment.
1934 */
1935 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1936
1937 if ((idc = ill->ill_dld_capab) == NULL) {
1938 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1939 if (idc == NULL) {
1940 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1941 "could not enable DLD version %d "
1942 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1943 ill->ill_name);
1944 return;
1945 }
1946 ill->ill_dld_capab = idc;
1947 }
1948 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1949 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1950 ip1dbg(("ill_capability_dld_ack: interface %s "
1951 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1952
1953 ill_capability_dld_enable(ill);
1954 }
1955
1956 /*
1957 * Typically capability negotiation between IP and the driver happens via
1958 * DLPI message exchange. However GLD also offers a direct function call
1959 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1960 * But arbitrary function calls into IP or GLD are not permitted, since both
1961 * of them are protected by their own perimeter mechanism. The perimeter can
1962 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1963 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1964 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1965 * to enter the mac perimeter and then do the direct function calls into
1966 * GLD to enable squeue polling. The ring related callbacks from the mac into
1967 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1968 * protected by the mac perimeter.
1969 */
1970 static void
ill_mac_perim_enter(ill_t * ill,mac_perim_handle_t * mphp)1971 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1972 {
1973 ill_dld_capab_t *idc = ill->ill_dld_capab;
1974 int err;
1975
1976 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1977 DLD_ENABLE);
1978 ASSERT(err == 0);
1979 }
1980
1981 static void
ill_mac_perim_exit(ill_t * ill,mac_perim_handle_t mph)1982 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1983 {
1984 ill_dld_capab_t *idc = ill->ill_dld_capab;
1985 int err;
1986
1987 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1988 DLD_DISABLE);
1989 ASSERT(err == 0);
1990 }
1991
1992 boolean_t
ill_mac_perim_held(ill_t * ill)1993 ill_mac_perim_held(ill_t *ill)
1994 {
1995 ill_dld_capab_t *idc = ill->ill_dld_capab;
1996
1997 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1998 DLD_QUERY));
1999 }
2000
2001 static void
ill_capability_direct_enable(ill_t * ill)2002 ill_capability_direct_enable(ill_t *ill)
2003 {
2004 ill_dld_capab_t *idc = ill->ill_dld_capab;
2005 ill_dld_direct_t *idd = &idc->idc_direct;
2006 dld_capab_direct_t direct;
2007 int rc;
2008
2009 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2010
2011 bzero(&direct, sizeof (direct));
2012 direct.di_rx_cf = (uintptr_t)ip_input;
2013 direct.di_rx_ch = ill;
2014
2015 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2016 DLD_ENABLE);
2017 if (rc == 0) {
2018 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2019 idd->idd_tx_dh = direct.di_tx_dh;
2020 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2021 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2022 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2023 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2024 ASSERT(idd->idd_tx_cb_df != NULL);
2025 ASSERT(idd->idd_tx_fctl_df != NULL);
2026 ASSERT(idd->idd_tx_df != NULL);
2027 /*
2028 * One time registration of flow enable callback function
2029 */
2030 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2031 ill_flow_enable, ill);
2032 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2033 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2034 } else {
2035 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2036 "capability, rc = %d\n", rc);
2037 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2038 }
2039 }
2040
2041 static void
ill_capability_poll_enable(ill_t * ill)2042 ill_capability_poll_enable(ill_t *ill)
2043 {
2044 ill_dld_capab_t *idc = ill->ill_dld_capab;
2045 dld_capab_poll_t poll;
2046 int rc;
2047
2048 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2049
2050 bzero(&poll, sizeof (poll));
2051 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2052 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2053 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2054 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2055 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2056 poll.poll_ring_ch = ill;
2057 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2058 DLD_ENABLE);
2059 if (rc == 0) {
2060 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2061 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2062 } else {
2063 ip1dbg(("warning: could not enable POLL "
2064 "capability, rc = %d\n", rc));
2065 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2066 }
2067 }
2068
2069 /*
2070 * Enable the LSO capability.
2071 */
2072 static void
ill_capability_lso_enable(ill_t * ill)2073 ill_capability_lso_enable(ill_t *ill)
2074 {
2075 ill_dld_capab_t *idc = ill->ill_dld_capab;
2076 dld_capab_lso_t lso;
2077 int rc;
2078
2079 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2080
2081 if (ill->ill_lso_capab == NULL) {
2082 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2083 KM_NOSLEEP);
2084 if (ill->ill_lso_capab == NULL) {
2085 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2086 "could not enable LSO for %s (ENOMEM)\n",
2087 ill->ill_name);
2088 return;
2089 }
2090 }
2091
2092 bzero(&lso, sizeof (lso));
2093 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2094 DLD_ENABLE)) == 0) {
2095 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2096 ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2097 ill->ill_capabilities |= ILL_CAPAB_LSO;
2098 ip1dbg(("ill_capability_lso_enable: interface %s "
2099 "has enabled LSO\n ", ill->ill_name));
2100 } else {
2101 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2102 ill->ill_lso_capab = NULL;
2103 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2104 }
2105 }
2106
2107 static void
ill_capability_dld_enable(ill_t * ill)2108 ill_capability_dld_enable(ill_t *ill)
2109 {
2110 mac_perim_handle_t mph;
2111
2112 ASSERT(IAM_WRITER_ILL(ill));
2113
2114 if (ill->ill_isv6)
2115 return;
2116
2117 ill_mac_perim_enter(ill, &mph);
2118 if (!ill->ill_isv6) {
2119 ill_capability_direct_enable(ill);
2120 ill_capability_poll_enable(ill);
2121 ill_capability_lso_enable(ill);
2122 }
2123 ill->ill_capabilities |= ILL_CAPAB_DLD;
2124 ill_mac_perim_exit(ill, mph);
2125 }
2126
2127 static void
ill_capability_dld_disable(ill_t * ill)2128 ill_capability_dld_disable(ill_t *ill)
2129 {
2130 ill_dld_capab_t *idc;
2131 ill_dld_direct_t *idd;
2132 mac_perim_handle_t mph;
2133
2134 ASSERT(IAM_WRITER_ILL(ill));
2135
2136 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2137 return;
2138
2139 ill_mac_perim_enter(ill, &mph);
2140
2141 idc = ill->ill_dld_capab;
2142 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2143 /*
2144 * For performance we avoid locks in the transmit data path
2145 * and don't maintain a count of the number of threads using
2146 * direct calls. Thus some threads could be using direct
2147 * transmit calls to GLD, even after the capability mechanism
2148 * turns it off. This is still safe since the handles used in
2149 * the direct calls continue to be valid until the unplumb is
2150 * completed. Remove the callback that was added (1-time) at
2151 * capab enable time.
2152 */
2153 mutex_enter(&ill->ill_lock);
2154 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2155 mutex_exit(&ill->ill_lock);
2156 if (ill->ill_flownotify_mh != NULL) {
2157 idd = &idc->idc_direct;
2158 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2159 ill->ill_flownotify_mh);
2160 ill->ill_flownotify_mh = NULL;
2161 }
2162 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2163 NULL, DLD_DISABLE);
2164 }
2165
2166 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2167 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2168 ip_squeue_clean_all(ill);
2169 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2170 NULL, DLD_DISABLE);
2171 }
2172
2173 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2174 ASSERT(ill->ill_lso_capab != NULL);
2175 /*
2176 * Clear the capability flag for LSO but retain the
2177 * ill_lso_capab structure since it's possible that another
2178 * thread is still referring to it. The structure only gets
2179 * deallocated when we destroy the ill.
2180 */
2181
2182 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2183 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2184 NULL, DLD_DISABLE);
2185 }
2186
2187 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2188 ill_mac_perim_exit(ill, mph);
2189 }
2190
2191 /*
2192 * Capability Negotiation protocol
2193 *
2194 * We don't wait for DLPI capability operations to finish during interface
2195 * bringup or teardown. Doing so would introduce more asynchrony and the
2196 * interface up/down operations will need multiple return and restarts.
2197 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2198 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2199 * exclusive operation won't start until the DLPI operations of the previous
2200 * exclusive operation complete.
2201 *
2202 * The capability state machine is shown below.
2203 *
2204 * state next state event, action
2205 *
2206 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2207 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2208 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2209 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2210 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2211 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2212 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2213 * ill_capability_probe.
2214 */
2215
2216 /*
2217 * Dedicated thread started from ip_stack_init that handles capability
2218 * disable. This thread ensures the taskq dispatch does not fail by waiting
2219 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2220 * that direct calls to DLD are done in a cv_waitable context.
2221 */
2222 void
ill_taskq_dispatch(ip_stack_t * ipst)2223 ill_taskq_dispatch(ip_stack_t *ipst)
2224 {
2225 callb_cpr_t cprinfo;
2226 char name[64];
2227 mblk_t *mp;
2228
2229 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2230 ipst->ips_netstack->netstack_stackid);
2231 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2232 name);
2233 mutex_enter(&ipst->ips_capab_taskq_lock);
2234
2235 for (;;) {
2236 mp = ipst->ips_capab_taskq_head;
2237 while (mp != NULL) {
2238 ipst->ips_capab_taskq_head = mp->b_next;
2239 if (ipst->ips_capab_taskq_head == NULL)
2240 ipst->ips_capab_taskq_tail = NULL;
2241 mutex_exit(&ipst->ips_capab_taskq_lock);
2242 mp->b_next = NULL;
2243
2244 VERIFY(taskq_dispatch(system_taskq,
2245 ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2246 mutex_enter(&ipst->ips_capab_taskq_lock);
2247 mp = ipst->ips_capab_taskq_head;
2248 }
2249
2250 if (ipst->ips_capab_taskq_quit)
2251 break;
2252 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2253 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2254 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2255 }
2256 VERIFY(ipst->ips_capab_taskq_head == NULL);
2257 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2258 CALLB_CPR_EXIT(&cprinfo);
2259 thread_exit();
2260 }
2261
2262 /*
2263 * Consume a new-style hardware capabilities negotiation ack.
2264 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2265 */
2266 static void
ill_capability_ack_thr(void * arg)2267 ill_capability_ack_thr(void *arg)
2268 {
2269 mblk_t *mp = arg;
2270 dl_capability_ack_t *capp;
2271 dl_capability_sub_t *subp, *endp;
2272 ill_t *ill;
2273 boolean_t reneg;
2274
2275 ill = (ill_t *)mp->b_prev;
2276 mp->b_prev = NULL;
2277
2278 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2279
2280 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2281 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2282 /*
2283 * We have received the ack for our DL_CAPAB reset request.
2284 * There isnt' anything in the message that needs processing.
2285 * All message based capabilities have been disabled, now
2286 * do the function call based capability disable.
2287 */
2288 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2289 ill_capability_dld_disable(ill);
2290 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2291 if (reneg)
2292 ill_capability_probe(ill);
2293 goto done;
2294 }
2295
2296 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2297 ill->ill_dlpi_capab_state = IDCS_OK;
2298
2299 capp = (dl_capability_ack_t *)mp->b_rptr;
2300
2301 if (capp->dl_sub_length == 0) {
2302 /* no new-style capabilities */
2303 goto done;
2304 }
2305
2306 /* make sure the driver supplied correct dl_sub_length */
2307 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2308 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2309 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2310 goto done;
2311 }
2312
2313 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2314 /*
2315 * There are sub-capabilities. Process the ones we know about.
2316 * Loop until we don't have room for another sub-cap header..
2317 */
2318 for (subp = SC(capp, capp->dl_sub_offset),
2319 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2320 subp <= endp;
2321 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2322
2323 switch (subp->dl_cap) {
2324 case DL_CAPAB_ID_WRAPPER:
2325 ill_capability_id_ack(ill, mp, subp);
2326 break;
2327 default:
2328 ill_capability_dispatch(ill, mp, subp);
2329 break;
2330 }
2331 }
2332 #undef SC
2333 done:
2334 inet_freemsg(mp);
2335 ill_capability_done(ill);
2336 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2337 }
2338
2339 /*
2340 * This needs to be started in a taskq thread to provide a cv_waitable
2341 * context.
2342 */
2343 void
ill_capability_ack(ill_t * ill,mblk_t * mp)2344 ill_capability_ack(ill_t *ill, mblk_t *mp)
2345 {
2346 ip_stack_t *ipst = ill->ill_ipst;
2347
2348 mp->b_prev = (mblk_t *)ill;
2349 ASSERT(mp->b_next == NULL);
2350
2351 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2352 TQ_NOSLEEP) != 0)
2353 return;
2354
2355 /*
2356 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2357 * which will do the dispatch using TQ_SLEEP to guarantee success.
2358 */
2359 mutex_enter(&ipst->ips_capab_taskq_lock);
2360 if (ipst->ips_capab_taskq_head == NULL) {
2361 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2362 ipst->ips_capab_taskq_head = mp;
2363 } else {
2364 ipst->ips_capab_taskq_tail->b_next = mp;
2365 }
2366 ipst->ips_capab_taskq_tail = mp;
2367
2368 cv_signal(&ipst->ips_capab_taskq_cv);
2369 mutex_exit(&ipst->ips_capab_taskq_lock);
2370 }
2371
2372 /*
2373 * This routine is called to scan the fragmentation reassembly table for
2374 * the specified ILL for any packets that are starting to smell.
2375 * dead_interval is the maximum time in seconds that will be tolerated. It
2376 * will either be the value specified in ip_g_frag_timeout, or zero if the
2377 * ILL is shutting down and it is time to blow everything off.
2378 *
2379 * It returns the number of seconds (as a time_t) that the next frag timer
2380 * should be scheduled for, 0 meaning that the timer doesn't need to be
2381 * re-started. Note that the method of calculating next_timeout isn't
2382 * entirely accurate since time will flow between the time we grab
2383 * current_time and the time we schedule the next timeout. This isn't a
2384 * big problem since this is the timer for sending an ICMP reassembly time
2385 * exceeded messages, and it doesn't have to be exactly accurate.
2386 *
2387 * This function is
2388 * sometimes called as writer, although this is not required.
2389 */
2390 time_t
ill_frag_timeout(ill_t * ill,time_t dead_interval)2391 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2392 {
2393 ipfb_t *ipfb;
2394 ipfb_t *endp;
2395 ipf_t *ipf;
2396 ipf_t *ipfnext;
2397 mblk_t *mp;
2398 time_t current_time = gethrestime_sec();
2399 time_t next_timeout = 0;
2400 uint32_t hdr_length;
2401 mblk_t *send_icmp_head;
2402 mblk_t *send_icmp_head_v6;
2403 ip_stack_t *ipst = ill->ill_ipst;
2404 ip_recv_attr_t iras;
2405
2406 bzero(&iras, sizeof (iras));
2407 iras.ira_flags = 0;
2408 iras.ira_ill = iras.ira_rill = ill;
2409 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2410 iras.ira_rifindex = iras.ira_ruifindex;
2411
2412 ipfb = ill->ill_frag_hash_tbl;
2413 if (ipfb == NULL)
2414 return (B_FALSE);
2415 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2416 /* Walk the frag hash table. */
2417 for (; ipfb < endp; ipfb++) {
2418 send_icmp_head = NULL;
2419 send_icmp_head_v6 = NULL;
2420 mutex_enter(&ipfb->ipfb_lock);
2421 while ((ipf = ipfb->ipfb_ipf) != 0) {
2422 time_t frag_time = current_time - ipf->ipf_timestamp;
2423 time_t frag_timeout;
2424
2425 if (frag_time < dead_interval) {
2426 /*
2427 * There are some outstanding fragments
2428 * that will timeout later. Make note of
2429 * the time so that we can reschedule the
2430 * next timeout appropriately.
2431 */
2432 frag_timeout = dead_interval - frag_time;
2433 if (next_timeout == 0 ||
2434 frag_timeout < next_timeout) {
2435 next_timeout = frag_timeout;
2436 }
2437 break;
2438 }
2439 /* Time's up. Get it out of here. */
2440 hdr_length = ipf->ipf_nf_hdr_len;
2441 ipfnext = ipf->ipf_hash_next;
2442 if (ipfnext)
2443 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2444 *ipf->ipf_ptphn = ipfnext;
2445 mp = ipf->ipf_mp->b_cont;
2446 for (; mp; mp = mp->b_cont) {
2447 /* Extra points for neatness. */
2448 IP_REASS_SET_START(mp, 0);
2449 IP_REASS_SET_END(mp, 0);
2450 }
2451 mp = ipf->ipf_mp->b_cont;
2452 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2453 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2454 ipfb->ipfb_count -= ipf->ipf_count;
2455 ASSERT(ipfb->ipfb_frag_pkts > 0);
2456 ipfb->ipfb_frag_pkts--;
2457 /*
2458 * We do not send any icmp message from here because
2459 * we currently are holding the ipfb_lock for this
2460 * hash chain. If we try and send any icmp messages
2461 * from here we may end up via a put back into ip
2462 * trying to get the same lock, causing a recursive
2463 * mutex panic. Instead we build a list and send all
2464 * the icmp messages after we have dropped the lock.
2465 */
2466 if (ill->ill_isv6) {
2467 if (hdr_length != 0) {
2468 mp->b_next = send_icmp_head_v6;
2469 send_icmp_head_v6 = mp;
2470 } else {
2471 freemsg(mp);
2472 }
2473 } else {
2474 if (hdr_length != 0) {
2475 mp->b_next = send_icmp_head;
2476 send_icmp_head = mp;
2477 } else {
2478 freemsg(mp);
2479 }
2480 }
2481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2482 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2483 freeb(ipf->ipf_mp);
2484 }
2485 mutex_exit(&ipfb->ipfb_lock);
2486 /*
2487 * Now need to send any icmp messages that we delayed from
2488 * above.
2489 */
2490 while (send_icmp_head_v6 != NULL) {
2491 ip6_t *ip6h;
2492
2493 mp = send_icmp_head_v6;
2494 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2495 mp->b_next = NULL;
2496 ip6h = (ip6_t *)mp->b_rptr;
2497 iras.ira_flags = 0;
2498 /*
2499 * This will result in an incorrect ALL_ZONES zoneid
2500 * for multicast packets, but we
2501 * don't send ICMP errors for those in any case.
2502 */
2503 iras.ira_zoneid =
2504 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2505 ill, ipst);
2506 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2507 icmp_time_exceeded_v6(mp,
2508 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2509 &iras);
2510 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2511 }
2512 while (send_icmp_head != NULL) {
2513 ipaddr_t dst;
2514
2515 mp = send_icmp_head;
2516 send_icmp_head = send_icmp_head->b_next;
2517 mp->b_next = NULL;
2518
2519 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2520
2521 iras.ira_flags = IRAF_IS_IPV4;
2522 /*
2523 * This will result in an incorrect ALL_ZONES zoneid
2524 * for broadcast and multicast packets, but we
2525 * don't send ICMP errors for those in any case.
2526 */
2527 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2528 ill, ipst);
2529 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2530 icmp_time_exceeded(mp,
2531 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2532 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2533 }
2534 }
2535 /*
2536 * A non-dying ILL will use the return value to decide whether to
2537 * restart the frag timer, and for how long.
2538 */
2539 return (next_timeout);
2540 }
2541
2542 /*
2543 * This routine is called when the approximate count of mblk memory used
2544 * for the specified ILL has exceeded max_count.
2545 */
2546 void
ill_frag_prune(ill_t * ill,uint_t max_count)2547 ill_frag_prune(ill_t *ill, uint_t max_count)
2548 {
2549 ipfb_t *ipfb;
2550 ipf_t *ipf;
2551 size_t count;
2552 clock_t now;
2553
2554 /*
2555 * If we are here within ip_min_frag_prune_time msecs remove
2556 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2557 * ill_frag_free_num_pkts.
2558 */
2559 mutex_enter(&ill->ill_lock);
2560 now = ddi_get_lbolt();
2561 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2562 (ip_min_frag_prune_time != 0 ?
2563 ip_min_frag_prune_time : msec_per_tick)) {
2564
2565 ill->ill_frag_free_num_pkts++;
2566
2567 } else {
2568 ill->ill_frag_free_num_pkts = 0;
2569 }
2570 ill->ill_last_frag_clean_time = now;
2571 mutex_exit(&ill->ill_lock);
2572
2573 /*
2574 * free ill_frag_free_num_pkts oldest packets from each bucket.
2575 */
2576 if (ill->ill_frag_free_num_pkts != 0) {
2577 int ix;
2578
2579 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2580 ipfb = &ill->ill_frag_hash_tbl[ix];
2581 mutex_enter(&ipfb->ipfb_lock);
2582 if (ipfb->ipfb_ipf != NULL) {
2583 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2584 ill->ill_frag_free_num_pkts);
2585 }
2586 mutex_exit(&ipfb->ipfb_lock);
2587 }
2588 }
2589 /*
2590 * While the reassembly list for this ILL is too big, prune a fragment
2591 * queue by age, oldest first.
2592 */
2593 while (ill->ill_frag_count > max_count) {
2594 int ix;
2595 ipfb_t *oipfb = NULL;
2596 uint_t oldest = UINT_MAX;
2597
2598 count = 0;
2599 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2600 ipfb = &ill->ill_frag_hash_tbl[ix];
2601 mutex_enter(&ipfb->ipfb_lock);
2602 ipf = ipfb->ipfb_ipf;
2603 if (ipf != NULL && ipf->ipf_gen < oldest) {
2604 oldest = ipf->ipf_gen;
2605 oipfb = ipfb;
2606 }
2607 count += ipfb->ipfb_count;
2608 mutex_exit(&ipfb->ipfb_lock);
2609 }
2610 if (oipfb == NULL)
2611 break;
2612
2613 if (count <= max_count)
2614 return; /* Somebody beat us to it, nothing to do */
2615 mutex_enter(&oipfb->ipfb_lock);
2616 ipf = oipfb->ipfb_ipf;
2617 if (ipf != NULL) {
2618 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2619 }
2620 mutex_exit(&oipfb->ipfb_lock);
2621 }
2622 }
2623
2624 /*
2625 * free 'free_cnt' fragmented packets starting at ipf.
2626 */
2627 void
ill_frag_free_pkts(ill_t * ill,ipfb_t * ipfb,ipf_t * ipf,int free_cnt)2628 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2629 {
2630 size_t count;
2631 mblk_t *mp;
2632 mblk_t *tmp;
2633 ipf_t **ipfp = ipf->ipf_ptphn;
2634
2635 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2636 ASSERT(ipfp != NULL);
2637 ASSERT(ipf != NULL);
2638
2639 while (ipf != NULL && free_cnt-- > 0) {
2640 count = ipf->ipf_count;
2641 mp = ipf->ipf_mp;
2642 ipf = ipf->ipf_hash_next;
2643 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2644 IP_REASS_SET_START(tmp, 0);
2645 IP_REASS_SET_END(tmp, 0);
2646 }
2647 atomic_add_32(&ill->ill_frag_count, -count);
2648 ASSERT(ipfb->ipfb_count >= count);
2649 ipfb->ipfb_count -= count;
2650 ASSERT(ipfb->ipfb_frag_pkts > 0);
2651 ipfb->ipfb_frag_pkts--;
2652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2653 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2654 freemsg(mp);
2655 }
2656
2657 if (ipf)
2658 ipf->ipf_ptphn = ipfp;
2659 ipfp[0] = ipf;
2660 }
2661
2662 /*
2663 * Helper function for ill_forward_set().
2664 */
2665 static void
ill_forward_set_on_ill(ill_t * ill,boolean_t enable)2666 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2667 {
2668 ip_stack_t *ipst = ill->ill_ipst;
2669
2670 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2671
2672 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2673 (enable ? "Enabling" : "Disabling"),
2674 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2675 mutex_enter(&ill->ill_lock);
2676 if (enable)
2677 ill->ill_flags |= ILLF_ROUTER;
2678 else
2679 ill->ill_flags &= ~ILLF_ROUTER;
2680 mutex_exit(&ill->ill_lock);
2681 if (ill->ill_isv6)
2682 ill_set_nce_router_flags(ill, enable);
2683 /* Notify routing socket listeners of this change. */
2684 if (ill->ill_ipif != NULL)
2685 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2686 }
2687
2688 /*
2689 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2690 * socket messages for each interface whose flags we change.
2691 */
2692 int
ill_forward_set(ill_t * ill,boolean_t enable)2693 ill_forward_set(ill_t *ill, boolean_t enable)
2694 {
2695 ipmp_illgrp_t *illg;
2696 ip_stack_t *ipst = ill->ill_ipst;
2697
2698 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2699
2700 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2701 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2702 return (0);
2703
2704 if (IS_LOOPBACK(ill))
2705 return (EINVAL);
2706
2707 if (enable && ill->ill_allowed_ips_cnt > 0)
2708 return (EPERM);
2709
2710 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2711 /*
2712 * Update all of the interfaces in the group.
2713 */
2714 illg = ill->ill_grp;
2715 ill = list_head(&illg->ig_if);
2716 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2717 ill_forward_set_on_ill(ill, enable);
2718
2719 /*
2720 * Update the IPMP meta-interface.
2721 */
2722 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2723 return (0);
2724 }
2725
2726 ill_forward_set_on_ill(ill, enable);
2727 return (0);
2728 }
2729
2730 /*
2731 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2732 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2733 * set or clear.
2734 */
2735 static void
ill_set_nce_router_flags(ill_t * ill,boolean_t enable)2736 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2737 {
2738 ipif_t *ipif;
2739 ncec_t *ncec;
2740 nce_t *nce;
2741
2742 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2743 /*
2744 * NOTE: we match across the illgrp because nce's for
2745 * addresses on IPMP interfaces have an nce_ill that points to
2746 * the bound underlying ill.
2747 */
2748 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2749 if (nce != NULL) {
2750 ncec = nce->nce_common;
2751 mutex_enter(&ncec->ncec_lock);
2752 if (enable)
2753 ncec->ncec_flags |= NCE_F_ISROUTER;
2754 else
2755 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2756 mutex_exit(&ncec->ncec_lock);
2757 nce_refrele(nce);
2758 }
2759 }
2760 }
2761
2762 /*
2763 * Intializes the context structure and returns the first ill in the list
2764 * cuurently start_list and end_list can have values:
2765 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.
2766 * IP_V4_G_HEAD Traverse IPV4 list only.
2767 * IP_V6_G_HEAD Traverse IPV6 list only.
2768 */
2769
2770 /*
2771 * We don't check for CONDEMNED ills here. Caller must do that if
2772 * necessary under the ill lock.
2773 */
2774 ill_t *
ill_first(int start_list,int end_list,ill_walk_context_t * ctx,ip_stack_t * ipst)2775 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2776 ip_stack_t *ipst)
2777 {
2778 ill_if_t *ifp;
2779 ill_t *ill;
2780 avl_tree_t *avl_tree;
2781
2782 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2783 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2784
2785 /*
2786 * setup the lists to search
2787 */
2788 if (end_list != MAX_G_HEADS) {
2789 ctx->ctx_current_list = start_list;
2790 ctx->ctx_last_list = end_list;
2791 } else {
2792 ctx->ctx_last_list = MAX_G_HEADS - 1;
2793 ctx->ctx_current_list = 0;
2794 }
2795
2796 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2797 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2798 if (ifp != (ill_if_t *)
2799 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2800 avl_tree = &ifp->illif_avl_by_ppa;
2801 ill = avl_first(avl_tree);
2802 /*
2803 * ill is guaranteed to be non NULL or ifp should have
2804 * not existed.
2805 */
2806 ASSERT(ill != NULL);
2807 return (ill);
2808 }
2809 ctx->ctx_current_list++;
2810 }
2811
2812 return (NULL);
2813 }
2814
2815 /*
2816 * returns the next ill in the list. ill_first() must have been called
2817 * before calling ill_next() or bad things will happen.
2818 */
2819
2820 /*
2821 * We don't check for CONDEMNED ills here. Caller must do that if
2822 * necessary under the ill lock.
2823 */
2824 ill_t *
ill_next(ill_walk_context_t * ctx,ill_t * lastill)2825 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2826 {
2827 ill_if_t *ifp;
2828 ill_t *ill;
2829 ip_stack_t *ipst = lastill->ill_ipst;
2830
2831 ASSERT(lastill->ill_ifptr != (ill_if_t *)
2832 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2833 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2834 AVL_AFTER)) != NULL) {
2835 return (ill);
2836 }
2837
2838 /* goto next ill_ifp in the list. */
2839 ifp = lastill->ill_ifptr->illif_next;
2840
2841 /* make sure not at end of circular list */
2842 while (ifp ==
2843 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2844 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2845 return (NULL);
2846 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2847 }
2848
2849 return (avl_first(&ifp->illif_avl_by_ppa));
2850 }
2851
2852 /*
2853 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2854 * The final number (PPA) must not have any leading zeros. Upon success, a
2855 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2856 */
2857 static char *
ill_get_ppa_ptr(char * name)2858 ill_get_ppa_ptr(char *name)
2859 {
2860 int namelen = strlen(name);
2861 int end_ndx = namelen - 1;
2862 int ppa_ndx, i;
2863
2864 /*
2865 * Check that the first character is [a-zA-Z], and that the last
2866 * character is [0-9].
2867 */
2868 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2869 return (NULL);
2870
2871 /*
2872 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2873 */
2874 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2875 if (!isdigit(name[ppa_ndx - 1]))
2876 break;
2877
2878 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2879 return (NULL);
2880
2881 /*
2882 * Check that the intermediate characters are [a-z0-9.]
2883 */
2884 for (i = 1; i < ppa_ndx; i++) {
2885 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2886 name[i] != '.' && name[i] != '_') {
2887 return (NULL);
2888 }
2889 }
2890
2891 return (name + ppa_ndx);
2892 }
2893
2894 /*
2895 * use avl tree to locate the ill.
2896 */
2897 static ill_t *
ill_find_by_name(char * name,boolean_t isv6,ip_stack_t * ipst)2898 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2899 {
2900 char *ppa_ptr = NULL;
2901 int len;
2902 uint_t ppa;
2903 ill_t *ill = NULL;
2904 ill_if_t *ifp;
2905 int list;
2906
2907 /*
2908 * get ppa ptr
2909 */
2910 if (isv6)
2911 list = IP_V6_G_HEAD;
2912 else
2913 list = IP_V4_G_HEAD;
2914
2915 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2916 return (NULL);
2917 }
2918
2919 len = ppa_ptr - name + 1;
2920
2921 ppa = stoi(&ppa_ptr);
2922
2923 ifp = IP_VX_ILL_G_LIST(list, ipst);
2924
2925 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2926 /*
2927 * match is done on len - 1 as the name is not null
2928 * terminated it contains ppa in addition to the interface
2929 * name.
2930 */
2931 if ((ifp->illif_name_len == len) &&
2932 bcmp(ifp->illif_name, name, len - 1) == 0) {
2933 break;
2934 } else {
2935 ifp = ifp->illif_next;
2936 }
2937 }
2938
2939 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2940 /*
2941 * Even the interface type does not exist.
2942 */
2943 return (NULL);
2944 }
2945
2946 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2947 if (ill != NULL) {
2948 mutex_enter(&ill->ill_lock);
2949 if (ILL_CAN_LOOKUP(ill)) {
2950 ill_refhold_locked(ill);
2951 mutex_exit(&ill->ill_lock);
2952 return (ill);
2953 }
2954 mutex_exit(&ill->ill_lock);
2955 }
2956 return (NULL);
2957 }
2958
2959 /*
2960 * comparison function for use with avl.
2961 */
2962 static int
ill_compare_ppa(const void * ppa_ptr,const void * ill_ptr)2963 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2964 {
2965 uint_t ppa;
2966 uint_t ill_ppa;
2967
2968 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2969
2970 ppa = *((uint_t *)ppa_ptr);
2971 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2972 /*
2973 * We want the ill with the lowest ppa to be on the
2974 * top.
2975 */
2976 if (ill_ppa < ppa)
2977 return (1);
2978 if (ill_ppa > ppa)
2979 return (-1);
2980 return (0);
2981 }
2982
2983 /*
2984 * remove an interface type from the global list.
2985 */
2986 static void
ill_delete_interface_type(ill_if_t * interface)2987 ill_delete_interface_type(ill_if_t *interface)
2988 {
2989 ASSERT(interface != NULL);
2990 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2991
2992 avl_destroy(&interface->illif_avl_by_ppa);
2993 if (interface->illif_ppa_arena != NULL)
2994 vmem_destroy(interface->illif_ppa_arena);
2995
2996 remque(interface);
2997
2998 mi_free(interface);
2999 }
3000
3001 /*
3002 * remove ill from the global list.
3003 */
3004 static void
ill_glist_delete(ill_t * ill)3005 ill_glist_delete(ill_t *ill)
3006 {
3007 ip_stack_t *ipst;
3008 phyint_t *phyi;
3009
3010 if (ill == NULL)
3011 return;
3012 ipst = ill->ill_ipst;
3013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3014
3015 /*
3016 * If the ill was never inserted into the AVL tree
3017 * we skip the if branch.
3018 */
3019 if (ill->ill_ifptr != NULL) {
3020 /*
3021 * remove from AVL tree and free ppa number
3022 */
3023 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3024
3025 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3026 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3027 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3028 }
3029 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3030 ill_delete_interface_type(ill->ill_ifptr);
3031 }
3032
3033 /*
3034 * Indicate ill is no longer in the list.
3035 */
3036 ill->ill_ifptr = NULL;
3037 ill->ill_name_length = 0;
3038 ill->ill_name[0] = '\0';
3039 ill->ill_ppa = UINT_MAX;
3040 }
3041
3042 /* Generate one last event for this ill. */
3043 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3044 ill->ill_name_length);
3045
3046 ASSERT(ill->ill_phyint != NULL);
3047 phyi = ill->ill_phyint;
3048 ill->ill_phyint = NULL;
3049
3050 /*
3051 * ill_init allocates a phyint always to store the copy
3052 * of flags relevant to phyint. At that point in time, we could
3053 * not assign the name and hence phyint_illv4/v6 could not be
3054 * initialized. Later in ipif_set_values, we assign the name to
3055 * the ill, at which point in time we assign phyint_illv4/v6.
3056 * Thus we don't rely on phyint_illv6 to be initialized always.
3057 */
3058 if (ill->ill_flags & ILLF_IPV6)
3059 phyi->phyint_illv6 = NULL;
3060 else
3061 phyi->phyint_illv4 = NULL;
3062
3063 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3064 rw_exit(&ipst->ips_ill_g_lock);
3065 return;
3066 }
3067
3068 /*
3069 * There are no ills left on this phyint; pull it out of the phyint
3070 * avl trees, and free it.
3071 */
3072 if (phyi->phyint_ifindex > 0) {
3073 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3074 phyi);
3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3076 phyi);
3077 }
3078 rw_exit(&ipst->ips_ill_g_lock);
3079
3080 phyint_free(phyi);
3081 }
3082
3083 /*
3084 * allocate a ppa, if the number of plumbed interfaces of this type are
3085 * less than ill_no_arena do a linear search to find a unused ppa.
3086 * When the number goes beyond ill_no_arena switch to using an arena.
3087 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3088 * is the return value for an error condition, so allocation starts at one
3089 * and is decremented by one.
3090 */
3091 static int
ill_alloc_ppa(ill_if_t * ifp,ill_t * ill)3092 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3093 {
3094 ill_t *tmp_ill;
3095 uint_t start, end;
3096 int ppa;
3097
3098 if (ifp->illif_ppa_arena == NULL &&
3099 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3100 /*
3101 * Create an arena.
3102 */
3103 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3104 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3105 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3106 /* allocate what has already been assigned */
3107 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3108 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3109 tmp_ill, AVL_AFTER)) {
3110 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3111 1, /* size */
3112 1, /* align/quantum */
3113 0, /* phase */
3114 0, /* nocross */
3115 /* minaddr */
3116 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3117 /* maxaddr */
3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3119 VM_NOSLEEP|VM_FIRSTFIT);
3120 if (ppa == 0) {
3121 ip1dbg(("ill_alloc_ppa: ppa allocation"
3122 " failed while switching"));
3123 vmem_destroy(ifp->illif_ppa_arena);
3124 ifp->illif_ppa_arena = NULL;
3125 break;
3126 }
3127 }
3128 }
3129
3130 if (ifp->illif_ppa_arena != NULL) {
3131 if (ill->ill_ppa == UINT_MAX) {
3132 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3133 1, VM_NOSLEEP|VM_FIRSTFIT);
3134 if (ppa == 0)
3135 return (EAGAIN);
3136 ill->ill_ppa = --ppa;
3137 } else {
3138 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3139 1, /* size */
3140 1, /* align/quantum */
3141 0, /* phase */
3142 0, /* nocross */
3143 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3144 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3145 VM_NOSLEEP|VM_FIRSTFIT);
3146 /*
3147 * Most likely the allocation failed because
3148 * the requested ppa was in use.
3149 */
3150 if (ppa == 0)
3151 return (EEXIST);
3152 }
3153 return (0);
3154 }
3155
3156 /*
3157 * No arena is in use and not enough (>ill_no_arena) interfaces have
3158 * been plumbed to create one. Do a linear search to get a unused ppa.
3159 */
3160 if (ill->ill_ppa == UINT_MAX) {
3161 end = UINT_MAX - 1;
3162 start = 0;
3163 } else {
3164 end = start = ill->ill_ppa;
3165 }
3166
3167 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3168 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3169 if (start++ >= end) {
3170 if (ill->ill_ppa == UINT_MAX)
3171 return (EAGAIN);
3172 else
3173 return (EEXIST);
3174 }
3175 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3176 }
3177 ill->ill_ppa = start;
3178 return (0);
3179 }
3180
3181 /*
3182 * Insert ill into the list of configured ill's. Once this function completes,
3183 * the ill is globally visible and is available through lookups. More precisely
3184 * this happens after the caller drops the ill_g_lock.
3185 */
3186 static int
ill_glist_insert(ill_t * ill,char * name,boolean_t isv6)3187 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3188 {
3189 ill_if_t *ill_interface;
3190 avl_index_t where = 0;
3191 int error;
3192 int name_length;
3193 int index;
3194 boolean_t check_length = B_FALSE;
3195 ip_stack_t *ipst = ill->ill_ipst;
3196
3197 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3198
3199 name_length = mi_strlen(name) + 1;
3200
3201 if (isv6)
3202 index = IP_V6_G_HEAD;
3203 else
3204 index = IP_V4_G_HEAD;
3205
3206 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3207 /*
3208 * Search for interface type based on name
3209 */
3210 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3211 if ((ill_interface->illif_name_len == name_length) &&
3212 (strcmp(ill_interface->illif_name, name) == 0)) {
3213 break;
3214 }
3215 ill_interface = ill_interface->illif_next;
3216 }
3217
3218 /*
3219 * Interface type not found, create one.
3220 */
3221 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3222 ill_g_head_t ghead;
3223
3224 /*
3225 * allocate ill_if_t structure
3226 */
3227 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3228 if (ill_interface == NULL) {
3229 return (ENOMEM);
3230 }
3231
3232 (void) strcpy(ill_interface->illif_name, name);
3233 ill_interface->illif_name_len = name_length;
3234
3235 avl_create(&ill_interface->illif_avl_by_ppa,
3236 ill_compare_ppa, sizeof (ill_t),
3237 offsetof(struct ill_s, ill_avl_byppa));
3238
3239 /*
3240 * link the structure in the back to maintain order
3241 * of configuration for ifconfig output.
3242 */
3243 ghead = ipst->ips_ill_g_heads[index];
3244 insque(ill_interface, ghead.ill_g_list_tail);
3245 }
3246
3247 if (ill->ill_ppa == UINT_MAX)
3248 check_length = B_TRUE;
3249
3250 error = ill_alloc_ppa(ill_interface, ill);
3251 if (error != 0) {
3252 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3253 ill_delete_interface_type(ill->ill_ifptr);
3254 return (error);
3255 }
3256
3257 /*
3258 * When the ppa is choosen by the system, check that there is
3259 * enough space to insert ppa. if a specific ppa was passed in this
3260 * check is not required as the interface name passed in will have
3261 * the right ppa in it.
3262 */
3263 if (check_length) {
3264 /*
3265 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3266 */
3267 char buf[sizeof (uint_t) * 3];
3268
3269 /*
3270 * convert ppa to string to calculate the amount of space
3271 * required for it in the name.
3272 */
3273 numtos(ill->ill_ppa, buf);
3274
3275 /* Do we have enough space to insert ppa ? */
3276
3277 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3278 /* Free ppa and interface type struct */
3279 if (ill_interface->illif_ppa_arena != NULL) {
3280 vmem_free(ill_interface->illif_ppa_arena,
3281 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3282 }
3283 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3284 ill_delete_interface_type(ill->ill_ifptr);
3285
3286 return (EINVAL);
3287 }
3288 }
3289
3290 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3291 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3292
3293 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3294 &where);
3295 ill->ill_ifptr = ill_interface;
3296 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3297
3298 ill_phyint_reinit(ill);
3299 return (0);
3300 }
3301
3302 /* Initialize the per phyint ipsq used for serialization */
3303 static boolean_t
ipsq_init(ill_t * ill,boolean_t enter)3304 ipsq_init(ill_t *ill, boolean_t enter)
3305 {
3306 ipsq_t *ipsq;
3307 ipxop_t *ipx;
3308
3309 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3310 return (B_FALSE);
3311
3312 ill->ill_phyint->phyint_ipsq = ipsq;
3313 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3314 ipx->ipx_ipsq = ipsq;
3315 ipsq->ipsq_next = ipsq;
3316 ipsq->ipsq_phyint = ill->ill_phyint;
3317 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3318 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3319 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3320 if (enter) {
3321 ipx->ipx_writer = curthread;
3322 ipx->ipx_forced = B_FALSE;
3323 ipx->ipx_reentry_cnt = 1;
3324 #ifdef DEBUG
3325 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3326 #endif
3327 }
3328 return (B_TRUE);
3329 }
3330
3331 /*
3332 * ill_init is called by ip_open when a device control stream is opened.
3333 * It does a few initializations, and shoots a DL_INFO_REQ message down
3334 * to the driver. The response is later picked up in ip_rput_dlpi and
3335 * used to set up default mechanisms for talking to the driver. (Always
3336 * called as writer.)
3337 *
3338 * If this function returns error, ip_open will call ip_close which in
3339 * turn will call ill_delete to clean up any memory allocated here that
3340 * is not yet freed.
3341 */
3342 int
ill_init(queue_t * q,ill_t * ill)3343 ill_init(queue_t *q, ill_t *ill)
3344 {
3345 int count;
3346 dl_info_req_t *dlir;
3347 mblk_t *info_mp;
3348 uchar_t *frag_ptr;
3349
3350 /*
3351 * The ill is initialized to zero by mi_alloc*(). In addition
3352 * some fields already contain valid values, initialized in
3353 * ip_open(), before we reach here.
3354 */
3355 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3356 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3357 ill->ill_saved_ire_cnt = 0;
3358
3359 ill->ill_rq = q;
3360 ill->ill_wq = WR(q);
3361
3362 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3363 BPRI_HI);
3364 if (info_mp == NULL)
3365 return (ENOMEM);
3366
3367 /*
3368 * Allocate sufficient space to contain our fragment hash table and
3369 * the device name.
3370 */
3371 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3372 if (frag_ptr == NULL) {
3373 freemsg(info_mp);
3374 return (ENOMEM);
3375 }
3376 ill->ill_frag_ptr = frag_ptr;
3377 ill->ill_frag_free_num_pkts = 0;
3378 ill->ill_last_frag_clean_time = 0;
3379 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3380 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3381 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3382 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3383 NULL, MUTEX_DEFAULT, NULL);
3384 }
3385
3386 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3387 if (ill->ill_phyint == NULL) {
3388 freemsg(info_mp);
3389 mi_free(frag_ptr);
3390 return (ENOMEM);
3391 }
3392
3393 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3394 /*
3395 * For now pretend this is a v4 ill. We need to set phyint_ill*
3396 * at this point because of the following reason. If we can't
3397 * enter the ipsq at some point and cv_wait, the writer that
3398 * wakes us up tries to locate us using the list of all phyints
3399 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3400 * If we don't set it now, we risk a missed wakeup.
3401 */
3402 ill->ill_phyint->phyint_illv4 = ill;
3403 ill->ill_ppa = UINT_MAX;
3404 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3405
3406 ill_set_inputfn(ill);
3407
3408 if (!ipsq_init(ill, B_TRUE)) {
3409 freemsg(info_mp);
3410 mi_free(frag_ptr);
3411 mi_free(ill->ill_phyint);
3412 return (ENOMEM);
3413 }
3414
3415 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3416
3417 /* Frag queue limit stuff */
3418 ill->ill_frag_count = 0;
3419 ill->ill_ipf_gen = 0;
3420
3421 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3422 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3423 ill->ill_global_timer = INFINITY;
3424 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3425 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3426 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3427 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3428
3429 /*
3430 * Initialize IPv6 configuration variables. The IP module is always
3431 * opened as an IPv4 module. Instead tracking down the cases where
3432 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3433 * here for convenience, this has no effect until the ill is set to do
3434 * IPv6.
3435 */
3436 ill->ill_reachable_time = ND_REACHABLE_TIME;
3437 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3438 ill->ill_max_buf = ND_MAX_Q;
3439 ill->ill_refcnt = 0;
3440
3441 /* Send down the Info Request to the driver. */
3442 info_mp->b_datap->db_type = M_PCPROTO;
3443 dlir = (dl_info_req_t *)info_mp->b_rptr;
3444 info_mp->b_wptr = (uchar_t *)&dlir[1];
3445 dlir->dl_primitive = DL_INFO_REQ;
3446
3447 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3448
3449 qprocson(q);
3450 ill_dlpi_send(ill, info_mp);
3451
3452 return (0);
3453 }
3454
3455 /*
3456 * ill_dls_info
3457 * creates datalink socket info from the device.
3458 */
3459 int
ill_dls_info(struct sockaddr_dl * sdl,const ill_t * ill)3460 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3461 {
3462 size_t len;
3463
3464 sdl->sdl_family = AF_LINK;
3465 sdl->sdl_index = ill_get_upper_ifindex(ill);
3466 sdl->sdl_type = ill->ill_type;
3467 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3468 len = strlen(sdl->sdl_data);
3469 ASSERT(len < 256);
3470 sdl->sdl_nlen = (uchar_t)len;
3471 sdl->sdl_alen = ill->ill_phys_addr_length;
3472 sdl->sdl_slen = 0;
3473 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3474 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3475
3476 return (sizeof (struct sockaddr_dl));
3477 }
3478
3479 /*
3480 * ill_xarp_info
3481 * creates xarp info from the device.
3482 */
3483 static int
ill_xarp_info(struct sockaddr_dl * sdl,ill_t * ill)3484 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3485 {
3486 sdl->sdl_family = AF_LINK;
3487 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3488 sdl->sdl_type = ill->ill_type;
3489 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3490 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3491 sdl->sdl_alen = ill->ill_phys_addr_length;
3492 sdl->sdl_slen = 0;
3493 return (sdl->sdl_nlen);
3494 }
3495
3496 static int
loopback_kstat_update(kstat_t * ksp,int rw)3497 loopback_kstat_update(kstat_t *ksp, int rw)
3498 {
3499 kstat_named_t *kn;
3500 netstackid_t stackid;
3501 netstack_t *ns;
3502 ip_stack_t *ipst;
3503
3504 if (ksp == NULL || ksp->ks_data == NULL)
3505 return (EIO);
3506
3507 if (rw == KSTAT_WRITE)
3508 return (EACCES);
3509
3510 kn = KSTAT_NAMED_PTR(ksp);
3511 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3512
3513 ns = netstack_find_by_stackid(stackid);
3514 if (ns == NULL)
3515 return (-1);
3516
3517 ipst = ns->netstack_ip;
3518 if (ipst == NULL) {
3519 netstack_rele(ns);
3520 return (-1);
3521 }
3522 kn[0].value.ui32 = ipst->ips_loopback_packets;
3523 kn[1].value.ui32 = ipst->ips_loopback_packets;
3524 netstack_rele(ns);
3525 return (0);
3526 }
3527
3528 /*
3529 * Has ifindex been plumbed already?
3530 */
3531 static boolean_t
phyint_exists(uint_t index,ip_stack_t * ipst)3532 phyint_exists(uint_t index, ip_stack_t *ipst)
3533 {
3534 ASSERT(index != 0);
3535 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3536
3537 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3538 &index, NULL) != NULL);
3539 }
3540
3541 /*
3542 * Pick a unique ifindex.
3543 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3544 * flag is set so that next time time ip_assign_ifindex() is called, it
3545 * falls through and resets the index counter back to 1, the minimum value
3546 * for the interface index. The logic below assumes that ips_ill_index
3547 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3548 * (i.e. reset back to 0.)
3549 */
3550 boolean_t
ip_assign_ifindex(uint_t * indexp,ip_stack_t * ipst)3551 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3552 {
3553 uint_t loops;
3554
3555 if (!ipst->ips_ill_index_wrap) {
3556 *indexp = ipst->ips_ill_index++;
3557 if (ipst->ips_ill_index > IF_INDEX_MAX) {
3558 /*
3559 * Reached the maximum ifindex value, set the wrap
3560 * flag to indicate that it is no longer possible
3561 * to assume that a given index is unallocated.
3562 */
3563 ipst->ips_ill_index_wrap = B_TRUE;
3564 }
3565 return (B_TRUE);
3566 }
3567
3568 if (ipst->ips_ill_index > IF_INDEX_MAX)
3569 ipst->ips_ill_index = 1;
3570
3571 /*
3572 * Start reusing unused indexes. Note that we hold the ill_g_lock
3573 * at this point and don't want to call any function that attempts
3574 * to get the lock again.
3575 */
3576 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3577 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3578 /* found unused index - use it */
3579 *indexp = ipst->ips_ill_index;
3580 return (B_TRUE);
3581 }
3582
3583 ipst->ips_ill_index++;
3584 if (ipst->ips_ill_index > IF_INDEX_MAX)
3585 ipst->ips_ill_index = 1;
3586 }
3587
3588 /*
3589 * all interface indicies are inuse.
3590 */
3591 return (B_FALSE);
3592 }
3593
3594 /*
3595 * Assign a unique interface index for the phyint.
3596 */
3597 static boolean_t
phyint_assign_ifindex(phyint_t * phyi,ip_stack_t * ipst)3598 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3599 {
3600 ASSERT(phyi->phyint_ifindex == 0);
3601 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3602 }
3603
3604 /*
3605 * Initialize the flags on `phyi' as per the provided mactype.
3606 */
3607 static void
phyint_flags_init(phyint_t * phyi,t_uscalar_t mactype)3608 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3609 {
3610 uint64_t flags = 0;
3611
3612 /*
3613 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3614 * we always presume the underlying hardware is working and set
3615 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3616 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3617 * there are no active interfaces in the group so we set PHYI_FAILED.
3618 */
3619 if (mactype == SUNW_DL_IPMP)
3620 flags |= PHYI_FAILED;
3621 else
3622 flags |= PHYI_RUNNING;
3623
3624 switch (mactype) {
3625 case SUNW_DL_VNI:
3626 flags |= PHYI_VIRTUAL;
3627 break;
3628 case SUNW_DL_IPMP:
3629 flags |= PHYI_IPMP;
3630 break;
3631 case DL_LOOP:
3632 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3633 break;
3634 }
3635
3636 mutex_enter(&phyi->phyint_lock);
3637 phyi->phyint_flags |= flags;
3638 mutex_exit(&phyi->phyint_lock);
3639 }
3640
3641 /*
3642 * Return a pointer to the ill which matches the supplied name. Note that
3643 * the ill name length includes the null termination character. (May be
3644 * called as writer.)
3645 * If do_alloc and the interface is "lo0" it will be automatically created.
3646 * Cannot bump up reference on condemned ills. So dup detect can't be done
3647 * using this func.
3648 */
3649 ill_t *
ill_lookup_on_name(char * name,boolean_t do_alloc,boolean_t isv6,boolean_t * did_alloc,ip_stack_t * ipst)3650 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3651 boolean_t *did_alloc, ip_stack_t *ipst)
3652 {
3653 ill_t *ill;
3654 ipif_t *ipif;
3655 ipsq_t *ipsq;
3656 kstat_named_t *kn;
3657 boolean_t isloopback;
3658 in6_addr_t ov6addr;
3659
3660 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3661
3662 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3663 ill = ill_find_by_name(name, isv6, ipst);
3664 rw_exit(&ipst->ips_ill_g_lock);
3665 if (ill != NULL)
3666 return (ill);
3667
3668 /*
3669 * Couldn't find it. Does this happen to be a lookup for the
3670 * loopback device and are we allowed to allocate it?
3671 */
3672 if (!isloopback || !do_alloc)
3673 return (NULL);
3674
3675 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3676 ill = ill_find_by_name(name, isv6, ipst);
3677 if (ill != NULL) {
3678 rw_exit(&ipst->ips_ill_g_lock);
3679 return (ill);
3680 }
3681
3682 /* Create the loopback device on demand */
3683 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3684 sizeof (ipif_loopback_name), BPRI_MED));
3685 if (ill == NULL)
3686 goto done;
3687
3688 *ill = ill_null;
3689 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3690 ill->ill_ipst = ipst;
3691 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3692 netstack_hold(ipst->ips_netstack);
3693 /*
3694 * For exclusive stacks we set the zoneid to zero
3695 * to make IP operate as if in the global zone.
3696 */
3697 ill->ill_zoneid = GLOBAL_ZONEID;
3698
3699 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3700 if (ill->ill_phyint == NULL)
3701 goto done;
3702
3703 if (isv6)
3704 ill->ill_phyint->phyint_illv6 = ill;
3705 else
3706 ill->ill_phyint->phyint_illv4 = ill;
3707 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3708 phyint_flags_init(ill->ill_phyint, DL_LOOP);
3709
3710 if (isv6) {
3711 ill->ill_isv6 = B_TRUE;
3712 ill->ill_max_frag = ip_loopback_mtu_v6plus;
3713 } else {
3714 ill->ill_max_frag = ip_loopback_mtuplus;
3715 }
3716 if (!ill_allocate_mibs(ill))
3717 goto done;
3718 ill->ill_current_frag = ill->ill_max_frag;
3719 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3720 ill->ill_mc_mtu = ill->ill_mtu;
3721 /*
3722 * ipif_loopback_name can't be pointed at directly because its used
3723 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3724 * from the glist, ill_glist_delete() sets the first character of
3725 * ill_name to '\0'.
3726 */
3727 ill->ill_name = (char *)ill + sizeof (*ill);
3728 (void) strcpy(ill->ill_name, ipif_loopback_name);
3729 ill->ill_name_length = sizeof (ipif_loopback_name);
3730 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3731 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3732
3733 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3734 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3735 ill->ill_global_timer = INFINITY;
3736 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3737 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3738 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3739 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3740
3741 /* No resolver here. */
3742 ill->ill_net_type = IRE_LOOPBACK;
3743
3744 /* Initialize the ipsq */
3745 if (!ipsq_init(ill, B_FALSE))
3746 goto done;
3747
3748 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3749 if (ipif == NULL)
3750 goto done;
3751
3752 ill->ill_flags = ILLF_MULTICAST;
3753
3754 ov6addr = ipif->ipif_v6lcl_addr;
3755 /* Set up default loopback address and mask. */
3756 if (!isv6) {
3757 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3758
3759 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3760 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3761 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3762 ipif->ipif_v6subnet);
3763 ill->ill_flags |= ILLF_IPV4;
3764 } else {
3765 ipif->ipif_v6lcl_addr = ipv6_loopback;
3766 ipif->ipif_v6net_mask = ipv6_all_ones;
3767 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3768 ipif->ipif_v6subnet);
3769 ill->ill_flags |= ILLF_IPV6;
3770 }
3771
3772 /*
3773 * Chain us in at the end of the ill list. hold the ill
3774 * before we make it globally visible. 1 for the lookup.
3775 */
3776 ill->ill_refcnt = 0;
3777 ill_refhold(ill);
3778
3779 ill->ill_frag_count = 0;
3780 ill->ill_frag_free_num_pkts = 0;
3781 ill->ill_last_frag_clean_time = 0;
3782
3783 ipsq = ill->ill_phyint->phyint_ipsq;
3784
3785 ill_set_inputfn(ill);
3786
3787 if (ill_glist_insert(ill, "lo", isv6) != 0)
3788 cmn_err(CE_PANIC, "cannot insert loopback interface");
3789
3790 /* Let SCTP know so that it can add this to its list */
3791 sctp_update_ill(ill, SCTP_ILL_INSERT);
3792
3793 /*
3794 * We have already assigned ipif_v6lcl_addr above, but we need to
3795 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3796 * requires to be after ill_glist_insert() since we need the
3797 * ill_index set. Pass on ipv6_loopback as the old address.
3798 */
3799 sctp_update_ipif_addr(ipif, ov6addr);
3800
3801 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3802
3803 /*
3804 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3805 * If so, free our original one.
3806 */
3807 if (ipsq != ill->ill_phyint->phyint_ipsq)
3808 ipsq_delete(ipsq);
3809
3810 if (ipst->ips_loopback_ksp == NULL) {
3811 /* Export loopback interface statistics */
3812 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3813 ipif_loopback_name, "net",
3814 KSTAT_TYPE_NAMED, 2, 0,
3815 ipst->ips_netstack->netstack_stackid);
3816 if (ipst->ips_loopback_ksp != NULL) {
3817 ipst->ips_loopback_ksp->ks_update =
3818 loopback_kstat_update;
3819 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3820 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3821 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3822 ipst->ips_loopback_ksp->ks_private =
3823 (void *)(uintptr_t)ipst->ips_netstack->
3824 netstack_stackid;
3825 kstat_install(ipst->ips_loopback_ksp);
3826 }
3827 }
3828
3829 *did_alloc = B_TRUE;
3830 rw_exit(&ipst->ips_ill_g_lock);
3831 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3832 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3833 return (ill);
3834 done:
3835 if (ill != NULL) {
3836 if (ill->ill_phyint != NULL) {
3837 ipsq = ill->ill_phyint->phyint_ipsq;
3838 if (ipsq != NULL) {
3839 ipsq->ipsq_phyint = NULL;
3840 ipsq_delete(ipsq);
3841 }
3842 mi_free(ill->ill_phyint);
3843 }
3844 ill_free_mib(ill);
3845 if (ill->ill_ipst != NULL)
3846 netstack_rele(ill->ill_ipst->ips_netstack);
3847 mi_free(ill);
3848 }
3849 rw_exit(&ipst->ips_ill_g_lock);
3850 return (NULL);
3851 }
3852
3853 /*
3854 * For IPP calls - use the ip_stack_t for global stack.
3855 */
3856 ill_t *
ill_lookup_on_ifindex_global_instance(uint_t index,boolean_t isv6)3857 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3858 {
3859 ip_stack_t *ipst;
3860 ill_t *ill;
3861
3862 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3863 if (ipst == NULL) {
3864 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3865 return (NULL);
3866 }
3867
3868 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3869 netstack_rele(ipst->ips_netstack);
3870 return (ill);
3871 }
3872
3873 /*
3874 * Return a pointer to the ill which matches the index and IP version type.
3875 */
3876 ill_t *
ill_lookup_on_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3877 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3878 {
3879 ill_t *ill;
3880 phyint_t *phyi;
3881
3882 /*
3883 * Indexes are stored in the phyint - a common structure
3884 * to both IPv4 and IPv6.
3885 */
3886 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3887 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3888 (void *) &index, NULL);
3889 if (phyi != NULL) {
3890 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3891 if (ill != NULL) {
3892 mutex_enter(&ill->ill_lock);
3893 if (!ILL_IS_CONDEMNED(ill)) {
3894 ill_refhold_locked(ill);
3895 mutex_exit(&ill->ill_lock);
3896 rw_exit(&ipst->ips_ill_g_lock);
3897 return (ill);
3898 }
3899 mutex_exit(&ill->ill_lock);
3900 }
3901 }
3902 rw_exit(&ipst->ips_ill_g_lock);
3903 return (NULL);
3904 }
3905
3906 /*
3907 * Verify whether or not an interface index is valid for the specified zoneid
3908 * to transmit packets.
3909 * It can be zero (meaning "reset") or an interface index assigned
3910 * to a non-VNI interface. (We don't use VNI interface to send packets.)
3911 */
3912 boolean_t
ip_xmit_ifindex_valid(uint_t ifindex,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)3913 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3914 ip_stack_t *ipst)
3915 {
3916 ill_t *ill;
3917
3918 if (ifindex == 0)
3919 return (B_TRUE);
3920
3921 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3922 if (ill == NULL)
3923 return (B_FALSE);
3924 if (IS_VNI(ill)) {
3925 ill_refrele(ill);
3926 return (B_FALSE);
3927 }
3928 ill_refrele(ill);
3929 return (B_TRUE);
3930 }
3931
3932 /*
3933 * Return the ifindex next in sequence after the passed in ifindex.
3934 * If there is no next ifindex for the given protocol, return 0.
3935 */
3936 uint_t
ill_get_next_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3937 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3938 {
3939 phyint_t *phyi;
3940 phyint_t *phyi_initial;
3941 uint_t ifindex;
3942
3943 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3944
3945 if (index == 0) {
3946 phyi = avl_first(
3947 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3948 } else {
3949 phyi = phyi_initial = avl_find(
3950 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3951 (void *) &index, NULL);
3952 }
3953
3954 for (; phyi != NULL;
3955 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3956 phyi, AVL_AFTER)) {
3957 /*
3958 * If we're not returning the first interface in the tree
3959 * and we still haven't moved past the phyint_t that
3960 * corresponds to index, avl_walk needs to be called again
3961 */
3962 if (!((index != 0) && (phyi == phyi_initial))) {
3963 if (isv6) {
3964 if ((phyi->phyint_illv6) &&
3965 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3966 (phyi->phyint_illv6->ill_isv6 == 1))
3967 break;
3968 } else {
3969 if ((phyi->phyint_illv4) &&
3970 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3971 (phyi->phyint_illv4->ill_isv6 == 0))
3972 break;
3973 }
3974 }
3975 }
3976
3977 rw_exit(&ipst->ips_ill_g_lock);
3978
3979 if (phyi != NULL)
3980 ifindex = phyi->phyint_ifindex;
3981 else
3982 ifindex = 0;
3983
3984 return (ifindex);
3985 }
3986
3987 /*
3988 * Return the ifindex for the named interface.
3989 * If there is no next ifindex for the interface, return 0.
3990 */
3991 uint_t
ill_get_ifindex_by_name(char * name,ip_stack_t * ipst)3992 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3993 {
3994 phyint_t *phyi;
3995 avl_index_t where = 0;
3996 uint_t ifindex;
3997
3998 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3999
4000 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4001 name, &where)) == NULL) {
4002 rw_exit(&ipst->ips_ill_g_lock);
4003 return (0);
4004 }
4005
4006 ifindex = phyi->phyint_ifindex;
4007
4008 rw_exit(&ipst->ips_ill_g_lock);
4009
4010 return (ifindex);
4011 }
4012
4013 /*
4014 * Return the ifindex to be used by upper layer protocols for instance
4015 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4016 */
4017 uint_t
ill_get_upper_ifindex(const ill_t * ill)4018 ill_get_upper_ifindex(const ill_t *ill)
4019 {
4020 if (IS_UNDER_IPMP(ill))
4021 return (ipmp_ill_get_ipmp_ifindex(ill));
4022 else
4023 return (ill->ill_phyint->phyint_ifindex);
4024 }
4025
4026
4027 /*
4028 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4029 * that gives a running thread a reference to the ill. This reference must be
4030 * released by the thread when it is done accessing the ill and related
4031 * objects. ill_refcnt can not be used to account for static references
4032 * such as other structures pointing to an ill. Callers must generally
4033 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4034 * or be sure that the ill is not being deleted or changing state before
4035 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4036 * ill won't change any of its critical state such as address, netmask etc.
4037 */
4038 void
ill_refhold(ill_t * ill)4039 ill_refhold(ill_t *ill)
4040 {
4041 mutex_enter(&ill->ill_lock);
4042 ill->ill_refcnt++;
4043 ILL_TRACE_REF(ill);
4044 mutex_exit(&ill->ill_lock);
4045 }
4046
4047 void
ill_refhold_locked(ill_t * ill)4048 ill_refhold_locked(ill_t *ill)
4049 {
4050 ASSERT(MUTEX_HELD(&ill->ill_lock));
4051 ill->ill_refcnt++;
4052 ILL_TRACE_REF(ill);
4053 }
4054
4055 /* Returns true if we managed to get a refhold */
4056 boolean_t
ill_check_and_refhold(ill_t * ill)4057 ill_check_and_refhold(ill_t *ill)
4058 {
4059 mutex_enter(&ill->ill_lock);
4060 if (!ILL_IS_CONDEMNED(ill)) {
4061 ill_refhold_locked(ill);
4062 mutex_exit(&ill->ill_lock);
4063 return (B_TRUE);
4064 }
4065 mutex_exit(&ill->ill_lock);
4066 return (B_FALSE);
4067 }
4068
4069 /*
4070 * Must not be called while holding any locks. Otherwise if this is
4071 * the last reference to be released, there is a chance of recursive mutex
4072 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4073 * to restart an ioctl.
4074 */
4075 void
ill_refrele(ill_t * ill)4076 ill_refrele(ill_t *ill)
4077 {
4078 mutex_enter(&ill->ill_lock);
4079 ASSERT(ill->ill_refcnt != 0);
4080 ill->ill_refcnt--;
4081 ILL_UNTRACE_REF(ill);
4082 if (ill->ill_refcnt != 0) {
4083 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4084 mutex_exit(&ill->ill_lock);
4085 return;
4086 }
4087
4088 /* Drops the ill_lock */
4089 ipif_ill_refrele_tail(ill);
4090 }
4091
4092 /*
4093 * Obtain a weak reference count on the ill. This reference ensures the
4094 * ill won't be freed, but the ill may change any of its critical state
4095 * such as netmask, address etc. Returns an error if the ill has started
4096 * closing.
4097 */
4098 boolean_t
ill_waiter_inc(ill_t * ill)4099 ill_waiter_inc(ill_t *ill)
4100 {
4101 mutex_enter(&ill->ill_lock);
4102 if (ill->ill_state_flags & ILL_CONDEMNED) {
4103 mutex_exit(&ill->ill_lock);
4104 return (B_FALSE);
4105 }
4106 ill->ill_waiters++;
4107 mutex_exit(&ill->ill_lock);
4108 return (B_TRUE);
4109 }
4110
4111 void
ill_waiter_dcr(ill_t * ill)4112 ill_waiter_dcr(ill_t *ill)
4113 {
4114 mutex_enter(&ill->ill_lock);
4115 ill->ill_waiters--;
4116 if (ill->ill_waiters == 0)
4117 cv_broadcast(&ill->ill_cv);
4118 mutex_exit(&ill->ill_lock);
4119 }
4120
4121 /*
4122 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4123 * driver. We construct best guess defaults for lower level information that
4124 * we need. If an interface is brought up without injection of any overriding
4125 * information from outside, we have to be ready to go with these defaults.
4126 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4127 * we primarely want the dl_provider_style.
4128 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4129 * at which point we assume the other part of the information is valid.
4130 */
4131 void
ip_ll_subnet_defaults(ill_t * ill,mblk_t * mp)4132 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4133 {
4134 uchar_t *brdcst_addr;
4135 uint_t brdcst_addr_length, phys_addr_length;
4136 t_scalar_t sap_length;
4137 dl_info_ack_t *dlia;
4138 ip_m_t *ipm;
4139 dl_qos_cl_sel1_t *sel1;
4140 int min_mtu;
4141
4142 ASSERT(IAM_WRITER_ILL(ill));
4143
4144 /*
4145 * Till the ill is fully up the ill is not globally visible.
4146 * So no need for a lock.
4147 */
4148 dlia = (dl_info_ack_t *)mp->b_rptr;
4149 ill->ill_mactype = dlia->dl_mac_type;
4150
4151 ipm = ip_m_lookup(dlia->dl_mac_type);
4152 if (ipm == NULL) {
4153 ipm = ip_m_lookup(DL_OTHER);
4154 ASSERT(ipm != NULL);
4155 }
4156 ill->ill_media = ipm;
4157
4158 /*
4159 * When the new DLPI stuff is ready we'll pull lengths
4160 * from dlia.
4161 */
4162 if (dlia->dl_version == DL_VERSION_2) {
4163 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4164 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4165 brdcst_addr_length);
4166 if (brdcst_addr == NULL) {
4167 brdcst_addr_length = 0;
4168 }
4169 sap_length = dlia->dl_sap_length;
4170 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4171 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4172 brdcst_addr_length, sap_length, phys_addr_length));
4173 } else {
4174 brdcst_addr_length = 6;
4175 brdcst_addr = ip_six_byte_all_ones;
4176 sap_length = -2;
4177 phys_addr_length = brdcst_addr_length;
4178 }
4179
4180 ill->ill_bcast_addr_length = brdcst_addr_length;
4181 ill->ill_phys_addr_length = phys_addr_length;
4182 ill->ill_sap_length = sap_length;
4183
4184 /*
4185 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4186 * but we must ensure a minimum IP MTU is used since other bits of
4187 * IP will fly apart otherwise.
4188 */
4189 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4190 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4191 ill->ill_current_frag = ill->ill_max_frag;
4192 ill->ill_mtu = ill->ill_max_frag;
4193 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */
4194
4195 ill->ill_type = ipm->ip_m_type;
4196
4197 if (!ill->ill_dlpi_style_set) {
4198 if (dlia->dl_provider_style == DL_STYLE2)
4199 ill->ill_needs_attach = 1;
4200
4201 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4202
4203 /*
4204 * Allocate the first ipif on this ill. We don't delay it
4205 * further as ioctl handling assumes at least one ipif exists.
4206 *
4207 * At this point we don't know whether the ill is v4 or v6.
4208 * We will know this whan the SIOCSLIFNAME happens and
4209 * the correct value for ill_isv6 will be assigned in
4210 * ipif_set_values(). We need to hold the ill lock and
4211 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4212 * the wakeup.
4213 */
4214 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4215 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4216 mutex_enter(&ill->ill_lock);
4217 ASSERT(ill->ill_dlpi_style_set == 0);
4218 ill->ill_dlpi_style_set = 1;
4219 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4220 cv_broadcast(&ill->ill_cv);
4221 mutex_exit(&ill->ill_lock);
4222 freemsg(mp);
4223 return;
4224 }
4225 ASSERT(ill->ill_ipif != NULL);
4226 /*
4227 * We know whether it is IPv4 or IPv6 now, as this is the
4228 * second DL_INFO_ACK we are recieving in response to the
4229 * DL_INFO_REQ sent in ipif_set_values.
4230 */
4231 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4232 /*
4233 * Clear all the flags that were set based on ill_bcast_addr_length
4234 * and ill_phys_addr_length (in ipif_set_values) as these could have
4235 * changed now and we need to re-evaluate.
4236 */
4237 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4238 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4239
4240 /*
4241 * Free ill_bcast_mp as things could have changed now.
4242 *
4243 * NOTE: The IPMP meta-interface is special-cased because it starts
4244 * with no underlying interfaces (and thus an unknown broadcast
4245 * address length), but we enforce that an interface is broadcast-
4246 * capable as part of allowing it to join a group.
4247 */
4248 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4249 if (ill->ill_bcast_mp != NULL)
4250 freemsg(ill->ill_bcast_mp);
4251 ill->ill_net_type = IRE_IF_NORESOLVER;
4252
4253 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4254 ill->ill_phys_addr_length,
4255 ill->ill_sap,
4256 ill->ill_sap_length);
4257
4258 if (ill->ill_isv6)
4259 /*
4260 * Note: xresolv interfaces will eventually need NOARP
4261 * set here as well, but that will require those
4262 * external resolvers to have some knowledge of
4263 * that flag and act appropriately. Not to be changed
4264 * at present.
4265 */
4266 ill->ill_flags |= ILLF_NONUD;
4267 else
4268 ill->ill_flags |= ILLF_NOARP;
4269
4270 if (ill->ill_mactype == SUNW_DL_VNI) {
4271 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4272 } else if (ill->ill_phys_addr_length == 0 ||
4273 ill->ill_mactype == DL_IPV4 ||
4274 ill->ill_mactype == DL_IPV6) {
4275 /*
4276 * The underying link is point-to-point, so mark the
4277 * interface as such. We can do IP multicast over
4278 * such a link since it transmits all network-layer
4279 * packets to the remote side the same way.
4280 */
4281 ill->ill_flags |= ILLF_MULTICAST;
4282 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4283 }
4284 } else {
4285 ill->ill_net_type = IRE_IF_RESOLVER;
4286 if (ill->ill_bcast_mp != NULL)
4287 freemsg(ill->ill_bcast_mp);
4288 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4289 ill->ill_bcast_addr_length, ill->ill_sap,
4290 ill->ill_sap_length);
4291 /*
4292 * Later detect lack of DLPI driver multicast
4293 * capability by catching DL_ENABMULTI errors in
4294 * ip_rput_dlpi.
4295 */
4296 ill->ill_flags |= ILLF_MULTICAST;
4297 if (!ill->ill_isv6)
4298 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4299 }
4300
4301 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4302 if (ill->ill_mactype == SUNW_DL_IPMP)
4303 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4304
4305 /* By default an interface does not support any CoS marking */
4306 ill->ill_flags &= ~ILLF_COS_ENABLED;
4307
4308 /*
4309 * If we get QoS information in DL_INFO_ACK, the device supports
4310 * some form of CoS marking, set ILLF_COS_ENABLED.
4311 */
4312 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4313 dlia->dl_qos_length);
4314 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4315 ill->ill_flags |= ILLF_COS_ENABLED;
4316 }
4317
4318 /* Clear any previous error indication. */
4319 ill->ill_error = 0;
4320 freemsg(mp);
4321 }
4322
4323 /*
4324 * Perform various checks to verify that an address would make sense as a
4325 * local, remote, or subnet interface address.
4326 */
4327 static boolean_t
ip_addr_ok_v4(ipaddr_t addr,ipaddr_t subnet_mask)4328 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4329 {
4330 ipaddr_t net_mask;
4331
4332 /*
4333 * Don't allow all zeroes, or all ones, but allow
4334 * all ones netmask.
4335 */
4336 if ((net_mask = ip_net_mask(addr)) == 0)
4337 return (B_FALSE);
4338 /* A given netmask overrides the "guess" netmask */
4339 if (subnet_mask != 0)
4340 net_mask = subnet_mask;
4341 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4342 (addr == (addr | ~net_mask)))) {
4343 return (B_FALSE);
4344 }
4345
4346 /*
4347 * Even if the netmask is all ones, we do not allow address to be
4348 * 255.255.255.255
4349 */
4350 if (addr == INADDR_BROADCAST)
4351 return (B_FALSE);
4352
4353 if (CLASSD(addr))
4354 return (B_FALSE);
4355
4356 return (B_TRUE);
4357 }
4358
4359 #define V6_IPIF_LINKLOCAL(p) \
4360 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4361
4362 /*
4363 * Compare two given ipifs and check if the second one is better than
4364 * the first one using the order of preference (not taking deprecated
4365 * into acount) specified in ipif_lookup_multicast().
4366 */
4367 static boolean_t
ipif_comp_multi(ipif_t * old_ipif,ipif_t * new_ipif,boolean_t isv6)4368 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4369 {
4370 /* Check the least preferred first. */
4371 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4372 /* If both ipifs are the same, use the first one. */
4373 if (IS_LOOPBACK(new_ipif->ipif_ill))
4374 return (B_FALSE);
4375 else
4376 return (B_TRUE);
4377 }
4378
4379 /* For IPv6, check for link local address. */
4380 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4381 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4382 V6_IPIF_LINKLOCAL(new_ipif)) {
4383 /* The second one is equal or less preferred. */
4384 return (B_FALSE);
4385 } else {
4386 return (B_TRUE);
4387 }
4388 }
4389
4390 /* Then check for point to point interface. */
4391 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4392 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4393 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4394 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4395 return (B_FALSE);
4396 } else {
4397 return (B_TRUE);
4398 }
4399 }
4400
4401 /* old_ipif is a normal interface, so no need to use the new one. */
4402 return (B_FALSE);
4403 }
4404
4405 /*
4406 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4407 * The ipif must be up, and its ill must multicast-capable, not
4408 * condemned, not an underlying interface in an IPMP group, and
4409 * not a VNI interface. Order of preference:
4410 *
4411 * 1a. normal
4412 * 1b. normal, but deprecated
4413 * 2a. point to point
4414 * 2b. point to point, but deprecated
4415 * 3a. link local
4416 * 3b. link local, but deprecated
4417 * 4. loopback.
4418 */
4419 static ipif_t *
ipif_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4420 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4421 {
4422 ill_t *ill;
4423 ill_walk_context_t ctx;
4424 ipif_t *ipif;
4425 ipif_t *saved_ipif = NULL;
4426 ipif_t *dep_ipif = NULL;
4427
4428 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4429 if (isv6)
4430 ill = ILL_START_WALK_V6(&ctx, ipst);
4431 else
4432 ill = ILL_START_WALK_V4(&ctx, ipst);
4433
4434 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4435 mutex_enter(&ill->ill_lock);
4436 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4437 ILL_IS_CONDEMNED(ill) ||
4438 !(ill->ill_flags & ILLF_MULTICAST)) {
4439 mutex_exit(&ill->ill_lock);
4440 continue;
4441 }
4442 for (ipif = ill->ill_ipif; ipif != NULL;
4443 ipif = ipif->ipif_next) {
4444 if (zoneid != ipif->ipif_zoneid &&
4445 zoneid != ALL_ZONES &&
4446 ipif->ipif_zoneid != ALL_ZONES) {
4447 continue;
4448 }
4449 if (!(ipif->ipif_flags & IPIF_UP) ||
4450 IPIF_IS_CONDEMNED(ipif)) {
4451 continue;
4452 }
4453
4454 /*
4455 * Found one candidate. If it is deprecated,
4456 * remember it in dep_ipif. If it is not deprecated,
4457 * remember it in saved_ipif.
4458 */
4459 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4460 if (dep_ipif == NULL) {
4461 dep_ipif = ipif;
4462 } else if (ipif_comp_multi(dep_ipif, ipif,
4463 isv6)) {
4464 /*
4465 * If the previous dep_ipif does not
4466 * belong to the same ill, we've done
4467 * a ipif_refhold() on it. So we need
4468 * to release it.
4469 */
4470 if (dep_ipif->ipif_ill != ill)
4471 ipif_refrele(dep_ipif);
4472 dep_ipif = ipif;
4473 }
4474 continue;
4475 }
4476 if (saved_ipif == NULL) {
4477 saved_ipif = ipif;
4478 } else {
4479 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4480 if (saved_ipif->ipif_ill != ill)
4481 ipif_refrele(saved_ipif);
4482 saved_ipif = ipif;
4483 }
4484 }
4485 }
4486 /*
4487 * Before going to the next ill, do a ipif_refhold() on the
4488 * saved ones.
4489 */
4490 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4491 ipif_refhold_locked(saved_ipif);
4492 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4493 ipif_refhold_locked(dep_ipif);
4494 mutex_exit(&ill->ill_lock);
4495 }
4496 rw_exit(&ipst->ips_ill_g_lock);
4497
4498 /*
4499 * If we have only the saved_ipif, return it. But if we have both
4500 * saved_ipif and dep_ipif, check to see which one is better.
4501 */
4502 if (saved_ipif != NULL) {
4503 if (dep_ipif != NULL) {
4504 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4505 ipif_refrele(saved_ipif);
4506 return (dep_ipif);
4507 } else {
4508 ipif_refrele(dep_ipif);
4509 return (saved_ipif);
4510 }
4511 }
4512 return (saved_ipif);
4513 } else {
4514 return (dep_ipif);
4515 }
4516 }
4517
4518 ill_t *
ill_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4519 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4520 {
4521 ipif_t *ipif;
4522 ill_t *ill;
4523
4524 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4525 if (ipif == NULL)
4526 return (NULL);
4527
4528 ill = ipif->ipif_ill;
4529 ill_refhold(ill);
4530 ipif_refrele(ipif);
4531 return (ill);
4532 }
4533
4534 /*
4535 * This function is called when an application does not specify an interface
4536 * to be used for multicast traffic (joining a group/sending data). It
4537 * calls ire_lookup_multi() to look for an interface route for the
4538 * specified multicast group. Doing this allows the administrator to add
4539 * prefix routes for multicast to indicate which interface to be used for
4540 * multicast traffic in the above scenario. The route could be for all
4541 * multicast (224.0/4), for a single multicast group (a /32 route) or
4542 * anything in between. If there is no such multicast route, we just find
4543 * any multicast capable interface and return it. The returned ipif
4544 * is refhold'ed.
4545 *
4546 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4547 * unicast table. This is used by CGTP.
4548 */
4549 ill_t *
ill_lookup_group_v4(ipaddr_t group,zoneid_t zoneid,ip_stack_t * ipst,boolean_t * multirtp,ipaddr_t * setsrcp)4550 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4551 boolean_t *multirtp, ipaddr_t *setsrcp)
4552 {
4553 ill_t *ill;
4554
4555 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4556 if (ill != NULL)
4557 return (ill);
4558
4559 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4560 }
4561
4562 /*
4563 * Look for an ipif with the specified interface address and destination.
4564 * The destination address is used only for matching point-to-point interfaces.
4565 */
4566 ipif_t *
ipif_lookup_interface(ipaddr_t if_addr,ipaddr_t dst,ip_stack_t * ipst)4567 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4568 {
4569 ipif_t *ipif;
4570 ill_t *ill;
4571 ill_walk_context_t ctx;
4572
4573 /*
4574 * First match all the point-to-point interfaces
4575 * before looking at non-point-to-point interfaces.
4576 * This is done to avoid returning non-point-to-point
4577 * ipif instead of unnumbered point-to-point ipif.
4578 */
4579 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4580 ill = ILL_START_WALK_V4(&ctx, ipst);
4581 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4582 mutex_enter(&ill->ill_lock);
4583 for (ipif = ill->ill_ipif; ipif != NULL;
4584 ipif = ipif->ipif_next) {
4585 /* Allow the ipif to be down */
4586 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4587 (ipif->ipif_lcl_addr == if_addr) &&
4588 (ipif->ipif_pp_dst_addr == dst)) {
4589 if (!IPIF_IS_CONDEMNED(ipif)) {
4590 ipif_refhold_locked(ipif);
4591 mutex_exit(&ill->ill_lock);
4592 rw_exit(&ipst->ips_ill_g_lock);
4593 return (ipif);
4594 }
4595 }
4596 }
4597 mutex_exit(&ill->ill_lock);
4598 }
4599 rw_exit(&ipst->ips_ill_g_lock);
4600
4601 /* lookup the ipif based on interface address */
4602 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4603 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4604 return (ipif);
4605 }
4606
4607 /*
4608 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4609 */
4610 static ipif_t *
ipif_lookup_addr_common(ipaddr_t addr,ill_t * match_ill,uint32_t match_flags,zoneid_t zoneid,ip_stack_t * ipst)4611 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4612 zoneid_t zoneid, ip_stack_t *ipst)
4613 {
4614 ipif_t *ipif;
4615 ill_t *ill;
4616 boolean_t ptp = B_FALSE;
4617 ill_walk_context_t ctx;
4618 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4619 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4620
4621 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4622 /*
4623 * Repeat twice, first based on local addresses and
4624 * next time for pointopoint.
4625 */
4626 repeat:
4627 ill = ILL_START_WALK_V4(&ctx, ipst);
4628 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4629 if (match_ill != NULL && ill != match_ill &&
4630 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4631 continue;
4632 }
4633 mutex_enter(&ill->ill_lock);
4634 for (ipif = ill->ill_ipif; ipif != NULL;
4635 ipif = ipif->ipif_next) {
4636 if (zoneid != ALL_ZONES &&
4637 zoneid != ipif->ipif_zoneid &&
4638 ipif->ipif_zoneid != ALL_ZONES)
4639 continue;
4640
4641 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4642 continue;
4643
4644 /* Allow the ipif to be down */
4645 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4646 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4647 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4648 (ipif->ipif_pp_dst_addr == addr))) {
4649 if (!IPIF_IS_CONDEMNED(ipif)) {
4650 ipif_refhold_locked(ipif);
4651 mutex_exit(&ill->ill_lock);
4652 rw_exit(&ipst->ips_ill_g_lock);
4653 return (ipif);
4654 }
4655 }
4656 }
4657 mutex_exit(&ill->ill_lock);
4658 }
4659
4660 /* If we already did the ptp case, then we are done */
4661 if (ptp) {
4662 rw_exit(&ipst->ips_ill_g_lock);
4663 return (NULL);
4664 }
4665 ptp = B_TRUE;
4666 goto repeat;
4667 }
4668
4669 /*
4670 * Lookup an ipif with the specified address. For point-to-point links we
4671 * look for matches on either the destination address or the local address,
4672 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4673 * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4674 * (or illgrp if `match_ill' is in an IPMP group).
4675 */
4676 ipif_t *
ipif_lookup_addr(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4677 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4678 ip_stack_t *ipst)
4679 {
4680 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4681 zoneid, ipst));
4682 }
4683
4684 /*
4685 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4686 * except that we will only return an address if it is not marked as
4687 * IPIF_DUPLICATE
4688 */
4689 ipif_t *
ipif_lookup_addr_nondup(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4690 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4691 ip_stack_t *ipst)
4692 {
4693 return (ipif_lookup_addr_common(addr, match_ill,
4694 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4695 zoneid, ipst));
4696 }
4697
4698 /*
4699 * Special abbreviated version of ipif_lookup_addr() that doesn't match
4700 * `match_ill' across the IPMP group. This function is only needed in some
4701 * corner-cases; almost everything should use ipif_lookup_addr().
4702 */
4703 ipif_t *
ipif_lookup_addr_exact(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4704 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4705 {
4706 ASSERT(match_ill != NULL);
4707 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4708 ipst));
4709 }
4710
4711 /*
4712 * Look for an ipif with the specified address. For point-point links
4713 * we look for matches on either the destination address and the local
4714 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4715 * is set.
4716 * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4717 * ill (or illgrp if `match_ill' is in an IPMP group).
4718 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4719 */
4720 zoneid_t
ipif_lookup_addr_zoneid(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4721 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4722 {
4723 zoneid_t zoneid;
4724 ipif_t *ipif;
4725 ill_t *ill;
4726 boolean_t ptp = B_FALSE;
4727 ill_walk_context_t ctx;
4728
4729 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4730 /*
4731 * Repeat twice, first based on local addresses and
4732 * next time for pointopoint.
4733 */
4734 repeat:
4735 ill = ILL_START_WALK_V4(&ctx, ipst);
4736 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4737 if (match_ill != NULL && ill != match_ill &&
4738 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4739 continue;
4740 }
4741 mutex_enter(&ill->ill_lock);
4742 for (ipif = ill->ill_ipif; ipif != NULL;
4743 ipif = ipif->ipif_next) {
4744 /* Allow the ipif to be down */
4745 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4746 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4747 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4748 (ipif->ipif_pp_dst_addr == addr)) &&
4749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4750 zoneid = ipif->ipif_zoneid;
4751 mutex_exit(&ill->ill_lock);
4752 rw_exit(&ipst->ips_ill_g_lock);
4753 /*
4754 * If ipif_zoneid was ALL_ZONES then we have
4755 * a trusted extensions shared IP address.
4756 * In that case GLOBAL_ZONEID works to send.
4757 */
4758 if (zoneid == ALL_ZONES)
4759 zoneid = GLOBAL_ZONEID;
4760 return (zoneid);
4761 }
4762 }
4763 mutex_exit(&ill->ill_lock);
4764 }
4765
4766 /* If we already did the ptp case, then we are done */
4767 if (ptp) {
4768 rw_exit(&ipst->ips_ill_g_lock);
4769 return (ALL_ZONES);
4770 }
4771 ptp = B_TRUE;
4772 goto repeat;
4773 }
4774
4775 /*
4776 * Look for an ipif that matches the specified remote address i.e. the
4777 * ipif that would receive the specified packet.
4778 * First look for directly connected interfaces and then do a recursive
4779 * IRE lookup and pick the first ipif corresponding to the source address in the
4780 * ire.
4781 * Returns: held ipif
4782 *
4783 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4784 */
4785 ipif_t *
ipif_lookup_remote(ill_t * ill,ipaddr_t addr,zoneid_t zoneid)4786 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4787 {
4788 ipif_t *ipif;
4789
4790 ASSERT(!ill->ill_isv6);
4791
4792 /*
4793 * Someone could be changing this ipif currently or change it
4794 * after we return this. Thus a few packets could use the old
4795 * old values. However structure updates/creates (ire, ilg, ilm etc)
4796 * will atomically be updated or cleaned up with the new value
4797 * Thus we don't need a lock to check the flags or other attrs below.
4798 */
4799 mutex_enter(&ill->ill_lock);
4800 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4801 if (IPIF_IS_CONDEMNED(ipif))
4802 continue;
4803 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4804 ipif->ipif_zoneid != ALL_ZONES)
4805 continue;
4806 /* Allow the ipif to be down */
4807 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4808 if ((ipif->ipif_pp_dst_addr == addr) ||
4809 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4810 ipif->ipif_lcl_addr == addr)) {
4811 ipif_refhold_locked(ipif);
4812 mutex_exit(&ill->ill_lock);
4813 return (ipif);
4814 }
4815 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4816 ipif_refhold_locked(ipif);
4817 mutex_exit(&ill->ill_lock);
4818 return (ipif);
4819 }
4820 }
4821 mutex_exit(&ill->ill_lock);
4822 /*
4823 * For a remote destination it isn't possible to nail down a particular
4824 * ipif.
4825 */
4826
4827 /* Pick the first interface */
4828 ipif = ipif_get_next_ipif(NULL, ill);
4829 return (ipif);
4830 }
4831
4832 /*
4833 * This func does not prevent refcnt from increasing. But if
4834 * the caller has taken steps to that effect, then this func
4835 * can be used to determine whether the ill has become quiescent
4836 */
4837 static boolean_t
ill_is_quiescent(ill_t * ill)4838 ill_is_quiescent(ill_t *ill)
4839 {
4840 ipif_t *ipif;
4841
4842 ASSERT(MUTEX_HELD(&ill->ill_lock));
4843
4844 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4845 if (ipif->ipif_refcnt != 0)
4846 return (B_FALSE);
4847 }
4848 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4849 return (B_FALSE);
4850 }
4851 return (B_TRUE);
4852 }
4853
4854 boolean_t
ill_is_freeable(ill_t * ill)4855 ill_is_freeable(ill_t *ill)
4856 {
4857 ipif_t *ipif;
4858
4859 ASSERT(MUTEX_HELD(&ill->ill_lock));
4860
4861 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4862 if (ipif->ipif_refcnt != 0) {
4863 return (B_FALSE);
4864 }
4865 }
4866 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4867 return (B_FALSE);
4868 }
4869 return (B_TRUE);
4870 }
4871
4872 /*
4873 * This func does not prevent refcnt from increasing. But if
4874 * the caller has taken steps to that effect, then this func
4875 * can be used to determine whether the ipif has become quiescent
4876 */
4877 static boolean_t
ipif_is_quiescent(ipif_t * ipif)4878 ipif_is_quiescent(ipif_t *ipif)
4879 {
4880 ill_t *ill;
4881
4882 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4883
4884 if (ipif->ipif_refcnt != 0)
4885 return (B_FALSE);
4886
4887 ill = ipif->ipif_ill;
4888 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4889 ill->ill_logical_down) {
4890 return (B_TRUE);
4891 }
4892
4893 /* This is the last ipif going down or being deleted on this ill */
4894 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4895 return (B_FALSE);
4896 }
4897
4898 return (B_TRUE);
4899 }
4900
4901 /*
4902 * return true if the ipif can be destroyed: the ipif has to be quiescent
4903 * with zero references from ire/ilm to it.
4904 */
4905 static boolean_t
ipif_is_freeable(ipif_t * ipif)4906 ipif_is_freeable(ipif_t *ipif)
4907 {
4908 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4909 ASSERT(ipif->ipif_id != 0);
4910 return (ipif->ipif_refcnt == 0);
4911 }
4912
4913 /*
4914 * The ipif/ill/ire has been refreled. Do the tail processing.
4915 * Determine if the ipif or ill in question has become quiescent and if so
4916 * wakeup close and/or restart any queued pending ioctl that is waiting
4917 * for the ipif_down (or ill_down)
4918 */
4919 void
ipif_ill_refrele_tail(ill_t * ill)4920 ipif_ill_refrele_tail(ill_t *ill)
4921 {
4922 mblk_t *mp;
4923 conn_t *connp;
4924 ipsq_t *ipsq;
4925 ipxop_t *ipx;
4926 ipif_t *ipif;
4927 dl_notify_ind_t *dlindp;
4928
4929 ASSERT(MUTEX_HELD(&ill->ill_lock));
4930
4931 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4932 /* ip_modclose() may be waiting */
4933 cv_broadcast(&ill->ill_cv);
4934 }
4935
4936 ipsq = ill->ill_phyint->phyint_ipsq;
4937 mutex_enter(&ipsq->ipsq_lock);
4938 ipx = ipsq->ipsq_xop;
4939 mutex_enter(&ipx->ipx_lock);
4940 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */
4941 goto unlock;
4942
4943 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4944
4945 ipif = ipx->ipx_pending_ipif;
4946 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4947 goto unlock;
4948
4949 switch (ipx->ipx_waitfor) {
4950 case IPIF_DOWN:
4951 if (!ipif_is_quiescent(ipif))
4952 goto unlock;
4953 break;
4954 case IPIF_FREE:
4955 if (!ipif_is_freeable(ipif))
4956 goto unlock;
4957 break;
4958 case ILL_DOWN:
4959 if (!ill_is_quiescent(ill))
4960 goto unlock;
4961 break;
4962 case ILL_FREE:
4963 /*
4964 * ILL_FREE is only for loopback; normal ill teardown waits
4965 * synchronously in ip_modclose() without using ipx_waitfor,
4966 * handled by the cv_broadcast() at the top of this function.
4967 */
4968 if (!ill_is_freeable(ill))
4969 goto unlock;
4970 break;
4971 default:
4972 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4973 (void *)ipsq, ipx->ipx_waitfor);
4974 }
4975
4976 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4977 mutex_exit(&ipx->ipx_lock);
4978 mp = ipsq_pending_mp_get(ipsq, &connp);
4979 mutex_exit(&ipsq->ipsq_lock);
4980 mutex_exit(&ill->ill_lock);
4981
4982 ASSERT(mp != NULL);
4983 /*
4984 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4985 * we can only get here when the current operation decides it
4986 * it needs to quiesce via ipsq_pending_mp_add().
4987 */
4988 switch (mp->b_datap->db_type) {
4989 case M_PCPROTO:
4990 case M_PROTO:
4991 /*
4992 * For now, only DL_NOTIFY_IND messages can use this facility.
4993 */
4994 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4995 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4996
4997 switch (dlindp->dl_notification) {
4998 case DL_NOTE_PHYS_ADDR:
4999 qwriter_ip(ill, ill->ill_rq, mp,
5000 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5001 return;
5002 case DL_NOTE_REPLUMB:
5003 qwriter_ip(ill, ill->ill_rq, mp,
5004 ill_replumb_tail, CUR_OP, B_TRUE);
5005 return;
5006 default:
5007 ASSERT(0);
5008 ill_refrele(ill);
5009 }
5010 break;
5011
5012 case M_ERROR:
5013 case M_HANGUP:
5014 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5015 B_TRUE);
5016 return;
5017
5018 case M_IOCTL:
5019 case M_IOCDATA:
5020 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5021 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5022 return;
5023
5024 default:
5025 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5026 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5027 }
5028 return;
5029 unlock:
5030 mutex_exit(&ipsq->ipsq_lock);
5031 mutex_exit(&ipx->ipx_lock);
5032 mutex_exit(&ill->ill_lock);
5033 }
5034
5035 #ifdef DEBUG
5036 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5037 static void
th_trace_rrecord(th_trace_t * th_trace)5038 th_trace_rrecord(th_trace_t *th_trace)
5039 {
5040 tr_buf_t *tr_buf;
5041 uint_t lastref;
5042
5043 lastref = th_trace->th_trace_lastref;
5044 lastref++;
5045 if (lastref == TR_BUF_MAX)
5046 lastref = 0;
5047 th_trace->th_trace_lastref = lastref;
5048 tr_buf = &th_trace->th_trbuf[lastref];
5049 tr_buf->tr_time = ddi_get_lbolt();
5050 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5051 }
5052
5053 static void
th_trace_free(void * value)5054 th_trace_free(void *value)
5055 {
5056 th_trace_t *th_trace = value;
5057
5058 ASSERT(th_trace->th_refcnt == 0);
5059 kmem_free(th_trace, sizeof (*th_trace));
5060 }
5061
5062 /*
5063 * Find or create the per-thread hash table used to track object references.
5064 * The ipst argument is NULL if we shouldn't allocate.
5065 *
5066 * Accesses per-thread data, so there's no need to lock here.
5067 */
5068 static mod_hash_t *
th_trace_gethash(ip_stack_t * ipst)5069 th_trace_gethash(ip_stack_t *ipst)
5070 {
5071 th_hash_t *thh;
5072
5073 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5074 mod_hash_t *mh;
5075 char name[256];
5076 size_t objsize, rshift;
5077 int retv;
5078
5079 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5080 return (NULL);
5081 (void) snprintf(name, sizeof (name), "th_trace_%p",
5082 (void *)curthread);
5083
5084 /*
5085 * We use mod_hash_create_extended here rather than the more
5086 * obvious mod_hash_create_ptrhash because the latter has a
5087 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5088 * block.
5089 */
5090 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5091 MAX(sizeof (ire_t), sizeof (ncec_t)));
5092 rshift = highbit(objsize);
5093 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5094 th_trace_free, mod_hash_byptr, (void *)rshift,
5095 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5096 if (mh == NULL) {
5097 kmem_free(thh, sizeof (*thh));
5098 return (NULL);
5099 }
5100 thh->thh_hash = mh;
5101 thh->thh_ipst = ipst;
5102 /*
5103 * We trace ills, ipifs, ires, and nces. All of these are
5104 * per-IP-stack, so the lock on the thread list is as well.
5105 */
5106 rw_enter(&ip_thread_rwlock, RW_WRITER);
5107 list_insert_tail(&ip_thread_list, thh);
5108 rw_exit(&ip_thread_rwlock);
5109 retv = tsd_set(ip_thread_data, thh);
5110 ASSERT(retv == 0);
5111 }
5112 return (thh != NULL ? thh->thh_hash : NULL);
5113 }
5114
5115 boolean_t
th_trace_ref(const void * obj,ip_stack_t * ipst)5116 th_trace_ref(const void *obj, ip_stack_t *ipst)
5117 {
5118 th_trace_t *th_trace;
5119 mod_hash_t *mh;
5120 mod_hash_val_t val;
5121
5122 if ((mh = th_trace_gethash(ipst)) == NULL)
5123 return (B_FALSE);
5124
5125 /*
5126 * Attempt to locate the trace buffer for this obj and thread.
5127 * If it does not exist, then allocate a new trace buffer and
5128 * insert into the hash.
5129 */
5130 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5131 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5132 if (th_trace == NULL)
5133 return (B_FALSE);
5134
5135 th_trace->th_id = curthread;
5136 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5137 (mod_hash_val_t)th_trace) != 0) {
5138 kmem_free(th_trace, sizeof (th_trace_t));
5139 return (B_FALSE);
5140 }
5141 } else {
5142 th_trace = (th_trace_t *)val;
5143 }
5144
5145 ASSERT(th_trace->th_refcnt >= 0 &&
5146 th_trace->th_refcnt < TR_BUF_MAX - 1);
5147
5148 th_trace->th_refcnt++;
5149 th_trace_rrecord(th_trace);
5150 return (B_TRUE);
5151 }
5152
5153 /*
5154 * For the purpose of tracing a reference release, we assume that global
5155 * tracing is always on and that the same thread initiated the reference hold
5156 * is releasing.
5157 */
5158 void
th_trace_unref(const void * obj)5159 th_trace_unref(const void *obj)
5160 {
5161 int retv;
5162 mod_hash_t *mh;
5163 th_trace_t *th_trace;
5164 mod_hash_val_t val;
5165
5166 mh = th_trace_gethash(NULL);
5167 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5168 ASSERT(retv == 0);
5169 th_trace = (th_trace_t *)val;
5170
5171 ASSERT(th_trace->th_refcnt > 0);
5172 th_trace->th_refcnt--;
5173 th_trace_rrecord(th_trace);
5174 }
5175
5176 /*
5177 * If tracing has been disabled, then we assume that the reference counts are
5178 * now useless, and we clear them out before destroying the entries.
5179 */
5180 void
th_trace_cleanup(const void * obj,boolean_t trace_disable)5181 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5182 {
5183 th_hash_t *thh;
5184 mod_hash_t *mh;
5185 mod_hash_val_t val;
5186 th_trace_t *th_trace;
5187 int retv;
5188
5189 rw_enter(&ip_thread_rwlock, RW_READER);
5190 for (thh = list_head(&ip_thread_list); thh != NULL;
5191 thh = list_next(&ip_thread_list, thh)) {
5192 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5193 &val) == 0) {
5194 th_trace = (th_trace_t *)val;
5195 if (trace_disable)
5196 th_trace->th_refcnt = 0;
5197 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5198 ASSERT(retv == 0);
5199 }
5200 }
5201 rw_exit(&ip_thread_rwlock);
5202 }
5203
5204 void
ipif_trace_ref(ipif_t * ipif)5205 ipif_trace_ref(ipif_t *ipif)
5206 {
5207 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5208
5209 if (ipif->ipif_trace_disable)
5210 return;
5211
5212 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5213 ipif->ipif_trace_disable = B_TRUE;
5214 ipif_trace_cleanup(ipif);
5215 }
5216 }
5217
5218 void
ipif_untrace_ref(ipif_t * ipif)5219 ipif_untrace_ref(ipif_t *ipif)
5220 {
5221 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5222
5223 if (!ipif->ipif_trace_disable)
5224 th_trace_unref(ipif);
5225 }
5226
5227 void
ill_trace_ref(ill_t * ill)5228 ill_trace_ref(ill_t *ill)
5229 {
5230 ASSERT(MUTEX_HELD(&ill->ill_lock));
5231
5232 if (ill->ill_trace_disable)
5233 return;
5234
5235 if (!th_trace_ref(ill, ill->ill_ipst)) {
5236 ill->ill_trace_disable = B_TRUE;
5237 ill_trace_cleanup(ill);
5238 }
5239 }
5240
5241 void
ill_untrace_ref(ill_t * ill)5242 ill_untrace_ref(ill_t *ill)
5243 {
5244 ASSERT(MUTEX_HELD(&ill->ill_lock));
5245
5246 if (!ill->ill_trace_disable)
5247 th_trace_unref(ill);
5248 }
5249
5250 /*
5251 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5252 * failure, ipif_trace_disable is set.
5253 */
5254 static void
ipif_trace_cleanup(const ipif_t * ipif)5255 ipif_trace_cleanup(const ipif_t *ipif)
5256 {
5257 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5258 }
5259
5260 /*
5261 * Called when ill is unplumbed or when memory alloc fails. Note that on
5262 * failure, ill_trace_disable is set.
5263 */
5264 static void
ill_trace_cleanup(const ill_t * ill)5265 ill_trace_cleanup(const ill_t *ill)
5266 {
5267 th_trace_cleanup(ill, ill->ill_trace_disable);
5268 }
5269 #endif /* DEBUG */
5270
5271 void
ipif_refhold_locked(ipif_t * ipif)5272 ipif_refhold_locked(ipif_t *ipif)
5273 {
5274 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5275 ipif->ipif_refcnt++;
5276 IPIF_TRACE_REF(ipif);
5277 }
5278
5279 void
ipif_refhold(ipif_t * ipif)5280 ipif_refhold(ipif_t *ipif)
5281 {
5282 ill_t *ill;
5283
5284 ill = ipif->ipif_ill;
5285 mutex_enter(&ill->ill_lock);
5286 ipif->ipif_refcnt++;
5287 IPIF_TRACE_REF(ipif);
5288 mutex_exit(&ill->ill_lock);
5289 }
5290
5291 /*
5292 * Must not be called while holding any locks. Otherwise if this is
5293 * the last reference to be released there is a chance of recursive mutex
5294 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5295 * to restart an ioctl.
5296 */
5297 void
ipif_refrele(ipif_t * ipif)5298 ipif_refrele(ipif_t *ipif)
5299 {
5300 ill_t *ill;
5301
5302 ill = ipif->ipif_ill;
5303
5304 mutex_enter(&ill->ill_lock);
5305 ASSERT(ipif->ipif_refcnt != 0);
5306 ipif->ipif_refcnt--;
5307 IPIF_UNTRACE_REF(ipif);
5308 if (ipif->ipif_refcnt != 0) {
5309 mutex_exit(&ill->ill_lock);
5310 return;
5311 }
5312
5313 /* Drops the ill_lock */
5314 ipif_ill_refrele_tail(ill);
5315 }
5316
5317 ipif_t *
ipif_get_next_ipif(ipif_t * curr,ill_t * ill)5318 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5319 {
5320 ipif_t *ipif;
5321
5322 mutex_enter(&ill->ill_lock);
5323 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5324 ipif != NULL; ipif = ipif->ipif_next) {
5325 if (IPIF_IS_CONDEMNED(ipif))
5326 continue;
5327 ipif_refhold_locked(ipif);
5328 mutex_exit(&ill->ill_lock);
5329 return (ipif);
5330 }
5331 mutex_exit(&ill->ill_lock);
5332 return (NULL);
5333 }
5334
5335 /*
5336 * TODO: make this table extendible at run time
5337 * Return a pointer to the mac type info for 'mac_type'
5338 */
5339 static ip_m_t *
ip_m_lookup(t_uscalar_t mac_type)5340 ip_m_lookup(t_uscalar_t mac_type)
5341 {
5342 ip_m_t *ipm;
5343
5344 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5345 if (ipm->ip_m_mac_type == mac_type)
5346 return (ipm);
5347 return (NULL);
5348 }
5349
5350 /*
5351 * Make a link layer address from the multicast IP address *addr.
5352 * To form the link layer address, invoke the ip_m_v*mapping function
5353 * associated with the link-layer type.
5354 */
5355 void
ip_mcast_mapping(ill_t * ill,uchar_t * addr,uchar_t * hwaddr)5356 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5357 {
5358 ip_m_t *ipm;
5359
5360 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5361 return;
5362
5363 ASSERT(addr != NULL);
5364
5365 ipm = ip_m_lookup(ill->ill_mactype);
5366 if (ipm == NULL ||
5367 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5368 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5369 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5370 ill->ill_name, ill->ill_mactype));
5371 return;
5372 }
5373 if (ill->ill_isv6)
5374 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5375 else
5376 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5377 }
5378
5379 /*
5380 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5381 * Otherwise returns B_TRUE.
5382 *
5383 * The netmask can be verified to be contiguous with 32 shifts and or
5384 * operations. Take the contiguous mask (in host byte order) and compute
5385 * mask | mask << 1 | mask << 2 | ... | mask << 31
5386 * the result will be the same as the 'mask' for contiguous mask.
5387 */
5388 static boolean_t
ip_contiguous_mask(uint32_t mask)5389 ip_contiguous_mask(uint32_t mask)
5390 {
5391 uint32_t m = mask;
5392 int i;
5393
5394 for (i = 1; i < 32; i++)
5395 m |= (mask << i);
5396
5397 return (m == mask);
5398 }
5399
5400 /*
5401 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5402 * ill is passed in to associate it with the correct interface.
5403 * If ire_arg is set, then we return the held IRE in that location.
5404 */
5405 int
ip_rt_add(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,ipaddr_t src_addr,int flags,ill_t * ill,ire_t ** ire_arg,boolean_t ioctl_msg,struct rtsa_s * sp,ip_stack_t * ipst,zoneid_t zoneid)5406 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5407 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5408 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5409 {
5410 ire_t *ire, *nire;
5411 ire_t *gw_ire = NULL;
5412 ipif_t *ipif = NULL;
5413 uint_t type;
5414 int match_flags = MATCH_IRE_TYPE;
5415 tsol_gc_t *gc = NULL;
5416 tsol_gcgrp_t *gcgrp = NULL;
5417 boolean_t gcgrp_xtraref = B_FALSE;
5418 boolean_t cgtp_broadcast;
5419 boolean_t unbound = B_FALSE;
5420
5421 ip1dbg(("ip_rt_add:"));
5422
5423 if (ire_arg != NULL)
5424 *ire_arg = NULL;
5425
5426 /* disallow non-contiguous netmasks */
5427 if (!ip_contiguous_mask(ntohl(mask)))
5428 return (ENOTSUP);
5429
5430 /*
5431 * If this is the case of RTF_HOST being set, then we set the netmask
5432 * to all ones (regardless if one was supplied).
5433 */
5434 if (flags & RTF_HOST)
5435 mask = IP_HOST_MASK;
5436
5437 /*
5438 * Prevent routes with a zero gateway from being created (since
5439 * interfaces can currently be plumbed and brought up no assigned
5440 * address).
5441 */
5442 if (gw_addr == 0)
5443 return (ENETUNREACH);
5444 /*
5445 * Get the ipif, if any, corresponding to the gw_addr
5446 * If -ifp was specified we restrict ourselves to the ill, otherwise
5447 * we match on the gatway and destination to handle unnumbered pt-pt
5448 * interfaces.
5449 */
5450 if (ill != NULL)
5451 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5452 else
5453 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5454 if (ipif != NULL) {
5455 if (IS_VNI(ipif->ipif_ill)) {
5456 ipif_refrele(ipif);
5457 return (EINVAL);
5458 }
5459 }
5460
5461 /*
5462 * GateD will attempt to create routes with a loopback interface
5463 * address as the gateway and with RTF_GATEWAY set. We allow
5464 * these routes to be added, but create them as interface routes
5465 * since the gateway is an interface address.
5466 */
5467 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5468 flags &= ~RTF_GATEWAY;
5469 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5470 mask == IP_HOST_MASK) {
5471 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5472 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5473 NULL);
5474 if (ire != NULL) {
5475 ire_refrele(ire);
5476 ipif_refrele(ipif);
5477 return (EEXIST);
5478 }
5479 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5480 "for 0x%x\n", (void *)ipif,
5481 ipif->ipif_ire_type,
5482 ntohl(ipif->ipif_lcl_addr)));
5483 ire = ire_create(
5484 (uchar_t *)&dst_addr, /* dest address */
5485 (uchar_t *)&mask, /* mask */
5486 NULL, /* no gateway */
5487 ipif->ipif_ire_type, /* LOOPBACK */
5488 ipif->ipif_ill,
5489 zoneid,
5490 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5491 NULL,
5492 ipst);
5493
5494 if (ire == NULL) {
5495 ipif_refrele(ipif);
5496 return (ENOMEM);
5497 }
5498 /* src address assigned by the caller? */
5499 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5500 ire->ire_setsrc_addr = src_addr;
5501
5502 nire = ire_add(ire);
5503 if (nire == NULL) {
5504 /*
5505 * In the result of failure, ire_add() will have
5506 * already deleted the ire in question, so there
5507 * is no need to do that here.
5508 */
5509 ipif_refrele(ipif);
5510 return (ENOMEM);
5511 }
5512 /*
5513 * Check if it was a duplicate entry. This handles
5514 * the case of two racing route adds for the same route
5515 */
5516 if (nire != ire) {
5517 ASSERT(nire->ire_identical_ref > 1);
5518 ire_delete(nire);
5519 ire_refrele(nire);
5520 ipif_refrele(ipif);
5521 return (EEXIST);
5522 }
5523 ire = nire;
5524 goto save_ire;
5525 }
5526 }
5527
5528 /*
5529 * The routes for multicast with CGTP are quite special in that
5530 * the gateway is the local interface address, yet RTF_GATEWAY
5531 * is set. We turn off RTF_GATEWAY to provide compatibility with
5532 * this undocumented and unusual use of multicast routes.
5533 */
5534 if ((flags & RTF_MULTIRT) && ipif != NULL)
5535 flags &= ~RTF_GATEWAY;
5536
5537 /*
5538 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5539 * and the gateway address provided is one of the system's interface
5540 * addresses. By using the routing socket interface and supplying an
5541 * RTA_IFP sockaddr with an interface index, an alternate method of
5542 * specifying an interface route to be created is available which uses
5543 * the interface index that specifies the outgoing interface rather than
5544 * the address of an outgoing interface (which may not be able to
5545 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5546 * flag, routes can be specified which not only specify the next-hop to
5547 * be used when routing to a certain prefix, but also which outgoing
5548 * interface should be used.
5549 *
5550 * Previously, interfaces would have unique addresses assigned to them
5551 * and so the address assigned to a particular interface could be used
5552 * to identify a particular interface. One exception to this was the
5553 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5554 *
5555 * With the advent of IPv6 and its link-local addresses, this
5556 * restriction was relaxed and interfaces could share addresses between
5557 * themselves. In fact, typically all of the link-local interfaces on
5558 * an IPv6 node or router will have the same link-local address. In
5559 * order to differentiate between these interfaces, the use of an
5560 * interface index is necessary and this index can be carried inside a
5561 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5562 * of using the interface index, however, is that all of the ipif's that
5563 * are part of an ill have the same index and so the RTA_IFP sockaddr
5564 * cannot be used to differentiate between ipif's (or logical
5565 * interfaces) that belong to the same ill (physical interface).
5566 *
5567 * For example, in the following case involving IPv4 interfaces and
5568 * logical interfaces
5569 *
5570 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5571 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5572 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5573 *
5574 * the ipif's corresponding to each of these interface routes can be
5575 * uniquely identified by the "gateway" (actually interface address).
5576 *
5577 * In this case involving multiple IPv6 default routes to a particular
5578 * link-local gateway, the use of RTA_IFP is necessary to specify which
5579 * default route is of interest:
5580 *
5581 * default fe80::123:4567:89ab:cdef U if0
5582 * default fe80::123:4567:89ab:cdef U if1
5583 */
5584
5585 /* RTF_GATEWAY not set */
5586 if (!(flags & RTF_GATEWAY)) {
5587 if (sp != NULL) {
5588 ip2dbg(("ip_rt_add: gateway security attributes "
5589 "cannot be set with interface route\n"));
5590 if (ipif != NULL)
5591 ipif_refrele(ipif);
5592 return (EINVAL);
5593 }
5594
5595 /*
5596 * Whether or not ill (RTA_IFP) is set, we require that
5597 * the gateway is one of our local addresses.
5598 */
5599 if (ipif == NULL)
5600 return (ENETUNREACH);
5601
5602 /*
5603 * We use MATCH_IRE_ILL here. If the caller specified an
5604 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5605 * we use the ill derived from the gateway address.
5606 * We can always match the gateway address since we record it
5607 * in ire_gateway_addr.
5608 * We don't allow RTA_IFP to specify a different ill than the
5609 * one matching the ipif to make sure we can delete the route.
5610 */
5611 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5612 if (ill == NULL) {
5613 ill = ipif->ipif_ill;
5614 } else if (ill != ipif->ipif_ill) {
5615 ipif_refrele(ipif);
5616 return (EINVAL);
5617 }
5618
5619 /*
5620 * We check for an existing entry at this point.
5621 *
5622 * Since a netmask isn't passed in via the ioctl interface
5623 * (SIOCADDRT), we don't check for a matching netmask in that
5624 * case.
5625 */
5626 if (!ioctl_msg)
5627 match_flags |= MATCH_IRE_MASK;
5628 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5629 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5630 NULL);
5631 if (ire != NULL) {
5632 ire_refrele(ire);
5633 ipif_refrele(ipif);
5634 return (EEXIST);
5635 }
5636
5637 /*
5638 * Some software (for example, GateD and Sun Cluster) attempts
5639 * to create (what amount to) IRE_PREFIX routes with the
5640 * loopback address as the gateway. This is primarily done to
5641 * set up prefixes with the RTF_REJECT flag set (for example,
5642 * when generating aggregate routes.)
5643 *
5644 * If the IRE type (as defined by ill->ill_net_type) would be
5645 * IRE_LOOPBACK, then we map the request into a
5646 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5647 * these interface routes, by definition, can only be that.
5648 *
5649 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5650 * routine, but rather using ire_create() directly.
5651 *
5652 */
5653 type = ill->ill_net_type;
5654 if (type == IRE_LOOPBACK) {
5655 type = IRE_IF_NORESOLVER;
5656 flags |= RTF_BLACKHOLE;
5657 }
5658
5659 /*
5660 * Create a copy of the IRE_IF_NORESOLVER or
5661 * IRE_IF_RESOLVER with the modified address, netmask, and
5662 * gateway.
5663 */
5664 ire = ire_create(
5665 (uchar_t *)&dst_addr,
5666 (uint8_t *)&mask,
5667 (uint8_t *)&gw_addr,
5668 type,
5669 ill,
5670 zoneid,
5671 flags,
5672 NULL,
5673 ipst);
5674 if (ire == NULL) {
5675 ipif_refrele(ipif);
5676 return (ENOMEM);
5677 }
5678
5679 /* src address assigned by the caller? */
5680 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5681 ire->ire_setsrc_addr = src_addr;
5682
5683 nire = ire_add(ire);
5684 if (nire == NULL) {
5685 /*
5686 * In the result of failure, ire_add() will have
5687 * already deleted the ire in question, so there
5688 * is no need to do that here.
5689 */
5690 ipif_refrele(ipif);
5691 return (ENOMEM);
5692 }
5693 /*
5694 * Check if it was a duplicate entry. This handles
5695 * the case of two racing route adds for the same route
5696 */
5697 if (nire != ire) {
5698 ire_delete(nire);
5699 ire_refrele(nire);
5700 ipif_refrele(ipif);
5701 return (EEXIST);
5702 }
5703 ire = nire;
5704 goto save_ire;
5705 }
5706
5707 /*
5708 * Get an interface IRE for the specified gateway.
5709 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5710 * gateway, it is currently unreachable and we fail the request
5711 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5712 * is an IRE_LOCAL or IRE_LOOPBACK.
5713 * If RTA_IFP was specified we look on that particular ill.
5714 */
5715 if (ill != NULL)
5716 match_flags |= MATCH_IRE_ILL;
5717
5718 /* Check whether the gateway is reachable. */
5719 again:
5720 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5721 if (flags & RTF_INDIRECT)
5722 type |= IRE_OFFLINK;
5723
5724 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5725 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5726 if (gw_ire == NULL) {
5727 /*
5728 * With IPMP, we allow host routes to influence in.mpathd's
5729 * target selection. However, if the test addresses are on
5730 * their own network, the above lookup will fail since the
5731 * underlying IRE_INTERFACEs are marked hidden. So allow
5732 * hidden test IREs to be found and try again.
5733 */
5734 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5735 match_flags |= MATCH_IRE_TESTHIDDEN;
5736 goto again;
5737 }
5738 if (ipif != NULL)
5739 ipif_refrele(ipif);
5740 return (ENETUNREACH);
5741 }
5742 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5743 ire_refrele(gw_ire);
5744 if (ipif != NULL)
5745 ipif_refrele(ipif);
5746 return (ENETUNREACH);
5747 }
5748
5749 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5750 unbound = B_TRUE;
5751 if (ipst->ips_ip_strict_src_multihoming > 0)
5752 ill = gw_ire->ire_ill;
5753 }
5754
5755 /*
5756 * We create one of three types of IREs as a result of this request
5757 * based on the netmask. A netmask of all ones (which is automatically
5758 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5759 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5760 * created. Otherwise, an IRE_PREFIX route is created for the
5761 * destination prefix.
5762 */
5763 if (mask == IP_HOST_MASK)
5764 type = IRE_HOST;
5765 else if (mask == 0)
5766 type = IRE_DEFAULT;
5767 else
5768 type = IRE_PREFIX;
5769
5770 /* check for a duplicate entry */
5771 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5772 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5773 0, ipst, NULL);
5774 if (ire != NULL) {
5775 if (ipif != NULL)
5776 ipif_refrele(ipif);
5777 ire_refrele(gw_ire);
5778 ire_refrele(ire);
5779 return (EEXIST);
5780 }
5781
5782 /* Security attribute exists */
5783 if (sp != NULL) {
5784 tsol_gcgrp_addr_t ga;
5785
5786 /* find or create the gateway credentials group */
5787 ga.ga_af = AF_INET;
5788 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5789
5790 /* we hold reference to it upon success */
5791 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5792 if (gcgrp == NULL) {
5793 if (ipif != NULL)
5794 ipif_refrele(ipif);
5795 ire_refrele(gw_ire);
5796 return (ENOMEM);
5797 }
5798
5799 /*
5800 * Create and add the security attribute to the group; a
5801 * reference to the group is made upon allocating a new
5802 * entry successfully. If it finds an already-existing
5803 * entry for the security attribute in the group, it simply
5804 * returns it and no new reference is made to the group.
5805 */
5806 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5807 if (gc == NULL) {
5808 if (ipif != NULL)
5809 ipif_refrele(ipif);
5810 /* release reference held by gcgrp_lookup */
5811 GCGRP_REFRELE(gcgrp);
5812 ire_refrele(gw_ire);
5813 return (ENOMEM);
5814 }
5815 }
5816
5817 /* Create the IRE. */
5818 ire = ire_create(
5819 (uchar_t *)&dst_addr, /* dest address */
5820 (uchar_t *)&mask, /* mask */
5821 (uchar_t *)&gw_addr, /* gateway address */
5822 (ushort_t)type, /* IRE type */
5823 ill,
5824 zoneid,
5825 flags,
5826 gc, /* security attribute */
5827 ipst);
5828
5829 /*
5830 * The ire holds a reference to the 'gc' and the 'gc' holds a
5831 * reference to the 'gcgrp'. We can now release the extra reference
5832 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5833 */
5834 if (gcgrp_xtraref)
5835 GCGRP_REFRELE(gcgrp);
5836 if (ire == NULL) {
5837 if (gc != NULL)
5838 GC_REFRELE(gc);
5839 if (ipif != NULL)
5840 ipif_refrele(ipif);
5841 ire_refrele(gw_ire);
5842 return (ENOMEM);
5843 }
5844
5845 /* Before we add, check if an extra CGTP broadcast is needed */
5846 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5847 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5848
5849 /* src address assigned by the caller? */
5850 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5851 ire->ire_setsrc_addr = src_addr;
5852
5853 ire->ire_unbound = unbound;
5854
5855 /*
5856 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5857 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5858 */
5859
5860 /* Add the new IRE. */
5861 nire = ire_add(ire);
5862 if (nire == NULL) {
5863 /*
5864 * In the result of failure, ire_add() will have
5865 * already deleted the ire in question, so there
5866 * is no need to do that here.
5867 */
5868 if (ipif != NULL)
5869 ipif_refrele(ipif);
5870 ire_refrele(gw_ire);
5871 return (ENOMEM);
5872 }
5873 /*
5874 * Check if it was a duplicate entry. This handles
5875 * the case of two racing route adds for the same route
5876 */
5877 if (nire != ire) {
5878 ire_delete(nire);
5879 ire_refrele(nire);
5880 if (ipif != NULL)
5881 ipif_refrele(ipif);
5882 ire_refrele(gw_ire);
5883 return (EEXIST);
5884 }
5885 ire = nire;
5886
5887 if (flags & RTF_MULTIRT) {
5888 /*
5889 * Invoke the CGTP (multirouting) filtering module
5890 * to add the dst address in the filtering database.
5891 * Replicated inbound packets coming from that address
5892 * will be filtered to discard the duplicates.
5893 * It is not necessary to call the CGTP filter hook
5894 * when the dst address is a broadcast or multicast,
5895 * because an IP source address cannot be a broadcast
5896 * or a multicast.
5897 */
5898 if (cgtp_broadcast) {
5899 ip_cgtp_bcast_add(ire, ipst);
5900 goto save_ire;
5901 }
5902 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5903 !CLASSD(ire->ire_addr)) {
5904 int res;
5905 ipif_t *src_ipif;
5906
5907 /* Find the source address corresponding to gw_ire */
5908 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5909 NULL, zoneid, ipst);
5910 if (src_ipif != NULL) {
5911 res = ipst->ips_ip_cgtp_filter_ops->
5912 cfo_add_dest_v4(
5913 ipst->ips_netstack->netstack_stackid,
5914 ire->ire_addr,
5915 ire->ire_gateway_addr,
5916 ire->ire_setsrc_addr,
5917 src_ipif->ipif_lcl_addr);
5918 ipif_refrele(src_ipif);
5919 } else {
5920 res = EADDRNOTAVAIL;
5921 }
5922 if (res != 0) {
5923 if (ipif != NULL)
5924 ipif_refrele(ipif);
5925 ire_refrele(gw_ire);
5926 ire_delete(ire);
5927 ire_refrele(ire); /* Held in ire_add */
5928 return (res);
5929 }
5930 }
5931 }
5932
5933 save_ire:
5934 if (gw_ire != NULL) {
5935 ire_refrele(gw_ire);
5936 gw_ire = NULL;
5937 }
5938 if (ill != NULL) {
5939 /*
5940 * Save enough information so that we can recreate the IRE if
5941 * the interface goes down and then up. The metrics associated
5942 * with the route will be saved as well when rts_setmetrics() is
5943 * called after the IRE has been created. In the case where
5944 * memory cannot be allocated, none of this information will be
5945 * saved.
5946 */
5947 ill_save_ire(ill, ire);
5948 }
5949 if (ioctl_msg)
5950 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5951 if (ire_arg != NULL) {
5952 /*
5953 * Store the ire that was successfully added into where ire_arg
5954 * points to so that callers don't have to look it up
5955 * themselves (but they are responsible for ire_refrele()ing
5956 * the ire when they are finished with it).
5957 */
5958 *ire_arg = ire;
5959 } else {
5960 ire_refrele(ire); /* Held in ire_add */
5961 }
5962 if (ipif != NULL)
5963 ipif_refrele(ipif);
5964 return (0);
5965 }
5966
5967 /*
5968 * ip_rt_delete is called to delete an IPv4 route.
5969 * ill is passed in to associate it with the correct interface.
5970 */
5971 /* ARGSUSED4 */
5972 int
ip_rt_delete(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,uint_t rtm_addrs,int flags,ill_t * ill,boolean_t ioctl_msg,ip_stack_t * ipst,zoneid_t zoneid)5973 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5974 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5975 ip_stack_t *ipst, zoneid_t zoneid)
5976 {
5977 ire_t *ire = NULL;
5978 ipif_t *ipif;
5979 uint_t type;
5980 uint_t match_flags = MATCH_IRE_TYPE;
5981 int err = 0;
5982
5983 ip1dbg(("ip_rt_delete:"));
5984 /*
5985 * If this is the case of RTF_HOST being set, then we set the netmask
5986 * to all ones. Otherwise, we use the netmask if one was supplied.
5987 */
5988 if (flags & RTF_HOST) {
5989 mask = IP_HOST_MASK;
5990 match_flags |= MATCH_IRE_MASK;
5991 } else if (rtm_addrs & RTA_NETMASK) {
5992 match_flags |= MATCH_IRE_MASK;
5993 }
5994
5995 /*
5996 * Note that RTF_GATEWAY is never set on a delete, therefore
5997 * we check if the gateway address is one of our interfaces first,
5998 * and fall back on RTF_GATEWAY routes.
5999 *
6000 * This makes it possible to delete an original
6001 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6002 * However, we have RTF_KERNEL set on the ones created by ipif_up
6003 * and those can not be deleted here.
6004 *
6005 * We use MATCH_IRE_ILL if we know the interface. If the caller
6006 * specified an interface (from the RTA_IFP sockaddr) we use it,
6007 * otherwise we use the ill derived from the gateway address.
6008 * We can always match the gateway address since we record it
6009 * in ire_gateway_addr.
6010 *
6011 * For more detail on specifying routes by gateway address and by
6012 * interface index, see the comments in ip_rt_add().
6013 */
6014 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6015 if (ipif != NULL) {
6016 ill_t *ill_match;
6017
6018 if (ill != NULL)
6019 ill_match = ill;
6020 else
6021 ill_match = ipif->ipif_ill;
6022
6023 match_flags |= MATCH_IRE_ILL;
6024 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6025 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6026 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6027 match_flags, 0, ipst, NULL);
6028 }
6029 if (ire == NULL) {
6030 match_flags |= MATCH_IRE_GW;
6031 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6032 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6033 match_flags, 0, ipst, NULL);
6034 }
6035 /* Avoid deleting routes created by kernel from an ipif */
6036 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6037 ire_refrele(ire);
6038 ire = NULL;
6039 }
6040
6041 /* Restore in case we didn't find a match */
6042 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6043 }
6044
6045 if (ire == NULL) {
6046 /*
6047 * At this point, the gateway address is not one of our own
6048 * addresses or a matching interface route was not found. We
6049 * set the IRE type to lookup based on whether
6050 * this is a host route, a default route or just a prefix.
6051 *
6052 * If an ill was passed in, then the lookup is based on an
6053 * interface index so MATCH_IRE_ILL is added to match_flags.
6054 */
6055 match_flags |= MATCH_IRE_GW;
6056 if (ill != NULL)
6057 match_flags |= MATCH_IRE_ILL;
6058 if (mask == IP_HOST_MASK)
6059 type = IRE_HOST;
6060 else if (mask == 0)
6061 type = IRE_DEFAULT;
6062 else
6063 type = IRE_PREFIX;
6064 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6065 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6066 }
6067
6068 if (ipif != NULL) {
6069 ipif_refrele(ipif);
6070 ipif = NULL;
6071 }
6072
6073 if (ire == NULL)
6074 return (ESRCH);
6075
6076 if (ire->ire_flags & RTF_MULTIRT) {
6077 /*
6078 * Invoke the CGTP (multirouting) filtering module
6079 * to remove the dst address from the filtering database.
6080 * Packets coming from that address will no longer be
6081 * filtered to remove duplicates.
6082 */
6083 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6084 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6085 ipst->ips_netstack->netstack_stackid,
6086 ire->ire_addr, ire->ire_gateway_addr);
6087 }
6088 ip_cgtp_bcast_delete(ire, ipst);
6089 }
6090
6091 ill = ire->ire_ill;
6092 if (ill != NULL)
6093 ill_remove_saved_ire(ill, ire);
6094 if (ioctl_msg)
6095 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6096 ire_delete(ire);
6097 ire_refrele(ire);
6098 return (err);
6099 }
6100
6101 /*
6102 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6103 */
6104 /* ARGSUSED */
6105 int
ip_siocaddrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6106 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6107 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6108 {
6109 ipaddr_t dst_addr;
6110 ipaddr_t gw_addr;
6111 ipaddr_t mask;
6112 int error = 0;
6113 mblk_t *mp1;
6114 struct rtentry *rt;
6115 ipif_t *ipif = NULL;
6116 ip_stack_t *ipst;
6117
6118 ASSERT(q->q_next == NULL);
6119 ipst = CONNQ_TO_IPST(q);
6120
6121 ip1dbg(("ip_siocaddrt:"));
6122 /* Existence of mp1 verified in ip_wput_nondata */
6123 mp1 = mp->b_cont->b_cont;
6124 rt = (struct rtentry *)mp1->b_rptr;
6125
6126 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6127 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6128
6129 /*
6130 * If the RTF_HOST flag is on, this is a request to assign a gateway
6131 * to a particular host address. In this case, we set the netmask to
6132 * all ones for the particular destination address. Otherwise,
6133 * determine the netmask to be used based on dst_addr and the interfaces
6134 * in use.
6135 */
6136 if (rt->rt_flags & RTF_HOST) {
6137 mask = IP_HOST_MASK;
6138 } else {
6139 /*
6140 * Note that ip_subnet_mask returns a zero mask in the case of
6141 * default (an all-zeroes address).
6142 */
6143 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6144 }
6145
6146 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6147 B_TRUE, NULL, ipst, ALL_ZONES);
6148 if (ipif != NULL)
6149 ipif_refrele(ipif);
6150 return (error);
6151 }
6152
6153 /*
6154 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6155 */
6156 /* ARGSUSED */
6157 int
ip_siocdelrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6158 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6159 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6160 {
6161 ipaddr_t dst_addr;
6162 ipaddr_t gw_addr;
6163 ipaddr_t mask;
6164 int error;
6165 mblk_t *mp1;
6166 struct rtentry *rt;
6167 ipif_t *ipif = NULL;
6168 ip_stack_t *ipst;
6169
6170 ASSERT(q->q_next == NULL);
6171 ipst = CONNQ_TO_IPST(q);
6172
6173 ip1dbg(("ip_siocdelrt:"));
6174 /* Existence of mp1 verified in ip_wput_nondata */
6175 mp1 = mp->b_cont->b_cont;
6176 rt = (struct rtentry *)mp1->b_rptr;
6177
6178 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6179 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6180
6181 /*
6182 * If the RTF_HOST flag is on, this is a request to delete a gateway
6183 * to a particular host address. In this case, we set the netmask to
6184 * all ones for the particular destination address. Otherwise,
6185 * determine the netmask to be used based on dst_addr and the interfaces
6186 * in use.
6187 */
6188 if (rt->rt_flags & RTF_HOST) {
6189 mask = IP_HOST_MASK;
6190 } else {
6191 /*
6192 * Note that ip_subnet_mask returns a zero mask in the case of
6193 * default (an all-zeroes address).
6194 */
6195 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6196 }
6197
6198 error = ip_rt_delete(dst_addr, mask, gw_addr,
6199 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6200 ipst, ALL_ZONES);
6201 if (ipif != NULL)
6202 ipif_refrele(ipif);
6203 return (error);
6204 }
6205
6206 /*
6207 * Enqueue the mp onto the ipsq, chained by b_next.
6208 * b_prev stores the function to be executed later, and b_queue the queue
6209 * where this mp originated.
6210 */
6211 void
ipsq_enq(ipsq_t * ipsq,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,ill_t * pending_ill)6212 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6213 ill_t *pending_ill)
6214 {
6215 conn_t *connp;
6216 ipxop_t *ipx = ipsq->ipsq_xop;
6217
6218 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6219 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6220 ASSERT(func != NULL);
6221
6222 mp->b_queue = q;
6223 mp->b_prev = (void *)func;
6224 mp->b_next = NULL;
6225
6226 switch (type) {
6227 case CUR_OP:
6228 if (ipx->ipx_mptail != NULL) {
6229 ASSERT(ipx->ipx_mphead != NULL);
6230 ipx->ipx_mptail->b_next = mp;
6231 } else {
6232 ASSERT(ipx->ipx_mphead == NULL);
6233 ipx->ipx_mphead = mp;
6234 }
6235 ipx->ipx_mptail = mp;
6236 break;
6237
6238 case NEW_OP:
6239 if (ipsq->ipsq_xopq_mptail != NULL) {
6240 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6241 ipsq->ipsq_xopq_mptail->b_next = mp;
6242 } else {
6243 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6244 ipsq->ipsq_xopq_mphead = mp;
6245 }
6246 ipsq->ipsq_xopq_mptail = mp;
6247 ipx->ipx_ipsq_queued = B_TRUE;
6248 break;
6249
6250 case SWITCH_OP:
6251 ASSERT(ipsq->ipsq_swxop != NULL);
6252 /* only one switch operation is currently allowed */
6253 ASSERT(ipsq->ipsq_switch_mp == NULL);
6254 ipsq->ipsq_switch_mp = mp;
6255 ipx->ipx_ipsq_queued = B_TRUE;
6256 break;
6257 default:
6258 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6259 }
6260
6261 if (CONN_Q(q) && pending_ill != NULL) {
6262 connp = Q_TO_CONN(q);
6263 ASSERT(MUTEX_HELD(&connp->conn_lock));
6264 connp->conn_oper_pending_ill = pending_ill;
6265 }
6266 }
6267
6268 /*
6269 * Dequeue the next message that requested exclusive access to this IPSQ's
6270 * xop. Specifically:
6271 *
6272 * 1. If we're still processing the current operation on `ipsq', then
6273 * dequeue the next message for the operation (from ipx_mphead), or
6274 * return NULL if there are no queued messages for the operation.
6275 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6276 *
6277 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6278 * not set) see if the ipsq has requested an xop switch. If so, switch
6279 * `ipsq' to a different xop. Xop switches only happen when joining or
6280 * leaving IPMP groups and require a careful dance -- see the comments
6281 * in-line below for details. If we're leaving a group xop or if we're
6282 * joining a group xop and become writer on it, then we proceed to (3).
6283 * Otherwise, we return NULL and exit the xop.
6284 *
6285 * 3. For each IPSQ in the xop, return any switch operation stored on
6286 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6287 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6288 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6289 * Note that if the phyint tied to `ipsq' is not using IPMP there will
6290 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6291 * each phyint in the group, including the IPMP meta-interface phyint.
6292 */
6293 static mblk_t *
ipsq_dq(ipsq_t * ipsq)6294 ipsq_dq(ipsq_t *ipsq)
6295 {
6296 ill_t *illv4, *illv6;
6297 mblk_t *mp;
6298 ipsq_t *xopipsq;
6299 ipsq_t *leftipsq = NULL;
6300 ipxop_t *ipx;
6301 phyint_t *phyi = ipsq->ipsq_phyint;
6302 ip_stack_t *ipst = ipsq->ipsq_ipst;
6303 boolean_t emptied = B_FALSE;
6304
6305 /*
6306 * Grab all the locks we need in the defined order (ill_g_lock ->
6307 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6308 */
6309 rw_enter(&ipst->ips_ill_g_lock,
6310 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6311 mutex_enter(&ipsq->ipsq_lock);
6312 ipx = ipsq->ipsq_xop;
6313 mutex_enter(&ipx->ipx_lock);
6314
6315 /*
6316 * Dequeue the next message associated with the current exclusive
6317 * operation, if any.
6318 */
6319 if ((mp = ipx->ipx_mphead) != NULL) {
6320 ipx->ipx_mphead = mp->b_next;
6321 if (ipx->ipx_mphead == NULL)
6322 ipx->ipx_mptail = NULL;
6323 mp->b_next = (void *)ipsq;
6324 goto out;
6325 }
6326
6327 if (ipx->ipx_current_ipif != NULL)
6328 goto empty;
6329
6330 if (ipsq->ipsq_swxop != NULL) {
6331 /*
6332 * The exclusive operation that is now being completed has
6333 * requested a switch to a different xop. This happens
6334 * when an interface joins or leaves an IPMP group. Joins
6335 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6336 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6337 * (phyint_free()), or interface plumb for an ill type
6338 * not in the IPMP group (ip_rput_dlpi_writer()).
6339 *
6340 * Xop switches are not allowed on the IPMP meta-interface.
6341 */
6342 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6343 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6344 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6345
6346 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6347 /*
6348 * We're switching back to our own xop, so we have two
6349 * xop's to drain/exit: our own, and the group xop
6350 * that we are leaving.
6351 *
6352 * First, pull ourselves out of the group ipsq list.
6353 * This is safe since we're writer on ill_g_lock.
6354 */
6355 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6356
6357 xopipsq = ipx->ipx_ipsq;
6358 while (xopipsq->ipsq_next != ipsq)
6359 xopipsq = xopipsq->ipsq_next;
6360
6361 xopipsq->ipsq_next = ipsq->ipsq_next;
6362 ipsq->ipsq_next = ipsq;
6363 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6364 ipsq->ipsq_swxop = NULL;
6365
6366 /*
6367 * Second, prepare to exit the group xop. The actual
6368 * ipsq_exit() is done at the end of this function
6369 * since we cannot hold any locks across ipsq_exit().
6370 * Note that although we drop the group's ipx_lock, no
6371 * threads can proceed since we're still ipx_writer.
6372 */
6373 leftipsq = xopipsq;
6374 mutex_exit(&ipx->ipx_lock);
6375
6376 /*
6377 * Third, set ipx to point to our own xop (which was
6378 * inactive and therefore can be entered).
6379 */
6380 ipx = ipsq->ipsq_xop;
6381 mutex_enter(&ipx->ipx_lock);
6382 ASSERT(ipx->ipx_writer == NULL);
6383 ASSERT(ipx->ipx_current_ipif == NULL);
6384 } else {
6385 /*
6386 * We're switching from our own xop to a group xop.
6387 * The requestor of the switch must ensure that the
6388 * group xop cannot go away (e.g. by ensuring the
6389 * phyint associated with the xop cannot go away).
6390 *
6391 * If we can become writer on our new xop, then we'll
6392 * do the drain. Otherwise, the current writer of our
6393 * new xop will do the drain when it exits.
6394 *
6395 * First, splice ourselves into the group IPSQ list.
6396 * This is safe since we're writer on ill_g_lock.
6397 */
6398 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6399
6400 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6401 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6402 xopipsq = xopipsq->ipsq_next;
6403
6404 xopipsq->ipsq_next = ipsq;
6405 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6406 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6407 ipsq->ipsq_swxop = NULL;
6408
6409 /*
6410 * Second, exit our own xop, since it's now unused.
6411 * This is safe since we've got the only reference.
6412 */
6413 ASSERT(ipx->ipx_writer == curthread);
6414 ipx->ipx_writer = NULL;
6415 VERIFY(--ipx->ipx_reentry_cnt == 0);
6416 ipx->ipx_ipsq_queued = B_FALSE;
6417 mutex_exit(&ipx->ipx_lock);
6418
6419 /*
6420 * Third, set ipx to point to our new xop, and check
6421 * if we can become writer on it. If we cannot, then
6422 * the current writer will drain the IPSQ group when
6423 * it exits. Our ipsq_xop is guaranteed to be stable
6424 * because we're still holding ipsq_lock.
6425 */
6426 ipx = ipsq->ipsq_xop;
6427 mutex_enter(&ipx->ipx_lock);
6428 if (ipx->ipx_writer != NULL ||
6429 ipx->ipx_current_ipif != NULL) {
6430 goto out;
6431 }
6432 }
6433
6434 /*
6435 * Fourth, become writer on our new ipx before we continue
6436 * with the drain. Note that we never dropped ipsq_lock
6437 * above, so no other thread could've raced with us to
6438 * become writer first. Also, we're holding ipx_lock, so
6439 * no other thread can examine the ipx right now.
6440 */
6441 ASSERT(ipx->ipx_current_ipif == NULL);
6442 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6443 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6444 ipx->ipx_writer = curthread;
6445 ipx->ipx_forced = B_FALSE;
6446 #ifdef DEBUG
6447 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6448 #endif
6449 }
6450
6451 xopipsq = ipsq;
6452 do {
6453 /*
6454 * So that other operations operate on a consistent and
6455 * complete phyint, a switch message on an IPSQ must be
6456 * handled prior to any other operations on that IPSQ.
6457 */
6458 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6459 xopipsq->ipsq_switch_mp = NULL;
6460 ASSERT(mp->b_next == NULL);
6461 mp->b_next = (void *)xopipsq;
6462 goto out;
6463 }
6464
6465 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6466 xopipsq->ipsq_xopq_mphead = mp->b_next;
6467 if (xopipsq->ipsq_xopq_mphead == NULL)
6468 xopipsq->ipsq_xopq_mptail = NULL;
6469 mp->b_next = (void *)xopipsq;
6470 goto out;
6471 }
6472 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6473 empty:
6474 /*
6475 * There are no messages. Further, we are holding ipx_lock, hence no
6476 * new messages can end up on any IPSQ in the xop.
6477 */
6478 ipx->ipx_writer = NULL;
6479 ipx->ipx_forced = B_FALSE;
6480 VERIFY(--ipx->ipx_reentry_cnt == 0);
6481 ipx->ipx_ipsq_queued = B_FALSE;
6482 emptied = B_TRUE;
6483 #ifdef DEBUG
6484 ipx->ipx_depth = 0;
6485 #endif
6486 out:
6487 mutex_exit(&ipx->ipx_lock);
6488 mutex_exit(&ipsq->ipsq_lock);
6489
6490 /*
6491 * If we completely emptied the xop, then wake up any threads waiting
6492 * to enter any of the IPSQ's associated with it.
6493 */
6494 if (emptied) {
6495 xopipsq = ipsq;
6496 do {
6497 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6498 continue;
6499
6500 illv4 = phyi->phyint_illv4;
6501 illv6 = phyi->phyint_illv6;
6502
6503 GRAB_ILL_LOCKS(illv4, illv6);
6504 if (illv4 != NULL)
6505 cv_broadcast(&illv4->ill_cv);
6506 if (illv6 != NULL)
6507 cv_broadcast(&illv6->ill_cv);
6508 RELEASE_ILL_LOCKS(illv4, illv6);
6509 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6510 }
6511 rw_exit(&ipst->ips_ill_g_lock);
6512
6513 /*
6514 * Now that all locks are dropped, exit the IPSQ we left.
6515 */
6516 if (leftipsq != NULL)
6517 ipsq_exit(leftipsq);
6518
6519 return (mp);
6520 }
6521
6522 /*
6523 * Return completion status of previously initiated DLPI operations on
6524 * ills in the purview of an ipsq.
6525 */
6526 static boolean_t
ipsq_dlpi_done(ipsq_t * ipsq)6527 ipsq_dlpi_done(ipsq_t *ipsq)
6528 {
6529 ipsq_t *ipsq_start;
6530 phyint_t *phyi;
6531 ill_t *ill;
6532
6533 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6534 ipsq_start = ipsq;
6535
6536 do {
6537 /*
6538 * The only current users of this function are ipsq_try_enter
6539 * and ipsq_enter which have made sure that ipsq_writer is
6540 * NULL before we reach here. ill_dlpi_pending is modified
6541 * only by an ipsq writer
6542 */
6543 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6544 phyi = ipsq->ipsq_phyint;
6545 /*
6546 * phyi could be NULL if a phyint that is part of an
6547 * IPMP group is being unplumbed. A more detailed
6548 * comment is in ipmp_grp_update_kstats()
6549 */
6550 if (phyi != NULL) {
6551 ill = phyi->phyint_illv4;
6552 if (ill != NULL &&
6553 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6554 ill->ill_arl_dlpi_pending))
6555 return (B_FALSE);
6556
6557 ill = phyi->phyint_illv6;
6558 if (ill != NULL &&
6559 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6560 return (B_FALSE);
6561 }
6562
6563 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6564
6565 return (B_TRUE);
6566 }
6567
6568 /*
6569 * Enter the ipsq corresponding to ill, by waiting synchronously till
6570 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6571 * will have to drain completely before ipsq_enter returns success.
6572 * ipx_current_ipif will be set if some exclusive op is in progress,
6573 * and the ipsq_exit logic will start the next enqueued op after
6574 * completion of the current op. If 'force' is used, we don't wait
6575 * for the enqueued ops. This is needed when a conn_close wants to
6576 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6577 * of an ill can also use this option. But we dont' use it currently.
6578 */
6579 #define ENTER_SQ_WAIT_TICKS 100
6580 boolean_t
ipsq_enter(ill_t * ill,boolean_t force,int type)6581 ipsq_enter(ill_t *ill, boolean_t force, int type)
6582 {
6583 ipsq_t *ipsq;
6584 ipxop_t *ipx;
6585 boolean_t waited_enough = B_FALSE;
6586 ip_stack_t *ipst = ill->ill_ipst;
6587
6588 /*
6589 * Note that the relationship between ill and ipsq is fixed as long as
6590 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6591 * relationship between the IPSQ and xop cannot change. However,
6592 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6593 * while we're waiting. We wait on ill_cv and rely on ipsq_exit()
6594 * waking up all ills in the xop when it becomes available.
6595 */
6596 for (;;) {
6597 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6598 mutex_enter(&ill->ill_lock);
6599 if (ill->ill_state_flags & ILL_CONDEMNED) {
6600 mutex_exit(&ill->ill_lock);
6601 rw_exit(&ipst->ips_ill_g_lock);
6602 return (B_FALSE);
6603 }
6604
6605 ipsq = ill->ill_phyint->phyint_ipsq;
6606 mutex_enter(&ipsq->ipsq_lock);
6607 ipx = ipsq->ipsq_xop;
6608 mutex_enter(&ipx->ipx_lock);
6609
6610 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6611 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6612 waited_enough))
6613 break;
6614
6615 rw_exit(&ipst->ips_ill_g_lock);
6616
6617 if (!force || ipx->ipx_writer != NULL) {
6618 mutex_exit(&ipx->ipx_lock);
6619 mutex_exit(&ipsq->ipsq_lock);
6620 cv_wait(&ill->ill_cv, &ill->ill_lock);
6621 } else {
6622 mutex_exit(&ipx->ipx_lock);
6623 mutex_exit(&ipsq->ipsq_lock);
6624 (void) cv_reltimedwait(&ill->ill_cv,
6625 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6626 waited_enough = B_TRUE;
6627 }
6628 mutex_exit(&ill->ill_lock);
6629 }
6630
6631 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6632 ASSERT(ipx->ipx_reentry_cnt == 0);
6633 ipx->ipx_writer = curthread;
6634 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6635 ipx->ipx_reentry_cnt++;
6636 #ifdef DEBUG
6637 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6638 #endif
6639 mutex_exit(&ipx->ipx_lock);
6640 mutex_exit(&ipsq->ipsq_lock);
6641 mutex_exit(&ill->ill_lock);
6642 rw_exit(&ipst->ips_ill_g_lock);
6643
6644 return (B_TRUE);
6645 }
6646
6647 /*
6648 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6649 * across the call to the core interface ipsq_try_enter() and hence calls this
6650 * function directly. This is explained more fully in ipif_set_values().
6651 * In order to support the above constraint, ipsq_try_enter is implemented as
6652 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6653 */
6654 static ipsq_t *
ipsq_try_enter_internal(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6655 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6656 int type, boolean_t reentry_ok)
6657 {
6658 ipsq_t *ipsq;
6659 ipxop_t *ipx;
6660 ip_stack_t *ipst = ill->ill_ipst;
6661
6662 /*
6663 * lock ordering:
6664 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6665 *
6666 * ipx of an ipsq can't change when ipsq_lock is held.
6667 */
6668 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6669 GRAB_CONN_LOCK(q);
6670 mutex_enter(&ill->ill_lock);
6671 ipsq = ill->ill_phyint->phyint_ipsq;
6672 mutex_enter(&ipsq->ipsq_lock);
6673 ipx = ipsq->ipsq_xop;
6674 mutex_enter(&ipx->ipx_lock);
6675
6676 /*
6677 * 1. Enter the ipsq if we are already writer and reentry is ok.
6678 * (Note: If the caller does not specify reentry_ok then neither
6679 * 'func' nor any of its callees must ever attempt to enter the ipsq
6680 * again. Otherwise it can lead to an infinite loop
6681 * 2. Enter the ipsq if there is no current writer and this attempted
6682 * entry is part of the current operation
6683 * 3. Enter the ipsq if there is no current writer and this is a new
6684 * operation and the operation queue is empty and there is no
6685 * operation currently in progress and if all previously initiated
6686 * DLPI operations have completed.
6687 */
6688 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6689 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6690 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6691 ipsq_dlpi_done(ipsq))))) {
6692 /* Success. */
6693 ipx->ipx_reentry_cnt++;
6694 ipx->ipx_writer = curthread;
6695 ipx->ipx_forced = B_FALSE;
6696 mutex_exit(&ipx->ipx_lock);
6697 mutex_exit(&ipsq->ipsq_lock);
6698 mutex_exit(&ill->ill_lock);
6699 RELEASE_CONN_LOCK(q);
6700 #ifdef DEBUG
6701 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6702 #endif
6703 return (ipsq);
6704 }
6705
6706 if (func != NULL)
6707 ipsq_enq(ipsq, q, mp, func, type, ill);
6708
6709 mutex_exit(&ipx->ipx_lock);
6710 mutex_exit(&ipsq->ipsq_lock);
6711 mutex_exit(&ill->ill_lock);
6712 RELEASE_CONN_LOCK(q);
6713 return (NULL);
6714 }
6715
6716 /*
6717 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6718 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6719 * There is one ipsq per phyint. The ipsq
6720 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6721 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6722 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6723 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6724 * up the interface) and are enqueued in ipx_mphead.
6725 *
6726 * If a thread does not want to reenter the ipsq when it is already writer,
6727 * it must make sure that the specified reentry point to be called later
6728 * when the ipsq is empty, nor any code path starting from the specified reentry
6729 * point must never ever try to enter the ipsq again. Otherwise it can lead
6730 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6731 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6732 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6733 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6734 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6735 * ioctl if the current ioctl has completed. If the current ioctl is still
6736 * in progress it simply returns. The current ioctl could be waiting for
6737 * a response from another module (the driver or could be waiting for
6738 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6739 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6740 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6741 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6742 * all associated DLPI operations have completed.
6743 */
6744
6745 /*
6746 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6747 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ
6748 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6749 * refholding it as necessary. If the IPSQ cannot be entered and `func' is
6750 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6751 * can be entered. If `func' is NULL, then `q' and `mp' are ignored.
6752 */
6753 ipsq_t *
ipsq_try_enter(ipif_t * ipif,ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6754 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6755 ipsq_func_t func, int type, boolean_t reentry_ok)
6756 {
6757 ip_stack_t *ipst;
6758 ipsq_t *ipsq;
6759
6760 /* Only 1 of ipif or ill can be specified */
6761 ASSERT((ipif != NULL) ^ (ill != NULL));
6762
6763 if (ipif != NULL)
6764 ill = ipif->ipif_ill;
6765 ipst = ill->ill_ipst;
6766
6767 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6768 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6769 rw_exit(&ipst->ips_ill_g_lock);
6770
6771 return (ipsq);
6772 }
6773
6774 /*
6775 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures
6776 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6777 * cannot be entered, the mp is queued for completion.
6778 */
6779 void
qwriter_ip(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6780 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6781 boolean_t reentry_ok)
6782 {
6783 ipsq_t *ipsq;
6784
6785 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6786
6787 /*
6788 * Drop the caller's refhold on the ill. This is safe since we either
6789 * entered the IPSQ (and thus are exclusive), or failed to enter the
6790 * IPSQ, in which case we return without accessing ill anymore. This
6791 * is needed because func needs to see the correct refcount.
6792 * e.g. removeif can work only then.
6793 */
6794 ill_refrele(ill);
6795 if (ipsq != NULL) {
6796 (*func)(ipsq, q, mp, NULL);
6797 ipsq_exit(ipsq);
6798 }
6799 }
6800
6801 /*
6802 * Exit the specified IPSQ. If this is the final exit on it then drain it
6803 * prior to exiting. Caller must be writer on the specified IPSQ.
6804 */
6805 void
ipsq_exit(ipsq_t * ipsq)6806 ipsq_exit(ipsq_t *ipsq)
6807 {
6808 mblk_t *mp;
6809 ipsq_t *mp_ipsq;
6810 queue_t *q;
6811 phyint_t *phyi;
6812 ipsq_func_t func;
6813
6814 ASSERT(IAM_WRITER_IPSQ(ipsq));
6815
6816 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6817 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6818 ipsq->ipsq_xop->ipx_reentry_cnt--;
6819 return;
6820 }
6821
6822 for (;;) {
6823 phyi = ipsq->ipsq_phyint;
6824 mp = ipsq_dq(ipsq);
6825 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6826
6827 /*
6828 * If we've changed to a new IPSQ, and the phyint associated
6829 * with the old one has gone away, free the old IPSQ. Note
6830 * that this cannot happen while the IPSQ is in a group.
6831 */
6832 if (mp_ipsq != ipsq && phyi == NULL) {
6833 ASSERT(ipsq->ipsq_next == ipsq);
6834 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6835 ipsq_delete(ipsq);
6836 }
6837
6838 if (mp == NULL)
6839 break;
6840
6841 q = mp->b_queue;
6842 func = (ipsq_func_t)mp->b_prev;
6843 ipsq = mp_ipsq;
6844 mp->b_next = mp->b_prev = NULL;
6845 mp->b_queue = NULL;
6846
6847 /*
6848 * If 'q' is an conn queue, it is valid, since we did a
6849 * a refhold on the conn at the start of the ioctl.
6850 * If 'q' is an ill queue, it is valid, since close of an
6851 * ill will clean up its IPSQ.
6852 */
6853 (*func)(ipsq, q, mp, NULL);
6854 }
6855 }
6856
6857 /*
6858 * Used to start any igmp or mld timers that could not be started
6859 * while holding ill_mcast_lock. The timers can't be started while holding
6860 * the lock, since mld/igmp_start_timers may need to call untimeout()
6861 * which can't be done while holding the lock which the timeout handler
6862 * acquires. Otherwise
6863 * there could be a deadlock since the timeout handlers
6864 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6865 * ill_mcast_lock.
6866 */
6867 void
ill_mcast_timer_start(ip_stack_t * ipst)6868 ill_mcast_timer_start(ip_stack_t *ipst)
6869 {
6870 int next;
6871
6872 mutex_enter(&ipst->ips_igmp_timer_lock);
6873 next = ipst->ips_igmp_deferred_next;
6874 ipst->ips_igmp_deferred_next = INFINITY;
6875 mutex_exit(&ipst->ips_igmp_timer_lock);
6876
6877 if (next != INFINITY)
6878 igmp_start_timers(next, ipst);
6879
6880 mutex_enter(&ipst->ips_mld_timer_lock);
6881 next = ipst->ips_mld_deferred_next;
6882 ipst->ips_mld_deferred_next = INFINITY;
6883 mutex_exit(&ipst->ips_mld_timer_lock);
6884
6885 if (next != INFINITY)
6886 mld_start_timers(next, ipst);
6887 }
6888
6889 /*
6890 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6891 * and `ioccmd'.
6892 */
6893 void
ipsq_current_start(ipsq_t * ipsq,ipif_t * ipif,int ioccmd)6894 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6895 {
6896 ill_t *ill = ipif->ipif_ill;
6897 ipxop_t *ipx = ipsq->ipsq_xop;
6898
6899 ASSERT(IAM_WRITER_IPSQ(ipsq));
6900 ASSERT(ipx->ipx_current_ipif == NULL);
6901 ASSERT(ipx->ipx_current_ioctl == 0);
6902
6903 ipx->ipx_current_done = B_FALSE;
6904 ipx->ipx_current_ioctl = ioccmd;
6905 mutex_enter(&ipx->ipx_lock);
6906 ipx->ipx_current_ipif = ipif;
6907 mutex_exit(&ipx->ipx_lock);
6908
6909 /*
6910 * Set IPIF_CHANGING on one or more ipifs associated with the
6911 * current exclusive operation. IPIF_CHANGING prevents any new
6912 * references to the ipif (so that the references will eventually
6913 * drop to zero) and also prevents any "get" operations (e.g.,
6914 * SIOCGLIFFLAGS) from being able to access the ipif until the
6915 * operation has completed and the ipif is again in a stable state.
6916 *
6917 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6918 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6919 * on the ill are marked with IPIF_CHANGING since it's unclear which
6920 * ipifs will be affected.
6921 *
6922 * Note that SIOCLIFREMOVEIF is a special case as it sets
6923 * IPIF_CONDEMNED internally after identifying the right ipif to
6924 * operate on.
6925 */
6926 switch (ioccmd) {
6927 case SIOCLIFREMOVEIF:
6928 break;
6929 case 0:
6930 mutex_enter(&ill->ill_lock);
6931 ipif = ipif->ipif_ill->ill_ipif;
6932 for (; ipif != NULL; ipif = ipif->ipif_next)
6933 ipif->ipif_state_flags |= IPIF_CHANGING;
6934 mutex_exit(&ill->ill_lock);
6935 break;
6936 default:
6937 mutex_enter(&ill->ill_lock);
6938 ipif->ipif_state_flags |= IPIF_CHANGING;
6939 mutex_exit(&ill->ill_lock);
6940 }
6941 }
6942
6943 /*
6944 * Finish the current exclusive operation on `ipsq'. Usually, this will allow
6945 * the next exclusive operation to begin once we ipsq_exit(). However, if
6946 * pending DLPI operations remain, then we will wait for the queue to drain
6947 * before allowing the next exclusive operation to begin. This ensures that
6948 * DLPI operations from one exclusive operation are never improperly processed
6949 * as part of a subsequent exclusive operation.
6950 */
6951 void
ipsq_current_finish(ipsq_t * ipsq)6952 ipsq_current_finish(ipsq_t *ipsq)
6953 {
6954 ipxop_t *ipx = ipsq->ipsq_xop;
6955 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6956 ipif_t *ipif = ipx->ipx_current_ipif;
6957
6958 ASSERT(IAM_WRITER_IPSQ(ipsq));
6959
6960 /*
6961 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6962 * (but in that case, IPIF_CHANGING will already be clear and no
6963 * pending DLPI messages can remain).
6964 */
6965 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6966 ill_t *ill = ipif->ipif_ill;
6967
6968 mutex_enter(&ill->ill_lock);
6969 dlpi_pending = ill->ill_dlpi_pending;
6970 if (ipx->ipx_current_ioctl == 0) {
6971 ipif = ill->ill_ipif;
6972 for (; ipif != NULL; ipif = ipif->ipif_next)
6973 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6974 } else {
6975 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6976 }
6977 mutex_exit(&ill->ill_lock);
6978 }
6979
6980 ASSERT(!ipx->ipx_current_done);
6981 ipx->ipx_current_done = B_TRUE;
6982 ipx->ipx_current_ioctl = 0;
6983 if (dlpi_pending == DL_PRIM_INVAL) {
6984 mutex_enter(&ipx->ipx_lock);
6985 ipx->ipx_current_ipif = NULL;
6986 mutex_exit(&ipx->ipx_lock);
6987 }
6988 }
6989
6990 /*
6991 * The ill is closing. Flush all messages on the ipsq that originated
6992 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6993 * for this ill since ipsq_enter could not have entered until then.
6994 * New messages can't be queued since the CONDEMNED flag is set.
6995 */
6996 static void
ipsq_flush(ill_t * ill)6997 ipsq_flush(ill_t *ill)
6998 {
6999 queue_t *q;
7000 mblk_t *prev;
7001 mblk_t *mp;
7002 mblk_t *mp_next;
7003 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7004
7005 ASSERT(IAM_WRITER_ILL(ill));
7006
7007 /*
7008 * Flush any messages sent up by the driver.
7009 */
7010 mutex_enter(&ipx->ipx_lock);
7011 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7012 mp_next = mp->b_next;
7013 q = mp->b_queue;
7014 if (q == ill->ill_rq || q == ill->ill_wq) {
7015 /* dequeue mp */
7016 if (prev == NULL)
7017 ipx->ipx_mphead = mp->b_next;
7018 else
7019 prev->b_next = mp->b_next;
7020 if (ipx->ipx_mptail == mp) {
7021 ASSERT(mp_next == NULL);
7022 ipx->ipx_mptail = prev;
7023 }
7024 inet_freemsg(mp);
7025 } else {
7026 prev = mp;
7027 }
7028 }
7029 mutex_exit(&ipx->ipx_lock);
7030 (void) ipsq_pending_mp_cleanup(ill, NULL);
7031 ipsq_xopq_mp_cleanup(ill, NULL);
7032 }
7033
7034 /*
7035 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7036 * and return the associated ipif.
7037 * Return value:
7038 * Non zero: An error has occurred. ci may not be filled out.
7039 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7040 * a held ipif in ci.ci_ipif.
7041 */
7042 int
ip_extract_lifreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)7043 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7044 cmd_info_t *ci)
7045 {
7046 char *name;
7047 struct ifreq *ifr;
7048 struct lifreq *lifr;
7049 ipif_t *ipif = NULL;
7050 ill_t *ill;
7051 conn_t *connp;
7052 boolean_t isv6;
7053 int err;
7054 mblk_t *mp1;
7055 zoneid_t zoneid;
7056 ip_stack_t *ipst;
7057
7058 if (q->q_next != NULL) {
7059 ill = (ill_t *)q->q_ptr;
7060 isv6 = ill->ill_isv6;
7061 connp = NULL;
7062 zoneid = ALL_ZONES;
7063 ipst = ill->ill_ipst;
7064 } else {
7065 ill = NULL;
7066 connp = Q_TO_CONN(q);
7067 isv6 = (connp->conn_family == AF_INET6);
7068 zoneid = connp->conn_zoneid;
7069 if (zoneid == GLOBAL_ZONEID) {
7070 /* global zone can access ipifs in all zones */
7071 zoneid = ALL_ZONES;
7072 }
7073 ipst = connp->conn_netstack->netstack_ip;
7074 }
7075
7076 /* Has been checked in ip_wput_nondata */
7077 mp1 = mp->b_cont->b_cont;
7078
7079 if (ipip->ipi_cmd_type == IF_CMD) {
7080 /* This a old style SIOC[GS]IF* command */
7081 ifr = (struct ifreq *)mp1->b_rptr;
7082 /*
7083 * Null terminate the string to protect against buffer
7084 * overrun. String was generated by user code and may not
7085 * be trusted.
7086 */
7087 ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7088 name = ifr->ifr_name;
7089 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7090 ci->ci_sin6 = NULL;
7091 ci->ci_lifr = (struct lifreq *)ifr;
7092 } else {
7093 /* This a new style SIOC[GS]LIF* command */
7094 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7095 lifr = (struct lifreq *)mp1->b_rptr;
7096 /*
7097 * Null terminate the string to protect against buffer
7098 * overrun. String was generated by user code and may not
7099 * be trusted.
7100 */
7101 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7102 name = lifr->lifr_name;
7103 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7104 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7105 ci->ci_lifr = lifr;
7106 }
7107
7108 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7109 /*
7110 * The ioctl will be failed if the ioctl comes down
7111 * an conn stream
7112 */
7113 if (ill == NULL) {
7114 /*
7115 * Not an ill queue, return EINVAL same as the
7116 * old error code.
7117 */
7118 return (ENXIO);
7119 }
7120 ipif = ill->ill_ipif;
7121 ipif_refhold(ipif);
7122 } else {
7123 /*
7124 * Ensure that ioctls don't see any internal state changes
7125 * caused by set ioctls by deferring them if IPIF_CHANGING is
7126 * set.
7127 */
7128 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7129 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7130 if (ipif == NULL) {
7131 if (err == EINPROGRESS)
7132 return (err);
7133 err = 0; /* Ensure we don't use it below */
7134 }
7135 }
7136
7137 /*
7138 * Old style [GS]IFCMD does not admit IPv6 ipif
7139 */
7140 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7141 ipif_refrele(ipif);
7142 return (ENXIO);
7143 }
7144
7145 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7146 name[0] == '\0') {
7147 /*
7148 * Handle a or a SIOC?IF* with a null name
7149 * during plumb (on the ill queue before the I_PLINK).
7150 */
7151 ipif = ill->ill_ipif;
7152 ipif_refhold(ipif);
7153 }
7154
7155 if (ipif == NULL)
7156 return (ENXIO);
7157
7158 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7159 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7160
7161 ci->ci_ipif = ipif;
7162 return (0);
7163 }
7164
7165 /*
7166 * Return the total number of ipifs.
7167 */
7168 static uint_t
ip_get_numifs(zoneid_t zoneid,ip_stack_t * ipst)7169 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7170 {
7171 uint_t numifs = 0;
7172 ill_t *ill;
7173 ill_walk_context_t ctx;
7174 ipif_t *ipif;
7175
7176 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7177 ill = ILL_START_WALK_V4(&ctx, ipst);
7178 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7179 if (IS_UNDER_IPMP(ill))
7180 continue;
7181 for (ipif = ill->ill_ipif; ipif != NULL;
7182 ipif = ipif->ipif_next) {
7183 if (ipif->ipif_zoneid == zoneid ||
7184 ipif->ipif_zoneid == ALL_ZONES)
7185 numifs++;
7186 }
7187 }
7188 rw_exit(&ipst->ips_ill_g_lock);
7189 return (numifs);
7190 }
7191
7192 /*
7193 * Return the total number of ipifs.
7194 */
7195 static uint_t
ip_get_numlifs(int family,int lifn_flags,zoneid_t zoneid,ip_stack_t * ipst)7196 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7197 {
7198 uint_t numifs = 0;
7199 ill_t *ill;
7200 ipif_t *ipif;
7201 ill_walk_context_t ctx;
7202
7203 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7204
7205 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7206 if (family == AF_INET)
7207 ill = ILL_START_WALK_V4(&ctx, ipst);
7208 else if (family == AF_INET6)
7209 ill = ILL_START_WALK_V6(&ctx, ipst);
7210 else
7211 ill = ILL_START_WALK_ALL(&ctx, ipst);
7212
7213 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7214 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7215 continue;
7216
7217 for (ipif = ill->ill_ipif; ipif != NULL;
7218 ipif = ipif->ipif_next) {
7219 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7220 !(lifn_flags & LIFC_NOXMIT))
7221 continue;
7222 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7223 !(lifn_flags & LIFC_TEMPORARY))
7224 continue;
7225 if (((ipif->ipif_flags &
7226 (IPIF_NOXMIT|IPIF_NOLOCAL|
7227 IPIF_DEPRECATED)) ||
7228 IS_LOOPBACK(ill) ||
7229 !(ipif->ipif_flags & IPIF_UP)) &&
7230 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7231 continue;
7232
7233 if (zoneid != ipif->ipif_zoneid &&
7234 ipif->ipif_zoneid != ALL_ZONES &&
7235 (zoneid != GLOBAL_ZONEID ||
7236 !(lifn_flags & LIFC_ALLZONES)))
7237 continue;
7238
7239 numifs++;
7240 }
7241 }
7242 rw_exit(&ipst->ips_ill_g_lock);
7243 return (numifs);
7244 }
7245
7246 uint_t
ip_get_lifsrcofnum(ill_t * ill)7247 ip_get_lifsrcofnum(ill_t *ill)
7248 {
7249 uint_t numifs = 0;
7250 ill_t *ill_head = ill;
7251 ip_stack_t *ipst = ill->ill_ipst;
7252
7253 /*
7254 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7255 * other thread may be trying to relink the ILLs in this usesrc group
7256 * and adjusting the ill_usesrc_grp_next pointers
7257 */
7258 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7259 if ((ill->ill_usesrc_ifindex == 0) &&
7260 (ill->ill_usesrc_grp_next != NULL)) {
7261 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7262 ill = ill->ill_usesrc_grp_next)
7263 numifs++;
7264 }
7265 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7266
7267 return (numifs);
7268 }
7269
7270 /* Null values are passed in for ipif, sin, and ifreq */
7271 /* ARGSUSED */
7272 int
ip_sioctl_get_ifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7273 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7274 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7275 {
7276 int *nump;
7277 conn_t *connp = Q_TO_CONN(q);
7278
7279 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7280
7281 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7282 nump = (int *)mp->b_cont->b_cont->b_rptr;
7283
7284 *nump = ip_get_numifs(connp->conn_zoneid,
7285 connp->conn_netstack->netstack_ip);
7286 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7287 return (0);
7288 }
7289
7290 /* Null values are passed in for ipif, sin, and ifreq */
7291 /* ARGSUSED */
7292 int
ip_sioctl_get_lifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7293 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7294 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7295 {
7296 struct lifnum *lifn;
7297 mblk_t *mp1;
7298 conn_t *connp = Q_TO_CONN(q);
7299
7300 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7301
7302 /* Existence checked in ip_wput_nondata */
7303 mp1 = mp->b_cont->b_cont;
7304
7305 lifn = (struct lifnum *)mp1->b_rptr;
7306 switch (lifn->lifn_family) {
7307 case AF_UNSPEC:
7308 case AF_INET:
7309 case AF_INET6:
7310 break;
7311 default:
7312 return (EAFNOSUPPORT);
7313 }
7314
7315 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7316 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7317 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7318 return (0);
7319 }
7320
7321 /* ARGSUSED */
7322 int
ip_sioctl_get_ifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7323 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7324 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7325 {
7326 STRUCT_HANDLE(ifconf, ifc);
7327 mblk_t *mp1;
7328 struct iocblk *iocp;
7329 struct ifreq *ifr;
7330 ill_walk_context_t ctx;
7331 ill_t *ill;
7332 ipif_t *ipif;
7333 struct sockaddr_in *sin;
7334 int32_t ifclen;
7335 zoneid_t zoneid;
7336 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7337
7338 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7339
7340 ip1dbg(("ip_sioctl_get_ifconf"));
7341 /* Existence verified in ip_wput_nondata */
7342 mp1 = mp->b_cont->b_cont;
7343 iocp = (struct iocblk *)mp->b_rptr;
7344 zoneid = Q_TO_CONN(q)->conn_zoneid;
7345
7346 /*
7347 * The original SIOCGIFCONF passed in a struct ifconf which specified
7348 * the user buffer address and length into which the list of struct
7349 * ifreqs was to be copied. Since AT&T Streams does not seem to
7350 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7351 * the SIOCGIFCONF operation was redefined to simply provide
7352 * a large output buffer into which we are supposed to jam the ifreq
7353 * array. The same ioctl command code was used, despite the fact that
7354 * both the applications and the kernel code had to change, thus making
7355 * it impossible to support both interfaces.
7356 *
7357 * For reasons not good enough to try to explain, the following
7358 * algorithm is used for deciding what to do with one of these:
7359 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7360 * form with the output buffer coming down as the continuation message.
7361 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7362 * and we have to copy in the ifconf structure to find out how big the
7363 * output buffer is and where to copy out to. Sure no problem...
7364 *
7365 */
7366 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7367 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7368 int numifs = 0;
7369 size_t ifc_bufsize;
7370
7371 /*
7372 * Must be (better be!) continuation of a TRANSPARENT
7373 * IOCTL. We just copied in the ifconf structure.
7374 */
7375 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7376 (struct ifconf *)mp1->b_rptr);
7377
7378 /*
7379 * Allocate a buffer to hold requested information.
7380 *
7381 * If ifc_len is larger than what is needed, we only
7382 * allocate what we will use.
7383 *
7384 * If ifc_len is smaller than what is needed, return
7385 * EINVAL.
7386 *
7387 * XXX: the ill_t structure can hava 2 counters, for
7388 * v4 and v6 (not just ill_ipif_up_count) to store the
7389 * number of interfaces for a device, so we don't need
7390 * to count them here...
7391 */
7392 numifs = ip_get_numifs(zoneid, ipst);
7393
7394 ifclen = STRUCT_FGET(ifc, ifc_len);
7395 ifc_bufsize = numifs * sizeof (struct ifreq);
7396 if (ifc_bufsize > ifclen) {
7397 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7398 /* old behaviour */
7399 return (EINVAL);
7400 } else {
7401 ifc_bufsize = ifclen;
7402 }
7403 }
7404
7405 mp1 = mi_copyout_alloc(q, mp,
7406 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7407 if (mp1 == NULL)
7408 return (ENOMEM);
7409
7410 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7411 }
7412 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7413 /*
7414 * the SIOCGIFCONF ioctl only knows about
7415 * IPv4 addresses, so don't try to tell
7416 * it about interfaces with IPv6-only
7417 * addresses. (Last parm 'isv6' is B_FALSE)
7418 */
7419
7420 ifr = (struct ifreq *)mp1->b_rptr;
7421
7422 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7423 ill = ILL_START_WALK_V4(&ctx, ipst);
7424 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7425 if (IS_UNDER_IPMP(ill))
7426 continue;
7427 for (ipif = ill->ill_ipif; ipif != NULL;
7428 ipif = ipif->ipif_next) {
7429 if (zoneid != ipif->ipif_zoneid &&
7430 ipif->ipif_zoneid != ALL_ZONES)
7431 continue;
7432 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7433 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7434 /* old behaviour */
7435 rw_exit(&ipst->ips_ill_g_lock);
7436 return (EINVAL);
7437 } else {
7438 goto if_copydone;
7439 }
7440 }
7441 ipif_get_name(ipif, ifr->ifr_name,
7442 sizeof (ifr->ifr_name));
7443 sin = (sin_t *)&ifr->ifr_addr;
7444 *sin = sin_null;
7445 sin->sin_family = AF_INET;
7446 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7447 ifr++;
7448 }
7449 }
7450 if_copydone:
7451 rw_exit(&ipst->ips_ill_g_lock);
7452 mp1->b_wptr = (uchar_t *)ifr;
7453
7454 if (STRUCT_BUF(ifc) != NULL) {
7455 STRUCT_FSET(ifc, ifc_len,
7456 (int)((uchar_t *)ifr - mp1->b_rptr));
7457 }
7458 return (0);
7459 }
7460
7461 /*
7462 * Get the interfaces using the address hosted on the interface passed in,
7463 * as a source adddress
7464 */
7465 /* ARGSUSED */
7466 int
ip_sioctl_get_lifsrcof(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7467 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7468 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7469 {
7470 mblk_t *mp1;
7471 ill_t *ill, *ill_head;
7472 ipif_t *ipif, *orig_ipif;
7473 int numlifs = 0;
7474 size_t lifs_bufsize, lifsmaxlen;
7475 struct lifreq *lifr;
7476 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7477 uint_t ifindex;
7478 zoneid_t zoneid;
7479 boolean_t isv6 = B_FALSE;
7480 struct sockaddr_in *sin;
7481 struct sockaddr_in6 *sin6;
7482 STRUCT_HANDLE(lifsrcof, lifs);
7483 ip_stack_t *ipst;
7484
7485 ipst = CONNQ_TO_IPST(q);
7486
7487 ASSERT(q->q_next == NULL);
7488
7489 zoneid = Q_TO_CONN(q)->conn_zoneid;
7490
7491 /* Existence verified in ip_wput_nondata */
7492 mp1 = mp->b_cont->b_cont;
7493
7494 /*
7495 * Must be (better be!) continuation of a TRANSPARENT
7496 * IOCTL. We just copied in the lifsrcof structure.
7497 */
7498 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7499 (struct lifsrcof *)mp1->b_rptr);
7500
7501 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7502 return (EINVAL);
7503
7504 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7505 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7506 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7507 if (ipif == NULL) {
7508 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7509 ifindex));
7510 return (ENXIO);
7511 }
7512
7513 /* Allocate a buffer to hold requested information */
7514 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7515 lifs_bufsize = numlifs * sizeof (struct lifreq);
7516 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7517 /* The actual size needed is always returned in lifs_len */
7518 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7519
7520 /* If the amount we need is more than what is passed in, abort */
7521 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7522 ipif_refrele(ipif);
7523 return (0);
7524 }
7525
7526 mp1 = mi_copyout_alloc(q, mp,
7527 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7528 if (mp1 == NULL) {
7529 ipif_refrele(ipif);
7530 return (ENOMEM);
7531 }
7532
7533 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7534 bzero(mp1->b_rptr, lifs_bufsize);
7535
7536 lifr = (struct lifreq *)mp1->b_rptr;
7537
7538 ill = ill_head = ipif->ipif_ill;
7539 orig_ipif = ipif;
7540
7541 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7542 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7543 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7544
7545 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7546 for (; (ill != NULL) && (ill != ill_head);
7547 ill = ill->ill_usesrc_grp_next) {
7548
7549 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7550 break;
7551
7552 ipif = ill->ill_ipif;
7553 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7554 if (ipif->ipif_isv6) {
7555 sin6 = (sin6_t *)&lifr->lifr_addr;
7556 *sin6 = sin6_null;
7557 sin6->sin6_family = AF_INET6;
7558 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7559 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7560 &ipif->ipif_v6net_mask);
7561 } else {
7562 sin = (sin_t *)&lifr->lifr_addr;
7563 *sin = sin_null;
7564 sin->sin_family = AF_INET;
7565 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7566 lifr->lifr_addrlen = ip_mask_to_plen(
7567 ipif->ipif_net_mask);
7568 }
7569 lifr++;
7570 }
7571 rw_exit(&ipst->ips_ill_g_lock);
7572 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7573 ipif_refrele(orig_ipif);
7574 mp1->b_wptr = (uchar_t *)lifr;
7575 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7576
7577 return (0);
7578 }
7579
7580 /* ARGSUSED */
7581 int
ip_sioctl_get_lifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7582 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7583 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7584 {
7585 mblk_t *mp1;
7586 int list;
7587 ill_t *ill;
7588 ipif_t *ipif;
7589 int flags;
7590 int numlifs = 0;
7591 size_t lifc_bufsize;
7592 struct lifreq *lifr;
7593 sa_family_t family;
7594 struct sockaddr_in *sin;
7595 struct sockaddr_in6 *sin6;
7596 ill_walk_context_t ctx;
7597 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7598 int32_t lifclen;
7599 zoneid_t zoneid;
7600 STRUCT_HANDLE(lifconf, lifc);
7601 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7602
7603 ip1dbg(("ip_sioctl_get_lifconf"));
7604
7605 ASSERT(q->q_next == NULL);
7606
7607 zoneid = Q_TO_CONN(q)->conn_zoneid;
7608
7609 /* Existence verified in ip_wput_nondata */
7610 mp1 = mp->b_cont->b_cont;
7611
7612 /*
7613 * An extended version of SIOCGIFCONF that takes an
7614 * additional address family and flags field.
7615 * AF_UNSPEC retrieve both IPv4 and IPv6.
7616 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7617 * interfaces are omitted.
7618 * Similarly, IPIF_TEMPORARY interfaces are omitted
7619 * unless LIFC_TEMPORARY is specified.
7620 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7621 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7622 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7623 * has priority over LIFC_NOXMIT.
7624 */
7625 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7626
7627 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7628 return (EINVAL);
7629
7630 /*
7631 * Must be (better be!) continuation of a TRANSPARENT
7632 * IOCTL. We just copied in the lifconf structure.
7633 */
7634 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7635
7636 family = STRUCT_FGET(lifc, lifc_family);
7637 flags = STRUCT_FGET(lifc, lifc_flags);
7638
7639 switch (family) {
7640 case AF_UNSPEC:
7641 /*
7642 * walk all ILL's.
7643 */
7644 list = MAX_G_HEADS;
7645 break;
7646 case AF_INET:
7647 /*
7648 * walk only IPV4 ILL's.
7649 */
7650 list = IP_V4_G_HEAD;
7651 break;
7652 case AF_INET6:
7653 /*
7654 * walk only IPV6 ILL's.
7655 */
7656 list = IP_V6_G_HEAD;
7657 break;
7658 default:
7659 return (EAFNOSUPPORT);
7660 }
7661
7662 /*
7663 * Allocate a buffer to hold requested information.
7664 *
7665 * If lifc_len is larger than what is needed, we only
7666 * allocate what we will use.
7667 *
7668 * If lifc_len is smaller than what is needed, return
7669 * EINVAL.
7670 */
7671 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7672 lifc_bufsize = numlifs * sizeof (struct lifreq);
7673 lifclen = STRUCT_FGET(lifc, lifc_len);
7674 if (lifc_bufsize > lifclen) {
7675 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7676 return (EINVAL);
7677 else
7678 lifc_bufsize = lifclen;
7679 }
7680
7681 mp1 = mi_copyout_alloc(q, mp,
7682 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7683 if (mp1 == NULL)
7684 return (ENOMEM);
7685
7686 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7687 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7688
7689 lifr = (struct lifreq *)mp1->b_rptr;
7690
7691 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7692 ill = ill_first(list, list, &ctx, ipst);
7693 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7694 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7695 continue;
7696
7697 for (ipif = ill->ill_ipif; ipif != NULL;
7698 ipif = ipif->ipif_next) {
7699 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7700 !(flags & LIFC_NOXMIT))
7701 continue;
7702
7703 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7704 !(flags & LIFC_TEMPORARY))
7705 continue;
7706
7707 if (((ipif->ipif_flags &
7708 (IPIF_NOXMIT|IPIF_NOLOCAL|
7709 IPIF_DEPRECATED)) ||
7710 IS_LOOPBACK(ill) ||
7711 !(ipif->ipif_flags & IPIF_UP)) &&
7712 (flags & LIFC_EXTERNAL_SOURCE))
7713 continue;
7714
7715 if (zoneid != ipif->ipif_zoneid &&
7716 ipif->ipif_zoneid != ALL_ZONES &&
7717 (zoneid != GLOBAL_ZONEID ||
7718 !(flags & LIFC_ALLZONES)))
7719 continue;
7720
7721 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7722 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7723 rw_exit(&ipst->ips_ill_g_lock);
7724 return (EINVAL);
7725 } else {
7726 goto lif_copydone;
7727 }
7728 }
7729
7730 ipif_get_name(ipif, lifr->lifr_name,
7731 sizeof (lifr->lifr_name));
7732 lifr->lifr_type = ill->ill_type;
7733 if (ipif->ipif_isv6) {
7734 sin6 = (sin6_t *)&lifr->lifr_addr;
7735 *sin6 = sin6_null;
7736 sin6->sin6_family = AF_INET6;
7737 sin6->sin6_addr =
7738 ipif->ipif_v6lcl_addr;
7739 lifr->lifr_addrlen =
7740 ip_mask_to_plen_v6(
7741 &ipif->ipif_v6net_mask);
7742 } else {
7743 sin = (sin_t *)&lifr->lifr_addr;
7744 *sin = sin_null;
7745 sin->sin_family = AF_INET;
7746 sin->sin_addr.s_addr =
7747 ipif->ipif_lcl_addr;
7748 lifr->lifr_addrlen =
7749 ip_mask_to_plen(
7750 ipif->ipif_net_mask);
7751 }
7752 lifr++;
7753 }
7754 }
7755 lif_copydone:
7756 rw_exit(&ipst->ips_ill_g_lock);
7757
7758 mp1->b_wptr = (uchar_t *)lifr;
7759 if (STRUCT_BUF(lifc) != NULL) {
7760 STRUCT_FSET(lifc, lifc_len,
7761 (int)((uchar_t *)lifr - mp1->b_rptr));
7762 }
7763 return (0);
7764 }
7765
7766 static void
ip_sioctl_ip6addrpolicy(queue_t * q,mblk_t * mp)7767 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7768 {
7769 ip6_asp_t *table;
7770 size_t table_size;
7771 mblk_t *data_mp;
7772 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7773 ip_stack_t *ipst;
7774
7775 if (q->q_next == NULL)
7776 ipst = CONNQ_TO_IPST(q);
7777 else
7778 ipst = ILLQ_TO_IPST(q);
7779
7780 /* These two ioctls are I_STR only */
7781 if (iocp->ioc_count == TRANSPARENT) {
7782 miocnak(q, mp, 0, EINVAL);
7783 return;
7784 }
7785
7786 data_mp = mp->b_cont;
7787 if (data_mp == NULL) {
7788 /* The user passed us a NULL argument */
7789 table = NULL;
7790 table_size = iocp->ioc_count;
7791 } else {
7792 /*
7793 * The user provided a table. The stream head
7794 * may have copied in the user data in chunks,
7795 * so make sure everything is pulled up
7796 * properly.
7797 */
7798 if (MBLKL(data_mp) < iocp->ioc_count) {
7799 mblk_t *new_data_mp;
7800 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7801 NULL) {
7802 miocnak(q, mp, 0, ENOMEM);
7803 return;
7804 }
7805 freemsg(data_mp);
7806 data_mp = new_data_mp;
7807 mp->b_cont = data_mp;
7808 }
7809 table = (ip6_asp_t *)data_mp->b_rptr;
7810 table_size = iocp->ioc_count;
7811 }
7812
7813 switch (iocp->ioc_cmd) {
7814 case SIOCGIP6ADDRPOLICY:
7815 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7816 if (iocp->ioc_rval == -1)
7817 iocp->ioc_error = EINVAL;
7818 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7819 else if (table != NULL &&
7820 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7821 ip6_asp_t *src = table;
7822 ip6_asp32_t *dst = (void *)table;
7823 int count = table_size / sizeof (ip6_asp_t);
7824 int i;
7825
7826 /*
7827 * We need to do an in-place shrink of the array
7828 * to match the alignment attributes of the
7829 * 32-bit ABI looking at it.
7830 */
7831 /* LINTED: logical expression always true: op "||" */
7832 ASSERT(sizeof (*src) > sizeof (*dst));
7833 for (i = 1; i < count; i++)
7834 bcopy(src + i, dst + i, sizeof (*dst));
7835 }
7836 #endif
7837 break;
7838
7839 case SIOCSIP6ADDRPOLICY:
7840 ASSERT(mp->b_prev == NULL);
7841 mp->b_prev = (void *)q;
7842 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7843 /*
7844 * We pass in the datamodel here so that the ip6_asp_replace()
7845 * routine can handle converting from 32-bit to native formats
7846 * where necessary.
7847 *
7848 * A better way to handle this might be to convert the inbound
7849 * data structure here, and hang it off a new 'mp'; thus the
7850 * ip6_asp_replace() logic would always be dealing with native
7851 * format data structures..
7852 *
7853 * (An even simpler way to handle these ioctls is to just
7854 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7855 * and just recompile everything that depends on it.)
7856 */
7857 #endif
7858 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7859 iocp->ioc_flag & IOC_MODELS);
7860 return;
7861 }
7862
7863 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7864 qreply(q, mp);
7865 }
7866
7867 static void
ip_sioctl_dstinfo(queue_t * q,mblk_t * mp)7868 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7869 {
7870 mblk_t *data_mp;
7871 struct dstinforeq *dir;
7872 uint8_t *end, *cur;
7873 in6_addr_t *daddr, *saddr;
7874 ipaddr_t v4daddr;
7875 ire_t *ire;
7876 ipaddr_t v4setsrc;
7877 in6_addr_t v6setsrc;
7878 char *slabel, *dlabel;
7879 boolean_t isipv4;
7880 int match_ire;
7881 ill_t *dst_ill;
7882 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7883 conn_t *connp = Q_TO_CONN(q);
7884 zoneid_t zoneid = IPCL_ZONEID(connp);
7885 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7886 uint64_t ipif_flags;
7887
7888 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7889
7890 /*
7891 * This ioctl is I_STR only, and must have a
7892 * data mblk following the M_IOCTL mblk.
7893 */
7894 data_mp = mp->b_cont;
7895 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7896 miocnak(q, mp, 0, EINVAL);
7897 return;
7898 }
7899
7900 if (MBLKL(data_mp) < iocp->ioc_count) {
7901 mblk_t *new_data_mp;
7902
7903 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7904 miocnak(q, mp, 0, ENOMEM);
7905 return;
7906 }
7907 freemsg(data_mp);
7908 data_mp = new_data_mp;
7909 mp->b_cont = data_mp;
7910 }
7911 match_ire = MATCH_IRE_DSTONLY;
7912
7913 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7914 end - cur >= sizeof (struct dstinforeq);
7915 cur += sizeof (struct dstinforeq)) {
7916 dir = (struct dstinforeq *)cur;
7917 daddr = &dir->dir_daddr;
7918 saddr = &dir->dir_saddr;
7919
7920 /*
7921 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7922 * v4 mapped addresses; ire_ftable_lookup_v6()
7923 * and ip_select_source_v6() do not.
7924 */
7925 dir->dir_dscope = ip_addr_scope_v6(daddr);
7926 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7927
7928 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7929 if (isipv4) {
7930 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7931 v4setsrc = INADDR_ANY;
7932 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7933 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7934 NULL, NULL);
7935 } else {
7936 v6setsrc = ipv6_all_zeros;
7937 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7938 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7939 NULL, NULL);
7940 }
7941 ASSERT(ire != NULL);
7942 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7943 ire_refrele(ire);
7944 dir->dir_dreachable = 0;
7945
7946 /* move on to next dst addr */
7947 continue;
7948 }
7949 dir->dir_dreachable = 1;
7950
7951 dst_ill = ire_nexthop_ill(ire);
7952 if (dst_ill == NULL) {
7953 ire_refrele(ire);
7954 continue;
7955 }
7956
7957 /* With ipmp we most likely look at the ipmp ill here */
7958 dir->dir_dmactype = dst_ill->ill_mactype;
7959
7960 if (isipv4) {
7961 ipaddr_t v4saddr;
7962
7963 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7964 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7965 &v4saddr, NULL, &ipif_flags) != 0) {
7966 v4saddr = INADDR_ANY;
7967 ipif_flags = 0;
7968 }
7969 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7970 } else {
7971 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7972 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7973 saddr, NULL, &ipif_flags) != 0) {
7974 *saddr = ipv6_all_zeros;
7975 ipif_flags = 0;
7976 }
7977 }
7978
7979 dir->dir_sscope = ip_addr_scope_v6(saddr);
7980 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7981 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7982 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7983 ire_refrele(ire);
7984 ill_refrele(dst_ill);
7985 }
7986 miocack(q, mp, iocp->ioc_count, 0);
7987 }
7988
7989 /*
7990 * Check if this is an address assigned to this machine.
7991 * Skips interfaces that are down by using ire checks.
7992 * Translates mapped addresses to v4 addresses and then
7993 * treats them as such, returning true if the v4 address
7994 * associated with this mapped address is configured.
7995 * Note: Applications will have to be careful what they do
7996 * with the response; use of mapped addresses limits
7997 * what can be done with the socket, especially with
7998 * respect to socket options and ioctls - neither IPv4
7999 * options nor IPv6 sticky options/ancillary data options
8000 * may be used.
8001 */
8002 /* ARGSUSED */
8003 int
ip_sioctl_tmyaddr(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8004 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8005 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8006 {
8007 struct sioc_addrreq *sia;
8008 sin_t *sin;
8009 ire_t *ire;
8010 mblk_t *mp1;
8011 zoneid_t zoneid;
8012 ip_stack_t *ipst;
8013
8014 ip1dbg(("ip_sioctl_tmyaddr"));
8015
8016 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8017 zoneid = Q_TO_CONN(q)->conn_zoneid;
8018 ipst = CONNQ_TO_IPST(q);
8019
8020 /* Existence verified in ip_wput_nondata */
8021 mp1 = mp->b_cont->b_cont;
8022 sia = (struct sioc_addrreq *)mp1->b_rptr;
8023 sin = (sin_t *)&sia->sa_addr;
8024 switch (sin->sin_family) {
8025 case AF_INET6: {
8026 sin6_t *sin6 = (sin6_t *)sin;
8027
8028 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8029 ipaddr_t v4_addr;
8030
8031 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8032 v4_addr);
8033 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8034 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8035 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8036 } else {
8037 in6_addr_t v6addr;
8038
8039 v6addr = sin6->sin6_addr;
8040 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8041 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8042 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8043 }
8044 break;
8045 }
8046 case AF_INET: {
8047 ipaddr_t v4addr;
8048
8049 v4addr = sin->sin_addr.s_addr;
8050 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8051 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8052 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8053 break;
8054 }
8055 default:
8056 return (EAFNOSUPPORT);
8057 }
8058 if (ire != NULL) {
8059 sia->sa_res = 1;
8060 ire_refrele(ire);
8061 } else {
8062 sia->sa_res = 0;
8063 }
8064 return (0);
8065 }
8066
8067 /*
8068 * Check if this is an address assigned on-link i.e. neighbor,
8069 * and makes sure it's reachable from the current zone.
8070 * Returns true for my addresses as well.
8071 * Translates mapped addresses to v4 addresses and then
8072 * treats them as such, returning true if the v4 address
8073 * associated with this mapped address is configured.
8074 * Note: Applications will have to be careful what they do
8075 * with the response; use of mapped addresses limits
8076 * what can be done with the socket, especially with
8077 * respect to socket options and ioctls - neither IPv4
8078 * options nor IPv6 sticky options/ancillary data options
8079 * may be used.
8080 */
8081 /* ARGSUSED */
8082 int
ip_sioctl_tonlink(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * duymmy_ifreq)8083 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8084 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8085 {
8086 struct sioc_addrreq *sia;
8087 sin_t *sin;
8088 mblk_t *mp1;
8089 ire_t *ire = NULL;
8090 zoneid_t zoneid;
8091 ip_stack_t *ipst;
8092
8093 ip1dbg(("ip_sioctl_tonlink"));
8094
8095 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8096 zoneid = Q_TO_CONN(q)->conn_zoneid;
8097 ipst = CONNQ_TO_IPST(q);
8098
8099 /* Existence verified in ip_wput_nondata */
8100 mp1 = mp->b_cont->b_cont;
8101 sia = (struct sioc_addrreq *)mp1->b_rptr;
8102 sin = (sin_t *)&sia->sa_addr;
8103
8104 /*
8105 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8106 * to make sure we only look at on-link unicast address.
8107 */
8108 switch (sin->sin_family) {
8109 case AF_INET6: {
8110 sin6_t *sin6 = (sin6_t *)sin;
8111
8112 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8113 ipaddr_t v4_addr;
8114
8115 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8116 v4_addr);
8117 if (!CLASSD(v4_addr)) {
8118 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8119 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8120 0, ipst, NULL);
8121 }
8122 } else {
8123 in6_addr_t v6addr;
8124
8125 v6addr = sin6->sin6_addr;
8126 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8127 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8128 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8129 ipst, NULL);
8130 }
8131 }
8132 break;
8133 }
8134 case AF_INET: {
8135 ipaddr_t v4addr;
8136
8137 v4addr = sin->sin_addr.s_addr;
8138 if (!CLASSD(v4addr)) {
8139 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8140 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8141 }
8142 break;
8143 }
8144 default:
8145 return (EAFNOSUPPORT);
8146 }
8147 sia->sa_res = 0;
8148 if (ire != NULL) {
8149 ASSERT(!(ire->ire_type & IRE_MULTICAST));
8150
8151 if ((ire->ire_type & IRE_ONLINK) &&
8152 !(ire->ire_type & IRE_BROADCAST))
8153 sia->sa_res = 1;
8154 ire_refrele(ire);
8155 }
8156 return (0);
8157 }
8158
8159 /*
8160 * TBD: implement when kernel maintaines a list of site prefixes.
8161 */
8162 /* ARGSUSED */
8163 int
ip_sioctl_tmysite(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)8164 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8165 ip_ioctl_cmd_t *ipip, void *ifreq)
8166 {
8167 return (ENXIO);
8168 }
8169
8170 /* ARP IOCTLs. */
8171 /* ARGSUSED */
8172 int
ip_sioctl_arp(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8173 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8174 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8175 {
8176 int err;
8177 ipaddr_t ipaddr;
8178 struct iocblk *iocp;
8179 conn_t *connp;
8180 struct arpreq *ar;
8181 struct xarpreq *xar;
8182 int arp_flags, flags, alength;
8183 uchar_t *lladdr;
8184 ip_stack_t *ipst;
8185 ill_t *ill = ipif->ipif_ill;
8186 ill_t *proxy_ill = NULL;
8187 ipmp_arpent_t *entp = NULL;
8188 boolean_t proxyarp = B_FALSE;
8189 boolean_t if_arp_ioctl = B_FALSE;
8190 ncec_t *ncec = NULL;
8191 nce_t *nce;
8192
8193 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8194 connp = Q_TO_CONN(q);
8195 ipst = connp->conn_netstack->netstack_ip;
8196 iocp = (struct iocblk *)mp->b_rptr;
8197
8198 if (ipip->ipi_cmd_type == XARP_CMD) {
8199 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8200 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8201 ar = NULL;
8202
8203 arp_flags = xar->xarp_flags;
8204 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8205 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8206 /*
8207 * Validate against user's link layer address length
8208 * input and name and addr length limits.
8209 */
8210 alength = ill->ill_phys_addr_length;
8211 if (ipip->ipi_cmd == SIOCSXARP) {
8212 if (alength != xar->xarp_ha.sdl_alen ||
8213 (alength + xar->xarp_ha.sdl_nlen >
8214 sizeof (xar->xarp_ha.sdl_data)))
8215 return (EINVAL);
8216 }
8217 } else {
8218 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8219 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8220 xar = NULL;
8221
8222 arp_flags = ar->arp_flags;
8223 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8224 /*
8225 * Theoretically, the sa_family could tell us what link
8226 * layer type this operation is trying to deal with. By
8227 * common usage AF_UNSPEC means ethernet. We'll assume
8228 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8229 * for now. Our new SIOC*XARP ioctls can be used more
8230 * generally.
8231 *
8232 * If the underlying media happens to have a non 6 byte
8233 * address, arp module will fail set/get, but the del
8234 * operation will succeed.
8235 */
8236 alength = 6;
8237 if ((ipip->ipi_cmd != SIOCDARP) &&
8238 (alength != ill->ill_phys_addr_length)) {
8239 return (EINVAL);
8240 }
8241 }
8242
8243 /* Translate ATF* flags to NCE* flags */
8244 flags = 0;
8245 if (arp_flags & ATF_AUTHORITY)
8246 flags |= NCE_F_AUTHORITY;
8247 if (arp_flags & ATF_PERM)
8248 flags |= NCE_F_NONUD; /* not subject to aging */
8249 if (arp_flags & ATF_PUBL)
8250 flags |= NCE_F_PUBLISH;
8251
8252 /*
8253 * IPMP ARP special handling:
8254 *
8255 * 1. Since ARP mappings must appear consistent across the group,
8256 * prohibit changing ARP mappings on the underlying interfaces.
8257 *
8258 * 2. Since ARP mappings for IPMP data addresses are maintained by
8259 * IP itself, prohibit changing them.
8260 *
8261 * 3. For proxy ARP, use a functioning hardware address in the group,
8262 * provided one exists. If one doesn't, just add the entry as-is;
8263 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8264 */
8265 if (IS_UNDER_IPMP(ill)) {
8266 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8267 return (EPERM);
8268 }
8269 if (IS_IPMP(ill)) {
8270 ipmp_illgrp_t *illg = ill->ill_grp;
8271
8272 switch (ipip->ipi_cmd) {
8273 case SIOCSARP:
8274 case SIOCSXARP:
8275 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8276 if (proxy_ill != NULL) {
8277 proxyarp = B_TRUE;
8278 if (!ipmp_ill_is_active(proxy_ill))
8279 proxy_ill = ipmp_illgrp_next_ill(illg);
8280 if (proxy_ill != NULL)
8281 lladdr = proxy_ill->ill_phys_addr;
8282 }
8283 /* FALLTHRU */
8284 }
8285 }
8286
8287 ipaddr = sin->sin_addr.s_addr;
8288 /*
8289 * don't match across illgrp per case (1) and (2).
8290 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8291 */
8292 nce = nce_lookup_v4(ill, &ipaddr);
8293 if (nce != NULL)
8294 ncec = nce->nce_common;
8295
8296 switch (iocp->ioc_cmd) {
8297 case SIOCDARP:
8298 case SIOCDXARP: {
8299 /*
8300 * Delete the NCE if any.
8301 */
8302 if (ncec == NULL) {
8303 iocp->ioc_error = ENXIO;
8304 break;
8305 }
8306 /* Don't allow changes to arp mappings of local addresses. */
8307 if (NCE_MYADDR(ncec)) {
8308 nce_refrele(nce);
8309 return (ENOTSUP);
8310 }
8311 iocp->ioc_error = 0;
8312
8313 /*
8314 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8315 * This will delete all the nce entries on the under_ills.
8316 */
8317 ncec_delete(ncec);
8318 /*
8319 * Once the NCE has been deleted, then the ire_dep* consistency
8320 * mechanism will find any IRE which depended on the now
8321 * condemned NCE (as part of sending packets).
8322 * That mechanism handles redirects by deleting redirects
8323 * that refer to UNREACHABLE nces.
8324 */
8325 break;
8326 }
8327 case SIOCGARP:
8328 case SIOCGXARP:
8329 if (ncec != NULL) {
8330 lladdr = ncec->ncec_lladdr;
8331 flags = ncec->ncec_flags;
8332 iocp->ioc_error = 0;
8333 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8334 } else {
8335 iocp->ioc_error = ENXIO;
8336 }
8337 break;
8338 case SIOCSARP:
8339 case SIOCSXARP:
8340 /* Don't allow changes to arp mappings of local addresses. */
8341 if (ncec != NULL && NCE_MYADDR(ncec)) {
8342 nce_refrele(nce);
8343 return (ENOTSUP);
8344 }
8345
8346 /* static arp entries will undergo NUD if ATF_PERM is not set */
8347 flags |= NCE_F_STATIC;
8348 if (!if_arp_ioctl) {
8349 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8350 lladdr, alength, flags);
8351 } else {
8352 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8353 if (ipif != NULL) {
8354 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8355 lladdr, alength, flags);
8356 ipif_refrele(ipif);
8357 }
8358 }
8359 if (nce != NULL) {
8360 nce_refrele(nce);
8361 nce = NULL;
8362 }
8363 /*
8364 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8365 * by nce_add_common()
8366 */
8367 err = nce_lookup_then_add_v4(ill, lladdr,
8368 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8369 &nce);
8370 if (err == EEXIST) {
8371 ncec = nce->nce_common;
8372 mutex_enter(&ncec->ncec_lock);
8373 ncec->ncec_state = ND_REACHABLE;
8374 ncec->ncec_flags = flags;
8375 nce_update(ncec, ND_UNCHANGED, lladdr);
8376 mutex_exit(&ncec->ncec_lock);
8377 err = 0;
8378 }
8379 if (nce != NULL) {
8380 nce_refrele(nce);
8381 nce = NULL;
8382 }
8383 if (IS_IPMP(ill) && err == 0) {
8384 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8385 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8386 flags);
8387 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8388 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8389 break;
8390 }
8391 }
8392 iocp->ioc_error = err;
8393 }
8394
8395 if (nce != NULL) {
8396 nce_refrele(nce);
8397 }
8398
8399 /*
8400 * If we created an IPMP ARP entry, mark that we've notified ARP.
8401 */
8402 if (entp != NULL)
8403 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8404
8405 return (iocp->ioc_error);
8406 }
8407
8408 /*
8409 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8410 * the associated sin and refhold and return the associated ipif via `ci'.
8411 */
8412 int
ip_extract_arpreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)8413 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8414 cmd_info_t *ci)
8415 {
8416 mblk_t *mp1;
8417 sin_t *sin;
8418 conn_t *connp;
8419 ipif_t *ipif;
8420 ire_t *ire = NULL;
8421 ill_t *ill = NULL;
8422 boolean_t exists;
8423 ip_stack_t *ipst;
8424 struct arpreq *ar;
8425 struct xarpreq *xar;
8426 struct sockaddr_dl *sdl;
8427
8428 /* ioctl comes down on a conn */
8429 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8430 connp = Q_TO_CONN(q);
8431 if (connp->conn_family == AF_INET6)
8432 return (ENXIO);
8433
8434 ipst = connp->conn_netstack->netstack_ip;
8435
8436 /* Verified in ip_wput_nondata */
8437 mp1 = mp->b_cont->b_cont;
8438
8439 if (ipip->ipi_cmd_type == XARP_CMD) {
8440 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8441 xar = (struct xarpreq *)mp1->b_rptr;
8442 sin = (sin_t *)&xar->xarp_pa;
8443 sdl = &xar->xarp_ha;
8444
8445 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8446 return (ENXIO);
8447 if (sdl->sdl_nlen >= LIFNAMSIZ)
8448 return (EINVAL);
8449 } else {
8450 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8451 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8452 ar = (struct arpreq *)mp1->b_rptr;
8453 sin = (sin_t *)&ar->arp_pa;
8454 }
8455
8456 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8457 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8458 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8459 if (ipif == NULL)
8460 return (ENXIO);
8461 if (ipif->ipif_id != 0) {
8462 ipif_refrele(ipif);
8463 return (ENXIO);
8464 }
8465 } else {
8466 /*
8467 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8468 * of 0: use the IP address to find the ipif. If the IP
8469 * address is an IPMP test address, ire_ftable_lookup() will
8470 * find the wrong ill, so we first do an ipif_lookup_addr().
8471 */
8472 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8473 ipst);
8474 if (ipif == NULL) {
8475 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8476 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8477 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8478 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8479 if (ire != NULL)
8480 ire_refrele(ire);
8481 return (ENXIO);
8482 }
8483 ASSERT(ire != NULL && ill != NULL);
8484 ipif = ill->ill_ipif;
8485 ipif_refhold(ipif);
8486 ire_refrele(ire);
8487 }
8488 }
8489
8490 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8491 ipif_refrele(ipif);
8492 return (ENXIO);
8493 }
8494
8495 ci->ci_sin = sin;
8496 ci->ci_ipif = ipif;
8497 return (0);
8498 }
8499
8500 /*
8501 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8502 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is
8503 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8504 * up and thus an ill can join that illgrp.
8505 *
8506 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8507 * open()/close() primarily because close() is not allowed to fail or block
8508 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason
8509 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8510 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8511 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8512 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8513 * state if I_UNLINK didn't occur.
8514 *
8515 * Note that for each plumb/unplumb operation, we may end up here more than
8516 * once because of the way ifconfig works. However, it's OK to link the same
8517 * illgrp more than once, or unlink an illgrp that's already unlinked.
8518 */
8519 static int
ip_sioctl_plink_ipmp(ill_t * ill,int ioccmd)8520 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8521 {
8522 int err;
8523 ip_stack_t *ipst = ill->ill_ipst;
8524
8525 ASSERT(IS_IPMP(ill));
8526 ASSERT(IAM_WRITER_ILL(ill));
8527
8528 switch (ioccmd) {
8529 case I_LINK:
8530 return (ENOTSUP);
8531
8532 case I_PLINK:
8533 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8534 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8535 rw_exit(&ipst->ips_ipmp_lock);
8536 break;
8537
8538 case I_PUNLINK:
8539 /*
8540 * Require all UP ipifs be brought down prior to unlinking the
8541 * illgrp so any associated IREs (and other state) is torched.
8542 */
8543 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8544 return (EBUSY);
8545
8546 /*
8547 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8548 * with an SIOCSLIFGROUPNAME request from an ill trying to
8549 * join this group. Specifically: ills trying to join grab
8550 * ipmp_lock and bump a "pending join" counter checked by
8551 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8552 * joins can occur (since we have ipmp_lock). Once we drop
8553 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8554 * find the illgrp (since we unlinked it) and will return
8555 * EAFNOSUPPORT. This will then take them back through the
8556 * IPMP meta-interface plumbing logic in ifconfig, and thus
8557 * back through I_PLINK above.
8558 */
8559 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8560 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8561 rw_exit(&ipst->ips_ipmp_lock);
8562 return (err);
8563 default:
8564 break;
8565 }
8566 return (0);
8567 }
8568
8569 /*
8570 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8571 * atomically set/clear the muxids. Also complete the ioctl by acking or
8572 * naking it. Note that the code is structured such that the link type,
8573 * whether it's persistent or not, is treated equally. ifconfig(1M) and
8574 * its clones use the persistent link, while pppd(1M) and perhaps many
8575 * other daemons may use non-persistent link. When combined with some
8576 * ill_t states, linking and unlinking lower streams may be used as
8577 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8578 */
8579 /* ARGSUSED */
8580 void
ip_sioctl_plink(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)8581 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8582 {
8583 mblk_t *mp1;
8584 struct linkblk *li;
8585 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8586 int err = 0;
8587
8588 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8589 ioccmd == I_LINK || ioccmd == I_UNLINK);
8590
8591 mp1 = mp->b_cont; /* This is the linkblk info */
8592 li = (struct linkblk *)mp1->b_rptr;
8593
8594 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8595 if (err == EINPROGRESS)
8596 return;
8597 if (err == 0)
8598 miocack(q, mp, 0, 0);
8599 else
8600 miocnak(q, mp, 0, err);
8601
8602 /* Conn was refheld in ip_sioctl_copyin_setup */
8603 if (CONN_Q(q)) {
8604 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8605 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8606 }
8607 }
8608
8609 /*
8610 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8611 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8612 * module stream).
8613 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8614 * an error code on failure.
8615 */
8616 static int
ip_sioctl_plink_ipmod(ipsq_t * ipsq,queue_t * q,mblk_t * mp,int ioccmd,struct linkblk * li)8617 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8618 struct linkblk *li)
8619 {
8620 int err = 0;
8621 ill_t *ill;
8622 queue_t *ipwq, *dwq;
8623 const char *name;
8624 struct qinit *qinfo;
8625 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8626 boolean_t entered_ipsq = B_FALSE;
8627 boolean_t is_ip = B_FALSE;
8628 arl_t *arl;
8629
8630 /*
8631 * Walk the lower stream to verify it's the IP module stream.
8632 * The IP module is identified by its name, wput function,
8633 * and non-NULL q_next. STREAMS ensures that the lower stream
8634 * (li->l_qbot) will not vanish until this ioctl completes.
8635 */
8636 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8637 qinfo = ipwq->q_qinfo;
8638 name = qinfo->qi_minfo->mi_idname;
8639 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8640 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8641 is_ip = B_TRUE;
8642 break;
8643 }
8644 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8645 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8646 break;
8647 }
8648 }
8649
8650 /*
8651 * If this isn't an IP module stream, bail.
8652 */
8653 if (ipwq == NULL)
8654 return (0);
8655
8656 if (!is_ip) {
8657 arl = (arl_t *)ipwq->q_ptr;
8658 ill = arl_to_ill(arl);
8659 if (ill == NULL)
8660 return (0);
8661 } else {
8662 ill = ipwq->q_ptr;
8663 }
8664 ASSERT(ill != NULL);
8665
8666 if (ipsq == NULL) {
8667 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8668 NEW_OP, B_FALSE);
8669 if (ipsq == NULL) {
8670 if (!is_ip)
8671 ill_refrele(ill);
8672 return (EINPROGRESS);
8673 }
8674 entered_ipsq = B_TRUE;
8675 }
8676 ASSERT(IAM_WRITER_ILL(ill));
8677 mutex_enter(&ill->ill_lock);
8678 if (!is_ip) {
8679 if (islink && ill->ill_muxid == 0) {
8680 /*
8681 * Plumbing has to be done with IP plumbed first, arp
8682 * second, but here we have arp being plumbed first.
8683 */
8684 mutex_exit(&ill->ill_lock);
8685 if (entered_ipsq)
8686 ipsq_exit(ipsq);
8687 ill_refrele(ill);
8688 return (EINVAL);
8689 }
8690 }
8691 mutex_exit(&ill->ill_lock);
8692 if (!is_ip) {
8693 arl->arl_muxid = islink ? li->l_index : 0;
8694 ill_refrele(ill);
8695 goto done;
8696 }
8697
8698 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8699 goto done;
8700
8701 /*
8702 * As part of I_{P}LINKing, stash the number of downstream modules and
8703 * the read queue of the module immediately below IP in the ill.
8704 * These are used during the capability negotiation below.
8705 */
8706 ill->ill_lmod_rq = NULL;
8707 ill->ill_lmod_cnt = 0;
8708 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8709 ill->ill_lmod_rq = RD(dwq);
8710 for (; dwq != NULL; dwq = dwq->q_next)
8711 ill->ill_lmod_cnt++;
8712 }
8713
8714 ill->ill_muxid = islink ? li->l_index : 0;
8715
8716 /*
8717 * Mark the ipsq busy until the capability operations initiated below
8718 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8719 * returns, but the capability operation may complete asynchronously
8720 * much later.
8721 */
8722 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8723 /*
8724 * If there's at least one up ipif on this ill, then we're bound to
8725 * the underlying driver via DLPI. In that case, renegotiate
8726 * capabilities to account for any possible change in modules
8727 * interposed between IP and the driver.
8728 */
8729 if (ill->ill_ipif_up_count > 0) {
8730 if (islink)
8731 ill_capability_probe(ill);
8732 else
8733 ill_capability_reset(ill, B_FALSE);
8734 }
8735 ipsq_current_finish(ipsq);
8736 done:
8737 if (entered_ipsq)
8738 ipsq_exit(ipsq);
8739
8740 return (err);
8741 }
8742
8743 /*
8744 * Search the ioctl command in the ioctl tables and return a pointer
8745 * to the ioctl command information. The ioctl command tables are
8746 * static and fully populated at compile time.
8747 */
8748 ip_ioctl_cmd_t *
ip_sioctl_lookup(int ioc_cmd)8749 ip_sioctl_lookup(int ioc_cmd)
8750 {
8751 int index;
8752 ip_ioctl_cmd_t *ipip;
8753 ip_ioctl_cmd_t *ipip_end;
8754
8755 if (ioc_cmd == IPI_DONTCARE)
8756 return (NULL);
8757
8758 /*
8759 * Do a 2 step search. First search the indexed table
8760 * based on the least significant byte of the ioctl cmd.
8761 * If we don't find a match, then search the misc table
8762 * serially.
8763 */
8764 index = ioc_cmd & 0xFF;
8765 if (index < ip_ndx_ioctl_count) {
8766 ipip = &ip_ndx_ioctl_table[index];
8767 if (ipip->ipi_cmd == ioc_cmd) {
8768 /* Found a match in the ndx table */
8769 return (ipip);
8770 }
8771 }
8772
8773 /* Search the misc table */
8774 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8775 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8776 if (ipip->ipi_cmd == ioc_cmd)
8777 /* Found a match in the misc table */
8778 return (ipip);
8779 }
8780
8781 return (NULL);
8782 }
8783
8784 /*
8785 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8786 */
8787 static boolean_t
getset_ioctl_checks(mblk_t * mp)8788 getset_ioctl_checks(mblk_t *mp)
8789 {
8790 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8791 mblk_t *mp1 = mp->b_cont;
8792 mod_ioc_prop_t *pioc;
8793 uint_t flags;
8794 uint_t pioc_size;
8795
8796 /* do sanity checks on various arguments */
8797 if (mp1 == NULL || iocp->ioc_count == 0 ||
8798 iocp->ioc_count == TRANSPARENT) {
8799 return (B_FALSE);
8800 }
8801 if (msgdsize(mp1) < iocp->ioc_count) {
8802 if (!pullupmsg(mp1, iocp->ioc_count))
8803 return (B_FALSE);
8804 }
8805
8806 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8807
8808 /* sanity checks on mpr_valsize */
8809 pioc_size = sizeof (mod_ioc_prop_t);
8810 if (pioc->mpr_valsize != 0)
8811 pioc_size += pioc->mpr_valsize - 1;
8812
8813 if (iocp->ioc_count != pioc_size)
8814 return (B_FALSE);
8815
8816 flags = pioc->mpr_flags;
8817 if (iocp->ioc_cmd == SIOCSETPROP) {
8818 /*
8819 * One can either reset the value to it's default value or
8820 * change the current value or append/remove the value from
8821 * a multi-valued properties.
8822 */
8823 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8824 flags != MOD_PROP_ACTIVE &&
8825 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8826 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8827 return (B_FALSE);
8828 } else {
8829 ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8830
8831 /*
8832 * One can retrieve only one kind of property information
8833 * at a time.
8834 */
8835 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8836 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8837 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8838 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8839 return (B_FALSE);
8840 }
8841
8842 return (B_TRUE);
8843 }
8844
8845 /*
8846 * process the SIOC{SET|GET}PROP ioctl's
8847 */
8848 /* ARGSUSED */
8849 static void
ip_sioctl_getsetprop(queue_t * q,mblk_t * mp)8850 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8851 {
8852 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8853 mblk_t *mp1 = mp->b_cont;
8854 mod_ioc_prop_t *pioc;
8855 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8856 ip_stack_t *ipst;
8857 icmp_stack_t *is;
8858 tcp_stack_t *tcps;
8859 sctp_stack_t *sctps;
8860 udp_stack_t *us;
8861 netstack_t *stack;
8862 void *cbarg;
8863 cred_t *cr;
8864 boolean_t set;
8865 int err;
8866
8867 ASSERT(q->q_next == NULL);
8868 ASSERT(CONN_Q(q));
8869
8870 if (!getset_ioctl_checks(mp)) {
8871 miocnak(q, mp, 0, EINVAL);
8872 return;
8873 }
8874 ipst = CONNQ_TO_IPST(q);
8875 stack = ipst->ips_netstack;
8876 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8877
8878 switch (pioc->mpr_proto) {
8879 case MOD_PROTO_IP:
8880 case MOD_PROTO_IPV4:
8881 case MOD_PROTO_IPV6:
8882 ptbl = ipst->ips_propinfo_tbl;
8883 cbarg = ipst;
8884 break;
8885 case MOD_PROTO_RAWIP:
8886 is = stack->netstack_icmp;
8887 ptbl = is->is_propinfo_tbl;
8888 cbarg = is;
8889 break;
8890 case MOD_PROTO_TCP:
8891 tcps = stack->netstack_tcp;
8892 ptbl = tcps->tcps_propinfo_tbl;
8893 cbarg = tcps;
8894 break;
8895 case MOD_PROTO_UDP:
8896 us = stack->netstack_udp;
8897 ptbl = us->us_propinfo_tbl;
8898 cbarg = us;
8899 break;
8900 case MOD_PROTO_SCTP:
8901 sctps = stack->netstack_sctp;
8902 ptbl = sctps->sctps_propinfo_tbl;
8903 cbarg = sctps;
8904 break;
8905 default:
8906 miocnak(q, mp, 0, EINVAL);
8907 return;
8908 }
8909
8910 /* search for given property in respective protocol propinfo table */
8911 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8912 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 &&
8913 pinfo->mpi_proto == pioc->mpr_proto)
8914 break;
8915 }
8916 if (pinfo->mpi_name == NULL) {
8917 miocnak(q, mp, 0, ENOENT);
8918 return;
8919 }
8920
8921 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8922 if (set && pinfo->mpi_setf != NULL) {
8923 cr = msg_getcred(mp, NULL);
8924 if (cr == NULL)
8925 cr = iocp->ioc_cr;
8926 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname,
8927 pioc->mpr_val, pioc->mpr_flags);
8928 } else if (!set && pinfo->mpi_getf != NULL) {
8929 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname,
8930 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8931 } else {
8932 err = EPERM;
8933 }
8934
8935 if (err != 0) {
8936 miocnak(q, mp, 0, err);
8937 } else {
8938 if (set)
8939 miocack(q, mp, 0, 0);
8940 else /* For get, we need to return back the data */
8941 miocack(q, mp, iocp->ioc_count, 0);
8942 }
8943 }
8944
8945 /*
8946 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8947 * as several routing daemons have unfortunately used this 'unpublished'
8948 * but well-known ioctls.
8949 */
8950 /* ARGSUSED */
8951 static void
ip_process_legacy_nddprop(queue_t * q,mblk_t * mp)8952 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8953 {
8954 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8955 mblk_t *mp1 = mp->b_cont;
8956 char *pname, *pval, *buf;
8957 uint_t bufsize, proto;
8958 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8959 ip_stack_t *ipst;
8960 int err = 0;
8961
8962 ASSERT(CONN_Q(q));
8963 ipst = CONNQ_TO_IPST(q);
8964
8965 if (iocp->ioc_count == 0 || mp1 == NULL) {
8966 miocnak(q, mp, 0, EINVAL);
8967 return;
8968 }
8969
8970 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */
8971 pval = buf = pname = (char *)mp1->b_rptr;
8972 bufsize = MBLKL(mp1);
8973
8974 if (strcmp(pname, "ip_forwarding") == 0) {
8975 pname = "forwarding";
8976 proto = MOD_PROTO_IPV4;
8977 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8978 pname = "forwarding";
8979 proto = MOD_PROTO_IPV6;
8980 } else {
8981 miocnak(q, mp, 0, EINVAL);
8982 return;
8983 }
8984
8985 ptbl = ipst->ips_propinfo_tbl;
8986 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) {
8987 if (strcmp(pinfo->mpi_name, pname) == 0 &&
8988 pinfo->mpi_proto == proto)
8989 break;
8990 }
8991
8992 ASSERT(pinfo->mpi_name != NULL);
8993
8994 switch (iocp->ioc_cmd) {
8995 case ND_GET:
8996 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize,
8997 0)) == 0) {
8998 miocack(q, mp, iocp->ioc_count, 0);
8999 return;
9000 }
9001 break;
9002 case ND_SET:
9003 /*
9004 * buffer will have property name and value in the following
9005 * format,
9006 * <property name>'\0'<property value>'\0', extract them;
9007 */
9008 while (*pval++)
9009 noop;
9010
9011 if (!*pval || pval >= (char *)mp1->b_wptr) {
9012 err = EINVAL;
9013 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL,
9014 pval, 0)) == 0) {
9015 miocack(q, mp, 0, 0);
9016 return;
9017 }
9018 break;
9019 default:
9020 err = EINVAL;
9021 break;
9022 }
9023 miocnak(q, mp, 0, err);
9024 }
9025
9026 /*
9027 * Wrapper function for resuming deferred ioctl processing
9028 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9029 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9030 */
9031 /* ARGSUSED */
9032 void
ip_sioctl_copyin_resume(ipsq_t * dummy_ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)9033 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9034 void *dummy_arg)
9035 {
9036 ip_sioctl_copyin_setup(q, mp);
9037 }
9038
9039 /*
9040 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9041 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9042 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9043 * We establish here the size of the block to be copied in. mi_copyin
9044 * arranges for this to happen, an processing continues in ip_wput_nondata with
9045 * an M_IOCDATA message.
9046 */
9047 void
ip_sioctl_copyin_setup(queue_t * q,mblk_t * mp)9048 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9049 {
9050 int copyin_size;
9051 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9052 ip_ioctl_cmd_t *ipip;
9053 cred_t *cr;
9054 ip_stack_t *ipst;
9055
9056 if (CONN_Q(q))
9057 ipst = CONNQ_TO_IPST(q);
9058 else
9059 ipst = ILLQ_TO_IPST(q);
9060
9061 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9062 if (ipip == NULL) {
9063 /*
9064 * The ioctl is not one we understand or own.
9065 * Pass it along to be processed down stream,
9066 * if this is a module instance of IP, else nak
9067 * the ioctl.
9068 */
9069 if (q->q_next == NULL) {
9070 goto nak;
9071 } else {
9072 putnext(q, mp);
9073 return;
9074 }
9075 }
9076
9077 /*
9078 * If this is deferred, then we will do all the checks when we
9079 * come back.
9080 */
9081 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9082 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9083 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9084 return;
9085 }
9086
9087 /*
9088 * Only allow a very small subset of IP ioctls on this stream if
9089 * IP is a module and not a driver. Allowing ioctls to be processed
9090 * in this case may cause assert failures or data corruption.
9091 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9092 * ioctls allowed on an IP module stream, after which this stream
9093 * normally becomes a multiplexor (at which time the stream head
9094 * will fail all ioctls).
9095 */
9096 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9097 goto nak;
9098 }
9099
9100 /* Make sure we have ioctl data to process. */
9101 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9102 goto nak;
9103
9104 /*
9105 * Prefer dblk credential over ioctl credential; some synthesized
9106 * ioctls have kcred set because there's no way to crhold()
9107 * a credential in some contexts. (ioc_cr is not crfree() by
9108 * the framework; the caller of ioctl needs to hold the reference
9109 * for the duration of the call).
9110 */
9111 cr = msg_getcred(mp, NULL);
9112 if (cr == NULL)
9113 cr = iocp->ioc_cr;
9114
9115 /* Make sure normal users don't send down privileged ioctls */
9116 if ((ipip->ipi_flags & IPI_PRIV) &&
9117 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9118 /* We checked the privilege earlier but log it here */
9119 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9120 return;
9121 }
9122
9123 /*
9124 * The ioctl command tables can only encode fixed length
9125 * ioctl data. If the length is variable, the table will
9126 * encode the length as zero. Such special cases are handled
9127 * below in the switch.
9128 */
9129 if (ipip->ipi_copyin_size != 0) {
9130 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9131 return;
9132 }
9133
9134 switch (iocp->ioc_cmd) {
9135 case O_SIOCGIFCONF:
9136 case SIOCGIFCONF:
9137 /*
9138 * This IOCTL is hilarious. See comments in
9139 * ip_sioctl_get_ifconf for the story.
9140 */
9141 if (iocp->ioc_count == TRANSPARENT)
9142 copyin_size = SIZEOF_STRUCT(ifconf,
9143 iocp->ioc_flag);
9144 else
9145 copyin_size = iocp->ioc_count;
9146 mi_copyin(q, mp, NULL, copyin_size);
9147 return;
9148
9149 case O_SIOCGLIFCONF:
9150 case SIOCGLIFCONF:
9151 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9152 mi_copyin(q, mp, NULL, copyin_size);
9153 return;
9154
9155 case SIOCGLIFSRCOF:
9156 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9157 mi_copyin(q, mp, NULL, copyin_size);
9158 return;
9159
9160 case SIOCGIP6ADDRPOLICY:
9161 ip_sioctl_ip6addrpolicy(q, mp);
9162 ip6_asp_table_refrele(ipst);
9163 return;
9164
9165 case SIOCSIP6ADDRPOLICY:
9166 ip_sioctl_ip6addrpolicy(q, mp);
9167 return;
9168
9169 case SIOCGDSTINFO:
9170 ip_sioctl_dstinfo(q, mp);
9171 ip6_asp_table_refrele(ipst);
9172 return;
9173
9174 case ND_SET:
9175 case ND_GET:
9176 ip_process_legacy_nddprop(q, mp);
9177 return;
9178
9179 case SIOCSETPROP:
9180 case SIOCGETPROP:
9181 ip_sioctl_getsetprop(q, mp);
9182 return;
9183
9184 case I_PLINK:
9185 case I_PUNLINK:
9186 case I_LINK:
9187 case I_UNLINK:
9188 /*
9189 * We treat non-persistent link similarly as the persistent
9190 * link case, in terms of plumbing/unplumbing, as well as
9191 * dynamic re-plumbing events indicator. See comments
9192 * in ip_sioctl_plink() for more.
9193 *
9194 * Request can be enqueued in the 'ipsq' while waiting
9195 * to become exclusive. So bump up the conn ref.
9196 */
9197 if (CONN_Q(q)) {
9198 CONN_INC_REF(Q_TO_CONN(q));
9199 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9200 }
9201 ip_sioctl_plink(NULL, q, mp, NULL);
9202 return;
9203
9204 case IP_IOCTL:
9205 ip_wput_ioctl(q, mp);
9206 return;
9207
9208 case SIOCILB:
9209 /* The ioctl length varies depending on the ILB command. */
9210 copyin_size = iocp->ioc_count;
9211 if (copyin_size < sizeof (ilb_cmd_t))
9212 goto nak;
9213 mi_copyin(q, mp, NULL, copyin_size);
9214 return;
9215
9216 default:
9217 cmn_err(CE_PANIC, "should not happen ");
9218 }
9219 nak:
9220 if (mp->b_cont != NULL) {
9221 freemsg(mp->b_cont);
9222 mp->b_cont = NULL;
9223 }
9224 iocp->ioc_error = EINVAL;
9225 mp->b_datap->db_type = M_IOCNAK;
9226 iocp->ioc_count = 0;
9227 qreply(q, mp);
9228 }
9229
9230 static void
ip_sioctl_garp_reply(mblk_t * mp,ill_t * ill,void * hwaddr,int flags)9231 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9232 {
9233 struct arpreq *ar;
9234 struct xarpreq *xar;
9235 mblk_t *tmp;
9236 struct iocblk *iocp;
9237 int x_arp_ioctl = B_FALSE;
9238 int *flagsp;
9239 char *storage = NULL;
9240
9241 ASSERT(ill != NULL);
9242
9243 iocp = (struct iocblk *)mp->b_rptr;
9244 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9245
9246 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9247 if ((iocp->ioc_cmd == SIOCGXARP) ||
9248 (iocp->ioc_cmd == SIOCSXARP)) {
9249 x_arp_ioctl = B_TRUE;
9250 xar = (struct xarpreq *)tmp->b_rptr;
9251 flagsp = &xar->xarp_flags;
9252 storage = xar->xarp_ha.sdl_data;
9253 } else {
9254 ar = (struct arpreq *)tmp->b_rptr;
9255 flagsp = &ar->arp_flags;
9256 storage = ar->arp_ha.sa_data;
9257 }
9258
9259 /*
9260 * We're done if this is not an SIOCG{X}ARP
9261 */
9262 if (x_arp_ioctl) {
9263 storage += ill_xarp_info(&xar->xarp_ha, ill);
9264 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9265 sizeof (xar->xarp_ha.sdl_data)) {
9266 iocp->ioc_error = EINVAL;
9267 return;
9268 }
9269 }
9270 *flagsp = ATF_INUSE;
9271 /*
9272 * If /sbin/arp told us we are the authority using the "permanent"
9273 * flag, or if this is one of my addresses print "permanent"
9274 * in the /sbin/arp output.
9275 */
9276 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9277 *flagsp |= ATF_AUTHORITY;
9278 if (flags & NCE_F_NONUD)
9279 *flagsp |= ATF_PERM; /* not subject to aging */
9280 if (flags & NCE_F_PUBLISH)
9281 *flagsp |= ATF_PUBL;
9282 if (hwaddr != NULL) {
9283 *flagsp |= ATF_COM;
9284 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9285 }
9286 }
9287
9288 /*
9289 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9290 * interface) create the next available logical interface for this
9291 * physical interface.
9292 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9293 * ipif with the specified name.
9294 *
9295 * If the address family is not AF_UNSPEC then set the address as well.
9296 *
9297 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9298 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9299 *
9300 * Executed as a writer on the ill.
9301 * So no lock is needed to traverse the ipif chain, or examine the
9302 * phyint flags.
9303 */
9304 /* ARGSUSED */
9305 int
ip_sioctl_addif(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9306 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9307 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9308 {
9309 mblk_t *mp1;
9310 struct lifreq *lifr;
9311 boolean_t isv6;
9312 boolean_t exists;
9313 char *name;
9314 char *endp;
9315 char *cp;
9316 int namelen;
9317 ipif_t *ipif;
9318 long id;
9319 ipsq_t *ipsq;
9320 ill_t *ill;
9321 sin_t *sin;
9322 int err = 0;
9323 boolean_t found_sep = B_FALSE;
9324 conn_t *connp;
9325 zoneid_t zoneid;
9326 ip_stack_t *ipst = CONNQ_TO_IPST(q);
9327
9328 ASSERT(q->q_next == NULL);
9329 ip1dbg(("ip_sioctl_addif\n"));
9330 /* Existence of mp1 has been checked in ip_wput_nondata */
9331 mp1 = mp->b_cont->b_cont;
9332 /*
9333 * Null terminate the string to protect against buffer
9334 * overrun. String was generated by user code and may not
9335 * be trusted.
9336 */
9337 lifr = (struct lifreq *)mp1->b_rptr;
9338 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9339 name = lifr->lifr_name;
9340 ASSERT(CONN_Q(q));
9341 connp = Q_TO_CONN(q);
9342 isv6 = (connp->conn_family == AF_INET6);
9343 zoneid = connp->conn_zoneid;
9344 namelen = mi_strlen(name);
9345 if (namelen == 0)
9346 return (EINVAL);
9347
9348 exists = B_FALSE;
9349 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9350 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9351 /*
9352 * Allow creating lo0 using SIOCLIFADDIF.
9353 * can't be any other writer thread. So can pass null below
9354 * for the last 4 args to ipif_lookup_name.
9355 */
9356 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9357 &exists, isv6, zoneid, ipst);
9358 /* Prevent any further action */
9359 if (ipif == NULL) {
9360 return (ENOBUFS);
9361 } else if (!exists) {
9362 /* We created the ipif now and as writer */
9363 ipif_refrele(ipif);
9364 return (0);
9365 } else {
9366 ill = ipif->ipif_ill;
9367 ill_refhold(ill);
9368 ipif_refrele(ipif);
9369 }
9370 } else {
9371 /* Look for a colon in the name. */
9372 endp = &name[namelen];
9373 for (cp = endp; --cp > name; ) {
9374 if (*cp == IPIF_SEPARATOR_CHAR) {
9375 found_sep = B_TRUE;
9376 /*
9377 * Reject any non-decimal aliases for plumbing
9378 * of logical interfaces. Aliases with leading
9379 * zeroes are also rejected as they introduce
9380 * ambiguity in the naming of the interfaces.
9381 * Comparing with "0" takes care of all such
9382 * cases.
9383 */
9384 if ((strncmp("0", cp+1, 1)) == 0)
9385 return (EINVAL);
9386
9387 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9388 id <= 0 || *endp != '\0') {
9389 return (EINVAL);
9390 }
9391 *cp = '\0';
9392 break;
9393 }
9394 }
9395 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9396 if (found_sep)
9397 *cp = IPIF_SEPARATOR_CHAR;
9398 if (ill == NULL)
9399 return (ENXIO);
9400 }
9401
9402 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9403 B_TRUE);
9404
9405 /*
9406 * Release the refhold due to the lookup, now that we are excl
9407 * or we are just returning
9408 */
9409 ill_refrele(ill);
9410
9411 if (ipsq == NULL)
9412 return (EINPROGRESS);
9413
9414 /* We are now exclusive on the IPSQ */
9415 ASSERT(IAM_WRITER_ILL(ill));
9416
9417 if (found_sep) {
9418 /* Now see if there is an IPIF with this unit number. */
9419 for (ipif = ill->ill_ipif; ipif != NULL;
9420 ipif = ipif->ipif_next) {
9421 if (ipif->ipif_id == id) {
9422 err = EEXIST;
9423 goto done;
9424 }
9425 }
9426 }
9427
9428 /*
9429 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9430 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9431 * instead.
9432 */
9433 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9434 B_TRUE, B_TRUE, &err)) == NULL) {
9435 goto done;
9436 }
9437
9438 /* Return created name with ioctl */
9439 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9440 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9441 ip1dbg(("created %s\n", lifr->lifr_name));
9442
9443 /* Set address */
9444 sin = (sin_t *)&lifr->lifr_addr;
9445 if (sin->sin_family != AF_UNSPEC) {
9446 err = ip_sioctl_addr(ipif, sin, q, mp,
9447 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9448 }
9449
9450 done:
9451 ipsq_exit(ipsq);
9452 return (err);
9453 }
9454
9455 /*
9456 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9457 * interface) delete it based on the IP address (on this physical interface).
9458 * Otherwise delete it based on the ipif_id.
9459 * Also, special handling to allow a removeif of lo0.
9460 */
9461 /* ARGSUSED */
9462 int
ip_sioctl_removeif(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9463 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9464 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9465 {
9466 conn_t *connp;
9467 ill_t *ill = ipif->ipif_ill;
9468 boolean_t success;
9469 ip_stack_t *ipst;
9470
9471 ipst = CONNQ_TO_IPST(q);
9472
9473 ASSERT(q->q_next == NULL);
9474 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9475 ill->ill_name, ipif->ipif_id, (void *)ipif));
9476 ASSERT(IAM_WRITER_IPIF(ipif));
9477
9478 connp = Q_TO_CONN(q);
9479 /*
9480 * Special case for unplumbing lo0 (the loopback physical interface).
9481 * If unplumbing lo0, the incoming address structure has been
9482 * initialized to all zeros. When unplumbing lo0, all its logical
9483 * interfaces must be removed too.
9484 *
9485 * Note that this interface may be called to remove a specific
9486 * loopback logical interface (eg, lo0:1). But in that case
9487 * ipif->ipif_id != 0 so that the code path for that case is the
9488 * same as any other interface (meaning it skips the code directly
9489 * below).
9490 */
9491 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9492 if (sin->sin_family == AF_UNSPEC &&
9493 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9494 /*
9495 * Mark it condemned. No new ref. will be made to ill.
9496 */
9497 mutex_enter(&ill->ill_lock);
9498 ill->ill_state_flags |= ILL_CONDEMNED;
9499 for (ipif = ill->ill_ipif; ipif != NULL;
9500 ipif = ipif->ipif_next) {
9501 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9502 }
9503 mutex_exit(&ill->ill_lock);
9504
9505 ipif = ill->ill_ipif;
9506 /* unplumb the loopback interface */
9507 ill_delete(ill);
9508 mutex_enter(&connp->conn_lock);
9509 mutex_enter(&ill->ill_lock);
9510
9511 /* Are any references to this ill active */
9512 if (ill_is_freeable(ill)) {
9513 mutex_exit(&ill->ill_lock);
9514 mutex_exit(&connp->conn_lock);
9515 ill_delete_tail(ill);
9516 mi_free(ill);
9517 return (0);
9518 }
9519 success = ipsq_pending_mp_add(connp, ipif,
9520 CONNP_TO_WQ(connp), mp, ILL_FREE);
9521 mutex_exit(&connp->conn_lock);
9522 mutex_exit(&ill->ill_lock);
9523 if (success)
9524 return (EINPROGRESS);
9525 else
9526 return (EINTR);
9527 }
9528 }
9529
9530 if (ipif->ipif_id == 0) {
9531 ipsq_t *ipsq;
9532
9533 /* Find based on address */
9534 if (ipif->ipif_isv6) {
9535 sin6_t *sin6;
9536
9537 if (sin->sin_family != AF_INET6)
9538 return (EAFNOSUPPORT);
9539
9540 sin6 = (sin6_t *)sin;
9541 /* We are a writer, so we should be able to lookup */
9542 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9543 ipst);
9544 } else {
9545 if (sin->sin_family != AF_INET)
9546 return (EAFNOSUPPORT);
9547
9548 /* We are a writer, so we should be able to lookup */
9549 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9550 ipst);
9551 }
9552 if (ipif == NULL) {
9553 return (EADDRNOTAVAIL);
9554 }
9555
9556 /*
9557 * It is possible for a user to send an SIOCLIFREMOVEIF with
9558 * lifr_name of the physical interface but with an ip address
9559 * lifr_addr of a logical interface plumbed over it.
9560 * So update ipx_current_ipif now that ipif points to the
9561 * correct one.
9562 */
9563 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9564 ipsq->ipsq_xop->ipx_current_ipif = ipif;
9565
9566 /* This is a writer */
9567 ipif_refrele(ipif);
9568 }
9569
9570 /*
9571 * Can not delete instance zero since it is tied to the ill.
9572 */
9573 if (ipif->ipif_id == 0)
9574 return (EBUSY);
9575
9576 mutex_enter(&ill->ill_lock);
9577 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9578 mutex_exit(&ill->ill_lock);
9579
9580 ipif_free(ipif);
9581
9582 mutex_enter(&connp->conn_lock);
9583 mutex_enter(&ill->ill_lock);
9584
9585 /* Are any references to this ipif active */
9586 if (ipif_is_freeable(ipif)) {
9587 mutex_exit(&ill->ill_lock);
9588 mutex_exit(&connp->conn_lock);
9589 ipif_non_duplicate(ipif);
9590 (void) ipif_down_tail(ipif);
9591 ipif_free_tail(ipif); /* frees ipif */
9592 return (0);
9593 }
9594 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9595 IPIF_FREE);
9596 mutex_exit(&ill->ill_lock);
9597 mutex_exit(&connp->conn_lock);
9598 if (success)
9599 return (EINPROGRESS);
9600 else
9601 return (EINTR);
9602 }
9603
9604 /*
9605 * Restart the removeif ioctl. The refcnt has gone down to 0.
9606 * The ipif is already condemned. So can't find it thru lookups.
9607 */
9608 /* ARGSUSED */
9609 int
ip_sioctl_removeif_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9610 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9611 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9612 {
9613 ill_t *ill = ipif->ipif_ill;
9614
9615 ASSERT(IAM_WRITER_IPIF(ipif));
9616 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9617
9618 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9619 ill->ill_name, ipif->ipif_id, (void *)ipif));
9620
9621 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9622 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9623 ill_delete_tail(ill);
9624 mi_free(ill);
9625 return (0);
9626 }
9627
9628 ipif_non_duplicate(ipif);
9629 (void) ipif_down_tail(ipif);
9630 ipif_free_tail(ipif);
9631
9632 return (0);
9633 }
9634
9635 /*
9636 * Set the local interface address using the given prefix and ill_token.
9637 */
9638 /* ARGSUSED */
9639 int
ip_sioctl_prefix(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9640 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9641 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9642 {
9643 int err;
9644 in6_addr_t v6addr;
9645 sin6_t *sin6;
9646 ill_t *ill;
9647 int i;
9648
9649 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9650 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9651
9652 ASSERT(IAM_WRITER_IPIF(ipif));
9653
9654 if (!ipif->ipif_isv6)
9655 return (EINVAL);
9656
9657 if (sin->sin_family != AF_INET6)
9658 return (EAFNOSUPPORT);
9659
9660 sin6 = (sin6_t *)sin;
9661 v6addr = sin6->sin6_addr;
9662 ill = ipif->ipif_ill;
9663
9664 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9665 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9666 return (EADDRNOTAVAIL);
9667
9668 for (i = 0; i < 4; i++)
9669 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9670
9671 err = ip_sioctl_addr(ipif, sin, q, mp,
9672 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9673 return (err);
9674 }
9675
9676 /*
9677 * Restart entry point to restart the address set operation after the
9678 * refcounts have dropped to zero.
9679 */
9680 /* ARGSUSED */
9681 int
ip_sioctl_prefix_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9682 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9683 ip_ioctl_cmd_t *ipip, void *ifreq)
9684 {
9685 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9686 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9687 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9688 }
9689
9690 /*
9691 * Set the local interface address.
9692 * Allow an address of all zero when the interface is down.
9693 */
9694 /* ARGSUSED */
9695 int
ip_sioctl_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9696 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9697 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9698 {
9699 int err = 0;
9700 in6_addr_t v6addr;
9701 boolean_t need_up = B_FALSE;
9702 ill_t *ill;
9703 int i;
9704
9705 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9706 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9707
9708 ASSERT(IAM_WRITER_IPIF(ipif));
9709
9710 ill = ipif->ipif_ill;
9711 if (ipif->ipif_isv6) {
9712 sin6_t *sin6;
9713 phyint_t *phyi;
9714
9715 if (sin->sin_family != AF_INET6)
9716 return (EAFNOSUPPORT);
9717
9718 sin6 = (sin6_t *)sin;
9719 v6addr = sin6->sin6_addr;
9720 phyi = ill->ill_phyint;
9721
9722 /*
9723 * Enforce that true multicast interfaces have a link-local
9724 * address for logical unit 0.
9725 *
9726 * However for those ipif's for which link-local address was
9727 * not created by default, also allow setting :: as the address.
9728 * This scenario would arise, when we delete an address on ipif
9729 * with logical unit 0, we would want to set :: as the address.
9730 */
9731 if (ipif->ipif_id == 0 &&
9732 (ill->ill_flags & ILLF_MULTICAST) &&
9733 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9734 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9735 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9736
9737 /*
9738 * if default link-local was not created by kernel for
9739 * this ill, allow setting :: as the address on ipif:0.
9740 */
9741 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9742 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9743 return (EADDRNOTAVAIL);
9744 } else {
9745 return (EADDRNOTAVAIL);
9746 }
9747 }
9748
9749 /*
9750 * up interfaces shouldn't have the unspecified address
9751 * unless they also have the IPIF_NOLOCAL flags set and
9752 * have a subnet assigned.
9753 */
9754 if ((ipif->ipif_flags & IPIF_UP) &&
9755 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9756 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9757 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9758 return (EADDRNOTAVAIL);
9759 }
9760
9761 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9762 return (EADDRNOTAVAIL);
9763 } else {
9764 ipaddr_t addr;
9765
9766 if (sin->sin_family != AF_INET)
9767 return (EAFNOSUPPORT);
9768
9769 addr = sin->sin_addr.s_addr;
9770
9771 /* Allow INADDR_ANY as the local address. */
9772 if (addr != INADDR_ANY &&
9773 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9774 return (EADDRNOTAVAIL);
9775
9776 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9777 }
9778 /*
9779 * verify that the address being configured is permitted by the
9780 * ill_allowed_ips[] for the interface.
9781 */
9782 if (ill->ill_allowed_ips_cnt > 0) {
9783 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9784 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9785 &v6addr))
9786 break;
9787 }
9788 if (i == ill->ill_allowed_ips_cnt) {
9789 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9790 return (EPERM);
9791 }
9792 }
9793 /*
9794 * Even if there is no change we redo things just to rerun
9795 * ipif_set_default.
9796 */
9797 if (ipif->ipif_flags & IPIF_UP) {
9798 /*
9799 * Setting a new local address, make sure
9800 * we have net and subnet bcast ire's for
9801 * the old address if we need them.
9802 */
9803 /*
9804 * If the interface is already marked up,
9805 * we call ipif_down which will take care
9806 * of ditching any IREs that have been set
9807 * up based on the old interface address.
9808 */
9809 err = ipif_logical_down(ipif, q, mp);
9810 if (err == EINPROGRESS)
9811 return (err);
9812 (void) ipif_down_tail(ipif);
9813 need_up = 1;
9814 }
9815
9816 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9817 return (err);
9818 }
9819
9820 int
ip_sioctl_addr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)9821 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9822 boolean_t need_up)
9823 {
9824 in6_addr_t v6addr;
9825 in6_addr_t ov6addr;
9826 ipaddr_t addr;
9827 sin6_t *sin6;
9828 int sinlen;
9829 int err = 0;
9830 ill_t *ill = ipif->ipif_ill;
9831 boolean_t need_dl_down;
9832 boolean_t need_arp_down;
9833 struct iocblk *iocp;
9834
9835 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9836
9837 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9838 ill->ill_name, ipif->ipif_id, (void *)ipif));
9839 ASSERT(IAM_WRITER_IPIF(ipif));
9840
9841 /* Must cancel any pending timer before taking the ill_lock */
9842 if (ipif->ipif_recovery_id != 0)
9843 (void) untimeout(ipif->ipif_recovery_id);
9844 ipif->ipif_recovery_id = 0;
9845
9846 if (ipif->ipif_isv6) {
9847 sin6 = (sin6_t *)sin;
9848 v6addr = sin6->sin6_addr;
9849 sinlen = sizeof (struct sockaddr_in6);
9850 } else {
9851 addr = sin->sin_addr.s_addr;
9852 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9853 sinlen = sizeof (struct sockaddr_in);
9854 }
9855 mutex_enter(&ill->ill_lock);
9856 ov6addr = ipif->ipif_v6lcl_addr;
9857 ipif->ipif_v6lcl_addr = v6addr;
9858 sctp_update_ipif_addr(ipif, ov6addr);
9859 ipif->ipif_addr_ready = 0;
9860
9861 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9862
9863 /*
9864 * If the interface was previously marked as a duplicate, then since
9865 * we've now got a "new" address, it should no longer be considered a
9866 * duplicate -- even if the "new" address is the same as the old one.
9867 * Note that if all ipifs are down, we may have a pending ARP down
9868 * event to handle. This is because we want to recover from duplicates
9869 * and thus delay tearing down ARP until the duplicates have been
9870 * removed or disabled.
9871 */
9872 need_dl_down = need_arp_down = B_FALSE;
9873 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9874 need_arp_down = !need_up;
9875 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9876 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9877 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9878 need_dl_down = B_TRUE;
9879 }
9880 }
9881
9882 ipif_set_default(ipif);
9883
9884 /*
9885 * If we've just manually set the IPv6 link-local address (0th ipif),
9886 * tag the ill so that future updates to the interface ID don't result
9887 * in this address getting automatically reconfigured from under the
9888 * administrator.
9889 */
9890 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9891 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9892 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9893 ill->ill_manual_linklocal = 1;
9894 }
9895
9896 /*
9897 * When publishing an interface address change event, we only notify
9898 * the event listeners of the new address. It is assumed that if they
9899 * actively care about the addresses assigned that they will have
9900 * already discovered the previous address assigned (if there was one.)
9901 *
9902 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9903 */
9904 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9905 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9906 NE_ADDRESS_CHANGE, sin, sinlen);
9907 }
9908
9909 mutex_exit(&ill->ill_lock);
9910
9911 if (need_up) {
9912 /*
9913 * Now bring the interface back up. If this
9914 * is the only IPIF for the ILL, ipif_up
9915 * will have to re-bind to the device, so
9916 * we may get back EINPROGRESS, in which
9917 * case, this IOCTL will get completed in
9918 * ip_rput_dlpi when we see the DL_BIND_ACK.
9919 */
9920 err = ipif_up(ipif, q, mp);
9921 } else {
9922 /* Perhaps ilgs should use this ill */
9923 update_conn_ill(NULL, ill->ill_ipst);
9924 }
9925
9926 if (need_dl_down)
9927 ill_dl_down(ill);
9928
9929 if (need_arp_down && !ill->ill_isv6)
9930 (void) ipif_arp_down(ipif);
9931
9932 /*
9933 * The default multicast interface might have changed (for
9934 * instance if the IPv6 scope of the address changed)
9935 */
9936 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9937
9938 return (err);
9939 }
9940
9941 /*
9942 * Restart entry point to restart the address set operation after the
9943 * refcounts have dropped to zero.
9944 */
9945 /* ARGSUSED */
9946 int
ip_sioctl_addr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9947 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9948 ip_ioctl_cmd_t *ipip, void *ifreq)
9949 {
9950 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9951 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9952 ASSERT(IAM_WRITER_IPIF(ipif));
9953 (void) ipif_down_tail(ipif);
9954 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9955 }
9956
9957 /* ARGSUSED */
9958 int
ip_sioctl_get_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9959 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9960 ip_ioctl_cmd_t *ipip, void *if_req)
9961 {
9962 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9963 struct lifreq *lifr = (struct lifreq *)if_req;
9964
9965 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9966 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9967 /*
9968 * The net mask and address can't change since we have a
9969 * reference to the ipif. So no lock is necessary.
9970 */
9971 if (ipif->ipif_isv6) {
9972 *sin6 = sin6_null;
9973 sin6->sin6_family = AF_INET6;
9974 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9975 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9976 lifr->lifr_addrlen =
9977 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9978 } else {
9979 *sin = sin_null;
9980 sin->sin_family = AF_INET;
9981 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9982 if (ipip->ipi_cmd_type == LIF_CMD) {
9983 lifr->lifr_addrlen =
9984 ip_mask_to_plen(ipif->ipif_net_mask);
9985 }
9986 }
9987 return (0);
9988 }
9989
9990 /*
9991 * Set the destination address for a pt-pt interface.
9992 */
9993 /* ARGSUSED */
9994 int
ip_sioctl_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9995 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9996 ip_ioctl_cmd_t *ipip, void *if_req)
9997 {
9998 int err = 0;
9999 in6_addr_t v6addr;
10000 boolean_t need_up = B_FALSE;
10001
10002 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
10003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10004 ASSERT(IAM_WRITER_IPIF(ipif));
10005
10006 if (ipif->ipif_isv6) {
10007 sin6_t *sin6;
10008
10009 if (sin->sin_family != AF_INET6)
10010 return (EAFNOSUPPORT);
10011
10012 sin6 = (sin6_t *)sin;
10013 v6addr = sin6->sin6_addr;
10014
10015 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10016 return (EADDRNOTAVAIL);
10017 } else {
10018 ipaddr_t addr;
10019
10020 if (sin->sin_family != AF_INET)
10021 return (EAFNOSUPPORT);
10022
10023 addr = sin->sin_addr.s_addr;
10024 if (addr != INADDR_ANY &&
10025 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10026 return (EADDRNOTAVAIL);
10027 }
10028
10029 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10030 }
10031
10032 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10033 return (0); /* No change */
10034
10035 if (ipif->ipif_flags & IPIF_UP) {
10036 /*
10037 * If the interface is already marked up,
10038 * we call ipif_down which will take care
10039 * of ditching any IREs that have been set
10040 * up based on the old pp dst address.
10041 */
10042 err = ipif_logical_down(ipif, q, mp);
10043 if (err == EINPROGRESS)
10044 return (err);
10045 (void) ipif_down_tail(ipif);
10046 need_up = B_TRUE;
10047 }
10048 /*
10049 * could return EINPROGRESS. If so ioctl will complete in
10050 * ip_rput_dlpi_writer
10051 */
10052 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10053 return (err);
10054 }
10055
10056 static int
ip_sioctl_dstaddr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)10057 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10058 boolean_t need_up)
10059 {
10060 in6_addr_t v6addr;
10061 ill_t *ill = ipif->ipif_ill;
10062 int err = 0;
10063 boolean_t need_dl_down;
10064 boolean_t need_arp_down;
10065
10066 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10067 ipif->ipif_id, (void *)ipif));
10068
10069 /* Must cancel any pending timer before taking the ill_lock */
10070 if (ipif->ipif_recovery_id != 0)
10071 (void) untimeout(ipif->ipif_recovery_id);
10072 ipif->ipif_recovery_id = 0;
10073
10074 if (ipif->ipif_isv6) {
10075 sin6_t *sin6;
10076
10077 sin6 = (sin6_t *)sin;
10078 v6addr = sin6->sin6_addr;
10079 } else {
10080 ipaddr_t addr;
10081
10082 addr = sin->sin_addr.s_addr;
10083 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10084 }
10085 mutex_enter(&ill->ill_lock);
10086 /* Set point to point destination address. */
10087 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10088 /*
10089 * Allow this as a means of creating logical
10090 * pt-pt interfaces on top of e.g. an Ethernet.
10091 * XXX Undocumented HACK for testing.
10092 * pt-pt interfaces are created with NUD disabled.
10093 */
10094 ipif->ipif_flags |= IPIF_POINTOPOINT;
10095 ipif->ipif_flags &= ~IPIF_BROADCAST;
10096 if (ipif->ipif_isv6)
10097 ill->ill_flags |= ILLF_NONUD;
10098 }
10099
10100 /*
10101 * If the interface was previously marked as a duplicate, then since
10102 * we've now got a "new" address, it should no longer be considered a
10103 * duplicate -- even if the "new" address is the same as the old one.
10104 * Note that if all ipifs are down, we may have a pending ARP down
10105 * event to handle.
10106 */
10107 need_dl_down = need_arp_down = B_FALSE;
10108 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10109 need_arp_down = !need_up;
10110 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10111 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10112 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10113 need_dl_down = B_TRUE;
10114 }
10115 }
10116
10117 /*
10118 * If we've just manually set the IPv6 destination link-local address
10119 * (0th ipif), tag the ill so that future updates to the destination
10120 * interface ID (as can happen with interfaces over IP tunnels) don't
10121 * result in this address getting automatically reconfigured from
10122 * under the administrator.
10123 */
10124 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10125 ill->ill_manual_dst_linklocal = 1;
10126
10127 /* Set the new address. */
10128 ipif->ipif_v6pp_dst_addr = v6addr;
10129 /* Make sure subnet tracks pp_dst */
10130 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10131 mutex_exit(&ill->ill_lock);
10132
10133 if (need_up) {
10134 /*
10135 * Now bring the interface back up. If this
10136 * is the only IPIF for the ILL, ipif_up
10137 * will have to re-bind to the device, so
10138 * we may get back EINPROGRESS, in which
10139 * case, this IOCTL will get completed in
10140 * ip_rput_dlpi when we see the DL_BIND_ACK.
10141 */
10142 err = ipif_up(ipif, q, mp);
10143 }
10144
10145 if (need_dl_down)
10146 ill_dl_down(ill);
10147 if (need_arp_down && !ipif->ipif_isv6)
10148 (void) ipif_arp_down(ipif);
10149
10150 return (err);
10151 }
10152
10153 /*
10154 * Restart entry point to restart the dstaddress set operation after the
10155 * refcounts have dropped to zero.
10156 */
10157 /* ARGSUSED */
10158 int
ip_sioctl_dstaddr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)10159 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10160 ip_ioctl_cmd_t *ipip, void *ifreq)
10161 {
10162 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10164 (void) ipif_down_tail(ipif);
10165 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10166 }
10167
10168 /* ARGSUSED */
10169 int
ip_sioctl_get_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10170 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10171 ip_ioctl_cmd_t *ipip, void *if_req)
10172 {
10173 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
10174
10175 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10176 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10177 /*
10178 * Get point to point destination address. The addresses can't
10179 * change since we hold a reference to the ipif.
10180 */
10181 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10182 return (EADDRNOTAVAIL);
10183
10184 if (ipif->ipif_isv6) {
10185 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10186 *sin6 = sin6_null;
10187 sin6->sin6_family = AF_INET6;
10188 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10189 } else {
10190 *sin = sin_null;
10191 sin->sin_family = AF_INET;
10192 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10193 }
10194 return (0);
10195 }
10196
10197 /*
10198 * Check which flags will change by the given flags being set
10199 * silently ignore flags which userland is not allowed to control.
10200 * (Because these flags may change between SIOCGLIFFLAGS and
10201 * SIOCSLIFFLAGS, and that's outside of userland's control,
10202 * we need to silently ignore them rather than fail.)
10203 */
10204 static void
ip_sioctl_flags_onoff(ipif_t * ipif,uint64_t flags,uint64_t * onp,uint64_t * offp)10205 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10206 uint64_t *offp)
10207 {
10208 ill_t *ill = ipif->ipif_ill;
10209 phyint_t *phyi = ill->ill_phyint;
10210 uint64_t cantchange_flags, intf_flags;
10211 uint64_t turn_on, turn_off;
10212
10213 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10214 cantchange_flags = IFF_CANTCHANGE;
10215 if (IS_IPMP(ill))
10216 cantchange_flags |= IFF_IPMP_CANTCHANGE;
10217 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10218 turn_off = intf_flags & turn_on;
10219 turn_on ^= turn_off;
10220 *onp = turn_on;
10221 *offp = turn_off;
10222 }
10223
10224 /*
10225 * Set interface flags. Many flags require special handling (e.g.,
10226 * bringing the interface down); see below for details.
10227 *
10228 * NOTE : We really don't enforce that ipif_id zero should be used
10229 * for setting any flags other than IFF_LOGINT_FLAGS. This
10230 * is because applications generally does SICGLIFFLAGS and
10231 * ORs in the new flags (that affects the logical) and does a
10232 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10233 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10234 * flags that will be turned on is correct with respect to
10235 * ipif_id 0. For backward compatibility reasons, it is not done.
10236 */
10237 /* ARGSUSED */
10238 int
ip_sioctl_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10239 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10240 ip_ioctl_cmd_t *ipip, void *if_req)
10241 {
10242 uint64_t turn_on;
10243 uint64_t turn_off;
10244 int err = 0;
10245 phyint_t *phyi;
10246 ill_t *ill;
10247 conn_t *connp;
10248 uint64_t intf_flags;
10249 boolean_t phyint_flags_modified = B_FALSE;
10250 uint64_t flags;
10251 struct ifreq *ifr;
10252 struct lifreq *lifr;
10253 boolean_t set_linklocal = B_FALSE;
10254
10255 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10257
10258 ASSERT(IAM_WRITER_IPIF(ipif));
10259
10260 ill = ipif->ipif_ill;
10261 phyi = ill->ill_phyint;
10262
10263 if (ipip->ipi_cmd_type == IF_CMD) {
10264 ifr = (struct ifreq *)if_req;
10265 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10266 } else {
10267 lifr = (struct lifreq *)if_req;
10268 flags = lifr->lifr_flags;
10269 }
10270
10271 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10272
10273 /*
10274 * Have the flags been set correctly until now?
10275 */
10276 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10277 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10278 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10279 /*
10280 * Compare the new flags to the old, and partition
10281 * into those coming on and those going off.
10282 * For the 16 bit command keep the bits above bit 16 unchanged.
10283 */
10284 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10285 flags |= intf_flags & ~0xFFFF;
10286
10287 /*
10288 * Explicitly fail attempts to change flags that are always invalid on
10289 * an IPMP meta-interface.
10290 */
10291 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10292 return (EINVAL);
10293
10294 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10295 if ((turn_on|turn_off) == 0)
10296 return (0); /* No change */
10297
10298 /*
10299 * All test addresses must be IFF_DEPRECATED (to ensure source address
10300 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10301 * allow it to be turned off.
10302 */
10303 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10304 (turn_on|intf_flags) & IFF_NOFAILOVER)
10305 return (EINVAL);
10306
10307 if ((connp = Q_TO_CONN(q)) == NULL)
10308 return (EINVAL);
10309
10310 /*
10311 * Only vrrp control socket is allowed to change IFF_UP and
10312 * IFF_NOACCEPT flags when IFF_VRRP is set.
10313 */
10314 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10315 if (!connp->conn_isvrrp)
10316 return (EINVAL);
10317 }
10318
10319 /*
10320 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10321 * VRRP control socket.
10322 */
10323 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10324 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10325 return (EINVAL);
10326 }
10327
10328 if (turn_on & IFF_NOFAILOVER) {
10329 turn_on |= IFF_DEPRECATED;
10330 flags |= IFF_DEPRECATED;
10331 }
10332
10333 /*
10334 * On underlying interfaces, only allow applications to manage test
10335 * addresses -- otherwise, they may get confused when the address
10336 * moves as part of being brought up. Likewise, prevent an
10337 * application-managed test address from being converted to a data
10338 * address. To prevent migration of administratively up addresses in
10339 * the kernel, we don't allow them to be converted either.
10340 */
10341 if (IS_UNDER_IPMP(ill)) {
10342 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10343
10344 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10345 return (EINVAL);
10346
10347 if ((turn_off & IFF_NOFAILOVER) &&
10348 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10349 return (EINVAL);
10350 }
10351
10352 /*
10353 * Only allow IFF_TEMPORARY flag to be set on
10354 * IPv6 interfaces.
10355 */
10356 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10357 return (EINVAL);
10358
10359 /*
10360 * cannot turn off IFF_NOXMIT on VNI interfaces.
10361 */
10362 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10363 return (EINVAL);
10364
10365 /*
10366 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10367 * interfaces. It makes no sense in that context.
10368 */
10369 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10370 return (EINVAL);
10371
10372 /*
10373 * For IPv6 ipif_id 0, don't allow the interface to be up without
10374 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10375 * If the link local address isn't set, and can be set, it will get
10376 * set later on in this function.
10377 */
10378 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10379 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10380 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10381 if (ipif_cant_setlinklocal(ipif))
10382 return (EINVAL);
10383 set_linklocal = B_TRUE;
10384 }
10385
10386 /*
10387 * If we modify physical interface flags, we'll potentially need to
10388 * send up two routing socket messages for the changes (one for the
10389 * IPv4 ill, and another for the IPv6 ill). Note that here.
10390 */
10391 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10392 phyint_flags_modified = B_TRUE;
10393
10394 /*
10395 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10396 * (otherwise, we'd immediately use them, defeating standby). Also,
10397 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10398 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10399 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10400 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10401 * will not be honored.
10402 */
10403 if (turn_on & PHYI_STANDBY) {
10404 /*
10405 * No need to grab ill_g_usesrc_lock here; see the
10406 * synchronization notes in ip.c.
10407 */
10408 if (ill->ill_usesrc_grp_next != NULL ||
10409 intf_flags & PHYI_INACTIVE)
10410 return (EINVAL);
10411 if (!(flags & PHYI_FAILED)) {
10412 flags |= PHYI_INACTIVE;
10413 turn_on |= PHYI_INACTIVE;
10414 }
10415 }
10416
10417 if (turn_off & PHYI_STANDBY) {
10418 flags &= ~PHYI_INACTIVE;
10419 turn_off |= PHYI_INACTIVE;
10420 }
10421
10422 /*
10423 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10424 * would end up on.
10425 */
10426 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10427 (PHYI_FAILED | PHYI_INACTIVE))
10428 return (EINVAL);
10429
10430 /*
10431 * If ILLF_ROUTER changes, we need to change the ip forwarding
10432 * status of the interface.
10433 */
10434 if ((turn_on | turn_off) & ILLF_ROUTER) {
10435 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10436 if (err != 0)
10437 return (err);
10438 }
10439
10440 /*
10441 * If the interface is not UP and we are not going to
10442 * bring it UP, record the flags and return. When the
10443 * interface comes UP later, the right actions will be
10444 * taken.
10445 */
10446 if (!(ipif->ipif_flags & IPIF_UP) &&
10447 !(turn_on & IPIF_UP)) {
10448 /* Record new flags in their respective places. */
10449 mutex_enter(&ill->ill_lock);
10450 mutex_enter(&ill->ill_phyint->phyint_lock);
10451 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10452 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10453 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10454 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10455 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10456 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10457 mutex_exit(&ill->ill_lock);
10458 mutex_exit(&ill->ill_phyint->phyint_lock);
10459
10460 /*
10461 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10462 * same to the kernel: if any of them has been set by
10463 * userland, the interface cannot be used for data traffic.
10464 */
10465 if ((turn_on|turn_off) &
10466 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10467 ASSERT(!IS_IPMP(ill));
10468 /*
10469 * It's possible the ill is part of an "anonymous"
10470 * IPMP group rather than a real group. In that case,
10471 * there are no other interfaces in the group and thus
10472 * no need to call ipmp_phyint_refresh_active().
10473 */
10474 if (IS_UNDER_IPMP(ill))
10475 ipmp_phyint_refresh_active(phyi);
10476 }
10477
10478 if (phyint_flags_modified) {
10479 if (phyi->phyint_illv4 != NULL) {
10480 ip_rts_ifmsg(phyi->phyint_illv4->
10481 ill_ipif, RTSQ_DEFAULT);
10482 }
10483 if (phyi->phyint_illv6 != NULL) {
10484 ip_rts_ifmsg(phyi->phyint_illv6->
10485 ill_ipif, RTSQ_DEFAULT);
10486 }
10487 }
10488 /* The default multicast interface might have changed */
10489 ire_increment_multicast_generation(ill->ill_ipst,
10490 ill->ill_isv6);
10491
10492 return (0);
10493 } else if (set_linklocal) {
10494 mutex_enter(&ill->ill_lock);
10495 if (set_linklocal)
10496 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10497 mutex_exit(&ill->ill_lock);
10498 }
10499
10500 /*
10501 * Disallow IPv6 interfaces coming up that have the unspecified address,
10502 * or point-to-point interfaces with an unspecified destination. We do
10503 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10504 * have a subnet assigned, which is how in.ndpd currently manages its
10505 * onlink prefix list when no addresses are configured with those
10506 * prefixes.
10507 */
10508 if (ipif->ipif_isv6 &&
10509 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10510 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10511 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10512 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10513 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10514 return (EINVAL);
10515 }
10516
10517 /*
10518 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10519 * from being brought up.
10520 */
10521 if (!ipif->ipif_isv6 &&
10522 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10523 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10524 return (EINVAL);
10525 }
10526
10527 /*
10528 * If we are going to change one or more of the flags that are
10529 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10530 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10531 * IPIF_NOFAILOVER, we will take special action. This is
10532 * done by bring the ipif down, changing the flags and bringing
10533 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10534 * back up will trigger the address to be moved.
10535 *
10536 * If we are going to change IFF_NOACCEPT, we need to bring
10537 * all the ipifs down then bring them up again. The act of
10538 * bringing all the ipifs back up will trigger the local
10539 * ires being recreated with "no_accept" set/cleared.
10540 *
10541 * Note that ILLF_NOACCEPT is always set separately from the
10542 * other flags.
10543 */
10544 if ((turn_on|turn_off) &
10545 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10546 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10547 IPIF_NOFAILOVER)) {
10548 /*
10549 * ipif_down() will ire_delete bcast ire's for the subnet,
10550 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10551 * entries shared between multiple ipifs on the same subnet.
10552 */
10553 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10554 !(turn_off & IPIF_UP)) {
10555 if (ipif->ipif_flags & IPIF_UP)
10556 ill->ill_logical_down = 1;
10557 turn_on &= ~IPIF_UP;
10558 }
10559 err = ipif_down(ipif, q, mp);
10560 ip1dbg(("ipif_down returns %d err ", err));
10561 if (err == EINPROGRESS)
10562 return (err);
10563 (void) ipif_down_tail(ipif);
10564 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10565 /*
10566 * If we can quiesce the ill, then continue. If not, then
10567 * ip_sioctl_flags_tail() will be called from
10568 * ipif_ill_refrele_tail().
10569 */
10570 ill_down_ipifs(ill, B_TRUE);
10571
10572 mutex_enter(&connp->conn_lock);
10573 mutex_enter(&ill->ill_lock);
10574 if (!ill_is_quiescent(ill)) {
10575 boolean_t success;
10576
10577 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10578 q, mp, ILL_DOWN);
10579 mutex_exit(&ill->ill_lock);
10580 mutex_exit(&connp->conn_lock);
10581 return (success ? EINPROGRESS : EINTR);
10582 }
10583 mutex_exit(&ill->ill_lock);
10584 mutex_exit(&connp->conn_lock);
10585 }
10586 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10587 }
10588
10589 static int
ip_sioctl_flags_tail(ipif_t * ipif,uint64_t flags,queue_t * q,mblk_t * mp)10590 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10591 {
10592 ill_t *ill;
10593 phyint_t *phyi;
10594 uint64_t turn_on, turn_off;
10595 boolean_t phyint_flags_modified = B_FALSE;
10596 int err = 0;
10597 boolean_t set_linklocal = B_FALSE;
10598
10599 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10600 ipif->ipif_ill->ill_name, ipif->ipif_id));
10601
10602 ASSERT(IAM_WRITER_IPIF(ipif));
10603
10604 ill = ipif->ipif_ill;
10605 phyi = ill->ill_phyint;
10606
10607 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10608
10609 /*
10610 * IFF_UP is handled separately.
10611 */
10612 turn_on &= ~IFF_UP;
10613 turn_off &= ~IFF_UP;
10614
10615 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10616 phyint_flags_modified = B_TRUE;
10617
10618 /*
10619 * Now we change the flags. Track current value of
10620 * other flags in their respective places.
10621 */
10622 mutex_enter(&ill->ill_lock);
10623 mutex_enter(&phyi->phyint_lock);
10624 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10625 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10626 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10627 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10628 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10629 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10630 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10631 set_linklocal = B_TRUE;
10632 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10633 }
10634
10635 mutex_exit(&ill->ill_lock);
10636 mutex_exit(&phyi->phyint_lock);
10637
10638 if (set_linklocal)
10639 (void) ipif_setlinklocal(ipif);
10640
10641 /*
10642 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10643 * the kernel: if any of them has been set by userland, the interface
10644 * cannot be used for data traffic.
10645 */
10646 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10647 ASSERT(!IS_IPMP(ill));
10648 /*
10649 * It's possible the ill is part of an "anonymous" IPMP group
10650 * rather than a real group. In that case, there are no other
10651 * interfaces in the group and thus no need for us to call
10652 * ipmp_phyint_refresh_active().
10653 */
10654 if (IS_UNDER_IPMP(ill))
10655 ipmp_phyint_refresh_active(phyi);
10656 }
10657
10658 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10659 /*
10660 * If the ILLF_NOACCEPT flag is changed, bring up all the
10661 * ipifs that were brought down.
10662 *
10663 * The routing sockets messages are sent as the result
10664 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10665 * as well.
10666 */
10667 err = ill_up_ipifs(ill, q, mp);
10668 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10669 /*
10670 * XXX ipif_up really does not know whether a phyint flags
10671 * was modified or not. So, it sends up information on
10672 * only one routing sockets message. As we don't bring up
10673 * the interface and also set PHYI_ flags simultaneously
10674 * it should be okay.
10675 */
10676 err = ipif_up(ipif, q, mp);
10677 } else {
10678 /*
10679 * Make sure routing socket sees all changes to the flags.
10680 * ipif_up_done* handles this when we use ipif_up.
10681 */
10682 if (phyint_flags_modified) {
10683 if (phyi->phyint_illv4 != NULL) {
10684 ip_rts_ifmsg(phyi->phyint_illv4->
10685 ill_ipif, RTSQ_DEFAULT);
10686 }
10687 if (phyi->phyint_illv6 != NULL) {
10688 ip_rts_ifmsg(phyi->phyint_illv6->
10689 ill_ipif, RTSQ_DEFAULT);
10690 }
10691 } else {
10692 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10693 }
10694 /*
10695 * Update the flags in SCTP's IPIF list, ipif_up() will do
10696 * this in need_up case.
10697 */
10698 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10699 }
10700
10701 /* The default multicast interface might have changed */
10702 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10703 return (err);
10704 }
10705
10706 /*
10707 * Restart the flags operation now that the refcounts have dropped to zero.
10708 */
10709 /* ARGSUSED */
10710 int
ip_sioctl_flags_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10711 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10712 ip_ioctl_cmd_t *ipip, void *if_req)
10713 {
10714 uint64_t flags;
10715 struct ifreq *ifr = if_req;
10716 struct lifreq *lifr = if_req;
10717 uint64_t turn_on, turn_off;
10718
10719 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10720 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10721
10722 if (ipip->ipi_cmd_type == IF_CMD) {
10723 /* cast to uint16_t prevents unwanted sign extension */
10724 flags = (uint16_t)ifr->ifr_flags;
10725 } else {
10726 flags = lifr->lifr_flags;
10727 }
10728
10729 /*
10730 * If this function call is a result of the ILLF_NOACCEPT flag
10731 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10732 */
10733 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10734 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10735 (void) ipif_down_tail(ipif);
10736
10737 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10738 }
10739
10740 /*
10741 * Can operate on either a module or a driver queue.
10742 */
10743 /* ARGSUSED */
10744 int
ip_sioctl_get_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10745 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10746 ip_ioctl_cmd_t *ipip, void *if_req)
10747 {
10748 /*
10749 * Has the flags been set correctly till now ?
10750 */
10751 ill_t *ill = ipif->ipif_ill;
10752 phyint_t *phyi = ill->ill_phyint;
10753
10754 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10755 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10756 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10757 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10758 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10759
10760 /*
10761 * Need a lock since some flags can be set even when there are
10762 * references to the ipif.
10763 */
10764 mutex_enter(&ill->ill_lock);
10765 if (ipip->ipi_cmd_type == IF_CMD) {
10766 struct ifreq *ifr = (struct ifreq *)if_req;
10767
10768 /* Get interface flags (low 16 only). */
10769 ifr->ifr_flags = ((ipif->ipif_flags |
10770 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10771 } else {
10772 struct lifreq *lifr = (struct lifreq *)if_req;
10773
10774 /* Get interface flags. */
10775 lifr->lifr_flags = ipif->ipif_flags |
10776 ill->ill_flags | phyi->phyint_flags;
10777 }
10778 mutex_exit(&ill->ill_lock);
10779 return (0);
10780 }
10781
10782 /*
10783 * We allow the MTU to be set on an ILL, but not have it be different
10784 * for different IPIFs since we don't actually send packets on IPIFs.
10785 */
10786 /* ARGSUSED */
10787 int
ip_sioctl_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10788 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10789 ip_ioctl_cmd_t *ipip, void *if_req)
10790 {
10791 int mtu;
10792 int ip_min_mtu;
10793 struct ifreq *ifr;
10794 struct lifreq *lifr;
10795 ill_t *ill;
10796
10797 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10798 ipif->ipif_id, (void *)ipif));
10799 if (ipip->ipi_cmd_type == IF_CMD) {
10800 ifr = (struct ifreq *)if_req;
10801 mtu = ifr->ifr_metric;
10802 } else {
10803 lifr = (struct lifreq *)if_req;
10804 mtu = lifr->lifr_mtu;
10805 }
10806 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10807 if (ipif->ipif_id != 0)
10808 return (EINVAL);
10809
10810 ill = ipif->ipif_ill;
10811 if (ipif->ipif_isv6)
10812 ip_min_mtu = IPV6_MIN_MTU;
10813 else
10814 ip_min_mtu = IP_MIN_MTU;
10815
10816 mutex_enter(&ill->ill_lock);
10817 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10818 mutex_exit(&ill->ill_lock);
10819 return (EINVAL);
10820 }
10821 /* Avoid increasing ill_mc_mtu */
10822 if (ill->ill_mc_mtu > mtu)
10823 ill->ill_mc_mtu = mtu;
10824
10825 /*
10826 * The dce and fragmentation code can handle changes to ill_mtu
10827 * concurrent with sending/fragmenting packets.
10828 */
10829 ill->ill_mtu = mtu;
10830 ill->ill_flags |= ILLF_FIXEDMTU;
10831 mutex_exit(&ill->ill_lock);
10832
10833 /*
10834 * Make sure all dce_generation checks find out
10835 * that ill_mtu/ill_mc_mtu has changed.
10836 */
10837 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10838
10839 /*
10840 * Refresh IPMP meta-interface MTU if necessary.
10841 */
10842 if (IS_UNDER_IPMP(ill))
10843 ipmp_illgrp_refresh_mtu(ill->ill_grp);
10844
10845 /* Update the MTU in SCTP's list */
10846 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10847 return (0);
10848 }
10849
10850 /* Get interface MTU. */
10851 /* ARGSUSED */
10852 int
ip_sioctl_get_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10853 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10854 ip_ioctl_cmd_t *ipip, void *if_req)
10855 {
10856 struct ifreq *ifr;
10857 struct lifreq *lifr;
10858
10859 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10860 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10861
10862 /*
10863 * We allow a get on any logical interface even though the set
10864 * can only be done on logical unit 0.
10865 */
10866 if (ipip->ipi_cmd_type == IF_CMD) {
10867 ifr = (struct ifreq *)if_req;
10868 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10869 } else {
10870 lifr = (struct lifreq *)if_req;
10871 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10872 }
10873 return (0);
10874 }
10875
10876 /* Set interface broadcast address. */
10877 /* ARGSUSED2 */
10878 int
ip_sioctl_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10879 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10880 ip_ioctl_cmd_t *ipip, void *if_req)
10881 {
10882 ipaddr_t addr;
10883 ire_t *ire;
10884 ill_t *ill = ipif->ipif_ill;
10885 ip_stack_t *ipst = ill->ill_ipst;
10886
10887 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10888 ipif->ipif_id));
10889
10890 ASSERT(IAM_WRITER_IPIF(ipif));
10891 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10892 return (EADDRNOTAVAIL);
10893
10894 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */
10895
10896 if (sin->sin_family != AF_INET)
10897 return (EAFNOSUPPORT);
10898
10899 addr = sin->sin_addr.s_addr;
10900
10901 if (ipif->ipif_flags & IPIF_UP) {
10902 /*
10903 * If we are already up, make sure the new
10904 * broadcast address makes sense. If it does,
10905 * there should be an IRE for it already.
10906 */
10907 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10908 ill, ipif->ipif_zoneid, NULL,
10909 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10910 if (ire == NULL) {
10911 return (EINVAL);
10912 } else {
10913 ire_refrele(ire);
10914 }
10915 }
10916 /*
10917 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10918 * needs to already exist we never need to change the set of
10919 * IRE_BROADCASTs when we are UP.
10920 */
10921 if (addr != ipif->ipif_brd_addr)
10922 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10923
10924 return (0);
10925 }
10926
10927 /* Get interface broadcast address. */
10928 /* ARGSUSED */
10929 int
ip_sioctl_get_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10930 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10931 ip_ioctl_cmd_t *ipip, void *if_req)
10932 {
10933 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10934 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10935 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10936 return (EADDRNOTAVAIL);
10937
10938 /* IPIF_BROADCAST not possible with IPv6 */
10939 ASSERT(!ipif->ipif_isv6);
10940 *sin = sin_null;
10941 sin->sin_family = AF_INET;
10942 sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10943 return (0);
10944 }
10945
10946 /*
10947 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10948 */
10949 /* ARGSUSED */
10950 int
ip_sioctl_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10951 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10952 ip_ioctl_cmd_t *ipip, void *if_req)
10953 {
10954 int err = 0;
10955 in6_addr_t v6mask;
10956
10957 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10958 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10959
10960 ASSERT(IAM_WRITER_IPIF(ipif));
10961
10962 if (ipif->ipif_isv6) {
10963 sin6_t *sin6;
10964
10965 if (sin->sin_family != AF_INET6)
10966 return (EAFNOSUPPORT);
10967
10968 sin6 = (sin6_t *)sin;
10969 v6mask = sin6->sin6_addr;
10970 } else {
10971 ipaddr_t mask;
10972
10973 if (sin->sin_family != AF_INET)
10974 return (EAFNOSUPPORT);
10975
10976 mask = sin->sin_addr.s_addr;
10977 if (!ip_contiguous_mask(ntohl(mask)))
10978 return (ENOTSUP);
10979 V4MASK_TO_V6(mask, v6mask);
10980 }
10981
10982 /*
10983 * No big deal if the interface isn't already up, or the mask
10984 * isn't really changing, or this is pt-pt.
10985 */
10986 if (!(ipif->ipif_flags & IPIF_UP) ||
10987 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10988 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10989 ipif->ipif_v6net_mask = v6mask;
10990 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10991 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10992 ipif->ipif_v6net_mask,
10993 ipif->ipif_v6subnet);
10994 }
10995 return (0);
10996 }
10997 /*
10998 * Make sure we have valid net and subnet broadcast ire's
10999 * for the old netmask, if needed by other logical interfaces.
11000 */
11001 err = ipif_logical_down(ipif, q, mp);
11002 if (err == EINPROGRESS)
11003 return (err);
11004 (void) ipif_down_tail(ipif);
11005 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
11006 return (err);
11007 }
11008
11009 static int
ip_sioctl_netmask_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp)11010 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
11011 {
11012 in6_addr_t v6mask;
11013 int err = 0;
11014
11015 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
11016 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11017
11018 if (ipif->ipif_isv6) {
11019 sin6_t *sin6;
11020
11021 sin6 = (sin6_t *)sin;
11022 v6mask = sin6->sin6_addr;
11023 } else {
11024 ipaddr_t mask;
11025
11026 mask = sin->sin_addr.s_addr;
11027 V4MASK_TO_V6(mask, v6mask);
11028 }
11029
11030 ipif->ipif_v6net_mask = v6mask;
11031 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11032 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11033 ipif->ipif_v6subnet);
11034 }
11035 err = ipif_up(ipif, q, mp);
11036
11037 if (err == 0 || err == EINPROGRESS) {
11038 /*
11039 * The interface must be DL_BOUND if this packet has to
11040 * go out on the wire. Since we only go through a logical
11041 * down and are bound with the driver during an internal
11042 * down/up that is satisfied.
11043 */
11044 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11045 /* Potentially broadcast an address mask reply. */
11046 ipif_mask_reply(ipif);
11047 }
11048 }
11049 return (err);
11050 }
11051
11052 /* ARGSUSED */
11053 int
ip_sioctl_netmask_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11054 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11055 ip_ioctl_cmd_t *ipip, void *if_req)
11056 {
11057 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11058 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11059 (void) ipif_down_tail(ipif);
11060 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11061 }
11062
11063 /* Get interface net mask. */
11064 /* ARGSUSED */
11065 int
ip_sioctl_get_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11066 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11067 ip_ioctl_cmd_t *ipip, void *if_req)
11068 {
11069 struct lifreq *lifr = (struct lifreq *)if_req;
11070 struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11071
11072 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11073 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11074
11075 /*
11076 * net mask can't change since we have a reference to the ipif.
11077 */
11078 if (ipif->ipif_isv6) {
11079 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11080 *sin6 = sin6_null;
11081 sin6->sin6_family = AF_INET6;
11082 sin6->sin6_addr = ipif->ipif_v6net_mask;
11083 lifr->lifr_addrlen =
11084 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11085 } else {
11086 *sin = sin_null;
11087 sin->sin_family = AF_INET;
11088 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11089 if (ipip->ipi_cmd_type == LIF_CMD) {
11090 lifr->lifr_addrlen =
11091 ip_mask_to_plen(ipif->ipif_net_mask);
11092 }
11093 }
11094 return (0);
11095 }
11096
11097 /* ARGSUSED */
11098 int
ip_sioctl_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11099 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11100 ip_ioctl_cmd_t *ipip, void *if_req)
11101 {
11102 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11103 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11104
11105 /*
11106 * Since no applications should ever be setting metrics on underlying
11107 * interfaces, we explicitly fail to smoke 'em out.
11108 */
11109 if (IS_UNDER_IPMP(ipif->ipif_ill))
11110 return (EINVAL);
11111
11112 /*
11113 * Set interface metric. We don't use this for
11114 * anything but we keep track of it in case it is
11115 * important to routing applications or such.
11116 */
11117 if (ipip->ipi_cmd_type == IF_CMD) {
11118 struct ifreq *ifr;
11119
11120 ifr = (struct ifreq *)if_req;
11121 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11122 } else {
11123 struct lifreq *lifr;
11124
11125 lifr = (struct lifreq *)if_req;
11126 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11127 }
11128 return (0);
11129 }
11130
11131 /* ARGSUSED */
11132 int
ip_sioctl_get_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11133 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11134 ip_ioctl_cmd_t *ipip, void *if_req)
11135 {
11136 /* Get interface metric. */
11137 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11138 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11139
11140 if (ipip->ipi_cmd_type == IF_CMD) {
11141 struct ifreq *ifr;
11142
11143 ifr = (struct ifreq *)if_req;
11144 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11145 } else {
11146 struct lifreq *lifr;
11147
11148 lifr = (struct lifreq *)if_req;
11149 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11150 }
11151
11152 return (0);
11153 }
11154
11155 /* ARGSUSED */
11156 int
ip_sioctl_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11157 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11158 ip_ioctl_cmd_t *ipip, void *if_req)
11159 {
11160 int arp_muxid;
11161
11162 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11164 /*
11165 * Set the muxid returned from I_PLINK.
11166 */
11167 if (ipip->ipi_cmd_type == IF_CMD) {
11168 struct ifreq *ifr = (struct ifreq *)if_req;
11169
11170 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11171 arp_muxid = ifr->ifr_arp_muxid;
11172 } else {
11173 struct lifreq *lifr = (struct lifreq *)if_req;
11174
11175 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11176 arp_muxid = lifr->lifr_arp_muxid;
11177 }
11178 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11179 return (0);
11180 }
11181
11182 /* ARGSUSED */
11183 int
ip_sioctl_get_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11184 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11185 ip_ioctl_cmd_t *ipip, void *if_req)
11186 {
11187 int arp_muxid = 0;
11188
11189 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11190 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11191 /*
11192 * Get the muxid saved in ill for I_PUNLINK.
11193 */
11194 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11195 if (ipip->ipi_cmd_type == IF_CMD) {
11196 struct ifreq *ifr = (struct ifreq *)if_req;
11197
11198 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11199 ifr->ifr_arp_muxid = arp_muxid;
11200 } else {
11201 struct lifreq *lifr = (struct lifreq *)if_req;
11202
11203 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11204 lifr->lifr_arp_muxid = arp_muxid;
11205 }
11206 return (0);
11207 }
11208
11209 /*
11210 * Set the subnet prefix. Does not modify the broadcast address.
11211 */
11212 /* ARGSUSED */
11213 int
ip_sioctl_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11214 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11215 ip_ioctl_cmd_t *ipip, void *if_req)
11216 {
11217 int err = 0;
11218 in6_addr_t v6addr;
11219 in6_addr_t v6mask;
11220 boolean_t need_up = B_FALSE;
11221 int addrlen;
11222
11223 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11224 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11225
11226 ASSERT(IAM_WRITER_IPIF(ipif));
11227 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11228
11229 if (ipif->ipif_isv6) {
11230 sin6_t *sin6;
11231
11232 if (sin->sin_family != AF_INET6)
11233 return (EAFNOSUPPORT);
11234
11235 sin6 = (sin6_t *)sin;
11236 v6addr = sin6->sin6_addr;
11237 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11238 return (EADDRNOTAVAIL);
11239 } else {
11240 ipaddr_t addr;
11241
11242 if (sin->sin_family != AF_INET)
11243 return (EAFNOSUPPORT);
11244
11245 addr = sin->sin_addr.s_addr;
11246 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11247 return (EADDRNOTAVAIL);
11248 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11249 /* Add 96 bits */
11250 addrlen += IPV6_ABITS - IP_ABITS;
11251 }
11252
11253 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11254 return (EINVAL);
11255
11256 /* Check if bits in the address is set past the mask */
11257 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11258 return (EINVAL);
11259
11260 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11261 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11262 return (0); /* No change */
11263
11264 if (ipif->ipif_flags & IPIF_UP) {
11265 /*
11266 * If the interface is already marked up,
11267 * we call ipif_down which will take care
11268 * of ditching any IREs that have been set
11269 * up based on the old interface address.
11270 */
11271 err = ipif_logical_down(ipif, q, mp);
11272 if (err == EINPROGRESS)
11273 return (err);
11274 (void) ipif_down_tail(ipif);
11275 need_up = B_TRUE;
11276 }
11277
11278 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11279 return (err);
11280 }
11281
11282 static int
ip_sioctl_subnet_tail(ipif_t * ipif,in6_addr_t v6addr,in6_addr_t v6mask,queue_t * q,mblk_t * mp,boolean_t need_up)11283 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11284 queue_t *q, mblk_t *mp, boolean_t need_up)
11285 {
11286 ill_t *ill = ipif->ipif_ill;
11287 int err = 0;
11288
11289 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11291
11292 /* Set the new address. */
11293 mutex_enter(&ill->ill_lock);
11294 ipif->ipif_v6net_mask = v6mask;
11295 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11296 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11297 ipif->ipif_v6subnet);
11298 }
11299 mutex_exit(&ill->ill_lock);
11300
11301 if (need_up) {
11302 /*
11303 * Now bring the interface back up. If this
11304 * is the only IPIF for the ILL, ipif_up
11305 * will have to re-bind to the device, so
11306 * we may get back EINPROGRESS, in which
11307 * case, this IOCTL will get completed in
11308 * ip_rput_dlpi when we see the DL_BIND_ACK.
11309 */
11310 err = ipif_up(ipif, q, mp);
11311 if (err == EINPROGRESS)
11312 return (err);
11313 }
11314 return (err);
11315 }
11316
11317 /* ARGSUSED */
11318 int
ip_sioctl_subnet_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11319 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11320 ip_ioctl_cmd_t *ipip, void *if_req)
11321 {
11322 int addrlen;
11323 in6_addr_t v6addr;
11324 in6_addr_t v6mask;
11325 struct lifreq *lifr = (struct lifreq *)if_req;
11326
11327 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11328 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11329 (void) ipif_down_tail(ipif);
11330
11331 addrlen = lifr->lifr_addrlen;
11332 if (ipif->ipif_isv6) {
11333 sin6_t *sin6;
11334
11335 sin6 = (sin6_t *)sin;
11336 v6addr = sin6->sin6_addr;
11337 } else {
11338 ipaddr_t addr;
11339
11340 addr = sin->sin_addr.s_addr;
11341 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11342 addrlen += IPV6_ABITS - IP_ABITS;
11343 }
11344 (void) ip_plen_to_mask_v6(addrlen, &v6mask);
11345
11346 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11347 }
11348
11349 /* ARGSUSED */
11350 int
ip_sioctl_get_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11351 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11352 ip_ioctl_cmd_t *ipip, void *if_req)
11353 {
11354 struct lifreq *lifr = (struct lifreq *)if_req;
11355 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11356
11357 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11358 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11359 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11360
11361 if (ipif->ipif_isv6) {
11362 *sin6 = sin6_null;
11363 sin6->sin6_family = AF_INET6;
11364 sin6->sin6_addr = ipif->ipif_v6subnet;
11365 lifr->lifr_addrlen =
11366 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11367 } else {
11368 *sin = sin_null;
11369 sin->sin_family = AF_INET;
11370 sin->sin_addr.s_addr = ipif->ipif_subnet;
11371 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11372 }
11373 return (0);
11374 }
11375
11376 /*
11377 * Set the IPv6 address token.
11378 */
11379 /* ARGSUSED */
11380 int
ip_sioctl_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11381 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11382 ip_ioctl_cmd_t *ipi, void *if_req)
11383 {
11384 ill_t *ill = ipif->ipif_ill;
11385 int err;
11386 in6_addr_t v6addr;
11387 in6_addr_t v6mask;
11388 boolean_t need_up = B_FALSE;
11389 int i;
11390 sin6_t *sin6 = (sin6_t *)sin;
11391 struct lifreq *lifr = (struct lifreq *)if_req;
11392 int addrlen;
11393
11394 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11395 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11396 ASSERT(IAM_WRITER_IPIF(ipif));
11397
11398 addrlen = lifr->lifr_addrlen;
11399 /* Only allow for logical unit zero i.e. not on "le0:17" */
11400 if (ipif->ipif_id != 0)
11401 return (EINVAL);
11402
11403 if (!ipif->ipif_isv6)
11404 return (EINVAL);
11405
11406 if (addrlen > IPV6_ABITS)
11407 return (EINVAL);
11408
11409 v6addr = sin6->sin6_addr;
11410
11411 /*
11412 * The length of the token is the length from the end. To get
11413 * the proper mask for this, compute the mask of the bits not
11414 * in the token; ie. the prefix, and then xor to get the mask.
11415 */
11416 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11417 return (EINVAL);
11418 for (i = 0; i < 4; i++) {
11419 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11420 }
11421
11422 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11423 ill->ill_token_length == addrlen)
11424 return (0); /* No change */
11425
11426 if (ipif->ipif_flags & IPIF_UP) {
11427 err = ipif_logical_down(ipif, q, mp);
11428 if (err == EINPROGRESS)
11429 return (err);
11430 (void) ipif_down_tail(ipif);
11431 need_up = B_TRUE;
11432 }
11433 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11434 return (err);
11435 }
11436
11437 static int
ip_sioctl_token_tail(ipif_t * ipif,sin6_t * sin6,int addrlen,queue_t * q,mblk_t * mp,boolean_t need_up)11438 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11439 mblk_t *mp, boolean_t need_up)
11440 {
11441 in6_addr_t v6addr;
11442 in6_addr_t v6mask;
11443 ill_t *ill = ipif->ipif_ill;
11444 int i;
11445 int err = 0;
11446
11447 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11448 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11449 v6addr = sin6->sin6_addr;
11450 /*
11451 * The length of the token is the length from the end. To get
11452 * the proper mask for this, compute the mask of the bits not
11453 * in the token; ie. the prefix, and then xor to get the mask.
11454 */
11455 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11456 for (i = 0; i < 4; i++)
11457 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11458
11459 mutex_enter(&ill->ill_lock);
11460 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11461 ill->ill_token_length = addrlen;
11462 ill->ill_manual_token = 1;
11463
11464 /* Reconfigure the link-local address based on this new token */
11465 ipif_setlinklocal(ill->ill_ipif);
11466
11467 mutex_exit(&ill->ill_lock);
11468
11469 if (need_up) {
11470 /*
11471 * Now bring the interface back up. If this
11472 * is the only IPIF for the ILL, ipif_up
11473 * will have to re-bind to the device, so
11474 * we may get back EINPROGRESS, in which
11475 * case, this IOCTL will get completed in
11476 * ip_rput_dlpi when we see the DL_BIND_ACK.
11477 */
11478 err = ipif_up(ipif, q, mp);
11479 if (err == EINPROGRESS)
11480 return (err);
11481 }
11482 return (err);
11483 }
11484
11485 /* ARGSUSED */
11486 int
ip_sioctl_get_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11487 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11488 ip_ioctl_cmd_t *ipi, void *if_req)
11489 {
11490 ill_t *ill;
11491 sin6_t *sin6 = (sin6_t *)sin;
11492 struct lifreq *lifr = (struct lifreq *)if_req;
11493
11494 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11495 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11496 if (ipif->ipif_id != 0)
11497 return (EINVAL);
11498
11499 ill = ipif->ipif_ill;
11500 if (!ill->ill_isv6)
11501 return (ENXIO);
11502
11503 *sin6 = sin6_null;
11504 sin6->sin6_family = AF_INET6;
11505 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11506 sin6->sin6_addr = ill->ill_token;
11507 lifr->lifr_addrlen = ill->ill_token_length;
11508 return (0);
11509 }
11510
11511 /*
11512 * Set (hardware) link specific information that might override
11513 * what was acquired through the DL_INFO_ACK.
11514 */
11515 /* ARGSUSED */
11516 int
ip_sioctl_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11517 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11518 ip_ioctl_cmd_t *ipi, void *if_req)
11519 {
11520 ill_t *ill = ipif->ipif_ill;
11521 int ip_min_mtu;
11522 struct lifreq *lifr = (struct lifreq *)if_req;
11523 lif_ifinfo_req_t *lir;
11524
11525 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11526 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11527 lir = &lifr->lifr_ifinfo;
11528 ASSERT(IAM_WRITER_IPIF(ipif));
11529
11530 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11531 if (ipif->ipif_id != 0)
11532 return (EINVAL);
11533
11534 /* Set interface MTU. */
11535 if (ipif->ipif_isv6)
11536 ip_min_mtu = IPV6_MIN_MTU;
11537 else
11538 ip_min_mtu = IP_MIN_MTU;
11539
11540 /*
11541 * Verify values before we set anything. Allow zero to
11542 * mean unspecified.
11543 *
11544 * XXX We should be able to set the user-defined lir_mtu to some value
11545 * that is greater than ill_current_frag but less than ill_max_frag- the
11546 * ill_max_frag value tells us the max MTU that can be handled by the
11547 * datalink, whereas the ill_current_frag is dynamically computed for
11548 * some link-types like tunnels, based on the tunnel PMTU. However,
11549 * since there is currently no way of distinguishing between
11550 * administratively fixed link mtu values (e.g., those set via
11551 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11552 * for tunnels) we conservatively choose the ill_current_frag as the
11553 * upper-bound.
11554 */
11555 if (lir->lir_maxmtu != 0 &&
11556 (lir->lir_maxmtu > ill->ill_current_frag ||
11557 lir->lir_maxmtu < ip_min_mtu))
11558 return (EINVAL);
11559 if (lir->lir_reachtime != 0 &&
11560 lir->lir_reachtime > ND_MAX_REACHTIME)
11561 return (EINVAL);
11562 if (lir->lir_reachretrans != 0 &&
11563 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11564 return (EINVAL);
11565
11566 mutex_enter(&ill->ill_lock);
11567 /*
11568 * The dce and fragmentation code can handle changes to ill_mtu
11569 * concurrent with sending/fragmenting packets.
11570 */
11571 if (lir->lir_maxmtu != 0)
11572 ill->ill_user_mtu = lir->lir_maxmtu;
11573
11574 if (lir->lir_reachtime != 0)
11575 ill->ill_reachable_time = lir->lir_reachtime;
11576
11577 if (lir->lir_reachretrans != 0)
11578 ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11579
11580 ill->ill_max_hops = lir->lir_maxhops;
11581 ill->ill_max_buf = ND_MAX_Q;
11582 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11583 /*
11584 * ill_mtu is the actual interface MTU, obtained as the min
11585 * of user-configured mtu and the value announced by the
11586 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11587 * we have already made the choice of requiring
11588 * ill_user_mtu < ill_current_frag by the time we get here,
11589 * the ill_mtu effectively gets assigned to the ill_user_mtu
11590 * here.
11591 */
11592 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11593 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11594 }
11595 mutex_exit(&ill->ill_lock);
11596
11597 /*
11598 * Make sure all dce_generation checks find out
11599 * that ill_mtu/ill_mc_mtu has changed.
11600 */
11601 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11602 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11603
11604 /*
11605 * Refresh IPMP meta-interface MTU if necessary.
11606 */
11607 if (IS_UNDER_IPMP(ill))
11608 ipmp_illgrp_refresh_mtu(ill->ill_grp);
11609
11610 return (0);
11611 }
11612
11613 /* ARGSUSED */
11614 int
ip_sioctl_get_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11615 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11616 ip_ioctl_cmd_t *ipi, void *if_req)
11617 {
11618 struct lif_ifinfo_req *lir;
11619 ill_t *ill = ipif->ipif_ill;
11620
11621 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11622 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11623 if (ipif->ipif_id != 0)
11624 return (EINVAL);
11625
11626 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11627 lir->lir_maxhops = ill->ill_max_hops;
11628 lir->lir_reachtime = ill->ill_reachable_time;
11629 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11630 lir->lir_maxmtu = ill->ill_mtu;
11631
11632 return (0);
11633 }
11634
11635 /*
11636 * Return best guess as to the subnet mask for the specified address.
11637 * Based on the subnet masks for all the configured interfaces.
11638 *
11639 * We end up returning a zero mask in the case of default, multicast or
11640 * experimental.
11641 */
11642 static ipaddr_t
ip_subnet_mask(ipaddr_t addr,ipif_t ** ipifp,ip_stack_t * ipst)11643 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11644 {
11645 ipaddr_t net_mask;
11646 ill_t *ill;
11647 ipif_t *ipif;
11648 ill_walk_context_t ctx;
11649 ipif_t *fallback_ipif = NULL;
11650
11651 net_mask = ip_net_mask(addr);
11652 if (net_mask == 0) {
11653 *ipifp = NULL;
11654 return (0);
11655 }
11656
11657 /* Let's check to see if this is maybe a local subnet route. */
11658 /* this function only applies to IPv4 interfaces */
11659 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11660 ill = ILL_START_WALK_V4(&ctx, ipst);
11661 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11662 mutex_enter(&ill->ill_lock);
11663 for (ipif = ill->ill_ipif; ipif != NULL;
11664 ipif = ipif->ipif_next) {
11665 if (IPIF_IS_CONDEMNED(ipif))
11666 continue;
11667 if (!(ipif->ipif_flags & IPIF_UP))
11668 continue;
11669 if ((ipif->ipif_subnet & net_mask) ==
11670 (addr & net_mask)) {
11671 /*
11672 * Don't trust pt-pt interfaces if there are
11673 * other interfaces.
11674 */
11675 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11676 if (fallback_ipif == NULL) {
11677 ipif_refhold_locked(ipif);
11678 fallback_ipif = ipif;
11679 }
11680 continue;
11681 }
11682
11683 /*
11684 * Fine. Just assume the same net mask as the
11685 * directly attached subnet interface is using.
11686 */
11687 ipif_refhold_locked(ipif);
11688 mutex_exit(&ill->ill_lock);
11689 rw_exit(&ipst->ips_ill_g_lock);
11690 if (fallback_ipif != NULL)
11691 ipif_refrele(fallback_ipif);
11692 *ipifp = ipif;
11693 return (ipif->ipif_net_mask);
11694 }
11695 }
11696 mutex_exit(&ill->ill_lock);
11697 }
11698 rw_exit(&ipst->ips_ill_g_lock);
11699
11700 *ipifp = fallback_ipif;
11701 return ((fallback_ipif != NULL) ?
11702 fallback_ipif->ipif_net_mask : net_mask);
11703 }
11704
11705 /*
11706 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11707 */
11708 static void
ip_wput_ioctl(queue_t * q,mblk_t * mp)11709 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11710 {
11711 IOCP iocp;
11712 ipft_t *ipft;
11713 ipllc_t *ipllc;
11714 mblk_t *mp1;
11715 cred_t *cr;
11716 int error = 0;
11717 conn_t *connp;
11718
11719 ip1dbg(("ip_wput_ioctl"));
11720 iocp = (IOCP)mp->b_rptr;
11721 mp1 = mp->b_cont;
11722 if (mp1 == NULL) {
11723 iocp->ioc_error = EINVAL;
11724 mp->b_datap->db_type = M_IOCNAK;
11725 iocp->ioc_count = 0;
11726 qreply(q, mp);
11727 return;
11728 }
11729
11730 /*
11731 * These IOCTLs provide various control capabilities to
11732 * upstream agents such as ULPs and processes. There
11733 * are currently two such IOCTLs implemented. They
11734 * are used by TCP to provide update information for
11735 * existing IREs and to forcibly delete an IRE for a
11736 * host that is not responding, thereby forcing an
11737 * attempt at a new route.
11738 */
11739 iocp->ioc_error = EINVAL;
11740 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11741 goto done;
11742
11743 ipllc = (ipllc_t *)mp1->b_rptr;
11744 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11745 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11746 break;
11747 }
11748 /*
11749 * prefer credential from mblk over ioctl;
11750 * see ip_sioctl_copyin_setup
11751 */
11752 cr = msg_getcred(mp, NULL);
11753 if (cr == NULL)
11754 cr = iocp->ioc_cr;
11755
11756 /*
11757 * Refhold the conn in case the request gets queued up in some lookup
11758 */
11759 ASSERT(CONN_Q(q));
11760 connp = Q_TO_CONN(q);
11761 CONN_INC_REF(connp);
11762 CONN_INC_IOCTLREF(connp);
11763 if (ipft->ipft_pfi &&
11764 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11765 pullupmsg(mp1, ipft->ipft_min_size))) {
11766 error = (*ipft->ipft_pfi)(q,
11767 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11768 }
11769 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11770 /*
11771 * CONN_OPER_PENDING_DONE happens in the function called
11772 * through ipft_pfi above.
11773 */
11774 return;
11775 }
11776
11777 CONN_DEC_IOCTLREF(connp);
11778 CONN_OPER_PENDING_DONE(connp);
11779 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11780 freemsg(mp);
11781 return;
11782 }
11783 iocp->ioc_error = error;
11784
11785 done:
11786 mp->b_datap->db_type = M_IOCACK;
11787 if (iocp->ioc_error)
11788 iocp->ioc_count = 0;
11789 qreply(q, mp);
11790 }
11791
11792 /*
11793 * Assign a unique id for the ipif. This is used by sctp_addr.c
11794 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11795 */
11796 static void
ipif_assign_seqid(ipif_t * ipif)11797 ipif_assign_seqid(ipif_t *ipif)
11798 {
11799 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
11800
11801 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11802 }
11803
11804 /*
11805 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are
11806 * administratively down (i.e., no DAD), of the same type, and locked. Note
11807 * that the clone is complete -- including the seqid -- and the expectation is
11808 * that the caller will either free or overwrite `sipif' before it's unlocked.
11809 */
11810 static void
ipif_clone(const ipif_t * sipif,ipif_t * dipif)11811 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11812 {
11813 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11814 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11815 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11816 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11817 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11818
11819 dipif->ipif_flags = sipif->ipif_flags;
11820 dipif->ipif_zoneid = sipif->ipif_zoneid;
11821 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11822 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11823 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11824 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11825 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11826
11827 /*
11828 * As per the comment atop the function, we assume that these sipif
11829 * fields will be changed before sipif is unlocked.
11830 */
11831 dipif->ipif_seqid = sipif->ipif_seqid;
11832 dipif->ipif_state_flags = sipif->ipif_state_flags;
11833 }
11834
11835 /*
11836 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11837 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11838 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then
11839 * transfer the xop to `dipif'. Requires that all ipifs are administratively
11840 * down (i.e., no DAD), of the same type, and unlocked.
11841 */
11842 static void
ipif_transfer(ipif_t * sipif,ipif_t * dipif,ipif_t * virgipif)11843 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11844 {
11845 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11846 ipxop_t *ipx = ipsq->ipsq_xop;
11847
11848 ASSERT(sipif != dipif);
11849 ASSERT(sipif != virgipif);
11850
11851 /*
11852 * Grab all of the locks that protect the ipif in a defined order.
11853 */
11854 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11855
11856 ipif_clone(sipif, dipif);
11857 if (virgipif != NULL) {
11858 ipif_clone(virgipif, sipif);
11859 mi_free(virgipif);
11860 }
11861
11862 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11863
11864 /*
11865 * Transfer ownership of the current xop, if necessary.
11866 */
11867 if (ipx->ipx_current_ipif == sipif) {
11868 ASSERT(ipx->ipx_pending_ipif == NULL);
11869 mutex_enter(&ipx->ipx_lock);
11870 ipx->ipx_current_ipif = dipif;
11871 mutex_exit(&ipx->ipx_lock);
11872 }
11873
11874 if (virgipif == NULL)
11875 mi_free(sipif);
11876 }
11877
11878 /*
11879 * checks if:
11880 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11881 * - logical interface is within the allowed range
11882 */
11883 static int
is_lifname_valid(ill_t * ill,unsigned int ipif_id)11884 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11885 {
11886 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11887 return (ENAMETOOLONG);
11888
11889 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11890 return (ERANGE);
11891 return (0);
11892 }
11893
11894 /*
11895 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11896 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11897 * be inserted into the first space available in the list. The value of
11898 * ipif_id will then be set to the appropriate value for its position.
11899 */
11900 static int
ipif_insert(ipif_t * ipif,boolean_t acquire_g_lock)11901 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11902 {
11903 ill_t *ill;
11904 ipif_t *tipif;
11905 ipif_t **tipifp;
11906 int id, err;
11907 ip_stack_t *ipst;
11908
11909 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11910 IAM_WRITER_IPIF(ipif));
11911
11912 ill = ipif->ipif_ill;
11913 ASSERT(ill != NULL);
11914 ipst = ill->ill_ipst;
11915
11916 /*
11917 * In the case of lo0:0 we already hold the ill_g_lock.
11918 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11919 * ipif_insert.
11920 */
11921 if (acquire_g_lock)
11922 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11923 mutex_enter(&ill->ill_lock);
11924 id = ipif->ipif_id;
11925 tipifp = &(ill->ill_ipif);
11926 if (id == -1) { /* need to find a real id */
11927 id = 0;
11928 while ((tipif = *tipifp) != NULL) {
11929 ASSERT(tipif->ipif_id >= id);
11930 if (tipif->ipif_id != id)
11931 break; /* non-consecutive id */
11932 id++;
11933 tipifp = &(tipif->ipif_next);
11934 }
11935 if ((err = is_lifname_valid(ill, id)) != 0) {
11936 mutex_exit(&ill->ill_lock);
11937 if (acquire_g_lock)
11938 rw_exit(&ipst->ips_ill_g_lock);
11939 return (err);
11940 }
11941 ipif->ipif_id = id; /* assign new id */
11942 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11943 /* we have a real id; insert ipif in the right place */
11944 while ((tipif = *tipifp) != NULL) {
11945 ASSERT(tipif->ipif_id != id);
11946 if (tipif->ipif_id > id)
11947 break; /* found correct location */
11948 tipifp = &(tipif->ipif_next);
11949 }
11950 } else {
11951 mutex_exit(&ill->ill_lock);
11952 if (acquire_g_lock)
11953 rw_exit(&ipst->ips_ill_g_lock);
11954 return (err);
11955 }
11956
11957 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11958
11959 ipif->ipif_next = tipif;
11960 *tipifp = ipif;
11961 mutex_exit(&ill->ill_lock);
11962 if (acquire_g_lock)
11963 rw_exit(&ipst->ips_ill_g_lock);
11964
11965 return (0);
11966 }
11967
11968 static void
ipif_remove(ipif_t * ipif)11969 ipif_remove(ipif_t *ipif)
11970 {
11971 ipif_t **ipifp;
11972 ill_t *ill = ipif->ipif_ill;
11973
11974 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11975
11976 mutex_enter(&ill->ill_lock);
11977 ipifp = &ill->ill_ipif;
11978 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11979 if (*ipifp == ipif) {
11980 *ipifp = ipif->ipif_next;
11981 break;
11982 }
11983 }
11984 mutex_exit(&ill->ill_lock);
11985 }
11986
11987 /*
11988 * Allocate and initialize a new interface control structure. (Always
11989 * called as writer.)
11990 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11991 * is not part of the global linked list of ills. ipif_seqid is unique
11992 * in the system and to preserve the uniqueness, it is assigned only
11993 * when ill becomes part of the global list. At that point ill will
11994 * have a name. If it doesn't get assigned here, it will get assigned
11995 * in ipif_set_values() as part of SIOCSLIFNAME processing.
11996 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11997 * the interface flags or any other information from the DL_INFO_ACK for
11998 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11999 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
12000 * second DL_INFO_ACK comes in from the driver.
12001 */
12002 static ipif_t *
ipif_allocate(ill_t * ill,int id,uint_t ire_type,boolean_t initialize,boolean_t insert,int * errorp)12003 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
12004 boolean_t insert, int *errorp)
12005 {
12006 int err;
12007 ipif_t *ipif;
12008 ip_stack_t *ipst = ill->ill_ipst;
12009
12010 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
12011 ill->ill_name, id, (void *)ill));
12012 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
12013
12014 if (errorp != NULL)
12015 *errorp = 0;
12016
12017 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
12018 if (errorp != NULL)
12019 *errorp = ENOMEM;
12020 return (NULL);
12021 }
12022 *ipif = ipif_zero; /* start clean */
12023
12024 ipif->ipif_ill = ill;
12025 ipif->ipif_id = id; /* could be -1 */
12026 /*
12027 * Inherit the zoneid from the ill; for the shared stack instance
12028 * this is always the global zone
12029 */
12030 ipif->ipif_zoneid = ill->ill_zoneid;
12031
12032 ipif->ipif_refcnt = 0;
12033
12034 if (insert) {
12035 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12036 mi_free(ipif);
12037 if (errorp != NULL)
12038 *errorp = err;
12039 return (NULL);
12040 }
12041 /* -1 id should have been replaced by real id */
12042 id = ipif->ipif_id;
12043 ASSERT(id >= 0);
12044 }
12045
12046 if (ill->ill_name[0] != '\0')
12047 ipif_assign_seqid(ipif);
12048
12049 /*
12050 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12051 * (which must not exist yet because the zeroth ipif is created once
12052 * per ill). However, do not not link it to the ipmp_grp_t until
12053 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12054 */
12055 if (id == 0 && IS_IPMP(ill)) {
12056 if (ipmp_illgrp_create(ill) == NULL) {
12057 if (insert) {
12058 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12059 ipif_remove(ipif);
12060 rw_exit(&ipst->ips_ill_g_lock);
12061 }
12062 mi_free(ipif);
12063 if (errorp != NULL)
12064 *errorp = ENOMEM;
12065 return (NULL);
12066 }
12067 }
12068
12069 /*
12070 * We grab ill_lock to protect the flag changes. The ipif is still
12071 * not up and can't be looked up until the ioctl completes and the
12072 * IPIF_CHANGING flag is cleared.
12073 */
12074 mutex_enter(&ill->ill_lock);
12075
12076 ipif->ipif_ire_type = ire_type;
12077
12078 if (ipif->ipif_isv6) {
12079 ill->ill_flags |= ILLF_IPV6;
12080 } else {
12081 ipaddr_t inaddr_any = INADDR_ANY;
12082
12083 ill->ill_flags |= ILLF_IPV4;
12084
12085 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12086 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12087 &ipif->ipif_v6lcl_addr);
12088 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12089 &ipif->ipif_v6subnet);
12090 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12091 &ipif->ipif_v6net_mask);
12092 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12093 &ipif->ipif_v6brd_addr);
12094 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12095 &ipif->ipif_v6pp_dst_addr);
12096 }
12097
12098 /*
12099 * Don't set the interface flags etc. now, will do it in
12100 * ip_ll_subnet_defaults.
12101 */
12102 if (!initialize)
12103 goto out;
12104
12105 /*
12106 * NOTE: The IPMP meta-interface is special-cased because it starts
12107 * with no underlying interfaces (and thus an unknown broadcast
12108 * address length), but all interfaces that can be placed into an IPMP
12109 * group are required to be broadcast-capable.
12110 */
12111 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12112 /*
12113 * Later detect lack of DLPI driver multicast capability by
12114 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12115 */
12116 ill->ill_flags |= ILLF_MULTICAST;
12117 if (!ipif->ipif_isv6)
12118 ipif->ipif_flags |= IPIF_BROADCAST;
12119 } else {
12120 if (ill->ill_net_type != IRE_LOOPBACK) {
12121 if (ipif->ipif_isv6)
12122 /*
12123 * Note: xresolv interfaces will eventually need
12124 * NOARP set here as well, but that will require
12125 * those external resolvers to have some
12126 * knowledge of that flag and act appropriately.
12127 * Not to be changed at present.
12128 */
12129 ill->ill_flags |= ILLF_NONUD;
12130 else
12131 ill->ill_flags |= ILLF_NOARP;
12132 }
12133 if (ill->ill_phys_addr_length == 0) {
12134 if (IS_VNI(ill)) {
12135 ipif->ipif_flags |= IPIF_NOXMIT;
12136 } else {
12137 /* pt-pt supports multicast. */
12138 ill->ill_flags |= ILLF_MULTICAST;
12139 if (ill->ill_net_type != IRE_LOOPBACK)
12140 ipif->ipif_flags |= IPIF_POINTOPOINT;
12141 }
12142 }
12143 }
12144 out:
12145 mutex_exit(&ill->ill_lock);
12146 return (ipif);
12147 }
12148
12149 /*
12150 * Remove the neighbor cache entries associated with this logical
12151 * interface.
12152 */
12153 int
ipif_arp_down(ipif_t * ipif)12154 ipif_arp_down(ipif_t *ipif)
12155 {
12156 ill_t *ill = ipif->ipif_ill;
12157 int err = 0;
12158
12159 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12160 ASSERT(IAM_WRITER_IPIF(ipif));
12161
12162 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12163 ill_t *, ill, ipif_t *, ipif);
12164 ipif_nce_down(ipif);
12165
12166 /*
12167 * If this is the last ipif that is going down and there are no
12168 * duplicate addresses we may yet attempt to re-probe, then we need to
12169 * clean up ARP completely.
12170 */
12171 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12172 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12173 /*
12174 * If this was the last ipif on an IPMP interface, purge any
12175 * static ARP entries associated with it.
12176 */
12177 if (IS_IPMP(ill))
12178 ipmp_illgrp_refresh_arpent(ill->ill_grp);
12179
12180 /* UNBIND, DETACH */
12181 err = arp_ll_down(ill);
12182 }
12183
12184 return (err);
12185 }
12186
12187 /*
12188 * Get the resolver set up for a new IP address. (Always called as writer.)
12189 * Called both for IPv4 and IPv6 interfaces, though it only does some
12190 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12191 *
12192 * The enumerated value res_act tunes the behavior:
12193 * * Res_act_initial: set up all the resolver structures for a new
12194 * IP address.
12195 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12196 * ARP message in defense of the address.
12197 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12198 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12199 *
12200 * Returns zero on success, or an errno upon failure.
12201 */
12202 int
ipif_resolver_up(ipif_t * ipif,enum ip_resolver_action res_act)12203 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12204 {
12205 ill_t *ill = ipif->ipif_ill;
12206 int err;
12207 boolean_t was_dup;
12208
12209 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12210 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12211 ASSERT(IAM_WRITER_IPIF(ipif));
12212
12213 was_dup = B_FALSE;
12214 if (res_act == Res_act_initial) {
12215 ipif->ipif_addr_ready = 0;
12216 /*
12217 * We're bringing an interface up here. There's no way that we
12218 * should need to shut down ARP now.
12219 */
12220 mutex_enter(&ill->ill_lock);
12221 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12222 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12223 ill->ill_ipif_dup_count--;
12224 was_dup = B_TRUE;
12225 }
12226 mutex_exit(&ill->ill_lock);
12227 }
12228 if (ipif->ipif_recovery_id != 0)
12229 (void) untimeout(ipif->ipif_recovery_id);
12230 ipif->ipif_recovery_id = 0;
12231 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12232 ipif->ipif_addr_ready = 1;
12233 return (0);
12234 }
12235 /* NDP will set the ipif_addr_ready flag when it's ready */
12236 if (ill->ill_isv6)
12237 return (0);
12238
12239 err = ipif_arp_up(ipif, res_act, was_dup);
12240 return (err);
12241 }
12242
12243 /*
12244 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12245 * when a link has just gone back up.
12246 */
12247 static void
ipif_nce_start_dad(ipif_t * ipif)12248 ipif_nce_start_dad(ipif_t *ipif)
12249 {
12250 ncec_t *ncec;
12251 ill_t *ill = ipif->ipif_ill;
12252 boolean_t isv6 = ill->ill_isv6;
12253
12254 if (isv6) {
12255 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12256 &ipif->ipif_v6lcl_addr);
12257 } else {
12258 ipaddr_t v4addr;
12259
12260 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12261 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12262 ipif->ipif_lcl_addr == INADDR_ANY) {
12263 /*
12264 * If we can't contact ARP for some reason,
12265 * that's not really a problem. Just send
12266 * out the routing socket notification that
12267 * DAD completion would have done, and continue.
12268 */
12269 ipif_mask_reply(ipif);
12270 ipif_up_notify(ipif);
12271 ipif->ipif_addr_ready = 1;
12272 return;
12273 }
12274
12275 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12276 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12277 }
12278
12279 if (ncec == NULL) {
12280 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12281 (void *)ipif));
12282 return;
12283 }
12284 if (!nce_restart_dad(ncec)) {
12285 /*
12286 * If we can't restart DAD for some reason, that's not really a
12287 * problem. Just send out the routing socket notification that
12288 * DAD completion would have done, and continue.
12289 */
12290 ipif_up_notify(ipif);
12291 ipif->ipif_addr_ready = 1;
12292 }
12293 ncec_refrele(ncec);
12294 }
12295
12296 /*
12297 * Restart duplicate address detection on all interfaces on the given ill.
12298 *
12299 * This is called when an interface transitions from down to up
12300 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12301 *
12302 * Note that since the underlying physical link has transitioned, we must cause
12303 * at least one routing socket message to be sent here, either via DAD
12304 * completion or just by default on the first ipif. (If we don't do this, then
12305 * in.mpathd will see long delays when doing link-based failure recovery.)
12306 */
12307 void
ill_restart_dad(ill_t * ill,boolean_t went_up)12308 ill_restart_dad(ill_t *ill, boolean_t went_up)
12309 {
12310 ipif_t *ipif;
12311
12312 if (ill == NULL)
12313 return;
12314
12315 /*
12316 * If layer two doesn't support duplicate address detection, then just
12317 * send the routing socket message now and be done with it.
12318 */
12319 if (!ill->ill_isv6 && arp_no_defense) {
12320 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12321 return;
12322 }
12323
12324 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12325 if (went_up) {
12326
12327 if (ipif->ipif_flags & IPIF_UP) {
12328 ipif_nce_start_dad(ipif);
12329 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12330 /*
12331 * kick off the bring-up process now.
12332 */
12333 ipif_do_recovery(ipif);
12334 } else {
12335 /*
12336 * Unfortunately, the first ipif is "special"
12337 * and represents the underlying ill in the
12338 * routing socket messages. Thus, when this
12339 * one ipif is down, we must still notify so
12340 * that the user knows the IFF_RUNNING status
12341 * change. (If the first ipif is up, then
12342 * we'll handle eventual routing socket
12343 * notification via DAD completion.)
12344 */
12345 if (ipif == ill->ill_ipif) {
12346 ip_rts_ifmsg(ill->ill_ipif,
12347 RTSQ_DEFAULT);
12348 }
12349 }
12350 } else {
12351 /*
12352 * After link down, we'll need to send a new routing
12353 * message when the link comes back, so clear
12354 * ipif_addr_ready.
12355 */
12356 ipif->ipif_addr_ready = 0;
12357 }
12358 }
12359
12360 /*
12361 * If we've torn down links, then notify the user right away.
12362 */
12363 if (!went_up)
12364 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12365 }
12366
12367 static void
ipsq_delete(ipsq_t * ipsq)12368 ipsq_delete(ipsq_t *ipsq)
12369 {
12370 ipxop_t *ipx = ipsq->ipsq_xop;
12371
12372 ipsq->ipsq_ipst = NULL;
12373 ASSERT(ipsq->ipsq_phyint == NULL);
12374 ASSERT(ipsq->ipsq_xop != NULL);
12375 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12376 ASSERT(ipx->ipx_pending_mp == NULL);
12377 kmem_free(ipsq, sizeof (ipsq_t));
12378 }
12379
12380 static int
ill_up_ipifs_on_ill(ill_t * ill,queue_t * q,mblk_t * mp)12381 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12382 {
12383 int err = 0;
12384 ipif_t *ipif;
12385
12386 if (ill == NULL)
12387 return (0);
12388
12389 ASSERT(IAM_WRITER_ILL(ill));
12390 ill->ill_up_ipifs = B_TRUE;
12391 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12392 if (ipif->ipif_was_up) {
12393 if (!(ipif->ipif_flags & IPIF_UP))
12394 err = ipif_up(ipif, q, mp);
12395 ipif->ipif_was_up = B_FALSE;
12396 if (err != 0) {
12397 ASSERT(err == EINPROGRESS);
12398 return (err);
12399 }
12400 }
12401 }
12402 ill->ill_up_ipifs = B_FALSE;
12403 return (0);
12404 }
12405
12406 /*
12407 * This function is called to bring up all the ipifs that were up before
12408 * bringing the ill down via ill_down_ipifs().
12409 */
12410 int
ill_up_ipifs(ill_t * ill,queue_t * q,mblk_t * mp)12411 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12412 {
12413 int err;
12414
12415 ASSERT(IAM_WRITER_ILL(ill));
12416
12417 if (ill->ill_replumbing) {
12418 ill->ill_replumbing = 0;
12419 /*
12420 * Send down REPLUMB_DONE notification followed by the
12421 * BIND_REQ on the arp stream.
12422 */
12423 if (!ill->ill_isv6)
12424 arp_send_replumb_conf(ill);
12425 }
12426 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12427 if (err != 0)
12428 return (err);
12429
12430 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12431 }
12432
12433 /*
12434 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12435 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12436 */
12437 static void
ill_down_ipifs(ill_t * ill,boolean_t logical)12438 ill_down_ipifs(ill_t *ill, boolean_t logical)
12439 {
12440 ipif_t *ipif;
12441
12442 ASSERT(IAM_WRITER_ILL(ill));
12443
12444 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12445 /*
12446 * We go through the ipif_down logic even if the ipif
12447 * is already down, since routes can be added based
12448 * on down ipifs. Going through ipif_down once again
12449 * will delete any IREs created based on these routes.
12450 */
12451 if (ipif->ipif_flags & IPIF_UP)
12452 ipif->ipif_was_up = B_TRUE;
12453
12454 if (logical) {
12455 (void) ipif_logical_down(ipif, NULL, NULL);
12456 ipif_non_duplicate(ipif);
12457 (void) ipif_down_tail(ipif);
12458 } else {
12459 (void) ipif_down(ipif, NULL, NULL);
12460 }
12461 }
12462 }
12463
12464 /*
12465 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12466 * a look again at valid source addresses.
12467 * This should be called each time after the set of source addresses has been
12468 * changed.
12469 */
12470 void
ip_update_source_selection(ip_stack_t * ipst)12471 ip_update_source_selection(ip_stack_t *ipst)
12472 {
12473 /* We skip past SRC_GENERATION_VERIFY */
12474 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12475 SRC_GENERATION_VERIFY)
12476 atomic_add_32(&ipst->ips_src_generation, 1);
12477 }
12478
12479 /*
12480 * Finish the group join started in ip_sioctl_groupname().
12481 */
12482 /* ARGSUSED */
12483 static void
ip_join_illgrps(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)12484 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12485 {
12486 ill_t *ill = q->q_ptr;
12487 phyint_t *phyi = ill->ill_phyint;
12488 ipmp_grp_t *grp = phyi->phyint_grp;
12489 ip_stack_t *ipst = ill->ill_ipst;
12490
12491 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12492 ASSERT(!IS_IPMP(ill) && grp != NULL);
12493 ASSERT(IAM_WRITER_IPSQ(ipsq));
12494
12495 if (phyi->phyint_illv4 != NULL) {
12496 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12497 VERIFY(grp->gr_pendv4-- > 0);
12498 rw_exit(&ipst->ips_ipmp_lock);
12499 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12500 }
12501 if (phyi->phyint_illv6 != NULL) {
12502 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12503 VERIFY(grp->gr_pendv6-- > 0);
12504 rw_exit(&ipst->ips_ipmp_lock);
12505 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12506 }
12507 freemsg(mp);
12508 }
12509
12510 /*
12511 * Process an SIOCSLIFGROUPNAME request.
12512 */
12513 /* ARGSUSED */
12514 int
ip_sioctl_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12515 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12516 ip_ioctl_cmd_t *ipip, void *ifreq)
12517 {
12518 struct lifreq *lifr = ifreq;
12519 ill_t *ill = ipif->ipif_ill;
12520 ip_stack_t *ipst = ill->ill_ipst;
12521 phyint_t *phyi = ill->ill_phyint;
12522 ipmp_grp_t *grp = phyi->phyint_grp;
12523 mblk_t *ipsq_mp;
12524 int err = 0;
12525
12526 /*
12527 * Note that phyint_grp can only change here, where we're exclusive.
12528 */
12529 ASSERT(IAM_WRITER_ILL(ill));
12530
12531 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12532 (phyi->phyint_flags & PHYI_VIRTUAL))
12533 return (EINVAL);
12534
12535 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12536
12537 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12538
12539 /*
12540 * If the name hasn't changed, there's nothing to do.
12541 */
12542 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12543 goto unlock;
12544
12545 /*
12546 * Handle requests to rename an IPMP meta-interface.
12547 *
12548 * Note that creation of the IPMP meta-interface is handled in
12549 * userland through the standard plumbing sequence. As part of the
12550 * plumbing the IPMP meta-interface, its initial groupname is set to
12551 * the name of the interface (see ipif_set_values_tail()).
12552 */
12553 if (IS_IPMP(ill)) {
12554 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12555 goto unlock;
12556 }
12557
12558 /*
12559 * Handle requests to add or remove an IP interface from a group.
12560 */
12561 if (lifr->lifr_groupname[0] != '\0') { /* add */
12562 /*
12563 * Moves are handled by first removing the interface from
12564 * its existing group, and then adding it to another group.
12565 * So, fail if it's already in a group.
12566 */
12567 if (IS_UNDER_IPMP(ill)) {
12568 err = EALREADY;
12569 goto unlock;
12570 }
12571
12572 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12573 if (grp == NULL) {
12574 err = ENOENT;
12575 goto unlock;
12576 }
12577
12578 /*
12579 * Check if the phyint and its ills are suitable for
12580 * inclusion into the group.
12581 */
12582 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12583 goto unlock;
12584
12585 /*
12586 * Checks pass; join the group, and enqueue the remaining
12587 * illgrp joins for when we've become part of the group xop
12588 * and are exclusive across its IPSQs. Since qwriter_ip()
12589 * requires an mblk_t to scribble on, and since `mp' will be
12590 * freed as part of completing the ioctl, allocate another.
12591 */
12592 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12593 err = ENOMEM;
12594 goto unlock;
12595 }
12596
12597 /*
12598 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12599 * IPMP meta-interface ills needed by `phyi' cannot go away
12600 * before ip_join_illgrps() is called back. See the comments
12601 * in ip_sioctl_plink_ipmp() for more.
12602 */
12603 if (phyi->phyint_illv4 != NULL)
12604 grp->gr_pendv4++;
12605 if (phyi->phyint_illv6 != NULL)
12606 grp->gr_pendv6++;
12607
12608 rw_exit(&ipst->ips_ipmp_lock);
12609
12610 ipmp_phyint_join_grp(phyi, grp);
12611 ill_refhold(ill);
12612 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12613 SWITCH_OP, B_FALSE);
12614 return (0);
12615 } else {
12616 /*
12617 * Request to remove the interface from a group. If the
12618 * interface is not in a group, this trivially succeeds.
12619 */
12620 rw_exit(&ipst->ips_ipmp_lock);
12621 if (IS_UNDER_IPMP(ill))
12622 ipmp_phyint_leave_grp(phyi);
12623 return (0);
12624 }
12625 unlock:
12626 rw_exit(&ipst->ips_ipmp_lock);
12627 return (err);
12628 }
12629
12630 /*
12631 * Process an SIOCGLIFBINDING request.
12632 */
12633 /* ARGSUSED */
12634 int
ip_sioctl_get_binding(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12635 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12636 ip_ioctl_cmd_t *ipip, void *ifreq)
12637 {
12638 ill_t *ill;
12639 struct lifreq *lifr = ifreq;
12640 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12641
12642 if (!IS_IPMP(ipif->ipif_ill))
12643 return (EINVAL);
12644
12645 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12646 if ((ill = ipif->ipif_bound_ill) == NULL)
12647 lifr->lifr_binding[0] = '\0';
12648 else
12649 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12650 rw_exit(&ipst->ips_ipmp_lock);
12651 return (0);
12652 }
12653
12654 /*
12655 * Process an SIOCGLIFGROUPNAME request.
12656 */
12657 /* ARGSUSED */
12658 int
ip_sioctl_get_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12659 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12660 ip_ioctl_cmd_t *ipip, void *ifreq)
12661 {
12662 ipmp_grp_t *grp;
12663 struct lifreq *lifr = ifreq;
12664 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12665
12666 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12667 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12668 lifr->lifr_groupname[0] = '\0';
12669 else
12670 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12671 rw_exit(&ipst->ips_ipmp_lock);
12672 return (0);
12673 }
12674
12675 /*
12676 * Process an SIOCGLIFGROUPINFO request.
12677 */
12678 /* ARGSUSED */
12679 int
ip_sioctl_groupinfo(ipif_t * dummy_ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy)12680 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12681 ip_ioctl_cmd_t *ipip, void *dummy)
12682 {
12683 ipmp_grp_t *grp;
12684 lifgroupinfo_t *lifgr;
12685 ip_stack_t *ipst = CONNQ_TO_IPST(q);
12686
12687 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12688 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12689 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12690
12691 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12692 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12693 rw_exit(&ipst->ips_ipmp_lock);
12694 return (ENOENT);
12695 }
12696 ipmp_grp_info(grp, lifgr);
12697 rw_exit(&ipst->ips_ipmp_lock);
12698 return (0);
12699 }
12700
12701 static void
ill_dl_down(ill_t * ill)12702 ill_dl_down(ill_t *ill)
12703 {
12704 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12705
12706 /*
12707 * The ill is down; unbind but stay attached since we're still
12708 * associated with a PPA. If we have negotiated DLPI capabilites
12709 * with the data link service provider (IDS_OK) then reset them.
12710 * The interval between unbinding and rebinding is potentially
12711 * unbounded hence we cannot assume things will be the same.
12712 * The DLPI capabilities will be probed again when the data link
12713 * is brought up.
12714 */
12715 mblk_t *mp = ill->ill_unbind_mp;
12716
12717 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12718
12719 if (!ill->ill_replumbing) {
12720 /* Free all ilms for this ill */
12721 update_conn_ill(ill, ill->ill_ipst);
12722 } else {
12723 ill_leave_multicast(ill);
12724 }
12725
12726 ill->ill_unbind_mp = NULL;
12727 if (mp != NULL) {
12728 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12729 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12730 ill->ill_name));
12731 mutex_enter(&ill->ill_lock);
12732 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12733 mutex_exit(&ill->ill_lock);
12734 /*
12735 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12736 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12737 * ill_capability_dld_disable disable rightaway. If this is not
12738 * an unplumb operation then the disable happens on receipt of
12739 * the capab ack via ip_rput_dlpi_writer ->
12740 * ill_capability_ack_thr. In both cases the order of
12741 * the operations seen by DLD is capability disable followed
12742 * by DL_UNBIND. Also the DLD capability disable needs a
12743 * cv_wait'able context.
12744 */
12745 if (ill->ill_state_flags & ILL_CONDEMNED)
12746 ill_capability_dld_disable(ill);
12747 ill_capability_reset(ill, B_FALSE);
12748 ill_dlpi_send(ill, mp);
12749 }
12750 mutex_enter(&ill->ill_lock);
12751 ill->ill_dl_up = 0;
12752 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12753 mutex_exit(&ill->ill_lock);
12754 }
12755
12756 void
ill_dlpi_dispatch(ill_t * ill,mblk_t * mp)12757 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12758 {
12759 union DL_primitives *dlp;
12760 t_uscalar_t prim;
12761 boolean_t waitack = B_FALSE;
12762
12763 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12764
12765 dlp = (union DL_primitives *)mp->b_rptr;
12766 prim = dlp->dl_primitive;
12767
12768 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12769 dl_primstr(prim), prim, ill->ill_name));
12770
12771 switch (prim) {
12772 case DL_PHYS_ADDR_REQ:
12773 {
12774 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12775 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12776 break;
12777 }
12778 case DL_BIND_REQ:
12779 mutex_enter(&ill->ill_lock);
12780 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12781 mutex_exit(&ill->ill_lock);
12782 break;
12783 }
12784
12785 /*
12786 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12787 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12788 * we only wait for the ACK of the DL_UNBIND_REQ.
12789 */
12790 mutex_enter(&ill->ill_lock);
12791 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12792 (prim == DL_UNBIND_REQ)) {
12793 ill->ill_dlpi_pending = prim;
12794 waitack = B_TRUE;
12795 }
12796
12797 mutex_exit(&ill->ill_lock);
12798 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12799 char *, dl_primstr(prim), ill_t *, ill);
12800 putnext(ill->ill_wq, mp);
12801
12802 /*
12803 * There is no ack for DL_NOTIFY_CONF messages
12804 */
12805 if (waitack && prim == DL_NOTIFY_CONF)
12806 ill_dlpi_done(ill, prim);
12807 }
12808
12809 /*
12810 * Helper function for ill_dlpi_send().
12811 */
12812 /* ARGSUSED */
12813 static void
ill_dlpi_send_writer(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * arg)12814 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12815 {
12816 ill_dlpi_send(q->q_ptr, mp);
12817 }
12818
12819 /*
12820 * Send a DLPI control message to the driver but make sure there
12821 * is only one outstanding message. Uses ill_dlpi_pending to tell
12822 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12823 * when an ACK or a NAK is received to process the next queued message.
12824 */
12825 void
ill_dlpi_send(ill_t * ill,mblk_t * mp)12826 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12827 {
12828 mblk_t **mpp;
12829
12830 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12831
12832 /*
12833 * To ensure that any DLPI requests for current exclusive operation
12834 * are always completely sent before any DLPI messages for other
12835 * operations, require writer access before enqueuing.
12836 */
12837 if (!IAM_WRITER_ILL(ill)) {
12838 ill_refhold(ill);
12839 /* qwriter_ip() does the ill_refrele() */
12840 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12841 NEW_OP, B_TRUE);
12842 return;
12843 }
12844
12845 mutex_enter(&ill->ill_lock);
12846 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12847 /* Must queue message. Tail insertion */
12848 mpp = &ill->ill_dlpi_deferred;
12849 while (*mpp != NULL)
12850 mpp = &((*mpp)->b_next);
12851
12852 ip1dbg(("ill_dlpi_send: deferring request for %s "
12853 "while %s pending\n", ill->ill_name,
12854 dl_primstr(ill->ill_dlpi_pending)));
12855
12856 *mpp = mp;
12857 mutex_exit(&ill->ill_lock);
12858 return;
12859 }
12860 mutex_exit(&ill->ill_lock);
12861 ill_dlpi_dispatch(ill, mp);
12862 }
12863
12864 void
ill_capability_send(ill_t * ill,mblk_t * mp)12865 ill_capability_send(ill_t *ill, mblk_t *mp)
12866 {
12867 ill->ill_capab_pending_cnt++;
12868 ill_dlpi_send(ill, mp);
12869 }
12870
12871 void
ill_capability_done(ill_t * ill)12872 ill_capability_done(ill_t *ill)
12873 {
12874 ASSERT(ill->ill_capab_pending_cnt != 0);
12875
12876 ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12877
12878 ill->ill_capab_pending_cnt--;
12879 if (ill->ill_capab_pending_cnt == 0 &&
12880 ill->ill_dlpi_capab_state == IDCS_OK)
12881 ill_capability_reset_alloc(ill);
12882 }
12883
12884 /*
12885 * Send all deferred DLPI messages without waiting for their ACKs.
12886 */
12887 void
ill_dlpi_send_deferred(ill_t * ill)12888 ill_dlpi_send_deferred(ill_t *ill)
12889 {
12890 mblk_t *mp, *nextmp;
12891
12892 /*
12893 * Clear ill_dlpi_pending so that the message is not queued in
12894 * ill_dlpi_send().
12895 */
12896 mutex_enter(&ill->ill_lock);
12897 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12898 mp = ill->ill_dlpi_deferred;
12899 ill->ill_dlpi_deferred = NULL;
12900 mutex_exit(&ill->ill_lock);
12901
12902 for (; mp != NULL; mp = nextmp) {
12903 nextmp = mp->b_next;
12904 mp->b_next = NULL;
12905 ill_dlpi_send(ill, mp);
12906 }
12907 }
12908
12909 /*
12910 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12911 * or M_HANGUP
12912 */
12913 static void
ill_dlpi_clear_deferred(ill_t * ill)12914 ill_dlpi_clear_deferred(ill_t *ill)
12915 {
12916 mblk_t *mp, *nextmp;
12917
12918 mutex_enter(&ill->ill_lock);
12919 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12920 mp = ill->ill_dlpi_deferred;
12921 ill->ill_dlpi_deferred = NULL;
12922 mutex_exit(&ill->ill_lock);
12923
12924 for (; mp != NULL; mp = nextmp) {
12925 nextmp = mp->b_next;
12926 inet_freemsg(mp);
12927 }
12928 }
12929
12930 /*
12931 * Check if the DLPI primitive `prim' is pending; print a warning if not.
12932 */
12933 boolean_t
ill_dlpi_pending(ill_t * ill,t_uscalar_t prim)12934 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12935 {
12936 t_uscalar_t pending;
12937
12938 mutex_enter(&ill->ill_lock);
12939 if (ill->ill_dlpi_pending == prim) {
12940 mutex_exit(&ill->ill_lock);
12941 return (B_TRUE);
12942 }
12943
12944 /*
12945 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12946 * without waiting, so don't print any warnings in that case.
12947 */
12948 if (ill->ill_state_flags & ILL_CONDEMNED) {
12949 mutex_exit(&ill->ill_lock);
12950 return (B_FALSE);
12951 }
12952 pending = ill->ill_dlpi_pending;
12953 mutex_exit(&ill->ill_lock);
12954
12955 if (pending == DL_PRIM_INVAL) {
12956 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12957 "received unsolicited ack for %s on %s\n",
12958 dl_primstr(prim), ill->ill_name);
12959 } else {
12960 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12961 "received unexpected ack for %s on %s (expecting %s)\n",
12962 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12963 }
12964 return (B_FALSE);
12965 }
12966
12967 /*
12968 * Complete the current DLPI operation associated with `prim' on `ill' and
12969 * start the next queued DLPI operation (if any). If there are no queued DLPI
12970 * operations and the ill's current exclusive IPSQ operation has finished
12971 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12972 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12973 * the comments above ipsq_current_finish() for details.
12974 */
12975 void
ill_dlpi_done(ill_t * ill,t_uscalar_t prim)12976 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12977 {
12978 mblk_t *mp;
12979 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12980 ipxop_t *ipx = ipsq->ipsq_xop;
12981
12982 ASSERT(IAM_WRITER_IPSQ(ipsq));
12983 mutex_enter(&ill->ill_lock);
12984
12985 ASSERT(prim != DL_PRIM_INVAL);
12986 ASSERT(ill->ill_dlpi_pending == prim);
12987
12988 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12989 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12990
12991 if ((mp = ill->ill_dlpi_deferred) == NULL) {
12992 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12993 if (ipx->ipx_current_done) {
12994 mutex_enter(&ipx->ipx_lock);
12995 ipx->ipx_current_ipif = NULL;
12996 mutex_exit(&ipx->ipx_lock);
12997 }
12998 cv_signal(&ill->ill_cv);
12999 mutex_exit(&ill->ill_lock);
13000 return;
13001 }
13002
13003 ill->ill_dlpi_deferred = mp->b_next;
13004 mp->b_next = NULL;
13005 mutex_exit(&ill->ill_lock);
13006
13007 ill_dlpi_dispatch(ill, mp);
13008 }
13009
13010 /*
13011 * Queue a (multicast) DLPI control message to be sent to the driver by
13012 * later calling ill_dlpi_send_queued.
13013 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13014 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
13015 * for the same group to race.
13016 * We send DLPI control messages in order using ill_lock.
13017 * For IPMP we should be called on the cast_ill.
13018 */
13019 void
ill_dlpi_queue(ill_t * ill,mblk_t * mp)13020 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13021 {
13022 mblk_t **mpp;
13023
13024 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13025
13026 mutex_enter(&ill->ill_lock);
13027 /* Must queue message. Tail insertion */
13028 mpp = &ill->ill_dlpi_deferred;
13029 while (*mpp != NULL)
13030 mpp = &((*mpp)->b_next);
13031
13032 *mpp = mp;
13033 mutex_exit(&ill->ill_lock);
13034 }
13035
13036 /*
13037 * Send the messages that were queued. Make sure there is only
13038 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13039 * when an ACK or a NAK is received to process the next queued message.
13040 * For IPMP we are called on the upper ill, but when send what is queued
13041 * on the cast_ill.
13042 */
13043 void
ill_dlpi_send_queued(ill_t * ill)13044 ill_dlpi_send_queued(ill_t *ill)
13045 {
13046 mblk_t *mp;
13047 union DL_primitives *dlp;
13048 t_uscalar_t prim;
13049 ill_t *release_ill = NULL;
13050
13051 if (IS_IPMP(ill)) {
13052 /* On the upper IPMP ill. */
13053 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13054 if (release_ill == NULL) {
13055 /* Avoid ever sending anything down to the ipmpstub */
13056 return;
13057 }
13058 ill = release_ill;
13059 }
13060 mutex_enter(&ill->ill_lock);
13061 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13062 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13063 /* Can't send. Somebody else will send it */
13064 mutex_exit(&ill->ill_lock);
13065 goto done;
13066 }
13067 ill->ill_dlpi_deferred = mp->b_next;
13068 mp->b_next = NULL;
13069 if (!ill->ill_dl_up) {
13070 /*
13071 * Nobody there. All multicast addresses will be
13072 * re-joined when we get the DL_BIND_ACK bringing the
13073 * interface up.
13074 */
13075 freemsg(mp);
13076 continue;
13077 }
13078 dlp = (union DL_primitives *)mp->b_rptr;
13079 prim = dlp->dl_primitive;
13080
13081 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13082 (prim == DL_UNBIND_REQ)) {
13083 ill->ill_dlpi_pending = prim;
13084 }
13085 mutex_exit(&ill->ill_lock);
13086
13087 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13088 char *, dl_primstr(prim), ill_t *, ill);
13089 putnext(ill->ill_wq, mp);
13090 mutex_enter(&ill->ill_lock);
13091 }
13092 mutex_exit(&ill->ill_lock);
13093 done:
13094 if (release_ill != NULL)
13095 ill_refrele(release_ill);
13096 }
13097
13098 /*
13099 * Queue an IP (IGMP/MLD) message to be sent by IP from
13100 * ill_mcast_send_queued
13101 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13102 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13103 * group to race.
13104 * We send them in order using ill_lock.
13105 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13106 */
13107 void
ill_mcast_queue(ill_t * ill,mblk_t * mp)13108 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13109 {
13110 mblk_t **mpp;
13111 ill_t *release_ill = NULL;
13112
13113 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13114
13115 if (IS_IPMP(ill)) {
13116 /* On the upper IPMP ill. */
13117 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13118 if (release_ill == NULL) {
13119 /* Discard instead of queuing for the ipmp interface */
13120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13121 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13122 mp, ill);
13123 freemsg(mp);
13124 return;
13125 }
13126 ill = release_ill;
13127 }
13128
13129 mutex_enter(&ill->ill_lock);
13130 /* Must queue message. Tail insertion */
13131 mpp = &ill->ill_mcast_deferred;
13132 while (*mpp != NULL)
13133 mpp = &((*mpp)->b_next);
13134
13135 *mpp = mp;
13136 mutex_exit(&ill->ill_lock);
13137 if (release_ill != NULL)
13138 ill_refrele(release_ill);
13139 }
13140
13141 /*
13142 * Send the IP packets that were queued by ill_mcast_queue.
13143 * These are IGMP/MLD packets.
13144 *
13145 * For IPMP we are called on the upper ill, but when send what is queued
13146 * on the cast_ill.
13147 *
13148 * Request loopback of the report if we are acting as a multicast
13149 * router, so that the process-level routing demon can hear it.
13150 * This will run multiple times for the same group if there are members
13151 * on the same group for multiple ipif's on the same ill. The
13152 * igmp_input/mld_input code will suppress this due to the loopback thus we
13153 * always loopback membership report.
13154 *
13155 * We also need to make sure that this does not get load balanced
13156 * by IPMP. We do this by passing an ill to ip_output_simple.
13157 */
13158 void
ill_mcast_send_queued(ill_t * ill)13159 ill_mcast_send_queued(ill_t *ill)
13160 {
13161 mblk_t *mp;
13162 ip_xmit_attr_t ixas;
13163 ill_t *release_ill = NULL;
13164
13165 if (IS_IPMP(ill)) {
13166 /* On the upper IPMP ill. */
13167 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13168 if (release_ill == NULL) {
13169 /*
13170 * We should have no messages on the ipmp interface
13171 * but no point in trying to send them.
13172 */
13173 return;
13174 }
13175 ill = release_ill;
13176 }
13177 bzero(&ixas, sizeof (ixas));
13178 ixas.ixa_zoneid = ALL_ZONES;
13179 ixas.ixa_cred = kcred;
13180 ixas.ixa_cpid = NOPID;
13181 ixas.ixa_tsl = NULL;
13182 /*
13183 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13184 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13185 * That is necessary to handle IGMP/MLD snooping switches.
13186 */
13187 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13188 ixas.ixa_ipst = ill->ill_ipst;
13189
13190 mutex_enter(&ill->ill_lock);
13191 while ((mp = ill->ill_mcast_deferred) != NULL) {
13192 ill->ill_mcast_deferred = mp->b_next;
13193 mp->b_next = NULL;
13194 if (!ill->ill_dl_up) {
13195 /*
13196 * Nobody there. Just drop the ip packets.
13197 * IGMP/MLD will resend later, if this is a replumb.
13198 */
13199 freemsg(mp);
13200 continue;
13201 }
13202 mutex_enter(&ill->ill_phyint->phyint_lock);
13203 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13204 /*
13205 * When the ill is getting deactivated, we only want to
13206 * send the DLPI messages, so drop IGMP/MLD packets.
13207 * DLPI messages are handled by ill_dlpi_send_queued()
13208 */
13209 mutex_exit(&ill->ill_phyint->phyint_lock);
13210 freemsg(mp);
13211 continue;
13212 }
13213 mutex_exit(&ill->ill_phyint->phyint_lock);
13214 mutex_exit(&ill->ill_lock);
13215
13216 /* Check whether we are sending IPv4 or IPv6. */
13217 if (ill->ill_isv6) {
13218 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
13219
13220 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13221 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13222 } else {
13223 ipha_t *ipha = (ipha_t *)mp->b_rptr;
13224
13225 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13226 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13227 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13228 }
13229 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13230 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13231 (void) ip_output_simple(mp, &ixas);
13232 ixa_cleanup(&ixas);
13233
13234 mutex_enter(&ill->ill_lock);
13235 }
13236 mutex_exit(&ill->ill_lock);
13237
13238 done:
13239 if (release_ill != NULL)
13240 ill_refrele(release_ill);
13241 }
13242
13243 /*
13244 * Take down a specific interface, but don't lose any information about it.
13245 * (Always called as writer.)
13246 * This function goes through the down sequence even if the interface is
13247 * already down. There are 2 reasons.
13248 * a. Currently we permit interface routes that depend on down interfaces
13249 * to be added. This behaviour itself is questionable. However it appears
13250 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13251 * time. We go thru the cleanup in order to remove these routes.
13252 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13253 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13254 * down, but we need to cleanup i.e. do ill_dl_down and
13255 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13256 *
13257 * IP-MT notes:
13258 *
13259 * Model of reference to interfaces.
13260 *
13261 * The following members in ipif_t track references to the ipif.
13262 * int ipif_refcnt; Active reference count
13263 *
13264 * The following members in ill_t track references to the ill.
13265 * int ill_refcnt; active refcnt
13266 * uint_t ill_ire_cnt; Number of ires referencing ill
13267 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13268 * uint_t ill_nce_cnt; Number of nces referencing ill
13269 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13270 *
13271 * Reference to an ipif or ill can be obtained in any of the following ways.
13272 *
13273 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13274 * Pointers to ipif / ill from other data structures viz ire and conn.
13275 * Implicit reference to the ipif / ill by holding a reference to the ire.
13276 *
13277 * The ipif/ill lookup functions return a reference held ipif / ill.
13278 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13279 * This is a purely dynamic reference count associated with threads holding
13280 * references to the ipif / ill. Pointers from other structures do not
13281 * count towards this reference count.
13282 *
13283 * ill_ire_cnt is the number of ire's associated with the
13284 * ill. This is incremented whenever a new ire is created referencing the
13285 * ill. This is done atomically inside ire_add_v[46] where the ire is
13286 * actually added to the ire hash table. The count is decremented in
13287 * ire_inactive where the ire is destroyed.
13288 *
13289 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13290 * This is incremented atomically in
13291 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13292 * table. Similarly it is decremented in ncec_inactive() where the ncec
13293 * is destroyed.
13294 *
13295 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13296 * incremented atomically in nce_add() where the nce is actually added to the
13297 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13298 * is destroyed.
13299 *
13300 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13301 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13302 *
13303 * Flow of ioctls involving interface down/up
13304 *
13305 * The following is the sequence of an attempt to set some critical flags on an
13306 * up interface.
13307 * ip_sioctl_flags
13308 * ipif_down
13309 * wait for ipif to be quiescent
13310 * ipif_down_tail
13311 * ip_sioctl_flags_tail
13312 *
13313 * All set ioctls that involve down/up sequence would have a skeleton similar
13314 * to the above. All the *tail functions are called after the refcounts have
13315 * dropped to the appropriate values.
13316 *
13317 * SIOC ioctls during the IPIF_CHANGING interval.
13318 *
13319 * Threads handling SIOC set ioctls serialize on the squeue, but this
13320 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13321 * steps of internal changes to the state, some of which are visible in
13322 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13323 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13324 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13325 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13326 * the current exclusive operation completes. The IPIF_CHANGING check
13327 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13328 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13329 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13330 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13331 * until we release the ipsq_lock, even though the ill/ipif state flags
13332 * can change after we drop the ill_lock.
13333 */
13334 int
ipif_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13335 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13336 {
13337 ill_t *ill = ipif->ipif_ill;
13338 conn_t *connp;
13339 boolean_t success;
13340 boolean_t ipif_was_up = B_FALSE;
13341 ip_stack_t *ipst = ill->ill_ipst;
13342
13343 ASSERT(IAM_WRITER_IPIF(ipif));
13344
13345 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13346
13347 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13348 ill_t *, ill, ipif_t *, ipif);
13349
13350 if (ipif->ipif_flags & IPIF_UP) {
13351 mutex_enter(&ill->ill_lock);
13352 ipif->ipif_flags &= ~IPIF_UP;
13353 ASSERT(ill->ill_ipif_up_count > 0);
13354 --ill->ill_ipif_up_count;
13355 mutex_exit(&ill->ill_lock);
13356 ipif_was_up = B_TRUE;
13357 /* Update status in SCTP's list */
13358 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13359 ill_nic_event_dispatch(ipif->ipif_ill,
13360 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13361 }
13362
13363 /*
13364 * Removal of the last ipif from an ill may result in a DL_UNBIND
13365 * being sent to the driver, and we must not send any data packets to
13366 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13367 * ire and nce entries used in the data path will be cleaned
13368 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13369 * sure on new entries will be added until the ill is bound
13370 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13371 * receipt of a DL_BIND_ACK.
13372 */
13373 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13374 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13375 ill->ill_dl_up) {
13376 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13377 }
13378
13379 /*
13380 * Blow away memberships we established in ipif_multicast_up().
13381 */
13382 ipif_multicast_down(ipif);
13383
13384 /*
13385 * Remove from the mapping for __sin6_src_id. We insert only
13386 * when the address is not INADDR_ANY. As IPv4 addresses are
13387 * stored as mapped addresses, we need to check for mapped
13388 * INADDR_ANY also.
13389 */
13390 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13391 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13392 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13393 int err;
13394
13395 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13396 ipif->ipif_zoneid, ipst);
13397 if (err != 0) {
13398 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13399 }
13400 }
13401
13402 if (ipif_was_up) {
13403 /* only delete if we'd added ire's before */
13404 if (ipif->ipif_isv6)
13405 ipif_delete_ires_v6(ipif);
13406 else
13407 ipif_delete_ires_v4(ipif);
13408 }
13409
13410 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13411 /*
13412 * Since the interface is now down, it may have just become
13413 * inactive. Note that this needs to be done even for a
13414 * lll_logical_down(), or ARP entries will not get correctly
13415 * restored when the interface comes back up.
13416 */
13417 if (IS_UNDER_IPMP(ill))
13418 ipmp_ill_refresh_active(ill);
13419 }
13420
13421 /*
13422 * neighbor-discovery or arp entries for this interface. The ipif
13423 * has to be quiesced, so we walk all the nce's and delete those
13424 * that point at the ipif->ipif_ill. At the same time, we also
13425 * update IPMP so that ipifs for data addresses are unbound. We dont
13426 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13427 * that for ipif_down_tail()
13428 */
13429 ipif_nce_down(ipif);
13430
13431 /*
13432 * If this is the last ipif on the ill, we also need to remove
13433 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13434 * never succeed.
13435 */
13436 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13437 ire_walk_ill(0, 0, ill_downi, ill, ill);
13438
13439 /*
13440 * Walk all CONNs that can have a reference on an ire for this
13441 * ipif (we actually walk all that now have stale references).
13442 */
13443 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13444
13445 /*
13446 * If mp is NULL the caller will wait for the appropriate refcnt.
13447 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13448 * and ill_delete -> ipif_free -> ipif_down
13449 */
13450 if (mp == NULL) {
13451 ASSERT(q == NULL);
13452 return (0);
13453 }
13454
13455 if (CONN_Q(q)) {
13456 connp = Q_TO_CONN(q);
13457 mutex_enter(&connp->conn_lock);
13458 } else {
13459 connp = NULL;
13460 }
13461 mutex_enter(&ill->ill_lock);
13462 /*
13463 * Are there any ire's pointing to this ipif that are still active ?
13464 * If this is the last ipif going down, are there any ire's pointing
13465 * to this ill that are still active ?
13466 */
13467 if (ipif_is_quiescent(ipif)) {
13468 mutex_exit(&ill->ill_lock);
13469 if (connp != NULL)
13470 mutex_exit(&connp->conn_lock);
13471 return (0);
13472 }
13473
13474 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13475 ill->ill_name, (void *)ill));
13476 /*
13477 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13478 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13479 * which in turn is called by the last refrele on the ipif/ill/ire.
13480 */
13481 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13482 if (!success) {
13483 /* The conn is closing. So just return */
13484 ASSERT(connp != NULL);
13485 mutex_exit(&ill->ill_lock);
13486 mutex_exit(&connp->conn_lock);
13487 return (EINTR);
13488 }
13489
13490 mutex_exit(&ill->ill_lock);
13491 if (connp != NULL)
13492 mutex_exit(&connp->conn_lock);
13493 return (EINPROGRESS);
13494 }
13495
13496 int
ipif_down_tail(ipif_t * ipif)13497 ipif_down_tail(ipif_t *ipif)
13498 {
13499 ill_t *ill = ipif->ipif_ill;
13500 int err = 0;
13501
13502 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13503 ill_t *, ill, ipif_t *, ipif);
13504
13505 /*
13506 * Skip any loopback interface (null wq).
13507 * If this is the last logical interface on the ill
13508 * have ill_dl_down tell the driver we are gone (unbind)
13509 * Note that lun 0 can ipif_down even though
13510 * there are other logical units that are up.
13511 * This occurs e.g. when we change a "significant" IFF_ flag.
13512 */
13513 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13514 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13515 ill->ill_dl_up) {
13516 ill_dl_down(ill);
13517 }
13518 if (!ipif->ipif_isv6)
13519 err = ipif_arp_down(ipif);
13520
13521 ill->ill_logical_down = 0;
13522
13523 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13524 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13525 return (err);
13526 }
13527
13528 /*
13529 * Bring interface logically down without bringing the physical interface
13530 * down e.g. when the netmask is changed. This avoids long lasting link
13531 * negotiations between an ethernet interface and a certain switches.
13532 */
13533 static int
ipif_logical_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13534 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13535 {
13536 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13537 ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13538
13539 /*
13540 * The ill_logical_down flag is a transient flag. It is set here
13541 * and is cleared once the down has completed in ipif_down_tail.
13542 * This flag does not indicate whether the ill stream is in the
13543 * DL_BOUND state with the driver. Instead this flag is used by
13544 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13545 * the driver. The state of the ill stream i.e. whether it is
13546 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13547 */
13548 ipif->ipif_ill->ill_logical_down = 1;
13549 return (ipif_down(ipif, q, mp));
13550 }
13551
13552 /*
13553 * Initiate deallocate of an IPIF. Always called as writer. Called by
13554 * ill_delete or ip_sioctl_removeif.
13555 */
13556 static void
ipif_free(ipif_t * ipif)13557 ipif_free(ipif_t *ipif)
13558 {
13559 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13560
13561 ASSERT(IAM_WRITER_IPIF(ipif));
13562
13563 if (ipif->ipif_recovery_id != 0)
13564 (void) untimeout(ipif->ipif_recovery_id);
13565 ipif->ipif_recovery_id = 0;
13566
13567 /*
13568 * Take down the interface. We can be called either from ill_delete
13569 * or from ip_sioctl_removeif.
13570 */
13571 (void) ipif_down(ipif, NULL, NULL);
13572
13573 /*
13574 * Now that the interface is down, there's no chance it can still
13575 * become a duplicate. Cancel any timer that may have been set while
13576 * tearing down.
13577 */
13578 if (ipif->ipif_recovery_id != 0)
13579 (void) untimeout(ipif->ipif_recovery_id);
13580 ipif->ipif_recovery_id = 0;
13581
13582 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13583 /* Remove pointers to this ill in the multicast routing tables */
13584 reset_mrt_vif_ipif(ipif);
13585 /* If necessary, clear the cached source ipif rotor. */
13586 if (ipif->ipif_ill->ill_src_ipif == ipif)
13587 ipif->ipif_ill->ill_src_ipif = NULL;
13588 rw_exit(&ipst->ips_ill_g_lock);
13589 }
13590
13591 static void
ipif_free_tail(ipif_t * ipif)13592 ipif_free_tail(ipif_t *ipif)
13593 {
13594 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13595
13596 /*
13597 * Need to hold both ill_g_lock and ill_lock while
13598 * inserting or removing an ipif from the linked list
13599 * of ipifs hanging off the ill.
13600 */
13601 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13602
13603 #ifdef DEBUG
13604 ipif_trace_cleanup(ipif);
13605 #endif
13606
13607 /* Ask SCTP to take it out of it list */
13608 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13609 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13610
13611 /* Get it out of the ILL interface list. */
13612 ipif_remove(ipif);
13613 rw_exit(&ipst->ips_ill_g_lock);
13614
13615 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13616 ASSERT(ipif->ipif_recovery_id == 0);
13617 ASSERT(ipif->ipif_ire_local == NULL);
13618 ASSERT(ipif->ipif_ire_if == NULL);
13619
13620 /* Free the memory. */
13621 mi_free(ipif);
13622 }
13623
13624 /*
13625 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13626 * is zero.
13627 */
13628 void
ipif_get_name(const ipif_t * ipif,char * buf,int len)13629 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13630 {
13631 char lbuf[LIFNAMSIZ];
13632 char *name;
13633 size_t name_len;
13634
13635 buf[0] = '\0';
13636 name = ipif->ipif_ill->ill_name;
13637 name_len = ipif->ipif_ill->ill_name_length;
13638 if (ipif->ipif_id != 0) {
13639 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13640 ipif->ipif_id);
13641 name = lbuf;
13642 name_len = mi_strlen(name) + 1;
13643 }
13644 len -= 1;
13645 buf[len] = '\0';
13646 len = MIN(len, name_len);
13647 bcopy(name, buf, len);
13648 }
13649
13650 /*
13651 * Sets `buf' to an ill name.
13652 */
13653 void
ill_get_name(const ill_t * ill,char * buf,int len)13654 ill_get_name(const ill_t *ill, char *buf, int len)
13655 {
13656 char *name;
13657 size_t name_len;
13658
13659 name = ill->ill_name;
13660 name_len = ill->ill_name_length;
13661 len -= 1;
13662 buf[len] = '\0';
13663 len = MIN(len, name_len);
13664 bcopy(name, buf, len);
13665 }
13666
13667 /*
13668 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13669 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13670 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13671 * (May be called as writer.)
13672 */
13673 static ipif_t *
ipif_lookup_on_name(char * name,size_t namelen,boolean_t do_alloc,boolean_t * exists,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)13674 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13675 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13676 {
13677 char *cp;
13678 char *endp;
13679 long id;
13680 ill_t *ill;
13681 ipif_t *ipif;
13682 uint_t ire_type;
13683 boolean_t did_alloc = B_FALSE;
13684 char last;
13685
13686 /*
13687 * If the caller wants to us to create the ipif, make sure we have a
13688 * valid zoneid
13689 */
13690 ASSERT(!do_alloc || zoneid != ALL_ZONES);
13691
13692 if (namelen == 0) {
13693 return (NULL);
13694 }
13695
13696 *exists = B_FALSE;
13697 /* Look for a colon in the name. */
13698 endp = &name[namelen];
13699 for (cp = endp; --cp > name; ) {
13700 if (*cp == IPIF_SEPARATOR_CHAR)
13701 break;
13702 }
13703
13704 if (*cp == IPIF_SEPARATOR_CHAR) {
13705 /*
13706 * Reject any non-decimal aliases for logical
13707 * interfaces. Aliases with leading zeroes
13708 * are also rejected as they introduce ambiguity
13709 * in the naming of the interfaces.
13710 * In order to confirm with existing semantics,
13711 * and to not break any programs/script relying
13712 * on that behaviour, if<0>:0 is considered to be
13713 * a valid interface.
13714 *
13715 * If alias has two or more digits and the first
13716 * is zero, fail.
13717 */
13718 if (&cp[2] < endp && cp[1] == '0') {
13719 return (NULL);
13720 }
13721 }
13722
13723 if (cp <= name) {
13724 cp = endp;
13725 }
13726 last = *cp;
13727 *cp = '\0';
13728
13729 /*
13730 * Look up the ILL, based on the portion of the name
13731 * before the slash. ill_lookup_on_name returns a held ill.
13732 * Temporary to check whether ill exists already. If so
13733 * ill_lookup_on_name will clear it.
13734 */
13735 ill = ill_lookup_on_name(name, do_alloc, isv6,
13736 &did_alloc, ipst);
13737 *cp = last;
13738 if (ill == NULL)
13739 return (NULL);
13740
13741 /* Establish the unit number in the name. */
13742 id = 0;
13743 if (cp < endp && *endp == '\0') {
13744 /* If there was a colon, the unit number follows. */
13745 cp++;
13746 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13747 ill_refrele(ill);
13748 return (NULL);
13749 }
13750 }
13751
13752 mutex_enter(&ill->ill_lock);
13753 /* Now see if there is an IPIF with this unit number. */
13754 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13755 if (ipif->ipif_id == id) {
13756 if (zoneid != ALL_ZONES &&
13757 zoneid != ipif->ipif_zoneid &&
13758 ipif->ipif_zoneid != ALL_ZONES) {
13759 mutex_exit(&ill->ill_lock);
13760 ill_refrele(ill);
13761 return (NULL);
13762 }
13763 if (IPIF_CAN_LOOKUP(ipif)) {
13764 ipif_refhold_locked(ipif);
13765 mutex_exit(&ill->ill_lock);
13766 if (!did_alloc)
13767 *exists = B_TRUE;
13768 /*
13769 * Drop locks before calling ill_refrele
13770 * since it can potentially call into
13771 * ipif_ill_refrele_tail which can end up
13772 * in trying to acquire any lock.
13773 */
13774 ill_refrele(ill);
13775 return (ipif);
13776 }
13777 }
13778 }
13779
13780 if (!do_alloc) {
13781 mutex_exit(&ill->ill_lock);
13782 ill_refrele(ill);
13783 return (NULL);
13784 }
13785
13786 /*
13787 * If none found, atomically allocate and return a new one.
13788 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13789 * to support "receive only" use of lo0:1 etc. as is still done
13790 * below as an initial guess.
13791 * However, this is now likely to be overriden later in ipif_up_done()
13792 * when we know for sure what address has been configured on the
13793 * interface, since we might have more than one loopback interface
13794 * with a loopback address, e.g. in the case of zones, and all the
13795 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13796 */
13797 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13798 ire_type = IRE_LOOPBACK;
13799 else
13800 ire_type = IRE_LOCAL;
13801 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13802 if (ipif != NULL)
13803 ipif_refhold_locked(ipif);
13804 mutex_exit(&ill->ill_lock);
13805 ill_refrele(ill);
13806 return (ipif);
13807 }
13808
13809 /*
13810 * Variant of the above that queues the request on the ipsq when
13811 * IPIF_CHANGING is set.
13812 */
13813 static ipif_t *
ipif_lookup_on_name_async(char * name,size_t namelen,boolean_t isv6,zoneid_t zoneid,queue_t * q,mblk_t * mp,ipsq_func_t func,int * error,ip_stack_t * ipst)13814 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13815 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13816 ip_stack_t *ipst)
13817 {
13818 char *cp;
13819 char *endp;
13820 long id;
13821 ill_t *ill;
13822 ipif_t *ipif;
13823 boolean_t did_alloc = B_FALSE;
13824 ipsq_t *ipsq;
13825
13826 if (error != NULL)
13827 *error = 0;
13828
13829 if (namelen == 0) {
13830 if (error != NULL)
13831 *error = ENXIO;
13832 return (NULL);
13833 }
13834
13835 /* Look for a colon in the name. */
13836 endp = &name[namelen];
13837 for (cp = endp; --cp > name; ) {
13838 if (*cp == IPIF_SEPARATOR_CHAR)
13839 break;
13840 }
13841
13842 if (*cp == IPIF_SEPARATOR_CHAR) {
13843 /*
13844 * Reject any non-decimal aliases for logical
13845 * interfaces. Aliases with leading zeroes
13846 * are also rejected as they introduce ambiguity
13847 * in the naming of the interfaces.
13848 * In order to confirm with existing semantics,
13849 * and to not break any programs/script relying
13850 * on that behaviour, if<0>:0 is considered to be
13851 * a valid interface.
13852 *
13853 * If alias has two or more digits and the first
13854 * is zero, fail.
13855 */
13856 if (&cp[2] < endp && cp[1] == '0') {
13857 if (error != NULL)
13858 *error = EINVAL;
13859 return (NULL);
13860 }
13861 }
13862
13863 if (cp <= name) {
13864 cp = endp;
13865 } else {
13866 *cp = '\0';
13867 }
13868
13869 /*
13870 * Look up the ILL, based on the portion of the name
13871 * before the slash. ill_lookup_on_name returns a held ill.
13872 * Temporary to check whether ill exists already. If so
13873 * ill_lookup_on_name will clear it.
13874 */
13875 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13876 if (cp != endp)
13877 *cp = IPIF_SEPARATOR_CHAR;
13878 if (ill == NULL)
13879 return (NULL);
13880
13881 /* Establish the unit number in the name. */
13882 id = 0;
13883 if (cp < endp && *endp == '\0') {
13884 /* If there was a colon, the unit number follows. */
13885 cp++;
13886 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13887 ill_refrele(ill);
13888 if (error != NULL)
13889 *error = ENXIO;
13890 return (NULL);
13891 }
13892 }
13893
13894 GRAB_CONN_LOCK(q);
13895 mutex_enter(&ill->ill_lock);
13896 /* Now see if there is an IPIF with this unit number. */
13897 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13898 if (ipif->ipif_id == id) {
13899 if (zoneid != ALL_ZONES &&
13900 zoneid != ipif->ipif_zoneid &&
13901 ipif->ipif_zoneid != ALL_ZONES) {
13902 mutex_exit(&ill->ill_lock);
13903 RELEASE_CONN_LOCK(q);
13904 ill_refrele(ill);
13905 if (error != NULL)
13906 *error = ENXIO;
13907 return (NULL);
13908 }
13909
13910 if (!(IPIF_IS_CHANGING(ipif) ||
13911 IPIF_IS_CONDEMNED(ipif)) ||
13912 IAM_WRITER_IPIF(ipif)) {
13913 ipif_refhold_locked(ipif);
13914 mutex_exit(&ill->ill_lock);
13915 /*
13916 * Drop locks before calling ill_refrele
13917 * since it can potentially call into
13918 * ipif_ill_refrele_tail which can end up
13919 * in trying to acquire any lock.
13920 */
13921 RELEASE_CONN_LOCK(q);
13922 ill_refrele(ill);
13923 return (ipif);
13924 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13925 ipsq = ill->ill_phyint->phyint_ipsq;
13926 mutex_enter(&ipsq->ipsq_lock);
13927 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13928 mutex_exit(&ill->ill_lock);
13929 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13930 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13931 mutex_exit(&ipsq->ipsq_lock);
13932 RELEASE_CONN_LOCK(q);
13933 ill_refrele(ill);
13934 if (error != NULL)
13935 *error = EINPROGRESS;
13936 return (NULL);
13937 }
13938 }
13939 }
13940 RELEASE_CONN_LOCK(q);
13941 mutex_exit(&ill->ill_lock);
13942 ill_refrele(ill);
13943 if (error != NULL)
13944 *error = ENXIO;
13945 return (NULL);
13946 }
13947
13948 /*
13949 * This routine is called whenever a new address comes up on an ipif. If
13950 * we are configured to respond to address mask requests, then we are supposed
13951 * to broadcast an address mask reply at this time. This routine is also
13952 * called if we are already up, but a netmask change is made. This is legal
13953 * but might not make the system manager very popular. (May be called
13954 * as writer.)
13955 */
13956 void
ipif_mask_reply(ipif_t * ipif)13957 ipif_mask_reply(ipif_t *ipif)
13958 {
13959 icmph_t *icmph;
13960 ipha_t *ipha;
13961 mblk_t *mp;
13962 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13963 ip_xmit_attr_t ixas;
13964
13965 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13966
13967 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13968 return;
13969
13970 /* ICMP mask reply is IPv4 only */
13971 ASSERT(!ipif->ipif_isv6);
13972 /* ICMP mask reply is not for a loopback interface */
13973 ASSERT(ipif->ipif_ill->ill_wq != NULL);
13974
13975 if (ipif->ipif_lcl_addr == INADDR_ANY)
13976 return;
13977
13978 mp = allocb(REPLY_LEN, BPRI_HI);
13979 if (mp == NULL)
13980 return;
13981 mp->b_wptr = mp->b_rptr + REPLY_LEN;
13982
13983 ipha = (ipha_t *)mp->b_rptr;
13984 bzero(ipha, REPLY_LEN);
13985 *ipha = icmp_ipha;
13986 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13987 ipha->ipha_src = ipif->ipif_lcl_addr;
13988 ipha->ipha_dst = ipif->ipif_brd_addr;
13989 ipha->ipha_length = htons(REPLY_LEN);
13990 ipha->ipha_ident = 0;
13991
13992 icmph = (icmph_t *)&ipha[1];
13993 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13994 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13995 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13996
13997 bzero(&ixas, sizeof (ixas));
13998 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13999 ixas.ixa_zoneid = ALL_ZONES;
14000 ixas.ixa_ifindex = 0;
14001 ixas.ixa_ipst = ipst;
14002 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
14003 (void) ip_output_simple(mp, &ixas);
14004 ixa_cleanup(&ixas);
14005 #undef REPLY_LEN
14006 }
14007
14008 /*
14009 * Join the ipif specific multicast groups.
14010 * Must be called after a mapping has been set up in the resolver. (Always
14011 * called as writer.)
14012 */
14013 void
ipif_multicast_up(ipif_t * ipif)14014 ipif_multicast_up(ipif_t *ipif)
14015 {
14016 int err;
14017 ill_t *ill;
14018 ilm_t *ilm;
14019
14020 ASSERT(IAM_WRITER_IPIF(ipif));
14021
14022 ill = ipif->ipif_ill;
14023
14024 ip1dbg(("ipif_multicast_up\n"));
14025 if (!(ill->ill_flags & ILLF_MULTICAST) ||
14026 ipif->ipif_allhosts_ilm != NULL)
14027 return;
14028
14029 if (ipif->ipif_isv6) {
14030 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14031 in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14032
14033 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14034
14035 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14036 return;
14037
14038 ip1dbg(("ipif_multicast_up - addmulti\n"));
14039
14040 /*
14041 * Join the all hosts multicast address. We skip this for
14042 * underlying IPMP interfaces since they should be invisible.
14043 */
14044 if (!IS_UNDER_IPMP(ill)) {
14045 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14046 &err);
14047 if (ilm == NULL) {
14048 ASSERT(err != 0);
14049 ip0dbg(("ipif_multicast_up: "
14050 "all_hosts_mcast failed %d\n", err));
14051 return;
14052 }
14053 ipif->ipif_allhosts_ilm = ilm;
14054 }
14055
14056 /*
14057 * Enable multicast for the solicited node multicast address.
14058 * If IPMP we need to put the membership on the upper ill.
14059 */
14060 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14061 ill_t *mcast_ill = NULL;
14062 boolean_t need_refrele;
14063
14064 if (IS_UNDER_IPMP(ill) &&
14065 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14066 need_refrele = B_TRUE;
14067 } else {
14068 mcast_ill = ill;
14069 need_refrele = B_FALSE;
14070 }
14071
14072 ilm = ip_addmulti(&v6solmc, mcast_ill,
14073 ipif->ipif_zoneid, &err);
14074 if (need_refrele)
14075 ill_refrele(mcast_ill);
14076
14077 if (ilm == NULL) {
14078 ASSERT(err != 0);
14079 ip0dbg(("ipif_multicast_up: solicited MC"
14080 " failed %d\n", err));
14081 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14082 ipif->ipif_allhosts_ilm = NULL;
14083 (void) ip_delmulti(ilm);
14084 }
14085 return;
14086 }
14087 ipif->ipif_solmulti_ilm = ilm;
14088 }
14089 } else {
14090 in6_addr_t v6group;
14091
14092 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14093 return;
14094
14095 /* Join the all hosts multicast address */
14096 ip1dbg(("ipif_multicast_up - addmulti\n"));
14097 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14098
14099 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14100 if (ilm == NULL) {
14101 ASSERT(err != 0);
14102 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14103 return;
14104 }
14105 ipif->ipif_allhosts_ilm = ilm;
14106 }
14107 }
14108
14109 /*
14110 * Blow away any multicast groups that we joined in ipif_multicast_up().
14111 * (ilms from explicit memberships are handled in conn_update_ill.)
14112 */
14113 void
ipif_multicast_down(ipif_t * ipif)14114 ipif_multicast_down(ipif_t *ipif)
14115 {
14116 ASSERT(IAM_WRITER_IPIF(ipif));
14117
14118 ip1dbg(("ipif_multicast_down\n"));
14119
14120 if (ipif->ipif_allhosts_ilm != NULL) {
14121 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14122 ipif->ipif_allhosts_ilm = NULL;
14123 }
14124 if (ipif->ipif_solmulti_ilm != NULL) {
14125 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14126 ipif->ipif_solmulti_ilm = NULL;
14127 }
14128 }
14129
14130 /*
14131 * Used when an interface comes up to recreate any extra routes on this
14132 * interface.
14133 */
14134 int
ill_recover_saved_ire(ill_t * ill)14135 ill_recover_saved_ire(ill_t *ill)
14136 {
14137 mblk_t *mp;
14138 ip_stack_t *ipst = ill->ill_ipst;
14139
14140 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14141
14142 mutex_enter(&ill->ill_saved_ire_lock);
14143 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14144 ire_t *ire, *nire;
14145 ifrt_t *ifrt;
14146
14147 ifrt = (ifrt_t *)mp->b_rptr;
14148 /*
14149 * Create a copy of the IRE with the saved address and netmask.
14150 */
14151 if (ill->ill_isv6) {
14152 ire = ire_create_v6(
14153 &ifrt->ifrt_v6addr,
14154 &ifrt->ifrt_v6mask,
14155 &ifrt->ifrt_v6gateway_addr,
14156 ifrt->ifrt_type,
14157 ill,
14158 ifrt->ifrt_zoneid,
14159 ifrt->ifrt_flags,
14160 NULL,
14161 ipst);
14162 } else {
14163 ire = ire_create(
14164 (uint8_t *)&ifrt->ifrt_addr,
14165 (uint8_t *)&ifrt->ifrt_mask,
14166 (uint8_t *)&ifrt->ifrt_gateway_addr,
14167 ifrt->ifrt_type,
14168 ill,
14169 ifrt->ifrt_zoneid,
14170 ifrt->ifrt_flags,
14171 NULL,
14172 ipst);
14173 }
14174 if (ire == NULL) {
14175 mutex_exit(&ill->ill_saved_ire_lock);
14176 return (ENOMEM);
14177 }
14178
14179 if (ifrt->ifrt_flags & RTF_SETSRC) {
14180 if (ill->ill_isv6) {
14181 ire->ire_setsrc_addr_v6 =
14182 ifrt->ifrt_v6setsrc_addr;
14183 } else {
14184 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14185 }
14186 }
14187
14188 /*
14189 * Some software (for example, GateD and Sun Cluster) attempts
14190 * to create (what amount to) IRE_PREFIX routes with the
14191 * loopback address as the gateway. This is primarily done to
14192 * set up prefixes with the RTF_REJECT flag set (for example,
14193 * when generating aggregate routes.)
14194 *
14195 * If the IRE type (as defined by ill->ill_net_type) is
14196 * IRE_LOOPBACK, then we map the request into a
14197 * IRE_IF_NORESOLVER.
14198 */
14199 if (ill->ill_net_type == IRE_LOOPBACK)
14200 ire->ire_type = IRE_IF_NORESOLVER;
14201
14202 /*
14203 * ire held by ire_add, will be refreled' towards the
14204 * the end of ipif_up_done
14205 */
14206 nire = ire_add(ire);
14207 /*
14208 * Check if it was a duplicate entry. This handles
14209 * the case of two racing route adds for the same route
14210 */
14211 if (nire == NULL) {
14212 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14213 } else if (nire != ire) {
14214 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14215 (void *)nire));
14216 ire_delete(nire);
14217 } else {
14218 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14219 (void *)nire));
14220 }
14221 if (nire != NULL)
14222 ire_refrele(nire);
14223 }
14224 mutex_exit(&ill->ill_saved_ire_lock);
14225 return (0);
14226 }
14227
14228 /*
14229 * Used to set the netmask and broadcast address to default values when the
14230 * interface is brought up. (Always called as writer.)
14231 */
14232 static void
ipif_set_default(ipif_t * ipif)14233 ipif_set_default(ipif_t *ipif)
14234 {
14235 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14236
14237 if (!ipif->ipif_isv6) {
14238 /*
14239 * Interface holds an IPv4 address. Default
14240 * mask is the natural netmask.
14241 */
14242 if (!ipif->ipif_net_mask) {
14243 ipaddr_t v4mask;
14244
14245 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14246 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14247 }
14248 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14249 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14250 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14251 } else {
14252 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14253 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14254 }
14255 /*
14256 * NOTE: SunOS 4.X does this even if the broadcast address
14257 * has been already set thus we do the same here.
14258 */
14259 if (ipif->ipif_flags & IPIF_BROADCAST) {
14260 ipaddr_t v4addr;
14261
14262 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14263 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14264 }
14265 } else {
14266 /*
14267 * Interface holds an IPv6-only address. Default
14268 * mask is all-ones.
14269 */
14270 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14271 ipif->ipif_v6net_mask = ipv6_all_ones;
14272 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14273 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14274 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14275 } else {
14276 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14277 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14278 }
14279 }
14280 }
14281
14282 /*
14283 * Return 0 if this address can be used as local address without causing
14284 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14285 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14286 * Note that the same IPv6 link-local address is allowed as long as the ills
14287 * are not on the same link.
14288 */
14289 int
ip_addr_availability_check(ipif_t * new_ipif)14290 ip_addr_availability_check(ipif_t *new_ipif)
14291 {
14292 in6_addr_t our_v6addr;
14293 ill_t *ill;
14294 ipif_t *ipif;
14295 ill_walk_context_t ctx;
14296 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;
14297
14298 ASSERT(IAM_WRITER_IPIF(new_ipif));
14299 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14300 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14301
14302 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14303 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14304 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14305 return (0);
14306
14307 our_v6addr = new_ipif->ipif_v6lcl_addr;
14308
14309 if (new_ipif->ipif_isv6)
14310 ill = ILL_START_WALK_V6(&ctx, ipst);
14311 else
14312 ill = ILL_START_WALK_V4(&ctx, ipst);
14313
14314 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14315 for (ipif = ill->ill_ipif; ipif != NULL;
14316 ipif = ipif->ipif_next) {
14317 if ((ipif == new_ipif) ||
14318 !(ipif->ipif_flags & IPIF_UP) ||
14319 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14320 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14321 &our_v6addr))
14322 continue;
14323
14324 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14325 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14326 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14327 ipif->ipif_flags |= IPIF_UNNUMBERED;
14328 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14329 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14330 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14331 continue;
14332 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14333 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14334 continue;
14335 else if (new_ipif->ipif_ill == ill)
14336 return (EADDRINUSE);
14337 else
14338 return (EADDRNOTAVAIL);
14339 }
14340 }
14341
14342 return (0);
14343 }
14344
14345 /*
14346 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14347 * IREs for the ipif.
14348 * When the routine returns EINPROGRESS then mp has been consumed and
14349 * the ioctl will be acked from ip_rput_dlpi.
14350 */
14351 int
ipif_up(ipif_t * ipif,queue_t * q,mblk_t * mp)14352 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14353 {
14354 ill_t *ill = ipif->ipif_ill;
14355 boolean_t isv6 = ipif->ipif_isv6;
14356 int err = 0;
14357 boolean_t success;
14358 uint_t ipif_orig_id;
14359 ip_stack_t *ipst = ill->ill_ipst;
14360
14361 ASSERT(IAM_WRITER_IPIF(ipif));
14362
14363 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14364 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14365 ill_t *, ill, ipif_t *, ipif);
14366
14367 /* Shouldn't get here if it is already up. */
14368 if (ipif->ipif_flags & IPIF_UP)
14369 return (EALREADY);
14370
14371 /*
14372 * If this is a request to bring up a data address on an interface
14373 * under IPMP, then move the address to its IPMP meta-interface and
14374 * try to bring it up. One complication is that the zeroth ipif for
14375 * an ill is special, in that every ill always has one, and that code
14376 * throughout IP deferences ill->ill_ipif without holding any locks.
14377 */
14378 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14379 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14380 ipif_t *stubipif = NULL, *moveipif = NULL;
14381 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14382
14383 /*
14384 * The ipif being brought up should be quiesced. If it's not,
14385 * something has gone amiss and we need to bail out. (If it's
14386 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14387 */
14388 mutex_enter(&ill->ill_lock);
14389 if (!ipif_is_quiescent(ipif)) {
14390 mutex_exit(&ill->ill_lock);
14391 return (EINVAL);
14392 }
14393 mutex_exit(&ill->ill_lock);
14394
14395 /*
14396 * If we're going to need to allocate ipifs, do it prior
14397 * to starting the move (and grabbing locks).
14398 */
14399 if (ipif->ipif_id == 0) {
14400 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14401 B_FALSE, &err)) == NULL) {
14402 return (err);
14403 }
14404 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14405 B_FALSE, &err)) == NULL) {
14406 mi_free(moveipif);
14407 return (err);
14408 }
14409 }
14410
14411 /*
14412 * Grab or transfer the ipif to move. During the move, keep
14413 * ill_g_lock held to prevent any ill walker threads from
14414 * seeing things in an inconsistent state.
14415 */
14416 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14417 if (ipif->ipif_id != 0) {
14418 ipif_remove(ipif);
14419 } else {
14420 ipif_transfer(ipif, moveipif, stubipif);
14421 ipif = moveipif;
14422 }
14423
14424 /*
14425 * Place the ipif on the IPMP ill. If the zeroth ipif on
14426 * the IPMP ill is a stub (0.0.0.0 down address) then we
14427 * replace that one. Otherwise, pick the next available slot.
14428 */
14429 ipif->ipif_ill = ipmp_ill;
14430 ipif_orig_id = ipif->ipif_id;
14431
14432 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14433 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14434 ipif = ipmp_ill->ill_ipif;
14435 } else {
14436 ipif->ipif_id = -1;
14437 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14438 /*
14439 * No more available ipif_id's -- put it back
14440 * on the original ill and fail the operation.
14441 * Since we're writer on the ill, we can be
14442 * sure our old slot is still available.
14443 */
14444 ipif->ipif_id = ipif_orig_id;
14445 ipif->ipif_ill = ill;
14446 if (ipif_orig_id == 0) {
14447 ipif_transfer(ipif, ill->ill_ipif,
14448 NULL);
14449 } else {
14450 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14451 }
14452 rw_exit(&ipst->ips_ill_g_lock);
14453 return (err);
14454 }
14455 }
14456 rw_exit(&ipst->ips_ill_g_lock);
14457
14458 /*
14459 * Tell SCTP that the ipif has moved. Note that even if we
14460 * had to allocate a new ipif, the original sequence id was
14461 * preserved and therefore SCTP won't know.
14462 */
14463 sctp_move_ipif(ipif, ill, ipmp_ill);
14464
14465 /*
14466 * If the ipif being brought up was on slot zero, then we
14467 * first need to bring up the placeholder we stuck there. In
14468 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14469 * call to ipif_up() itself, if we successfully bring up the
14470 * placeholder, we'll check ill_move_ipif and bring it up too.
14471 */
14472 if (ipif_orig_id == 0) {
14473 ASSERT(ill->ill_move_ipif == NULL);
14474 ill->ill_move_ipif = ipif;
14475 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14476 ASSERT(ill->ill_move_ipif == NULL);
14477 if (err != EINPROGRESS)
14478 ill->ill_move_ipif = NULL;
14479 return (err);
14480 }
14481
14482 /*
14483 * Bring it up on the IPMP ill.
14484 */
14485 return (ipif_up(ipif, q, mp));
14486 }
14487
14488 /* Skip arp/ndp for any loopback interface. */
14489 if (ill->ill_wq != NULL) {
14490 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14491 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14492
14493 if (!ill->ill_dl_up) {
14494 /*
14495 * ill_dl_up is not yet set. i.e. we are yet to
14496 * DL_BIND with the driver and this is the first
14497 * logical interface on the ill to become "up".
14498 * Tell the driver to get going (via DL_BIND_REQ).
14499 * Note that changing "significant" IFF_ flags
14500 * address/netmask etc cause a down/up dance, but
14501 * does not cause an unbind (DL_UNBIND) with the driver
14502 */
14503 return (ill_dl_up(ill, ipif, mp, q));
14504 }
14505
14506 /*
14507 * ipif_resolver_up may end up needeing to bind/attach
14508 * the ARP stream, which in turn necessitates a
14509 * DLPI message exchange with the driver. ioctls are
14510 * serialized and so we cannot send more than one
14511 * interface up message at a time. If ipif_resolver_up
14512 * does need to wait for the DLPI handshake for the ARP stream,
14513 * we get EINPROGRESS and we will complete in arp_bringup_done.
14514 */
14515
14516 ASSERT(connp != NULL || !CONN_Q(q));
14517 if (connp != NULL)
14518 mutex_enter(&connp->conn_lock);
14519 mutex_enter(&ill->ill_lock);
14520 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14521 mutex_exit(&ill->ill_lock);
14522 if (connp != NULL)
14523 mutex_exit(&connp->conn_lock);
14524 if (!success)
14525 return (EINTR);
14526
14527 /*
14528 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14529 * complete when ipif_ndp_up returns.
14530 */
14531 err = ipif_resolver_up(ipif, Res_act_initial);
14532 if (err == EINPROGRESS) {
14533 /* We will complete it in arp_bringup_done() */
14534 return (err);
14535 }
14536
14537 if (isv6 && err == 0)
14538 err = ipif_ndp_up(ipif, B_TRUE);
14539
14540 ASSERT(err != EINPROGRESS);
14541 mp = ipsq_pending_mp_get(ipsq, &connp);
14542 ASSERT(mp != NULL);
14543 if (err != 0)
14544 return (err);
14545 } else {
14546 /*
14547 * Interfaces without underlying hardware don't do duplicate
14548 * address detection.
14549 */
14550 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14551 ipif->ipif_addr_ready = 1;
14552 err = ill_add_ires(ill);
14553 /* allocation failure? */
14554 if (err != 0)
14555 return (err);
14556 }
14557
14558 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14559 if (err == 0 && ill->ill_move_ipif != NULL) {
14560 ipif = ill->ill_move_ipif;
14561 ill->ill_move_ipif = NULL;
14562 return (ipif_up(ipif, q, mp));
14563 }
14564 return (err);
14565 }
14566
14567 /*
14568 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14569 * The identical set of IREs need to be removed in ill_delete_ires().
14570 */
14571 int
ill_add_ires(ill_t * ill)14572 ill_add_ires(ill_t *ill)
14573 {
14574 ire_t *ire;
14575 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14576 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14577
14578 if (ill->ill_ire_multicast != NULL)
14579 return (0);
14580
14581 /*
14582 * provide some dummy ire_addr for creating the ire.
14583 */
14584 if (ill->ill_isv6) {
14585 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14586 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14587 } else {
14588 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14589 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14590 }
14591 if (ire == NULL)
14592 return (ENOMEM);
14593
14594 ill->ill_ire_multicast = ire;
14595 return (0);
14596 }
14597
14598 void
ill_delete_ires(ill_t * ill)14599 ill_delete_ires(ill_t *ill)
14600 {
14601 if (ill->ill_ire_multicast != NULL) {
14602 /*
14603 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14604 * which was taken without any th_tracing enabled.
14605 * We also mark it as condemned (note that it was never added)
14606 * so that caching conn's can move off of it.
14607 */
14608 ire_make_condemned(ill->ill_ire_multicast);
14609 ire_refrele_notr(ill->ill_ire_multicast);
14610 ill->ill_ire_multicast = NULL;
14611 }
14612 }
14613
14614 /*
14615 * Perform a bind for the physical device.
14616 * When the routine returns EINPROGRESS then mp has been consumed and
14617 * the ioctl will be acked from ip_rput_dlpi.
14618 * Allocate an unbind message and save it until ipif_down.
14619 */
14620 static int
ill_dl_up(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)14621 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14622 {
14623 mblk_t *bind_mp = NULL;
14624 mblk_t *unbind_mp = NULL;
14625 conn_t *connp;
14626 boolean_t success;
14627 int err;
14628
14629 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14630
14631 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14632 ASSERT(IAM_WRITER_ILL(ill));
14633 ASSERT(mp != NULL);
14634
14635 /*
14636 * Make sure we have an IRE_MULTICAST in case we immediately
14637 * start receiving packets.
14638 */
14639 err = ill_add_ires(ill);
14640 if (err != 0)
14641 goto bad;
14642
14643 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14644 DL_BIND_REQ);
14645 if (bind_mp == NULL)
14646 goto bad;
14647 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14648 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14649
14650 /*
14651 * ill_unbind_mp would be non-null if the following sequence had
14652 * happened:
14653 * - send DL_BIND_REQ to driver, wait for response
14654 * - multiple ioctls that need to bring the ipif up are encountered,
14655 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14656 * These ioctls will then be enqueued on the ipsq
14657 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14658 * At this point, the pending ioctls in the ipsq will be drained, and
14659 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14660 * a non-null ill->ill_unbind_mp
14661 */
14662 if (ill->ill_unbind_mp == NULL) {
14663 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14664 DL_UNBIND_REQ);
14665 if (unbind_mp == NULL)
14666 goto bad;
14667 }
14668 /*
14669 * Record state needed to complete this operation when the
14670 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14671 */
14672 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14673 ASSERT(connp != NULL || !CONN_Q(q));
14674 GRAB_CONN_LOCK(q);
14675 mutex_enter(&ipif->ipif_ill->ill_lock);
14676 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14677 mutex_exit(&ipif->ipif_ill->ill_lock);
14678 RELEASE_CONN_LOCK(q);
14679 if (!success)
14680 goto bad;
14681
14682 /*
14683 * Save the unbind message for ill_dl_down(); it will be consumed when
14684 * the interface goes down.
14685 */
14686 if (ill->ill_unbind_mp == NULL)
14687 ill->ill_unbind_mp = unbind_mp;
14688
14689 ill_dlpi_send(ill, bind_mp);
14690 /* Send down link-layer capabilities probe if not already done. */
14691 ill_capability_probe(ill);
14692
14693 /*
14694 * Sysid used to rely on the fact that netboots set domainname
14695 * and the like. Now that miniroot boots aren't strictly netboots
14696 * and miniroot network configuration is driven from userland
14697 * these things still need to be set. This situation can be detected
14698 * by comparing the interface being configured here to the one
14699 * dhcifname was set to reference by the boot loader. Once sysid is
14700 * converted to use dhcp_ipc_getinfo() this call can go away.
14701 */
14702 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14703 (strcmp(ill->ill_name, dhcifname) == 0) &&
14704 (strlen(srpc_domain) == 0)) {
14705 if (dhcpinit() != 0)
14706 cmn_err(CE_WARN, "no cached dhcp response");
14707 }
14708
14709 /*
14710 * This operation will complete in ip_rput_dlpi with either
14711 * a DL_BIND_ACK or DL_ERROR_ACK.
14712 */
14713 return (EINPROGRESS);
14714 bad:
14715 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14716
14717 freemsg(bind_mp);
14718 freemsg(unbind_mp);
14719 return (ENOMEM);
14720 }
14721
14722 /* Add room for tcp+ip headers */
14723 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14724
14725 /*
14726 * DLPI and ARP is up.
14727 * Create all the IREs associated with an interface. Bring up multicast.
14728 * Set the interface flag and finish other initialization
14729 * that potentially had to be deferred to after DL_BIND_ACK.
14730 */
14731 int
ipif_up_done(ipif_t * ipif)14732 ipif_up_done(ipif_t *ipif)
14733 {
14734 ill_t *ill = ipif->ipif_ill;
14735 int err = 0;
14736 boolean_t loopback = B_FALSE;
14737 boolean_t update_src_selection = B_TRUE;
14738 ipif_t *tmp_ipif;
14739
14740 ip1dbg(("ipif_up_done(%s:%u)\n",
14741 ipif->ipif_ill->ill_name, ipif->ipif_id));
14742 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14743 ill_t *, ill, ipif_t *, ipif);
14744
14745 /* Check if this is a loopback interface */
14746 if (ipif->ipif_ill->ill_wq == NULL)
14747 loopback = B_TRUE;
14748
14749 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14750
14751 /*
14752 * If all other interfaces for this ill are down or DEPRECATED,
14753 * or otherwise unsuitable for source address selection,
14754 * reset the src generation numbers to make sure source
14755 * address selection gets to take this new ipif into account.
14756 * No need to hold ill_lock while traversing the ipif list since
14757 * we are writer
14758 */
14759 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14760 tmp_ipif = tmp_ipif->ipif_next) {
14761 if (((tmp_ipif->ipif_flags &
14762 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14763 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14764 (tmp_ipif == ipif))
14765 continue;
14766 /* first useable pre-existing interface */
14767 update_src_selection = B_FALSE;
14768 break;
14769 }
14770 if (update_src_selection)
14771 ip_update_source_selection(ill->ill_ipst);
14772
14773 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14774 nce_t *loop_nce = NULL;
14775 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14776
14777 /*
14778 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14779 * ipif_lookup_on_name(), but in the case of zones we can have
14780 * several loopback addresses on lo0. So all the interfaces with
14781 * loopback addresses need to be marked IRE_LOOPBACK.
14782 */
14783 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14784 htonl(INADDR_LOOPBACK))
14785 ipif->ipif_ire_type = IRE_LOOPBACK;
14786 else
14787 ipif->ipif_ire_type = IRE_LOCAL;
14788 if (ill->ill_net_type != IRE_LOOPBACK)
14789 flags |= NCE_F_PUBLISH;
14790
14791 /* add unicast nce for the local addr */
14792 err = nce_lookup_then_add_v4(ill, NULL,
14793 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14794 ND_REACHABLE, &loop_nce);
14795 /* A shared-IP zone sees EEXIST for lo0:N */
14796 if (err == 0 || err == EEXIST) {
14797 ipif->ipif_added_nce = 1;
14798 loop_nce->nce_ipif_cnt++;
14799 nce_refrele(loop_nce);
14800 err = 0;
14801 } else {
14802 ASSERT(loop_nce == NULL);
14803 return (err);
14804 }
14805 }
14806
14807 /* Create all the IREs associated with this interface */
14808 err = ipif_add_ires_v4(ipif, loopback);
14809 if (err != 0) {
14810 /*
14811 * see comments about return value from
14812 * ip_addr_availability_check() in ipif_add_ires_v4().
14813 */
14814 if (err != EADDRINUSE) {
14815 (void) ipif_arp_down(ipif);
14816 } else {
14817 /*
14818 * Make IPMP aware of the deleted ipif so that
14819 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14820 * can be completed. Note that we do not want to
14821 * destroy the nce that was created on the ipmp_ill
14822 * for the active copy of the duplicate address in
14823 * use.
14824 */
14825 if (IS_IPMP(ill))
14826 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14827 err = EADDRNOTAVAIL;
14828 }
14829 return (err);
14830 }
14831
14832 if (ill->ill_ipif_up_count == 1 && !loopback) {
14833 /* Recover any additional IREs entries for this ill */
14834 (void) ill_recover_saved_ire(ill);
14835 }
14836
14837 if (ill->ill_need_recover_multicast) {
14838 /*
14839 * Need to recover all multicast memberships in the driver.
14840 * This had to be deferred until we had attached. The same
14841 * code exists in ipif_up_done_v6() to recover IPv6
14842 * memberships.
14843 *
14844 * Note that it would be preferable to unconditionally do the
14845 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14846 * that since ill_join_allmulti() depends on ill_dl_up being
14847 * set, and it is not set until we receive a DL_BIND_ACK after
14848 * having called ill_dl_up().
14849 */
14850 ill_recover_multicast(ill);
14851 }
14852
14853 if (ill->ill_ipif_up_count == 1) {
14854 /*
14855 * Since the interface is now up, it may now be active.
14856 */
14857 if (IS_UNDER_IPMP(ill))
14858 ipmp_ill_refresh_active(ill);
14859
14860 /*
14861 * If this is an IPMP interface, we may now be able to
14862 * establish ARP entries.
14863 */
14864 if (IS_IPMP(ill))
14865 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14866 }
14867
14868 /* Join the allhosts multicast address */
14869 ipif_multicast_up(ipif);
14870
14871 if (!loopback && !update_src_selection &&
14872 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14873 ip_update_source_selection(ill->ill_ipst);
14874
14875 if (!loopback && ipif->ipif_addr_ready) {
14876 /* Broadcast an address mask reply. */
14877 ipif_mask_reply(ipif);
14878 }
14879 /* Perhaps ilgs should use this ill */
14880 update_conn_ill(NULL, ill->ill_ipst);
14881
14882 /*
14883 * This had to be deferred until we had bound. Tell routing sockets and
14884 * others that this interface is up if it looks like the address has
14885 * been validated. Otherwise, if it isn't ready yet, wait for
14886 * duplicate address detection to do its thing.
14887 */
14888 if (ipif->ipif_addr_ready)
14889 ipif_up_notify(ipif);
14890 return (0);
14891 }
14892
14893 /*
14894 * Add the IREs associated with the ipif.
14895 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14896 */
14897 static int
ipif_add_ires_v4(ipif_t * ipif,boolean_t loopback)14898 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14899 {
14900 ill_t *ill = ipif->ipif_ill;
14901 ip_stack_t *ipst = ill->ill_ipst;
14902 ire_t *ire_array[20];
14903 ire_t **irep = ire_array;
14904 ire_t **irep1;
14905 ipaddr_t net_mask = 0;
14906 ipaddr_t subnet_mask, route_mask;
14907 int err;
14908 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14909 ire_t *ire_if = NULL;
14910 uchar_t *gw;
14911
14912 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14913 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14914 /*
14915 * If we're on a labeled system then make sure that zone-
14916 * private addresses have proper remote host database entries.
14917 */
14918 if (is_system_labeled() &&
14919 ipif->ipif_ire_type != IRE_LOOPBACK &&
14920 !tsol_check_interface_address(ipif))
14921 return (EINVAL);
14922
14923 /* Register the source address for __sin6_src_id */
14924 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14925 ipif->ipif_zoneid, ipst);
14926 if (err != 0) {
14927 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14928 return (err);
14929 }
14930
14931 if (loopback)
14932 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14933 else
14934 gw = NULL;
14935
14936 /* If the interface address is set, create the local IRE. */
14937 ire_local = ire_create(
14938 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14939 (uchar_t *)&ip_g_all_ones, /* mask */
14940 gw, /* gateway */
14941 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14942 ipif->ipif_ill,
14943 ipif->ipif_zoneid,
14944 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14945 RTF_PRIVATE : 0) | RTF_KERNEL,
14946 NULL,
14947 ipst);
14948 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14949 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14950 ipif->ipif_ire_type,
14951 ntohl(ipif->ipif_lcl_addr)));
14952 if (ire_local == NULL) {
14953 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14954 err = ENOMEM;
14955 goto bad;
14956 }
14957 } else {
14958 ip1dbg((
14959 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14960 ipif->ipif_ire_type,
14961 ntohl(ipif->ipif_lcl_addr),
14962 (uint_t)ipif->ipif_flags));
14963 }
14964 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14965 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14966 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14967 } else {
14968 net_mask = htonl(IN_CLASSA_NET); /* fallback */
14969 }
14970
14971 subnet_mask = ipif->ipif_net_mask;
14972
14973 /*
14974 * If mask was not specified, use natural netmask of
14975 * interface address. Also, store this mask back into the
14976 * ipif struct.
14977 */
14978 if (subnet_mask == 0) {
14979 subnet_mask = net_mask;
14980 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14981 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14982 ipif->ipif_v6subnet);
14983 }
14984
14985 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14986 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14987 ipif->ipif_subnet != INADDR_ANY) {
14988 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14989
14990 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14991 route_mask = IP_HOST_MASK;
14992 } else {
14993 route_mask = subnet_mask;
14994 }
14995
14996 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14997 "creating if IRE ill_net_type 0x%x for 0x%x\n",
14998 (void *)ipif, (void *)ill, ill->ill_net_type,
14999 ntohl(ipif->ipif_subnet)));
15000 ire_if = ire_create(
15001 (uchar_t *)&ipif->ipif_subnet,
15002 (uchar_t *)&route_mask,
15003 (uchar_t *)&ipif->ipif_lcl_addr,
15004 ill->ill_net_type,
15005 ill,
15006 ipif->ipif_zoneid,
15007 ((ipif->ipif_flags & IPIF_PRIVATE) ?
15008 RTF_PRIVATE: 0) | RTF_KERNEL,
15009 NULL,
15010 ipst);
15011 if (ire_if == NULL) {
15012 ip1dbg(("ipif_up_done: NULL ire_if\n"));
15013 err = ENOMEM;
15014 goto bad;
15015 }
15016 }
15017
15018 /*
15019 * Create any necessary broadcast IREs.
15020 */
15021 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15022 !(ipif->ipif_flags & IPIF_NOXMIT))
15023 irep = ipif_create_bcast_ires(ipif, irep);
15024
15025 /* If an earlier ire_create failed, get out now */
15026 for (irep1 = irep; irep1 > ire_array; ) {
15027 irep1--;
15028 if (*irep1 == NULL) {
15029 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15030 err = ENOMEM;
15031 goto bad;
15032 }
15033 }
15034
15035 /*
15036 * Need to atomically check for IP address availability under
15037 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15038 * ills or new ipifs can be added while we are checking availability.
15039 */
15040 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15041 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15042 /* Mark it up, and increment counters. */
15043 ipif->ipif_flags |= IPIF_UP;
15044 ill->ill_ipif_up_count++;
15045 err = ip_addr_availability_check(ipif);
15046 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15047 rw_exit(&ipst->ips_ill_g_lock);
15048
15049 if (err != 0) {
15050 /*
15051 * Our address may already be up on the same ill. In this case,
15052 * the ARP entry for our ipif replaced the one for the other
15053 * ipif. So we don't want to delete it (otherwise the other ipif
15054 * would be unable to send packets).
15055 * ip_addr_availability_check() identifies this case for us and
15056 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15057 * which is the expected error code.
15058 */
15059 ill->ill_ipif_up_count--;
15060 ipif->ipif_flags &= ~IPIF_UP;
15061 goto bad;
15062 }
15063
15064 /*
15065 * Add in all newly created IREs. ire_create_bcast() has
15066 * already checked for duplicates of the IRE_BROADCAST type.
15067 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15068 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15069 * a /32 route.
15070 */
15071 if (ire_if != NULL) {
15072 ire_if = ire_add(ire_if);
15073 if (ire_if == NULL) {
15074 err = ENOMEM;
15075 goto bad2;
15076 }
15077 #ifdef DEBUG
15078 ire_refhold_notr(ire_if);
15079 ire_refrele(ire_if);
15080 #endif
15081 }
15082 if (ire_local != NULL) {
15083 ire_local = ire_add(ire_local);
15084 if (ire_local == NULL) {
15085 err = ENOMEM;
15086 goto bad2;
15087 }
15088 #ifdef DEBUG
15089 ire_refhold_notr(ire_local);
15090 ire_refrele(ire_local);
15091 #endif
15092 }
15093 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15094 if (ire_local != NULL)
15095 ipif->ipif_ire_local = ire_local;
15096 if (ire_if != NULL)
15097 ipif->ipif_ire_if = ire_if;
15098 rw_exit(&ipst->ips_ill_g_lock);
15099 ire_local = NULL;
15100 ire_if = NULL;
15101
15102 /*
15103 * We first add all of them, and if that succeeds we refrele the
15104 * bunch. That enables us to delete all of them should any of the
15105 * ire_adds fail.
15106 */
15107 for (irep1 = irep; irep1 > ire_array; ) {
15108 irep1--;
15109 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15110 *irep1 = ire_add(*irep1);
15111 if (*irep1 == NULL) {
15112 err = ENOMEM;
15113 goto bad2;
15114 }
15115 }
15116
15117 for (irep1 = irep; irep1 > ire_array; ) {
15118 irep1--;
15119 /* refheld by ire_add. */
15120 if (*irep1 != NULL) {
15121 ire_refrele(*irep1);
15122 *irep1 = NULL;
15123 }
15124 }
15125
15126 if (!loopback) {
15127 /*
15128 * If the broadcast address has been set, make sure it makes
15129 * sense based on the interface address.
15130 * Only match on ill since we are sharing broadcast addresses.
15131 */
15132 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15133 (ipif->ipif_flags & IPIF_BROADCAST)) {
15134 ire_t *ire;
15135
15136 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15137 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15138 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15139
15140 if (ire == NULL) {
15141 /*
15142 * If there isn't a matching broadcast IRE,
15143 * revert to the default for this netmask.
15144 */
15145 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15146 mutex_enter(&ipif->ipif_ill->ill_lock);
15147 ipif_set_default(ipif);
15148 mutex_exit(&ipif->ipif_ill->ill_lock);
15149 } else {
15150 ire_refrele(ire);
15151 }
15152 }
15153
15154 }
15155 return (0);
15156
15157 bad2:
15158 ill->ill_ipif_up_count--;
15159 ipif->ipif_flags &= ~IPIF_UP;
15160
15161 bad:
15162 ip1dbg(("ipif_add_ires: FAILED \n"));
15163 if (ire_local != NULL)
15164 ire_delete(ire_local);
15165 if (ire_if != NULL)
15166 ire_delete(ire_if);
15167
15168 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15169 ire_local = ipif->ipif_ire_local;
15170 ipif->ipif_ire_local = NULL;
15171 ire_if = ipif->ipif_ire_if;
15172 ipif->ipif_ire_if = NULL;
15173 rw_exit(&ipst->ips_ill_g_lock);
15174 if (ire_local != NULL) {
15175 ire_delete(ire_local);
15176 ire_refrele_notr(ire_local);
15177 }
15178 if (ire_if != NULL) {
15179 ire_delete(ire_if);
15180 ire_refrele_notr(ire_if);
15181 }
15182
15183 while (irep > ire_array) {
15184 irep--;
15185 if (*irep != NULL) {
15186 ire_delete(*irep);
15187 }
15188 }
15189 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15190
15191 return (err);
15192 }
15193
15194 /* Remove all the IREs created by ipif_add_ires_v4 */
15195 void
ipif_delete_ires_v4(ipif_t * ipif)15196 ipif_delete_ires_v4(ipif_t *ipif)
15197 {
15198 ill_t *ill = ipif->ipif_ill;
15199 ip_stack_t *ipst = ill->ill_ipst;
15200 ire_t *ire;
15201
15202 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15203 ire = ipif->ipif_ire_local;
15204 ipif->ipif_ire_local = NULL;
15205 rw_exit(&ipst->ips_ill_g_lock);
15206 if (ire != NULL) {
15207 /*
15208 * Move count to ipif so we don't loose the count due to
15209 * a down/up dance.
15210 */
15211 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15212
15213 ire_delete(ire);
15214 ire_refrele_notr(ire);
15215 }
15216 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15217 ire = ipif->ipif_ire_if;
15218 ipif->ipif_ire_if = NULL;
15219 rw_exit(&ipst->ips_ill_g_lock);
15220 if (ire != NULL) {
15221 ire_delete(ire);
15222 ire_refrele_notr(ire);
15223 }
15224
15225 /*
15226 * Delete the broadcast IREs.
15227 */
15228 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15229 !(ipif->ipif_flags & IPIF_NOXMIT))
15230 ipif_delete_bcast_ires(ipif);
15231 }
15232
15233 /*
15234 * Checks for availbility of a usable source address (if there is one) when the
15235 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15236 * this selection is done regardless of the destination.
15237 */
15238 boolean_t
ipif_zone_avail(uint_t ifindex,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15239 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15240 ip_stack_t *ipst)
15241 {
15242 ipif_t *ipif = NULL;
15243 ill_t *uill;
15244
15245 ASSERT(ifindex != 0);
15246
15247 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15248 if (uill == NULL)
15249 return (B_FALSE);
15250
15251 mutex_enter(&uill->ill_lock);
15252 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15253 if (IPIF_IS_CONDEMNED(ipif))
15254 continue;
15255 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15256 continue;
15257 if (!(ipif->ipif_flags & IPIF_UP))
15258 continue;
15259 if (ipif->ipif_zoneid != zoneid)
15260 continue;
15261 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15262 ipif->ipif_lcl_addr == INADDR_ANY)
15263 continue;
15264 mutex_exit(&uill->ill_lock);
15265 ill_refrele(uill);
15266 return (B_TRUE);
15267 }
15268 mutex_exit(&uill->ill_lock);
15269 ill_refrele(uill);
15270 return (B_FALSE);
15271 }
15272
15273 /*
15274 * Find an ipif with a good local address on the ill+zoneid.
15275 */
15276 ipif_t *
ipif_good_addr(ill_t * ill,zoneid_t zoneid)15277 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15278 {
15279 ipif_t *ipif;
15280
15281 mutex_enter(&ill->ill_lock);
15282 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15283 if (IPIF_IS_CONDEMNED(ipif))
15284 continue;
15285 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15286 continue;
15287 if (!(ipif->ipif_flags & IPIF_UP))
15288 continue;
15289 if (ipif->ipif_zoneid != zoneid &&
15290 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15291 continue;
15292 if (ill->ill_isv6 ?
15293 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15294 ipif->ipif_lcl_addr == INADDR_ANY)
15295 continue;
15296 ipif_refhold_locked(ipif);
15297 mutex_exit(&ill->ill_lock);
15298 return (ipif);
15299 }
15300 mutex_exit(&ill->ill_lock);
15301 return (NULL);
15302 }
15303
15304 /*
15305 * IP source address type, sorted from worst to best. For a given type,
15306 * always prefer IP addresses on the same subnet. All-zones addresses are
15307 * suboptimal because they pose problems with unlabeled destinations.
15308 */
15309 typedef enum {
15310 IPIF_NONE,
15311 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15312 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15313 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15314 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15315 IPIF_DIFFNET, /* normal and different subnet */
15316 IPIF_SAMENET, /* normal and same subnet */
15317 IPIF_LOCALADDR /* local loopback */
15318 } ipif_type_t;
15319
15320 /*
15321 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15322 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t
15323 * enumeration, and return the highest-rated ipif. If there's a tie, we pick
15324 * the first one, unless IPMP is used in which case we round-robin among them;
15325 * see below for more.
15326 *
15327 * Returns NULL if there is no suitable source address for the ill.
15328 * This only occurs when there is no valid source address for the ill.
15329 */
15330 ipif_t *
ipif_select_source_v4(ill_t * ill,ipaddr_t dst,zoneid_t zoneid,boolean_t allow_usesrc,boolean_t * notreadyp)15331 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15332 boolean_t allow_usesrc, boolean_t *notreadyp)
15333 {
15334 ill_t *usill = NULL;
15335 ill_t *ipmp_ill = NULL;
15336 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15337 ipif_type_t type, best_type;
15338 tsol_tpc_t *src_rhtp, *dst_rhtp;
15339 ip_stack_t *ipst = ill->ill_ipst;
15340 boolean_t samenet;
15341
15342 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15343 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15344 B_FALSE, ipst);
15345 if (usill != NULL)
15346 ill = usill; /* Select source from usesrc ILL */
15347 else
15348 return (NULL);
15349 }
15350
15351 /*
15352 * Test addresses should never be used for source address selection,
15353 * so if we were passed one, switch to the IPMP meta-interface.
15354 */
15355 if (IS_UNDER_IPMP(ill)) {
15356 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15357 ill = ipmp_ill; /* Select source from IPMP ill */
15358 else
15359 return (NULL);
15360 }
15361
15362 /*
15363 * If we're dealing with an unlabeled destination on a labeled system,
15364 * make sure that we ignore source addresses that are incompatible with
15365 * the destination's default label. That destination's default label
15366 * must dominate the minimum label on the source address.
15367 */
15368 dst_rhtp = NULL;
15369 if (is_system_labeled()) {
15370 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15371 if (dst_rhtp == NULL)
15372 return (NULL);
15373 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15374 TPC_RELE(dst_rhtp);
15375 dst_rhtp = NULL;
15376 }
15377 }
15378
15379 /*
15380 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15381 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15382 * After selecting the right ipif, under ill_lock make sure ipif is
15383 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15384 * we retry. Inside the loop we still need to check for CONDEMNED,
15385 * but not under a lock.
15386 */
15387 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15388 retry:
15389 /*
15390 * For source address selection, we treat the ipif list as circular
15391 * and continue until we get back to where we started. This allows
15392 * IPMP to vary source address selection (which improves inbound load
15393 * spreading) by caching its last ending point and starting from
15394 * there. NOTE: we don't have to worry about ill_src_ipif changing
15395 * ills since that can't happen on the IPMP ill.
15396 */
15397 start_ipif = ill->ill_ipif;
15398 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15399 start_ipif = ill->ill_src_ipif;
15400
15401 ipif = start_ipif;
15402 best_ipif = NULL;
15403 best_type = IPIF_NONE;
15404 do {
15405 if ((next_ipif = ipif->ipif_next) == NULL)
15406 next_ipif = ill->ill_ipif;
15407
15408 if (IPIF_IS_CONDEMNED(ipif))
15409 continue;
15410 /* Always skip NOLOCAL and ANYCAST interfaces */
15411 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15412 continue;
15413 /* Always skip NOACCEPT interfaces */
15414 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15415 continue;
15416 if (!(ipif->ipif_flags & IPIF_UP))
15417 continue;
15418
15419 if (!ipif->ipif_addr_ready) {
15420 if (notreadyp != NULL)
15421 *notreadyp = B_TRUE;
15422 continue;
15423 }
15424
15425 if (zoneid != ALL_ZONES &&
15426 ipif->ipif_zoneid != zoneid &&
15427 ipif->ipif_zoneid != ALL_ZONES)
15428 continue;
15429
15430 /*
15431 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15432 * are not valid as source addresses.
15433 */
15434 if (ipif->ipif_lcl_addr == INADDR_ANY)
15435 continue;
15436
15437 /*
15438 * Check compatibility of local address for destination's
15439 * default label if we're on a labeled system. Incompatible
15440 * addresses can't be used at all.
15441 */
15442 if (dst_rhtp != NULL) {
15443 boolean_t incompat;
15444
15445 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15446 IPV4_VERSION, B_FALSE);
15447 if (src_rhtp == NULL)
15448 continue;
15449 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15450 src_rhtp->tpc_tp.tp_doi !=
15451 dst_rhtp->tpc_tp.tp_doi ||
15452 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15453 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15454 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15455 src_rhtp->tpc_tp.tp_sl_set_cipso));
15456 TPC_RELE(src_rhtp);
15457 if (incompat)
15458 continue;
15459 }
15460
15461 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15462
15463 if (ipif->ipif_lcl_addr == dst) {
15464 type = IPIF_LOCALADDR;
15465 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15466 type = samenet ? IPIF_SAMENET_DEPRECATED :
15467 IPIF_DIFFNET_DEPRECATED;
15468 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15469 type = samenet ? IPIF_SAMENET_ALLZONES :
15470 IPIF_DIFFNET_ALLZONES;
15471 } else {
15472 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15473 }
15474
15475 if (type > best_type) {
15476 best_type = type;
15477 best_ipif = ipif;
15478 if (best_type == IPIF_LOCALADDR)
15479 break; /* can't get better */
15480 }
15481 } while ((ipif = next_ipif) != start_ipif);
15482
15483 if ((ipif = best_ipif) != NULL) {
15484 mutex_enter(&ipif->ipif_ill->ill_lock);
15485 if (IPIF_IS_CONDEMNED(ipif)) {
15486 mutex_exit(&ipif->ipif_ill->ill_lock);
15487 goto retry;
15488 }
15489 ipif_refhold_locked(ipif);
15490
15491 /*
15492 * For IPMP, update the source ipif rotor to the next ipif,
15493 * provided we can look it up. (We must not use it if it's
15494 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15495 * ipif_free() checked ill_src_ipif.)
15496 */
15497 if (IS_IPMP(ill) && ipif != NULL) {
15498 next_ipif = ipif->ipif_next;
15499 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15500 ill->ill_src_ipif = next_ipif;
15501 else
15502 ill->ill_src_ipif = NULL;
15503 }
15504 mutex_exit(&ipif->ipif_ill->ill_lock);
15505 }
15506
15507 rw_exit(&ipst->ips_ill_g_lock);
15508 if (usill != NULL)
15509 ill_refrele(usill);
15510 if (ipmp_ill != NULL)
15511 ill_refrele(ipmp_ill);
15512 if (dst_rhtp != NULL)
15513 TPC_RELE(dst_rhtp);
15514
15515 #ifdef DEBUG
15516 if (ipif == NULL) {
15517 char buf1[INET6_ADDRSTRLEN];
15518
15519 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15520 ill->ill_name,
15521 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15522 } else {
15523 char buf1[INET6_ADDRSTRLEN];
15524 char buf2[INET6_ADDRSTRLEN];
15525
15526 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15527 ipif->ipif_ill->ill_name,
15528 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15529 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15530 buf2, sizeof (buf2))));
15531 }
15532 #endif /* DEBUG */
15533 return (ipif);
15534 }
15535
15536 /*
15537 * Pick a source address based on the destination ill and an optional setsrc
15538 * address.
15539 * The result is stored in srcp. If generation is set, then put the source
15540 * generation number there before we look for the source address (to avoid
15541 * missing changes in the set of source addresses.
15542 * If flagsp is set, then us it to pass back ipif_flags.
15543 *
15544 * If the caller wants to cache the returned source address and detect when
15545 * that might be stale, the caller should pass in a generation argument,
15546 * which the caller can later compare against ips_src_generation
15547 *
15548 * The precedence order for selecting an IPv4 source address is:
15549 * - RTF_SETSRC on the offlink ire always wins.
15550 * - If usrsrc is set, swap the ill to be the usesrc one.
15551 * - If IPMP is used on the ill, select a random address from the most
15552 * preferred ones below:
15553 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15554 * 2. Not deprecated, not ALL_ZONES
15555 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15556 * 4. Not deprecated, ALL_ZONES
15557 * 5. If onlink destination, same subnet and deprecated
15558 * 6. Deprecated.
15559 *
15560 * We have lower preference for ALL_ZONES IP addresses,
15561 * as they pose problems with unlabeled destinations.
15562 *
15563 * Note that when multiple IP addresses match e.g., #1 we pick
15564 * the first one if IPMP is not in use. With IPMP we randomize.
15565 */
15566 int
ip_select_source_v4(ill_t * ill,ipaddr_t setsrc,ipaddr_t dst,ipaddr_t multicast_ifaddr,zoneid_t zoneid,ip_stack_t * ipst,ipaddr_t * srcp,uint32_t * generation,uint64_t * flagsp)15567 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15568 ipaddr_t multicast_ifaddr,
15569 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15570 uint32_t *generation, uint64_t *flagsp)
15571 {
15572 ipif_t *ipif;
15573 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */
15574
15575 if (flagsp != NULL)
15576 *flagsp = 0;
15577
15578 /*
15579 * Need to grab the generation number before we check to
15580 * avoid a race with a change to the set of local addresses.
15581 * No lock needed since the thread which updates the set of local
15582 * addresses use ipif/ill locks and exit those (hence a store memory
15583 * barrier) before doing the atomic increase of ips_src_generation.
15584 */
15585 if (generation != NULL) {
15586 *generation = ipst->ips_src_generation;
15587 }
15588
15589 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15590 *srcp = multicast_ifaddr;
15591 return (0);
15592 }
15593
15594 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15595 if (setsrc != INADDR_ANY) {
15596 *srcp = setsrc;
15597 return (0);
15598 }
15599 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15600 if (ipif == NULL) {
15601 if (notready)
15602 return (ENETDOWN);
15603 else
15604 return (EADDRNOTAVAIL);
15605 }
15606 *srcp = ipif->ipif_lcl_addr;
15607 if (flagsp != NULL)
15608 *flagsp = ipif->ipif_flags;
15609 ipif_refrele(ipif);
15610 return (0);
15611 }
15612
15613 /* ARGSUSED */
15614 int
if_unitsel_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15615 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15616 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15617 {
15618 /*
15619 * ill_phyint_reinit merged the v4 and v6 into a single
15620 * ipsq. We might not have been able to complete the
15621 * operation in ipif_set_values, if we could not become
15622 * exclusive. If so restart it here.
15623 */
15624 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15625 }
15626
15627 /*
15628 * Can operate on either a module or a driver queue.
15629 * Returns an error if not a module queue.
15630 */
15631 /* ARGSUSED */
15632 int
if_unitsel(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15633 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15634 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15635 {
15636 queue_t *q1 = q;
15637 char *cp;
15638 char interf_name[LIFNAMSIZ];
15639 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15640
15641 if (q->q_next == NULL) {
15642 ip1dbg((
15643 "if_unitsel: IF_UNITSEL: no q_next\n"));
15644 return (EINVAL);
15645 }
15646
15647 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15648 return (EALREADY);
15649
15650 do {
15651 q1 = q1->q_next;
15652 } while (q1->q_next);
15653 cp = q1->q_qinfo->qi_minfo->mi_idname;
15654 (void) sprintf(interf_name, "%s%d", cp, ppa);
15655
15656 /*
15657 * Here we are not going to delay the ioack until after
15658 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15659 * original ioctl message before sending the requests.
15660 */
15661 return (ipif_set_values(q, mp, interf_name, &ppa));
15662 }
15663
15664 /* ARGSUSED */
15665 int
ip_sioctl_sifname(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15666 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15667 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15668 {
15669 return (ENXIO);
15670 }
15671
15672 /*
15673 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15674 * `irep'. Returns a pointer to the next free `irep' entry
15675 * A mirror exists in ipif_delete_bcast_ires().
15676 *
15677 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15678 * done in ire_add.
15679 */
15680 static ire_t **
ipif_create_bcast_ires(ipif_t * ipif,ire_t ** irep)15681 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15682 {
15683 ipaddr_t addr;
15684 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15685 ipaddr_t subnetmask = ipif->ipif_net_mask;
15686 ill_t *ill = ipif->ipif_ill;
15687 zoneid_t zoneid = ipif->ipif_zoneid;
15688
15689 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15690
15691 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15692 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15693
15694 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15695 (ipif->ipif_flags & IPIF_NOLOCAL))
15696 netmask = htonl(IN_CLASSA_NET); /* fallback */
15697
15698 irep = ire_create_bcast(ill, 0, zoneid, irep);
15699 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15700
15701 /*
15702 * For backward compatibility, we create net broadcast IREs based on
15703 * the old "IP address class system", since some old machines only
15704 * respond to these class derived net broadcast. However, we must not
15705 * create these net broadcast IREs if the subnetmask is shorter than
15706 * the IP address class based derived netmask. Otherwise, we may
15707 * create a net broadcast address which is the same as an IP address
15708 * on the subnet -- and then TCP will refuse to talk to that address.
15709 */
15710 if (netmask < subnetmask) {
15711 addr = netmask & ipif->ipif_subnet;
15712 irep = ire_create_bcast(ill, addr, zoneid, irep);
15713 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15714 }
15715
15716 /*
15717 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15718 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15719 * created. Creating these broadcast IREs will only create confusion
15720 * as `addr' will be the same as the IP address.
15721 */
15722 if (subnetmask != 0xFFFFFFFF) {
15723 addr = ipif->ipif_subnet;
15724 irep = ire_create_bcast(ill, addr, zoneid, irep);
15725 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15726 }
15727
15728 return (irep);
15729 }
15730
15731 /*
15732 * Mirror of ipif_create_bcast_ires()
15733 */
15734 static void
ipif_delete_bcast_ires(ipif_t * ipif)15735 ipif_delete_bcast_ires(ipif_t *ipif)
15736 {
15737 ipaddr_t addr;
15738 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15739 ipaddr_t subnetmask = ipif->ipif_net_mask;
15740 ill_t *ill = ipif->ipif_ill;
15741 zoneid_t zoneid = ipif->ipif_zoneid;
15742 ire_t *ire;
15743
15744 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15745 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15746
15747 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15748 (ipif->ipif_flags & IPIF_NOLOCAL))
15749 netmask = htonl(IN_CLASSA_NET); /* fallback */
15750
15751 ire = ire_lookup_bcast(ill, 0, zoneid);
15752 ASSERT(ire != NULL);
15753 ire_delete(ire); ire_refrele(ire);
15754 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15755 ASSERT(ire != NULL);
15756 ire_delete(ire); ire_refrele(ire);
15757
15758 /*
15759 * For backward compatibility, we create net broadcast IREs based on
15760 * the old "IP address class system", since some old machines only
15761 * respond to these class derived net broadcast. However, we must not
15762 * create these net broadcast IREs if the subnetmask is shorter than
15763 * the IP address class based derived netmask. Otherwise, we may
15764 * create a net broadcast address which is the same as an IP address
15765 * on the subnet -- and then TCP will refuse to talk to that address.
15766 */
15767 if (netmask < subnetmask) {
15768 addr = netmask & ipif->ipif_subnet;
15769 ire = ire_lookup_bcast(ill, addr, zoneid);
15770 ASSERT(ire != NULL);
15771 ire_delete(ire); ire_refrele(ire);
15772 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15773 ASSERT(ire != NULL);
15774 ire_delete(ire); ire_refrele(ire);
15775 }
15776
15777 /*
15778 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15779 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15780 * created. Creating these broadcast IREs will only create confusion
15781 * as `addr' will be the same as the IP address.
15782 */
15783 if (subnetmask != 0xFFFFFFFF) {
15784 addr = ipif->ipif_subnet;
15785 ire = ire_lookup_bcast(ill, addr, zoneid);
15786 ASSERT(ire != NULL);
15787 ire_delete(ire); ire_refrele(ire);
15788 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15789 ASSERT(ire != NULL);
15790 ire_delete(ire); ire_refrele(ire);
15791 }
15792 }
15793
15794 /*
15795 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15796 * from lifr_flags and the name from lifr_name.
15797 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15798 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15799 * Returns EINPROGRESS when mp has been consumed by queueing it on
15800 * ipx_pending_mp and the ioctl will complete in ip_rput.
15801 *
15802 * Can operate on either a module or a driver queue.
15803 * Returns an error if not a module queue.
15804 */
15805 /* ARGSUSED */
15806 int
ip_sioctl_slifname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15807 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15808 ip_ioctl_cmd_t *ipip, void *if_req)
15809 {
15810 ill_t *ill = q->q_ptr;
15811 phyint_t *phyi;
15812 ip_stack_t *ipst;
15813 struct lifreq *lifr = if_req;
15814 uint64_t new_flags;
15815
15816 ASSERT(ipif != NULL);
15817 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15818
15819 if (q->q_next == NULL) {
15820 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15821 return (EINVAL);
15822 }
15823
15824 /*
15825 * If we are not writer on 'q' then this interface exists already
15826 * and previous lookups (ip_extract_lifreq()) found this ipif --
15827 * so return EALREADY.
15828 */
15829 if (ill != ipif->ipif_ill)
15830 return (EALREADY);
15831
15832 if (ill->ill_name[0] != '\0')
15833 return (EALREADY);
15834
15835 /*
15836 * If there's another ill already with the requested name, ensure
15837 * that it's of the same type. Otherwise, ill_phyint_reinit() will
15838 * fuse together two unrelated ills, which will cause chaos.
15839 */
15840 ipst = ill->ill_ipst;
15841 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15842 lifr->lifr_name, NULL);
15843 if (phyi != NULL) {
15844 ill_t *ill_mate = phyi->phyint_illv4;
15845
15846 if (ill_mate == NULL)
15847 ill_mate = phyi->phyint_illv6;
15848 ASSERT(ill_mate != NULL);
15849
15850 if (ill_mate->ill_media->ip_m_mac_type !=
15851 ill->ill_media->ip_m_mac_type) {
15852 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15853 "use the same ill name on differing media\n"));
15854 return (EINVAL);
15855 }
15856 }
15857
15858 /*
15859 * We start off as IFF_IPV4 in ipif_allocate and become
15860 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15861 * The only flags that we read from user space are IFF_IPV4,
15862 * IFF_IPV6, and IFF_BROADCAST.
15863 *
15864 * This ill has not been inserted into the global list.
15865 * So we are still single threaded and don't need any lock
15866 *
15867 * Saniy check the flags.
15868 */
15869
15870 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15871 ((lifr->lifr_flags & IFF_IPV6) ||
15872 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15873 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15874 "or IPv6 i.e., no broadcast \n"));
15875 return (EINVAL);
15876 }
15877
15878 new_flags =
15879 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15880
15881 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15882 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15883 "IFF_IPV4 or IFF_IPV6\n"));
15884 return (EINVAL);
15885 }
15886
15887 /*
15888 * We always start off as IPv4, so only need to check for IPv6.
15889 */
15890 if ((new_flags & IFF_IPV6) != 0) {
15891 ill->ill_flags |= ILLF_IPV6;
15892 ill->ill_flags &= ~ILLF_IPV4;
15893
15894 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15895 ill->ill_flags |= ILLF_NOLINKLOCAL;
15896 }
15897
15898 if ((new_flags & IFF_BROADCAST) != 0)
15899 ipif->ipif_flags |= IPIF_BROADCAST;
15900 else
15901 ipif->ipif_flags &= ~IPIF_BROADCAST;
15902
15903 /* We started off as V4. */
15904 if (ill->ill_flags & ILLF_IPV6) {
15905 ill->ill_phyint->phyint_illv6 = ill;
15906 ill->ill_phyint->phyint_illv4 = NULL;
15907 }
15908
15909 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15910 }
15911
15912 /* ARGSUSED */
15913 int
ip_sioctl_slifname_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15914 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15915 ip_ioctl_cmd_t *ipip, void *if_req)
15916 {
15917 /*
15918 * ill_phyint_reinit merged the v4 and v6 into a single
15919 * ipsq. We might not have been able to complete the
15920 * slifname in ipif_set_values, if we could not become
15921 * exclusive. If so restart it here
15922 */
15923 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15924 }
15925
15926 /*
15927 * Return a pointer to the ipif which matches the index, IP version type and
15928 * zoneid.
15929 */
15930 ipif_t *
ipif_lookup_on_ifindex(uint_t index,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15931 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15932 ip_stack_t *ipst)
15933 {
15934 ill_t *ill;
15935 ipif_t *ipif = NULL;
15936
15937 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15938 if (ill != NULL) {
15939 mutex_enter(&ill->ill_lock);
15940 for (ipif = ill->ill_ipif; ipif != NULL;
15941 ipif = ipif->ipif_next) {
15942 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15943 zoneid == ipif->ipif_zoneid ||
15944 ipif->ipif_zoneid == ALL_ZONES)) {
15945 ipif_refhold_locked(ipif);
15946 break;
15947 }
15948 }
15949 mutex_exit(&ill->ill_lock);
15950 ill_refrele(ill);
15951 }
15952 return (ipif);
15953 }
15954
15955 /*
15956 * Change an existing physical interface's index. If the new index
15957 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15958 * Finally, we update other systems which may have a dependence on the
15959 * index value.
15960 */
15961 /* ARGSUSED */
15962 int
ip_sioctl_slifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)15963 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15964 ip_ioctl_cmd_t *ipip, void *ifreq)
15965 {
15966 ill_t *ill;
15967 phyint_t *phyi;
15968 struct ifreq *ifr = (struct ifreq *)ifreq;
15969 struct lifreq *lifr = (struct lifreq *)ifreq;
15970 uint_t old_index, index;
15971 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15972 avl_index_t where;
15973
15974 if (ipip->ipi_cmd_type == IF_CMD)
15975 index = ifr->ifr_index;
15976 else
15977 index = lifr->lifr_index;
15978
15979 /*
15980 * Only allow on physical interface. Also, index zero is illegal.
15981 */
15982 ill = ipif->ipif_ill;
15983 phyi = ill->ill_phyint;
15984 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15985 return (EINVAL);
15986 }
15987
15988 /* If the index is not changing, no work to do */
15989 if (phyi->phyint_ifindex == index)
15990 return (0);
15991
15992 /*
15993 * Use phyint_exists() to determine if the new interface index
15994 * is already in use. If the index is unused then we need to
15995 * change the phyint's position in the phyint_list_avl_by_index
15996 * tree. If we do not do this, subsequent lookups (using the new
15997 * index value) will not find the phyint.
15998 */
15999 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16000 if (phyint_exists(index, ipst)) {
16001 rw_exit(&ipst->ips_ill_g_lock);
16002 return (EEXIST);
16003 }
16004
16005 /*
16006 * The new index is unused. Set it in the phyint. However we must not
16007 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
16008 * changes. The event must be bound to old ifindex value.
16009 */
16010 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
16011 &index, sizeof (index));
16012
16013 old_index = phyi->phyint_ifindex;
16014 phyi->phyint_ifindex = index;
16015
16016 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
16017 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16018 &index, &where);
16019 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16020 phyi, where);
16021 rw_exit(&ipst->ips_ill_g_lock);
16022
16023 /* Update SCTP's ILL list */
16024 sctp_ill_reindex(ill, old_index);
16025
16026 /* Send the routing sockets message */
16027 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16028 if (ILL_OTHER(ill))
16029 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16030
16031 /* Perhaps ilgs should use this ill */
16032 update_conn_ill(NULL, ill->ill_ipst);
16033 return (0);
16034 }
16035
16036 /* ARGSUSED */
16037 int
ip_sioctl_get_lifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16038 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16039 ip_ioctl_cmd_t *ipip, void *ifreq)
16040 {
16041 struct ifreq *ifr = (struct ifreq *)ifreq;
16042 struct lifreq *lifr = (struct lifreq *)ifreq;
16043
16044 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16045 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16046 /* Get the interface index */
16047 if (ipip->ipi_cmd_type == IF_CMD) {
16048 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16049 } else {
16050 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16051 }
16052 return (0);
16053 }
16054
16055 /* ARGSUSED */
16056 int
ip_sioctl_get_lifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16057 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16058 ip_ioctl_cmd_t *ipip, void *ifreq)
16059 {
16060 struct lifreq *lifr = (struct lifreq *)ifreq;
16061
16062 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16063 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16064 /* Get the interface zone */
16065 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16066 lifr->lifr_zoneid = ipif->ipif_zoneid;
16067 return (0);
16068 }
16069
16070 /*
16071 * Set the zoneid of an interface.
16072 */
16073 /* ARGSUSED */
16074 int
ip_sioctl_slifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16075 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16076 ip_ioctl_cmd_t *ipip, void *ifreq)
16077 {
16078 struct lifreq *lifr = (struct lifreq *)ifreq;
16079 int err = 0;
16080 boolean_t need_up = B_FALSE;
16081 zone_t *zptr;
16082 zone_status_t status;
16083 zoneid_t zoneid;
16084
16085 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16086 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16087 if (!is_system_labeled())
16088 return (ENOTSUP);
16089 zoneid = GLOBAL_ZONEID;
16090 }
16091
16092 /* cannot assign instance zero to a non-global zone */
16093 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16094 return (ENOTSUP);
16095
16096 /*
16097 * Cannot assign to a zone that doesn't exist or is shutting down. In
16098 * the event of a race with the zone shutdown processing, since IP
16099 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16100 * interface will be cleaned up even if the zone is shut down
16101 * immediately after the status check. If the interface can't be brought
16102 * down right away, and the zone is shut down before the restart
16103 * function is called, we resolve the possible races by rechecking the
16104 * zone status in the restart function.
16105 */
16106 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16107 return (EINVAL);
16108 status = zone_status_get(zptr);
16109 zone_rele(zptr);
16110
16111 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16112 return (EINVAL);
16113
16114 if (ipif->ipif_flags & IPIF_UP) {
16115 /*
16116 * If the interface is already marked up,
16117 * we call ipif_down which will take care
16118 * of ditching any IREs that have been set
16119 * up based on the old interface address.
16120 */
16121 err = ipif_logical_down(ipif, q, mp);
16122 if (err == EINPROGRESS)
16123 return (err);
16124 (void) ipif_down_tail(ipif);
16125 need_up = B_TRUE;
16126 }
16127
16128 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16129 return (err);
16130 }
16131
16132 static int
ip_sioctl_slifzone_tail(ipif_t * ipif,zoneid_t zoneid,queue_t * q,mblk_t * mp,boolean_t need_up)16133 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16134 queue_t *q, mblk_t *mp, boolean_t need_up)
16135 {
16136 int err = 0;
16137 ip_stack_t *ipst;
16138
16139 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16141
16142 if (CONN_Q(q))
16143 ipst = CONNQ_TO_IPST(q);
16144 else
16145 ipst = ILLQ_TO_IPST(q);
16146
16147 /*
16148 * For exclusive stacks we don't allow a different zoneid than
16149 * global.
16150 */
16151 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16152 zoneid != GLOBAL_ZONEID)
16153 return (EINVAL);
16154
16155 /* Set the new zone id. */
16156 ipif->ipif_zoneid = zoneid;
16157
16158 /* Update sctp list */
16159 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16160
16161 /* The default multicast interface might have changed */
16162 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16163
16164 if (need_up) {
16165 /*
16166 * Now bring the interface back up. If this
16167 * is the only IPIF for the ILL, ipif_up
16168 * will have to re-bind to the device, so
16169 * we may get back EINPROGRESS, in which
16170 * case, this IOCTL will get completed in
16171 * ip_rput_dlpi when we see the DL_BIND_ACK.
16172 */
16173 err = ipif_up(ipif, q, mp);
16174 }
16175 return (err);
16176 }
16177
16178 /* ARGSUSED */
16179 int
ip_sioctl_slifzone_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16180 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16181 ip_ioctl_cmd_t *ipip, void *if_req)
16182 {
16183 struct lifreq *lifr = (struct lifreq *)if_req;
16184 zoneid_t zoneid;
16185 zone_t *zptr;
16186 zone_status_t status;
16187
16188 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16189 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16190 zoneid = GLOBAL_ZONEID;
16191
16192 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16193 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16194
16195 /*
16196 * We recheck the zone status to resolve the following race condition:
16197 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16198 * 2) hme0:1 is up and can't be brought down right away;
16199 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16200 * 3) zone "myzone" is halted; the zone status switches to
16201 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16202 * the interfaces to remove - hme0:1 is not returned because it's not
16203 * yet in "myzone", so it won't be removed;
16204 * 4) the restart function for SIOCSLIFZONE is called; without the
16205 * status check here, we would have hme0:1 in "myzone" after it's been
16206 * destroyed.
16207 * Note that if the status check fails, we need to bring the interface
16208 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16209 * ipif_up_done[_v6]().
16210 */
16211 status = ZONE_IS_UNINITIALIZED;
16212 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16213 status = zone_status_get(zptr);
16214 zone_rele(zptr);
16215 }
16216 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16217 if (ipif->ipif_isv6) {
16218 (void) ipif_up_done_v6(ipif);
16219 } else {
16220 (void) ipif_up_done(ipif);
16221 }
16222 return (EINVAL);
16223 }
16224
16225 (void) ipif_down_tail(ipif);
16226
16227 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16228 B_TRUE));
16229 }
16230
16231 /*
16232 * Return the number of addresses on `ill' with one or more of the values
16233 * in `set' set and all of the values in `clear' clear.
16234 */
16235 static uint_t
ill_flagaddr_cnt(const ill_t * ill,uint64_t set,uint64_t clear)16236 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16237 {
16238 ipif_t *ipif;
16239 uint_t cnt = 0;
16240
16241 ASSERT(IAM_WRITER_ILL(ill));
16242
16243 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16244 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16245 cnt++;
16246
16247 return (cnt);
16248 }
16249
16250 /*
16251 * Return the number of migratable addresses on `ill' that are under
16252 * application control.
16253 */
16254 uint_t
ill_appaddr_cnt(const ill_t * ill)16255 ill_appaddr_cnt(const ill_t *ill)
16256 {
16257 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16258 IPIF_NOFAILOVER));
16259 }
16260
16261 /*
16262 * Return the number of point-to-point addresses on `ill'.
16263 */
16264 uint_t
ill_ptpaddr_cnt(const ill_t * ill)16265 ill_ptpaddr_cnt(const ill_t *ill)
16266 {
16267 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16268 }
16269
16270 /* ARGSUSED */
16271 int
ip_sioctl_get_lifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16272 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16273 ip_ioctl_cmd_t *ipip, void *ifreq)
16274 {
16275 struct lifreq *lifr = ifreq;
16276
16277 ASSERT(q->q_next == NULL);
16278 ASSERT(CONN_Q(q));
16279
16280 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16281 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16282 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16283 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16284
16285 return (0);
16286 }
16287
16288 /* Find the previous ILL in this usesrc group */
16289 static ill_t *
ill_prev_usesrc(ill_t * uill)16290 ill_prev_usesrc(ill_t *uill)
16291 {
16292 ill_t *ill;
16293
16294 for (ill = uill->ill_usesrc_grp_next;
16295 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16296 ill = ill->ill_usesrc_grp_next)
16297 /* do nothing */;
16298 return (ill);
16299 }
16300
16301 /*
16302 * Release all members of the usesrc group. This routine is called
16303 * from ill_delete when the interface being unplumbed is the
16304 * group head.
16305 *
16306 * This silently clears the usesrc that ifconfig setup.
16307 * An alternative would be to keep that ifindex, and drop packets on the floor
16308 * since no source address can be selected.
16309 * Even if we keep the current semantics, don't need a lock and a linked list.
16310 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16311 * the one that is being removed. Issue is how we return the usesrc users
16312 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16313 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16314 * ill walk, but the walker would need to insert in the ioctl response.
16315 */
16316 static void
ill_disband_usesrc_group(ill_t * uill)16317 ill_disband_usesrc_group(ill_t *uill)
16318 {
16319 ill_t *next_ill, *tmp_ill;
16320 ip_stack_t *ipst = uill->ill_ipst;
16321
16322 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16323 next_ill = uill->ill_usesrc_grp_next;
16324
16325 do {
16326 ASSERT(next_ill != NULL);
16327 tmp_ill = next_ill->ill_usesrc_grp_next;
16328 ASSERT(tmp_ill != NULL);
16329 next_ill->ill_usesrc_grp_next = NULL;
16330 next_ill->ill_usesrc_ifindex = 0;
16331 next_ill = tmp_ill;
16332 } while (next_ill->ill_usesrc_ifindex != 0);
16333 uill->ill_usesrc_grp_next = NULL;
16334 }
16335
16336 /*
16337 * Remove the client usesrc ILL from the list and relink to a new list
16338 */
16339 int
ill_relink_usesrc_ills(ill_t * ucill,ill_t * uill,uint_t ifindex)16340 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16341 {
16342 ill_t *ill, *tmp_ill;
16343 ip_stack_t *ipst = ucill->ill_ipst;
16344
16345 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16346 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16347
16348 /*
16349 * Check if the usesrc client ILL passed in is not already
16350 * in use as a usesrc ILL i.e one whose source address is
16351 * in use OR a usesrc ILL is not already in use as a usesrc
16352 * client ILL
16353 */
16354 if ((ucill->ill_usesrc_ifindex == 0) ||
16355 (uill->ill_usesrc_ifindex != 0)) {
16356 return (-1);
16357 }
16358
16359 ill = ill_prev_usesrc(ucill);
16360 ASSERT(ill->ill_usesrc_grp_next != NULL);
16361
16362 /* Remove from the current list */
16363 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16364 /* Only two elements in the list */
16365 ASSERT(ill->ill_usesrc_ifindex == 0);
16366 ill->ill_usesrc_grp_next = NULL;
16367 } else {
16368 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16369 }
16370
16371 if (ifindex == 0) {
16372 ucill->ill_usesrc_ifindex = 0;
16373 ucill->ill_usesrc_grp_next = NULL;
16374 return (0);
16375 }
16376
16377 ucill->ill_usesrc_ifindex = ifindex;
16378 tmp_ill = uill->ill_usesrc_grp_next;
16379 uill->ill_usesrc_grp_next = ucill;
16380 ucill->ill_usesrc_grp_next =
16381 (tmp_ill != NULL) ? tmp_ill : uill;
16382 return (0);
16383 }
16384
16385 /*
16386 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16387 * ip.c for locking details.
16388 */
16389 /* ARGSUSED */
16390 int
ip_sioctl_slifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16391 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16392 ip_ioctl_cmd_t *ipip, void *ifreq)
16393 {
16394 struct lifreq *lifr = (struct lifreq *)ifreq;
16395 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16396 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16397 int err = 0, ret;
16398 uint_t ifindex;
16399 ipsq_t *ipsq = NULL;
16400 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16401
16402 ASSERT(IAM_WRITER_IPIF(ipif));
16403 ASSERT(q->q_next == NULL);
16404 ASSERT(CONN_Q(q));
16405
16406 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16407
16408 ifindex = lifr->lifr_index;
16409 if (ifindex == 0) {
16410 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16411 /* non usesrc group interface, nothing to reset */
16412 return (0);
16413 }
16414 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16415 /* valid reset request */
16416 reset_flg = B_TRUE;
16417 }
16418
16419 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16420 if (usesrc_ill == NULL)
16421 return (ENXIO);
16422 if (usesrc_ill == ipif->ipif_ill) {
16423 ill_refrele(usesrc_ill);
16424 return (EINVAL);
16425 }
16426
16427 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16428 NEW_OP, B_TRUE);
16429 if (ipsq == NULL) {
16430 err = EINPROGRESS;
16431 /* Operation enqueued on the ipsq of the usesrc ILL */
16432 goto done;
16433 }
16434
16435 /* USESRC isn't currently supported with IPMP */
16436 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16437 err = ENOTSUP;
16438 goto done;
16439 }
16440
16441 /*
16442 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only
16443 * used by IPMP underlying interfaces, but someone might think it's
16444 * more general and try to use it independently with VNI.)
16445 */
16446 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16447 err = ENOTSUP;
16448 goto done;
16449 }
16450
16451 /*
16452 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16453 * already a client then return EINVAL
16454 */
16455 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16456 err = EINVAL;
16457 goto done;
16458 }
16459
16460 /*
16461 * If the ill_usesrc_ifindex field is already set to what it needs to
16462 * be then this is a duplicate operation.
16463 */
16464 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16465 err = 0;
16466 goto done;
16467 }
16468
16469 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16470 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16471 usesrc_ill->ill_isv6));
16472
16473 /*
16474 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16475 * and the ill_usesrc_ifindex fields
16476 */
16477 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16478
16479 if (reset_flg) {
16480 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16481 if (ret != 0) {
16482 err = EINVAL;
16483 }
16484 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16485 goto done;
16486 }
16487
16488 /*
16489 * Four possibilities to consider:
16490 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16491 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16492 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16493 * 4. Both are part of their respective usesrc groups
16494 */
16495 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16496 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16497 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16498 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16499 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16500 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16501 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16502 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16503 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16504 /* Insert at head of list */
16505 usesrc_cli_ill->ill_usesrc_grp_next =
16506 usesrc_ill->ill_usesrc_grp_next;
16507 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16508 } else {
16509 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16510 ifindex);
16511 if (ret != 0)
16512 err = EINVAL;
16513 }
16514 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16515
16516 done:
16517 if (ipsq != NULL)
16518 ipsq_exit(ipsq);
16519 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16520 ill_refrele(usesrc_ill);
16521
16522 /* Let conn_ixa caching know that source address selection changed */
16523 ip_update_source_selection(ipst);
16524
16525 return (err);
16526 }
16527
16528 /* ARGSUSED */
16529 int
ip_sioctl_get_dadstate(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16530 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16531 ip_ioctl_cmd_t *ipip, void *if_req)
16532 {
16533 struct lifreq *lifr = (struct lifreq *)if_req;
16534 ill_t *ill = ipif->ipif_ill;
16535
16536 /*
16537 * Need a lock since IFF_UP can be set even when there are
16538 * references to the ipif.
16539 */
16540 mutex_enter(&ill->ill_lock);
16541 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16542 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16543 else
16544 lifr->lifr_dadstate = DAD_DONE;
16545 mutex_exit(&ill->ill_lock);
16546 return (0);
16547 }
16548
16549 /*
16550 * comparison function used by avl.
16551 */
16552 static int
ill_phyint_compare_index(const void * index_ptr,const void * phyip)16553 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16554 {
16555
16556 uint_t index;
16557
16558 ASSERT(phyip != NULL && index_ptr != NULL);
16559
16560 index = *((uint_t *)index_ptr);
16561 /*
16562 * let the phyint with the lowest index be on top.
16563 */
16564 if (((phyint_t *)phyip)->phyint_ifindex < index)
16565 return (1);
16566 if (((phyint_t *)phyip)->phyint_ifindex > index)
16567 return (-1);
16568 return (0);
16569 }
16570
16571 /*
16572 * comparison function used by avl.
16573 */
16574 static int
ill_phyint_compare_name(const void * name_ptr,const void * phyip)16575 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16576 {
16577 ill_t *ill;
16578 int res = 0;
16579
16580 ASSERT(phyip != NULL && name_ptr != NULL);
16581
16582 if (((phyint_t *)phyip)->phyint_illv4)
16583 ill = ((phyint_t *)phyip)->phyint_illv4;
16584 else
16585 ill = ((phyint_t *)phyip)->phyint_illv6;
16586 ASSERT(ill != NULL);
16587
16588 res = strcmp(ill->ill_name, (char *)name_ptr);
16589 if (res > 0)
16590 return (1);
16591 else if (res < 0)
16592 return (-1);
16593 return (0);
16594 }
16595
16596 /*
16597 * This function is called on the unplumb path via ill_glist_delete() when
16598 * there are no ills left on the phyint and thus the phyint can be freed.
16599 */
16600 static void
phyint_free(phyint_t * phyi)16601 phyint_free(phyint_t *phyi)
16602 {
16603 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16604
16605 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16606
16607 /*
16608 * If this phyint was an IPMP meta-interface, blow away the group.
16609 * This is safe to do because all of the illgrps have already been
16610 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16611 * If we're cleaning up as a result of failed initialization,
16612 * phyint_grp may be NULL.
16613 */
16614 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16615 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16616 ipmp_grp_destroy(phyi->phyint_grp);
16617 phyi->phyint_grp = NULL;
16618 rw_exit(&ipst->ips_ipmp_lock);
16619 }
16620
16621 /*
16622 * If this interface was under IPMP, take it out of the group.
16623 */
16624 if (phyi->phyint_grp != NULL)
16625 ipmp_phyint_leave_grp(phyi);
16626
16627 /*
16628 * Delete the phyint and disassociate its ipsq. The ipsq itself
16629 * will be freed in ipsq_exit().
16630 */
16631 phyi->phyint_ipsq->ipsq_phyint = NULL;
16632 phyi->phyint_name[0] = '\0';
16633
16634 mi_free(phyi);
16635 }
16636
16637 /*
16638 * Attach the ill to the phyint structure which can be shared by both
16639 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16640 * function is called from ipif_set_values and ill_lookup_on_name (for
16641 * loopback) where we know the name of the ill. We lookup the ill and if
16642 * there is one present already with the name use that phyint. Otherwise
16643 * reuse the one allocated by ill_init.
16644 */
16645 static void
ill_phyint_reinit(ill_t * ill)16646 ill_phyint_reinit(ill_t *ill)
16647 {
16648 boolean_t isv6 = ill->ill_isv6;
16649 phyint_t *phyi_old;
16650 phyint_t *phyi;
16651 avl_index_t where = 0;
16652 ill_t *ill_other = NULL;
16653 ip_stack_t *ipst = ill->ill_ipst;
16654
16655 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16656
16657 phyi_old = ill->ill_phyint;
16658 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16659 phyi_old->phyint_illv6 == NULL));
16660 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16661 phyi_old->phyint_illv4 == NULL));
16662 ASSERT(phyi_old->phyint_ifindex == 0);
16663
16664 /*
16665 * Now that our ill has a name, set it in the phyint.
16666 */
16667 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16668
16669 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16670 ill->ill_name, &where);
16671
16672 /*
16673 * 1. We grabbed the ill_g_lock before inserting this ill into
16674 * the global list of ills. So no other thread could have located
16675 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16676 * 2. Now locate the other protocol instance of this ill.
16677 * 3. Now grab both ill locks in the right order, and the phyint lock of
16678 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16679 * of neither ill can change.
16680 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16681 * other ill.
16682 * 5. Release all locks.
16683 */
16684
16685 /*
16686 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16687 * we are initializing IPv4.
16688 */
16689 if (phyi != NULL) {
16690 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16691 ASSERT(ill_other->ill_phyint != NULL);
16692 ASSERT((isv6 && !ill_other->ill_isv6) ||
16693 (!isv6 && ill_other->ill_isv6));
16694 GRAB_ILL_LOCKS(ill, ill_other);
16695 /*
16696 * We are potentially throwing away phyint_flags which
16697 * could be different from the one that we obtain from
16698 * ill_other->ill_phyint. But it is okay as we are assuming
16699 * that the state maintained within IP is correct.
16700 */
16701 mutex_enter(&phyi->phyint_lock);
16702 if (isv6) {
16703 ASSERT(phyi->phyint_illv6 == NULL);
16704 phyi->phyint_illv6 = ill;
16705 } else {
16706 ASSERT(phyi->phyint_illv4 == NULL);
16707 phyi->phyint_illv4 = ill;
16708 }
16709
16710 /*
16711 * Delete the old phyint and make its ipsq eligible
16712 * to be freed in ipsq_exit().
16713 */
16714 phyi_old->phyint_illv4 = NULL;
16715 phyi_old->phyint_illv6 = NULL;
16716 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16717 phyi_old->phyint_name[0] = '\0';
16718 mi_free(phyi_old);
16719 } else {
16720 mutex_enter(&ill->ill_lock);
16721 /*
16722 * We don't need to acquire any lock, since
16723 * the ill is not yet visible globally and we
16724 * have not yet released the ill_g_lock.
16725 */
16726 phyi = phyi_old;
16727 mutex_enter(&phyi->phyint_lock);
16728 /* XXX We need a recovery strategy here. */
16729 if (!phyint_assign_ifindex(phyi, ipst))
16730 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16731
16732 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16733 (void *)phyi, where);
16734
16735 (void) avl_find(&ipst->ips_phyint_g_list->
16736 phyint_list_avl_by_index,
16737 &phyi->phyint_ifindex, &where);
16738 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16739 (void *)phyi, where);
16740 }
16741
16742 /*
16743 * Reassigning ill_phyint automatically reassigns the ipsq also.
16744 * pending mp is not affected because that is per ill basis.
16745 */
16746 ill->ill_phyint = phyi;
16747
16748 /*
16749 * Now that the phyint's ifindex has been assigned, complete the
16750 * remaining
16751 */
16752 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16753 if (ill->ill_isv6) {
16754 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16755 ill->ill_phyint->phyint_ifindex;
16756 ill->ill_mcast_type = ipst->ips_mld_max_version;
16757 } else {
16758 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16759 }
16760
16761 /*
16762 * Generate an event within the hooks framework to indicate that
16763 * a new interface has just been added to IP. For this event to
16764 * be generated, the network interface must, at least, have an
16765 * ifindex assigned to it. (We don't generate the event for
16766 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16767 *
16768 * This needs to be run inside the ill_g_lock perimeter to ensure
16769 * that the ordering of delivered events to listeners matches the
16770 * order of them in the kernel.
16771 */
16772 if (!IS_LOOPBACK(ill)) {
16773 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16774 ill->ill_name_length);
16775 }
16776 RELEASE_ILL_LOCKS(ill, ill_other);
16777 mutex_exit(&phyi->phyint_lock);
16778 }
16779
16780 /*
16781 * Notify any downstream modules of the name of this interface.
16782 * An M_IOCTL is used even though we don't expect a successful reply.
16783 * Any reply message from the driver (presumably an M_IOCNAK) will
16784 * eventually get discarded somewhere upstream. The message format is
16785 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16786 * to IP.
16787 */
16788 static void
ip_ifname_notify(ill_t * ill,queue_t * q)16789 ip_ifname_notify(ill_t *ill, queue_t *q)
16790 {
16791 mblk_t *mp1, *mp2;
16792 struct iocblk *iocp;
16793 struct lifreq *lifr;
16794
16795 mp1 = mkiocb(SIOCSLIFNAME);
16796 if (mp1 == NULL)
16797 return;
16798 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16799 if (mp2 == NULL) {
16800 freeb(mp1);
16801 return;
16802 }
16803
16804 mp1->b_cont = mp2;
16805 iocp = (struct iocblk *)mp1->b_rptr;
16806 iocp->ioc_count = sizeof (struct lifreq);
16807
16808 lifr = (struct lifreq *)mp2->b_rptr;
16809 mp2->b_wptr += sizeof (struct lifreq);
16810 bzero(lifr, sizeof (struct lifreq));
16811
16812 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16813 lifr->lifr_ppa = ill->ill_ppa;
16814 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16815
16816 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16817 char *, "SIOCSLIFNAME", ill_t *, ill);
16818 putnext(q, mp1);
16819 }
16820
16821 static int
ipif_set_values_tail(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)16822 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16823 {
16824 int err;
16825 ip_stack_t *ipst = ill->ill_ipst;
16826 phyint_t *phyi = ill->ill_phyint;
16827
16828 /*
16829 * Now that ill_name is set, the configuration for the IPMP
16830 * meta-interface can be performed.
16831 */
16832 if (IS_IPMP(ill)) {
16833 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16834 /*
16835 * If phyi->phyint_grp is NULL, then this is the first IPMP
16836 * meta-interface and we need to create the IPMP group.
16837 */
16838 if (phyi->phyint_grp == NULL) {
16839 /*
16840 * If someone has renamed another IPMP group to have
16841 * the same name as our interface, bail.
16842 */
16843 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16844 rw_exit(&ipst->ips_ipmp_lock);
16845 return (EEXIST);
16846 }
16847 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16848 if (phyi->phyint_grp == NULL) {
16849 rw_exit(&ipst->ips_ipmp_lock);
16850 return (ENOMEM);
16851 }
16852 }
16853 rw_exit(&ipst->ips_ipmp_lock);
16854 }
16855
16856 /* Tell downstream modules where they are. */
16857 ip_ifname_notify(ill, q);
16858
16859 /*
16860 * ill_dl_phys returns EINPROGRESS in the usual case.
16861 * Error cases are ENOMEM ...
16862 */
16863 err = ill_dl_phys(ill, ipif, mp, q);
16864
16865 if (ill->ill_isv6) {
16866 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16867 if (ipst->ips_mld_slowtimeout_id == 0) {
16868 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16869 (void *)ipst,
16870 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16871 }
16872 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16873 } else {
16874 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16875 if (ipst->ips_igmp_slowtimeout_id == 0) {
16876 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16877 (void *)ipst,
16878 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16879 }
16880 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16881 }
16882
16883 return (err);
16884 }
16885
16886 /*
16887 * Common routine for ppa and ifname setting. Should be called exclusive.
16888 *
16889 * Returns EINPROGRESS when mp has been consumed by queueing it on
16890 * ipx_pending_mp and the ioctl will complete in ip_rput.
16891 *
16892 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16893 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16894 * For SLIFNAME, we pass these values back to the userland.
16895 */
16896 static int
ipif_set_values(queue_t * q,mblk_t * mp,char * interf_name,uint_t * new_ppa_ptr)16897 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16898 {
16899 ill_t *ill;
16900 ipif_t *ipif;
16901 ipsq_t *ipsq;
16902 char *ppa_ptr;
16903 char *old_ptr;
16904 char old_char;
16905 int error;
16906 ip_stack_t *ipst;
16907
16908 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16909 ASSERT(q->q_next != NULL);
16910 ASSERT(interf_name != NULL);
16911
16912 ill = (ill_t *)q->q_ptr;
16913 ipst = ill->ill_ipst;
16914
16915 ASSERT(ill->ill_ipst != NULL);
16916 ASSERT(ill->ill_name[0] == '\0');
16917 ASSERT(IAM_WRITER_ILL(ill));
16918 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16919 ASSERT(ill->ill_ppa == UINT_MAX);
16920
16921 ill->ill_defend_start = ill->ill_defend_count = 0;
16922 /* The ppa is sent down by ifconfig or is chosen */
16923 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16924 return (EINVAL);
16925 }
16926
16927 /*
16928 * make sure ppa passed in is same as ppa in the name.
16929 * This check is not made when ppa == UINT_MAX in that case ppa
16930 * in the name could be anything. System will choose a ppa and
16931 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16932 */
16933 if (*new_ppa_ptr != UINT_MAX) {
16934 /* stoi changes the pointer */
16935 old_ptr = ppa_ptr;
16936 /*
16937 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16938 * (they don't have an externally visible ppa). We assign one
16939 * here so that we can manage the interface. Note that in
16940 * the past this value was always 0 for DLPI 1 drivers.
16941 */
16942 if (*new_ppa_ptr == 0)
16943 *new_ppa_ptr = stoi(&old_ptr);
16944 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16945 return (EINVAL);
16946 }
16947 /*
16948 * terminate string before ppa
16949 * save char at that location.
16950 */
16951 old_char = ppa_ptr[0];
16952 ppa_ptr[0] = '\0';
16953
16954 ill->ill_ppa = *new_ppa_ptr;
16955 /*
16956 * Finish as much work now as possible before calling ill_glist_insert
16957 * which makes the ill globally visible and also merges it with the
16958 * other protocol instance of this phyint. The remaining work is
16959 * done after entering the ipsq which may happen sometime later.
16960 */
16961 ipif = ill->ill_ipif;
16962
16963 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16964 ipif_assign_seqid(ipif);
16965
16966 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16967 ill->ill_flags |= ILLF_IPV4;
16968
16969 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16970 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16971
16972 if (ill->ill_flags & ILLF_IPV6) {
16973
16974 ill->ill_isv6 = B_TRUE;
16975 ill_set_inputfn(ill);
16976 if (ill->ill_rq != NULL) {
16977 ill->ill_rq->q_qinfo = &iprinitv6;
16978 }
16979
16980 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16981 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16982 ipif->ipif_v6subnet = ipv6_all_zeros;
16983 ipif->ipif_v6net_mask = ipv6_all_zeros;
16984 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16985 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16986 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16987 /*
16988 * point-to-point or Non-mulicast capable
16989 * interfaces won't do NUD unless explicitly
16990 * configured to do so.
16991 */
16992 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16993 !(ill->ill_flags & ILLF_MULTICAST)) {
16994 ill->ill_flags |= ILLF_NONUD;
16995 }
16996 /* Make sure IPv4 specific flag is not set on IPv6 if */
16997 if (ill->ill_flags & ILLF_NOARP) {
16998 /*
16999 * Note: xresolv interfaces will eventually need
17000 * NOARP set here as well, but that will require
17001 * those external resolvers to have some
17002 * knowledge of that flag and act appropriately.
17003 * Not to be changed at present.
17004 */
17005 ill->ill_flags &= ~ILLF_NOARP;
17006 }
17007 /*
17008 * Set the ILLF_ROUTER flag according to the global
17009 * IPv6 forwarding policy.
17010 */
17011 if (ipst->ips_ipv6_forwarding != 0)
17012 ill->ill_flags |= ILLF_ROUTER;
17013 } else if (ill->ill_flags & ILLF_IPV4) {
17014 ill->ill_isv6 = B_FALSE;
17015 ill_set_inputfn(ill);
17016 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
17017 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
17018 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17019 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17020 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17021 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17022 /*
17023 * Set the ILLF_ROUTER flag according to the global
17024 * IPv4 forwarding policy.
17025 */
17026 if (ipst->ips_ip_forwarding != 0)
17027 ill->ill_flags |= ILLF_ROUTER;
17028 }
17029
17030 ASSERT(ill->ill_phyint != NULL);
17031
17032 /*
17033 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17034 * be completed in ill_glist_insert -> ill_phyint_reinit
17035 */
17036 if (!ill_allocate_mibs(ill))
17037 return (ENOMEM);
17038
17039 /*
17040 * Pick a default sap until we get the DL_INFO_ACK back from
17041 * the driver.
17042 */
17043 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17044 ill->ill_media->ip_m_ipv4sap;
17045
17046 ill->ill_ifname_pending = 1;
17047 ill->ill_ifname_pending_err = 0;
17048
17049 /*
17050 * When the first ipif comes up in ipif_up_done(), multicast groups
17051 * that were joined while this ill was not bound to the DLPI link need
17052 * to be recovered by ill_recover_multicast().
17053 */
17054 ill->ill_need_recover_multicast = 1;
17055
17056 ill_refhold(ill);
17057 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17058 if ((error = ill_glist_insert(ill, interf_name,
17059 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17060 ill->ill_ppa = UINT_MAX;
17061 ill->ill_name[0] = '\0';
17062 /*
17063 * undo null termination done above.
17064 */
17065 ppa_ptr[0] = old_char;
17066 rw_exit(&ipst->ips_ill_g_lock);
17067 ill_refrele(ill);
17068 return (error);
17069 }
17070
17071 ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17072
17073 /*
17074 * When we return the buffer pointed to by interf_name should contain
17075 * the same name as in ill_name.
17076 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17077 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17078 * so copy full name and update the ppa ptr.
17079 * When ppa passed in != UINT_MAX all values are correct just undo
17080 * null termination, this saves a bcopy.
17081 */
17082 if (*new_ppa_ptr == UINT_MAX) {
17083 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17084 *new_ppa_ptr = ill->ill_ppa;
17085 } else {
17086 /*
17087 * undo null termination done above.
17088 */
17089 ppa_ptr[0] = old_char;
17090 }
17091
17092 /* Let SCTP know about this ILL */
17093 sctp_update_ill(ill, SCTP_ILL_INSERT);
17094
17095 /*
17096 * ill_glist_insert has made the ill visible globally, and
17097 * ill_phyint_reinit could have changed the ipsq. At this point,
17098 * we need to hold the ips_ill_g_lock across the call to enter the
17099 * ipsq to enforce atomicity and prevent reordering. In the event
17100 * the ipsq has changed, and if the new ipsq is currently busy,
17101 * we need to make sure that this half-completed ioctl is ahead of
17102 * any subsequent ioctl. We achieve this by not dropping the
17103 * ips_ill_g_lock which prevents any ill lookup itself thereby
17104 * ensuring that new ioctls can't start.
17105 */
17106 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17107 B_TRUE);
17108
17109 rw_exit(&ipst->ips_ill_g_lock);
17110 ill_refrele(ill);
17111 if (ipsq == NULL)
17112 return (EINPROGRESS);
17113
17114 /*
17115 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17116 */
17117 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17118 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17119 else
17120 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17121
17122 error = ipif_set_values_tail(ill, ipif, mp, q);
17123 ipsq_exit(ipsq);
17124 if (error != 0 && error != EINPROGRESS) {
17125 /*
17126 * restore previous values
17127 */
17128 ill->ill_isv6 = B_FALSE;
17129 ill_set_inputfn(ill);
17130 }
17131 return (error);
17132 }
17133
17134 void
ipif_init(ip_stack_t * ipst)17135 ipif_init(ip_stack_t *ipst)
17136 {
17137 int i;
17138
17139 for (i = 0; i < MAX_G_HEADS; i++) {
17140 ipst->ips_ill_g_heads[i].ill_g_list_head =
17141 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17142 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17143 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17144 }
17145
17146 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17147 ill_phyint_compare_index,
17148 sizeof (phyint_t),
17149 offsetof(struct phyint, phyint_avl_by_index));
17150 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17151 ill_phyint_compare_name,
17152 sizeof (phyint_t),
17153 offsetof(struct phyint, phyint_avl_by_name));
17154 }
17155
17156 /*
17157 * Save enough information so that we can recreate the IRE if
17158 * the interface goes down and then up.
17159 */
17160 void
ill_save_ire(ill_t * ill,ire_t * ire)17161 ill_save_ire(ill_t *ill, ire_t *ire)
17162 {
17163 mblk_t *save_mp;
17164
17165 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17166 if (save_mp != NULL) {
17167 ifrt_t *ifrt;
17168
17169 save_mp->b_wptr += sizeof (ifrt_t);
17170 ifrt = (ifrt_t *)save_mp->b_rptr;
17171 bzero(ifrt, sizeof (ifrt_t));
17172 ifrt->ifrt_type = ire->ire_type;
17173 if (ire->ire_ipversion == IPV4_VERSION) {
17174 ASSERT(!ill->ill_isv6);
17175 ifrt->ifrt_addr = ire->ire_addr;
17176 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17177 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17178 ifrt->ifrt_mask = ire->ire_mask;
17179 } else {
17180 ASSERT(ill->ill_isv6);
17181 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17182 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17183 mutex_enter(&ire->ire_lock);
17184 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17185 mutex_exit(&ire->ire_lock);
17186 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17187 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17188 }
17189 ifrt->ifrt_flags = ire->ire_flags;
17190 ifrt->ifrt_zoneid = ire->ire_zoneid;
17191 mutex_enter(&ill->ill_saved_ire_lock);
17192 save_mp->b_cont = ill->ill_saved_ire_mp;
17193 ill->ill_saved_ire_mp = save_mp;
17194 ill->ill_saved_ire_cnt++;
17195 mutex_exit(&ill->ill_saved_ire_lock);
17196 }
17197 }
17198
17199 /*
17200 * Remove one entry from ill_saved_ire_mp.
17201 */
17202 void
ill_remove_saved_ire(ill_t * ill,ire_t * ire)17203 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17204 {
17205 mblk_t **mpp;
17206 mblk_t *mp;
17207 ifrt_t *ifrt;
17208
17209 /* Remove from ill_saved_ire_mp list if it is there */
17210 mutex_enter(&ill->ill_saved_ire_lock);
17211 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17212 mpp = &(*mpp)->b_cont) {
17213 in6_addr_t gw_addr_v6;
17214
17215 /*
17216 * On a given ill, the tuple of address, gateway, mask,
17217 * ire_type, and zoneid is unique for each saved IRE.
17218 */
17219 mp = *mpp;
17220 ifrt = (ifrt_t *)mp->b_rptr;
17221 /* ire_gateway_addr_v6 can change - need lock */
17222 mutex_enter(&ire->ire_lock);
17223 gw_addr_v6 = ire->ire_gateway_addr_v6;
17224 mutex_exit(&ire->ire_lock);
17225
17226 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17227 ifrt->ifrt_type != ire->ire_type)
17228 continue;
17229
17230 if (ill->ill_isv6 ?
17231 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17232 &ire->ire_addr_v6) &&
17233 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17234 &gw_addr_v6) &&
17235 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17236 &ire->ire_mask_v6)) :
17237 (ifrt->ifrt_addr == ire->ire_addr &&
17238 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17239 ifrt->ifrt_mask == ire->ire_mask)) {
17240 *mpp = mp->b_cont;
17241 ill->ill_saved_ire_cnt--;
17242 freeb(mp);
17243 break;
17244 }
17245 }
17246 mutex_exit(&ill->ill_saved_ire_lock);
17247 }
17248
17249 /*
17250 * IP multirouting broadcast routes handling
17251 * Append CGTP broadcast IREs to regular ones created
17252 * at ifconfig time.
17253 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17254 * the destination and the gateway are broadcast addresses.
17255 * The caller has verified that the destination is an IRE_BROADCAST and that
17256 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17257 * we create a MULTIRT IRE_BROADCAST.
17258 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17259 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17260 */
17261 static void
ip_cgtp_bcast_add(ire_t * ire,ip_stack_t * ipst)17262 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17263 {
17264 ire_t *ire_prim;
17265
17266 ASSERT(ire != NULL);
17267
17268 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17269 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17270 NULL);
17271 if (ire_prim != NULL) {
17272 /*
17273 * We are in the special case of broadcasts for
17274 * CGTP. We add an IRE_BROADCAST that holds
17275 * the RTF_MULTIRT flag, the destination
17276 * address and the low level
17277 * info of ire_prim. In other words, CGTP
17278 * broadcast is added to the redundant ipif.
17279 */
17280 ill_t *ill_prim;
17281 ire_t *bcast_ire;
17282
17283 ill_prim = ire_prim->ire_ill;
17284
17285 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17286 (void *)ire_prim, (void *)ill_prim));
17287
17288 bcast_ire = ire_create(
17289 (uchar_t *)&ire->ire_addr,
17290 (uchar_t *)&ip_g_all_ones,
17291 (uchar_t *)&ire->ire_gateway_addr,
17292 IRE_BROADCAST,
17293 ill_prim,
17294 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17295 ire->ire_flags | RTF_KERNEL,
17296 NULL,
17297 ipst);
17298
17299 /*
17300 * Here we assume that ire_add does head insertion so that
17301 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17302 */
17303 if (bcast_ire != NULL) {
17304 if (ire->ire_flags & RTF_SETSRC) {
17305 bcast_ire->ire_setsrc_addr =
17306 ire->ire_setsrc_addr;
17307 }
17308 bcast_ire = ire_add(bcast_ire);
17309 if (bcast_ire != NULL) {
17310 ip2dbg(("ip_cgtp_filter_bcast_add: "
17311 "added bcast_ire %p\n",
17312 (void *)bcast_ire));
17313
17314 ill_save_ire(ill_prim, bcast_ire);
17315 ire_refrele(bcast_ire);
17316 }
17317 }
17318 ire_refrele(ire_prim);
17319 }
17320 }
17321
17322 /*
17323 * IP multirouting broadcast routes handling
17324 * Remove the broadcast ire.
17325 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17326 * the destination and the gateway are broadcast addresses.
17327 * The caller has only verified that RTF_MULTIRT was set. We check
17328 * that the destination is broadcast and that the gateway is a broadcast
17329 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17330 */
17331 static void
ip_cgtp_bcast_delete(ire_t * ire,ip_stack_t * ipst)17332 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17333 {
17334 ASSERT(ire != NULL);
17335
17336 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17337 ire_t *ire_prim;
17338
17339 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17340 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17341 ipst, NULL);
17342 if (ire_prim != NULL) {
17343 ill_t *ill_prim;
17344 ire_t *bcast_ire;
17345
17346 ill_prim = ire_prim->ire_ill;
17347
17348 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17349 "ire_prim %p, ill_prim %p\n",
17350 (void *)ire_prim, (void *)ill_prim));
17351
17352 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17353 ire->ire_gateway_addr, IRE_BROADCAST,
17354 ill_prim, ALL_ZONES, NULL,
17355 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17356 MATCH_IRE_MASK, 0, ipst, NULL);
17357
17358 if (bcast_ire != NULL) {
17359 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17360 "looked up bcast_ire %p\n",
17361 (void *)bcast_ire));
17362 ill_remove_saved_ire(bcast_ire->ire_ill,
17363 bcast_ire);
17364 ire_delete(bcast_ire);
17365 ire_refrele(bcast_ire);
17366 }
17367 ire_refrele(ire_prim);
17368 }
17369 }
17370 }
17371
17372 /*
17373 * Derive an interface id from the link layer address.
17374 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17375 */
17376 static void
ip_ether_v6intfid(ill_t * ill,in6_addr_t * v6addr)17377 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17378 {
17379 char *addr;
17380
17381 /*
17382 * Note that some IPv6 interfaces get plumbed over links that claim to
17383 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17384 * PPP links). The ETHERADDRL check here ensures that we only set the
17385 * interface ID on IPv6 interfaces above links that actually have real
17386 * Ethernet addresses.
17387 */
17388 if (ill->ill_phys_addr_length == ETHERADDRL) {
17389 /* Form EUI-64 like address */
17390 addr = (char *)&v6addr->s6_addr32[2];
17391 bcopy(ill->ill_phys_addr, addr, 3);
17392 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17393 addr[3] = (char)0xff;
17394 addr[4] = (char)0xfe;
17395 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17396 }
17397 }
17398
17399 /* ARGSUSED */
17400 static void
ip_nodef_v6intfid(ill_t * ill,in6_addr_t * v6addr)17401 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17402 {
17403 }
17404
17405 typedef struct ipmp_ifcookie {
17406 uint32_t ic_hostid;
17407 char ic_ifname[LIFNAMSIZ];
17408 char ic_zonename[ZONENAME_MAX];
17409 } ipmp_ifcookie_t;
17410
17411 /*
17412 * Construct a pseudo-random interface ID for the IPMP interface that's both
17413 * predictable and (almost) guaranteed to be unique.
17414 */
17415 static void
ip_ipmp_v6intfid(ill_t * ill,in6_addr_t * v6addr)17416 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17417 {
17418 zone_t *zp;
17419 uint8_t *addr;
17420 uchar_t hash[16];
17421 ulong_t hostid;
17422 MD5_CTX ctx;
17423 ipmp_ifcookie_t ic = { 0 };
17424
17425 ASSERT(IS_IPMP(ill));
17426
17427 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17428 ic.ic_hostid = htonl((uint32_t)hostid);
17429
17430 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17431
17432 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17433 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17434 zone_rele(zp);
17435 }
17436
17437 MD5Init(&ctx);
17438 MD5Update(&ctx, &ic, sizeof (ic));
17439 MD5Final(hash, &ctx);
17440
17441 /*
17442 * Map the hash to an interface ID per the basic approach in RFC3041.
17443 */
17444 addr = &v6addr->s6_addr8[8];
17445 bcopy(hash + 8, addr, sizeof (uint64_t));
17446 addr[0] &= ~0x2; /* set local bit */
17447 }
17448
17449 /*
17450 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17451 */
17452 static void
ip_ether_v6_mapping(ill_t * ill,uchar_t * m_ip6addr,uchar_t * m_physaddr)17453 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17454 {
17455 phyint_t *phyi = ill->ill_phyint;
17456
17457 /*
17458 * Check PHYI_MULTI_BCAST and length of physical
17459 * address to determine if we use the mapping or the
17460 * broadcast address.
17461 */
17462 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17463 ill->ill_phys_addr_length != ETHERADDRL) {
17464 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17465 return;
17466 }
17467 m_physaddr[0] = 0x33;
17468 m_physaddr[1] = 0x33;
17469 m_physaddr[2] = m_ip6addr[12];
17470 m_physaddr[3] = m_ip6addr[13];
17471 m_physaddr[4] = m_ip6addr[14];
17472 m_physaddr[5] = m_ip6addr[15];
17473 }
17474
17475 /*
17476 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17477 */
17478 static void
ip_ether_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17479 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17480 {
17481 phyint_t *phyi = ill->ill_phyint;
17482
17483 /*
17484 * Check PHYI_MULTI_BCAST and length of physical
17485 * address to determine if we use the mapping or the
17486 * broadcast address.
17487 */
17488 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17489 ill->ill_phys_addr_length != ETHERADDRL) {
17490 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17491 return;
17492 }
17493 m_physaddr[0] = 0x01;
17494 m_physaddr[1] = 0x00;
17495 m_physaddr[2] = 0x5e;
17496 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17497 m_physaddr[4] = m_ipaddr[2];
17498 m_physaddr[5] = m_ipaddr[3];
17499 }
17500
17501 /* ARGSUSED */
17502 static void
ip_mbcast_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17503 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17504 {
17505 /*
17506 * for the MULTI_BCAST case and other cases when we want to
17507 * use the link-layer broadcast address for multicast.
17508 */
17509 uint8_t *bphys_addr;
17510 dl_unitdata_req_t *dlur;
17511
17512 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17513 if (ill->ill_sap_length < 0) {
17514 bphys_addr = (uchar_t *)dlur +
17515 dlur->dl_dest_addr_offset;
17516 } else {
17517 bphys_addr = (uchar_t *)dlur +
17518 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17519 }
17520
17521 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17522 }
17523
17524 /*
17525 * Derive IPoIB interface id from the link layer address.
17526 */
17527 static void
ip_ib_v6intfid(ill_t * ill,in6_addr_t * v6addr)17528 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17529 {
17530 char *addr;
17531
17532 ASSERT(ill->ill_phys_addr_length == 20);
17533 addr = (char *)&v6addr->s6_addr32[2];
17534 bcopy(ill->ill_phys_addr + 12, addr, 8);
17535 /*
17536 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17537 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17538 * rules. In these cases, the IBA considers these GUIDs to be in
17539 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17540 * required; vendors are required not to assign global EUI-64's
17541 * that differ only in u/l bit values, thus guaranteeing uniqueness
17542 * of the interface identifier. Whether the GUID is in modified
17543 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17544 * bit set to 1.
17545 */
17546 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17547 }
17548
17549 /*
17550 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17551 * Note on mapping from multicast IP addresses to IPoIB multicast link
17552 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17553 * The format of an IPoIB multicast address is:
17554 *
17555 * 4 byte QPN Scope Sign. Pkey
17556 * +--------------------------------------------+
17557 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17558 * +--------------------------------------------+
17559 *
17560 * The Scope and Pkey components are properties of the IBA port and
17561 * network interface. They can be ascertained from the broadcast address.
17562 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17563 */
17564 static void
ip_ib_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17565 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17566 {
17567 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17568 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17569 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17570 uint8_t *bphys_addr;
17571 dl_unitdata_req_t *dlur;
17572
17573 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17574
17575 /*
17576 * RFC 4391: IPv4 MGID is 28-bit long.
17577 */
17578 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17579 m_physaddr[17] = m_ipaddr[1];
17580 m_physaddr[18] = m_ipaddr[2];
17581 m_physaddr[19] = m_ipaddr[3];
17582
17583
17584 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17585 if (ill->ill_sap_length < 0) {
17586 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17587 } else {
17588 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17589 ill->ill_sap_length;
17590 }
17591 /*
17592 * Now fill in the IBA scope/Pkey values from the broadcast address.
17593 */
17594 m_physaddr[5] = bphys_addr[5];
17595 m_physaddr[8] = bphys_addr[8];
17596 m_physaddr[9] = bphys_addr[9];
17597 }
17598
17599 static void
ip_ib_v6_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17600 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17601 {
17602 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17603 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17604 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17605 uint8_t *bphys_addr;
17606 dl_unitdata_req_t *dlur;
17607
17608 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17609
17610 /*
17611 * RFC 4391: IPv4 MGID is 80-bit long.
17612 */
17613 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17614
17615 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17616 if (ill->ill_sap_length < 0) {
17617 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17618 } else {
17619 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17620 ill->ill_sap_length;
17621 }
17622 /*
17623 * Now fill in the IBA scope/Pkey values from the broadcast address.
17624 */
17625 m_physaddr[5] = bphys_addr[5];
17626 m_physaddr[8] = bphys_addr[8];
17627 m_physaddr[9] = bphys_addr[9];
17628 }
17629
17630 /*
17631 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17632 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17633 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17634 * of RFC4213.
17635 */
17636 static void
ip_ipv4_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17637 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17638 {
17639 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17640 v6addr->s6_addr32[2] = 0;
17641 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17642 }
17643
17644 /*
17645 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17646 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17647 * id.
17648 */
17649 static void
ip_ipv6_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17650 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17651 {
17652 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17653
17654 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17655 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17656 }
17657
17658 static void
ip_ipv6_v6intfid(ill_t * ill,in6_addr_t * v6addr)17659 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17660 {
17661 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17662 }
17663
17664 static void
ip_ipv6_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17665 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17666 {
17667 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17668 }
17669
17670 static void
ip_ipv4_v6intfid(ill_t * ill,in6_addr_t * v6addr)17671 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17672 {
17673 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17674 }
17675
17676 static void
ip_ipv4_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17677 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17678 {
17679 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17680 }
17681
17682 /*
17683 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17684 * Returns an held ill, or NULL.
17685 */
17686 ill_t *
ill_lookup_on_ifindex_zoneid(uint_t index,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)17687 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17688 ip_stack_t *ipst)
17689 {
17690 ill_t *ill;
17691 ipif_t *ipif;
17692
17693 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17694 if (ill == NULL)
17695 return (NULL);
17696
17697 mutex_enter(&ill->ill_lock);
17698 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17699 if (IPIF_IS_CONDEMNED(ipif))
17700 continue;
17701 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17702 ipif->ipif_zoneid != ALL_ZONES)
17703 continue;
17704
17705 mutex_exit(&ill->ill_lock);
17706 return (ill);
17707 }
17708 mutex_exit(&ill->ill_lock);
17709 ill_refrele(ill);
17710 return (NULL);
17711 }
17712
17713 /*
17714 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17715 * If a pointer to an ipif_t is returned then the caller will need to do
17716 * an ill_refrele().
17717 */
17718 ipif_t *
ipif_getby_indexes(uint_t ifindex,uint_t lifidx,boolean_t isv6,ip_stack_t * ipst)17719 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17720 ip_stack_t *ipst)
17721 {
17722 ipif_t *ipif;
17723 ill_t *ill;
17724
17725 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17726 if (ill == NULL)
17727 return (NULL);
17728
17729 mutex_enter(&ill->ill_lock);
17730 if (ill->ill_state_flags & ILL_CONDEMNED) {
17731 mutex_exit(&ill->ill_lock);
17732 ill_refrele(ill);
17733 return (NULL);
17734 }
17735
17736 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17737 if (!IPIF_CAN_LOOKUP(ipif))
17738 continue;
17739 if (lifidx == ipif->ipif_id) {
17740 ipif_refhold_locked(ipif);
17741 break;
17742 }
17743 }
17744
17745 mutex_exit(&ill->ill_lock);
17746 ill_refrele(ill);
17747 return (ipif);
17748 }
17749
17750 /*
17751 * Set ill_inputfn based on the current know state.
17752 * This needs to be called when any of the factors taken into
17753 * account changes.
17754 */
17755 void
ill_set_inputfn(ill_t * ill)17756 ill_set_inputfn(ill_t *ill)
17757 {
17758 ip_stack_t *ipst = ill->ill_ipst;
17759
17760 if (ill->ill_isv6) {
17761 if (is_system_labeled())
17762 ill->ill_inputfn = ill_input_full_v6;
17763 else
17764 ill->ill_inputfn = ill_input_short_v6;
17765 } else {
17766 if (is_system_labeled())
17767 ill->ill_inputfn = ill_input_full_v4;
17768 else if (ill->ill_dhcpinit != 0)
17769 ill->ill_inputfn = ill_input_full_v4;
17770 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17771 != NULL)
17772 ill->ill_inputfn = ill_input_full_v4;
17773 else if (ipst->ips_ip_cgtp_filter &&
17774 ipst->ips_ip_cgtp_filter_ops != NULL)
17775 ill->ill_inputfn = ill_input_full_v4;
17776 else
17777 ill->ill_inputfn = ill_input_short_v4;
17778 }
17779 }
17780
17781 /*
17782 * Re-evaluate ill_inputfn for all the IPv4 ills.
17783 * Used when RSVP and CGTP comes and goes.
17784 */
17785 void
ill_set_inputfn_all(ip_stack_t * ipst)17786 ill_set_inputfn_all(ip_stack_t *ipst)
17787 {
17788 ill_walk_context_t ctx;
17789 ill_t *ill;
17790
17791 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17792 ill = ILL_START_WALK_V4(&ctx, ipst);
17793 for (; ill != NULL; ill = ill_next(&ctx, ill))
17794 ill_set_inputfn(ill);
17795
17796 rw_exit(&ipst->ips_ill_g_lock);
17797 }
17798
17799 /*
17800 * Set the physical address information for `ill' to the contents of the
17801 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be
17802 * asynchronous if `ill' cannot immediately be quiesced -- in which case
17803 * EINPROGRESS will be returned.
17804 */
17805 int
ill_set_phys_addr(ill_t * ill,mblk_t * mp)17806 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17807 {
17808 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17809 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;
17810
17811 ASSERT(IAM_WRITER_IPSQ(ipsq));
17812
17813 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17814 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17815 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17816 /* Changing DL_IPV6_TOKEN is not yet supported */
17817 return (0);
17818 }
17819
17820 /*
17821 * We need to store up to two copies of `mp' in `ill'. Due to the
17822 * design of ipsq_pending_mp_add(), we can't pass them as separate
17823 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17824 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17825 */
17826 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17827 freemsg(mp);
17828 return (ENOMEM);
17829 }
17830
17831 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17832
17833 /*
17834 * Since we'll only do a logical down, we can't rely on ipif_down
17835 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17836 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17837 * case, to quiesce ire's and nce's for ill_is_quiescent.
17838 */
17839 mutex_enter(&ill->ill_lock);
17840 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17841 /* no more ire/nce addition allowed */
17842 mutex_exit(&ill->ill_lock);
17843
17844 /*
17845 * If we can quiesce the ill, then set the address. If not, then
17846 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17847 */
17848 ill_down_ipifs(ill, B_TRUE);
17849 mutex_enter(&ill->ill_lock);
17850 if (!ill_is_quiescent(ill)) {
17851 /* call cannot fail since `conn_t *' argument is NULL */
17852 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17853 mp, ILL_DOWN);
17854 mutex_exit(&ill->ill_lock);
17855 return (EINPROGRESS);
17856 }
17857 mutex_exit(&ill->ill_lock);
17858
17859 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17860 return (0);
17861 }
17862
17863 /*
17864 * When the allowed-ips link property is set on the datalink, IP receives a
17865 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17866 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17867 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17868 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17869 * array.
17870 */
17871 void
ill_set_allowed_ips(ill_t * ill,mblk_t * mp)17872 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17873 {
17874 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17875 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17876 mac_protect_t *mrp;
17877 int i;
17878
17879 ASSERT(IAM_WRITER_IPSQ(ipsq));
17880 mrp = (mac_protect_t *)&dlip[1];
17881
17882 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17883 kmem_free(ill->ill_allowed_ips,
17884 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17885 ill->ill_allowed_ips_cnt = 0;
17886 ill->ill_allowed_ips = NULL;
17887 mutex_enter(&ill->ill_phyint->phyint_lock);
17888 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17889 mutex_exit(&ill->ill_phyint->phyint_lock);
17890 return;
17891 }
17892
17893 if (ill->ill_allowed_ips != NULL) {
17894 kmem_free(ill->ill_allowed_ips,
17895 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17896 }
17897 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17898 ill->ill_allowed_ips = kmem_alloc(
17899 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17900 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17901 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17902
17903 mutex_enter(&ill->ill_phyint->phyint_lock);
17904 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17905 mutex_exit(&ill->ill_phyint->phyint_lock);
17906 }
17907
17908 /*
17909 * Once the ill associated with `q' has quiesced, set its physical address
17910 * information to the values in `addrmp'. Note that two copies of `addrmp'
17911 * are passed (linked by b_cont), since we sometimes need to save two distinct
17912 * copies in the ill_t, and our context doesn't permit sleeping or allocation
17913 * failure (we'll free the other copy if it's not needed). Since the ill_t
17914 * is quiesced, we know any stale nce's with the old address information have
17915 * already been removed, so we don't need to call nce_flush().
17916 */
17917 /* ARGSUSED */
17918 static void
ill_set_phys_addr_tail(ipsq_t * ipsq,queue_t * q,mblk_t * addrmp,void * dummy)17919 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17920 {
17921 ill_t *ill = q->q_ptr;
17922 mblk_t *addrmp2 = unlinkb(addrmp);
17923 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17924 uint_t addrlen, addroff;
17925 int status;
17926
17927 ASSERT(IAM_WRITER_IPSQ(ipsq));
17928
17929 addroff = dlindp->dl_addr_offset;
17930 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17931
17932 switch (dlindp->dl_data) {
17933 case DL_IPV6_LINK_LAYER_ADDR:
17934 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17935 freemsg(addrmp2);
17936 break;
17937
17938 case DL_CURR_DEST_ADDR:
17939 freemsg(ill->ill_dest_addr_mp);
17940 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17941 ill->ill_dest_addr_mp = addrmp;
17942 if (ill->ill_isv6) {
17943 ill_setdesttoken(ill);
17944 ipif_setdestlinklocal(ill->ill_ipif);
17945 }
17946 freemsg(addrmp2);
17947 break;
17948
17949 case DL_CURR_PHYS_ADDR:
17950 freemsg(ill->ill_phys_addr_mp);
17951 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17952 ill->ill_phys_addr_mp = addrmp;
17953 ill->ill_phys_addr_length = addrlen;
17954 if (ill->ill_isv6)
17955 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17956 else
17957 freemsg(addrmp2);
17958 if (ill->ill_isv6) {
17959 ill_setdefaulttoken(ill);
17960 ipif_setlinklocal(ill->ill_ipif);
17961 }
17962 break;
17963 default:
17964 ASSERT(0);
17965 }
17966
17967 /*
17968 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17969 * as we bring the ipifs up again.
17970 */
17971 mutex_enter(&ill->ill_lock);
17972 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17973 mutex_exit(&ill->ill_lock);
17974 /*
17975 * If there are ipifs to bring up, ill_up_ipifs() will return
17976 * EINPROGRESS, and ipsq_current_finish() will be called by
17977 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17978 * brought up.
17979 */
17980 status = ill_up_ipifs(ill, q, addrmp);
17981 if (status != EINPROGRESS)
17982 ipsq_current_finish(ipsq);
17983 }
17984
17985 /*
17986 * Helper routine for setting the ill_nd_lla fields.
17987 */
17988 void
ill_set_ndmp(ill_t * ill,mblk_t * ndmp,uint_t addroff,uint_t addrlen)17989 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17990 {
17991 freemsg(ill->ill_nd_lla_mp);
17992 ill->ill_nd_lla = ndmp->b_rptr + addroff;
17993 ill->ill_nd_lla_mp = ndmp;
17994 ill->ill_nd_lla_len = addrlen;
17995 }
17996
17997 /*
17998 * Replumb the ill.
17999 */
18000 int
ill_replumb(ill_t * ill,mblk_t * mp)18001 ill_replumb(ill_t *ill, mblk_t *mp)
18002 {
18003 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
18004
18005 ASSERT(IAM_WRITER_IPSQ(ipsq));
18006
18007 ipsq_current_start(ipsq, ill->ill_ipif, 0);
18008
18009 /*
18010 * If we can quiesce the ill, then continue. If not, then
18011 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
18012 */
18013 ill_down_ipifs(ill, B_FALSE);
18014
18015 mutex_enter(&ill->ill_lock);
18016 if (!ill_is_quiescent(ill)) {
18017 /* call cannot fail since `conn_t *' argument is NULL */
18018 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18019 mp, ILL_DOWN);
18020 mutex_exit(&ill->ill_lock);
18021 return (EINPROGRESS);
18022 }
18023 mutex_exit(&ill->ill_lock);
18024
18025 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18026 return (0);
18027 }
18028
18029 /* ARGSUSED */
18030 static void
ill_replumb_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)18031 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18032 {
18033 ill_t *ill = q->q_ptr;
18034 int err;
18035 conn_t *connp = NULL;
18036
18037 ASSERT(IAM_WRITER_IPSQ(ipsq));
18038 freemsg(ill->ill_replumb_mp);
18039 ill->ill_replumb_mp = copyb(mp);
18040
18041 if (ill->ill_replumb_mp == NULL) {
18042 /* out of memory */
18043 ipsq_current_finish(ipsq);
18044 return;
18045 }
18046
18047 mutex_enter(&ill->ill_lock);
18048 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18049 ill->ill_rq, ill->ill_replumb_mp, 0);
18050 mutex_exit(&ill->ill_lock);
18051
18052 if (!ill->ill_up_ipifs) {
18053 /* already closing */
18054 ipsq_current_finish(ipsq);
18055 return;
18056 }
18057 ill->ill_replumbing = 1;
18058 err = ill_down_ipifs_tail(ill);
18059
18060 /*
18061 * Successfully quiesced and brought down the interface, now we send
18062 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18063 * DL_NOTE_REPLUMB message.
18064 */
18065 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18066 DL_NOTIFY_CONF);
18067 ASSERT(mp != NULL);
18068 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18069 DL_NOTE_REPLUMB_DONE;
18070 ill_dlpi_send(ill, mp);
18071
18072 /*
18073 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18074 * streams have to be unbound. When all the DLPI exchanges are done,
18075 * ipsq_current_finish() will be called by arp_bringup_done(). The
18076 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18077 * arp_bringup_done().
18078 */
18079 ASSERT(ill->ill_replumb_mp != NULL);
18080 if (err == EINPROGRESS)
18081 return;
18082 else
18083 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18084 ASSERT(connp == NULL);
18085 if (err == 0 && ill->ill_replumb_mp != NULL &&
18086 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18087 return;
18088 }
18089 ipsq_current_finish(ipsq);
18090 }
18091
18092 /*
18093 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18094 * which is `bufsize' bytes. On success, zero is returned and `buf' updated
18095 * as per the ioctl. On failure, an errno is returned.
18096 */
18097 static int
ip_ioctl(ldi_handle_t lh,int cmd,void * buf,uint_t bufsize,cred_t * cr)18098 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18099 {
18100 int rval;
18101 struct strioctl iocb;
18102
18103 iocb.ic_cmd = cmd;
18104 iocb.ic_timout = 15;
18105 iocb.ic_len = bufsize;
18106 iocb.ic_dp = buf;
18107
18108 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18109 }
18110
18111 /*
18112 * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18113 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18114 */
18115 static int
ip_lifconf_ioctl(ldi_handle_t lh,int af,struct lifconf * lifcp,uint_t * bufsizep,cred_t * cr)18116 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18117 uint_t *bufsizep, cred_t *cr)
18118 {
18119 int err;
18120 struct lifnum lifn;
18121
18122 bzero(&lifn, sizeof (lifn));
18123 lifn.lifn_family = af;
18124 lifn.lifn_flags = LIFC_UNDER_IPMP;
18125
18126 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18127 return (err);
18128
18129 /*
18130 * Pad the interface count to account for additional interfaces that
18131 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18132 */
18133 lifn.lifn_count += 4;
18134 bzero(lifcp, sizeof (*lifcp));
18135 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18136 lifcp->lifc_family = af;
18137 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18138 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18139
18140 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18141 if (err != 0) {
18142 kmem_free(lifcp->lifc_buf, *bufsizep);
18143 return (err);
18144 }
18145
18146 return (0);
18147 }
18148
18149 /*
18150 * Helper for ip_interface_cleanup() that removes the loopback interface.
18151 */
18152 static void
ip_loopback_removeif(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18153 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18154 {
18155 int err;
18156 struct lifreq lifr;
18157
18158 bzero(&lifr, sizeof (lifr));
18159 (void) strcpy(lifr.lifr_name, ipif_loopback_name);
18160
18161 /*
18162 * Attempt to remove the interface. It may legitimately not exist
18163 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18164 */
18165 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18166 if (err != 0 && err != ENXIO) {
18167 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18168 "error %d\n", isv6 ? "v6" : "v4", err));
18169 }
18170 }
18171
18172 /*
18173 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18174 * groups and that IPMP data addresses are down. These conditions must be met
18175 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18176 */
18177 static void
ip_ipmp_cleanup(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18178 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18179 {
18180 int af = isv6 ? AF_INET6 : AF_INET;
18181 int i, nifs;
18182 int err;
18183 uint_t bufsize;
18184 uint_t lifrsize = sizeof (struct lifreq);
18185 struct lifconf lifc;
18186 struct lifreq *lifrp;
18187
18188 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18189 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18190 "(error %d); any IPMP interfaces cannot be shutdown", err);
18191 return;
18192 }
18193
18194 nifs = lifc.lifc_len / lifrsize;
18195 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18196 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18197 if (err != 0) {
18198 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18199 "flags: error %d", lifrp->lifr_name, err);
18200 continue;
18201 }
18202
18203 if (lifrp->lifr_flags & IFF_IPMP) {
18204 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18205 continue;
18206
18207 lifrp->lifr_flags &= ~IFF_UP;
18208 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18209 if (err != 0) {
18210 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18211 "bring down (error %d); IPMP interface may "
18212 "not be shutdown", lifrp->lifr_name, err);
18213 }
18214
18215 /*
18216 * Check if IFF_DUPLICATE is still set -- and if so,
18217 * reset the address to clear it.
18218 */
18219 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18220 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18221 continue;
18222
18223 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18224 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18225 lifrp, lifrsize, cr)) != 0) {
18226 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18227 "reset DAD (error %d); IPMP interface may "
18228 "not be shutdown", lifrp->lifr_name, err);
18229 }
18230 continue;
18231 }
18232
18233 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18234 lifrp->lifr_groupname[0] = '\0';
18235 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18236 lifrsize, cr)) != 0) {
18237 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18238 "leave IPMP group (error %d); associated "
18239 "IPMP interface may not be shutdown",
18240 lifrp->lifr_name, err);
18241 continue;
18242 }
18243 }
18244 }
18245
18246 kmem_free(lifc.lifc_buf, bufsize);
18247 }
18248
18249 #define UDPDEV "/devices/pseudo/udp@0:udp"
18250 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"
18251
18252 /*
18253 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18254 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18255 * when the user-level processes in the zone are killed and the latter are
18256 * cleaned up by str_stack_shutdown().
18257 */
18258 void
ip_interface_cleanup(ip_stack_t * ipst)18259 ip_interface_cleanup(ip_stack_t *ipst)
18260 {
18261 ldi_handle_t lh;
18262 ldi_ident_t li;
18263 cred_t *cr;
18264 int err;
18265 int i;
18266 char *devs[] = { UDP6DEV, UDPDEV };
18267 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;
18268
18269 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18270 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18271 " error %d", err);
18272 return;
18273 }
18274
18275 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18276 ASSERT(cr != NULL);
18277
18278 /*
18279 * NOTE: loop executes exactly twice and is hardcoded to know that the
18280 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18281 * the loop.)
18282 */
18283 for (i = 0; i < 2; i++) {
18284 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18285 if (err != 0) {
18286 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18287 " error %d", devs[i], err);
18288 continue;
18289 }
18290
18291 ip_loopback_removeif(lh, i == 0, cr);
18292 ip_ipmp_cleanup(lh, i == 0, cr);
18293
18294 (void) ldi_close(lh, FREAD|FWRITE, cr);
18295 }
18296
18297 ldi_ident_release(li);
18298 crfree(cr);
18299 }
18300
18301 /*
18302 * This needs to be in-sync with nic_event_t definition
18303 */
18304 static const char *
ill_hook_event2str(nic_event_t event)18305 ill_hook_event2str(nic_event_t event)
18306 {
18307 switch (event) {
18308 case NE_PLUMB:
18309 return ("PLUMB");
18310 case NE_UNPLUMB:
18311 return ("UNPLUMB");
18312 case NE_UP:
18313 return ("UP");
18314 case NE_DOWN:
18315 return ("DOWN");
18316 case NE_ADDRESS_CHANGE:
18317 return ("ADDRESS_CHANGE");
18318 case NE_LIF_UP:
18319 return ("LIF_UP");
18320 case NE_LIF_DOWN:
18321 return ("LIF_DOWN");
18322 case NE_IFINDEX_CHANGE:
18323 return ("IFINDEX_CHANGE");
18324 default:
18325 return ("UNKNOWN");
18326 }
18327 }
18328
18329 void
ill_nic_event_dispatch(ill_t * ill,lif_if_t lif,nic_event_t event,nic_event_data_t data,size_t datalen)18330 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18331 nic_event_data_t data, size_t datalen)
18332 {
18333 ip_stack_t *ipst = ill->ill_ipst;
18334 hook_nic_event_int_t *info;
18335 const char *str = NULL;
18336
18337 /* create a new nic event info */
18338 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18339 goto fail;
18340
18341 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18342 info->hnei_event.hne_lif = lif;
18343 info->hnei_event.hne_event = event;
18344 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18345 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18346 info->hnei_event.hne_data = NULL;
18347 info->hnei_event.hne_datalen = 0;
18348 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18349
18350 if (data != NULL && datalen != 0) {
18351 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18352 if (info->hnei_event.hne_data == NULL)
18353 goto fail;
18354 bcopy(data, info->hnei_event.hne_data, datalen);
18355 info->hnei_event.hne_datalen = datalen;
18356 }
18357
18358 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18359 DDI_NOSLEEP) == DDI_SUCCESS)
18360 return;
18361
18362 fail:
18363 if (info != NULL) {
18364 if (info->hnei_event.hne_data != NULL) {
18365 kmem_free(info->hnei_event.hne_data,
18366 info->hnei_event.hne_datalen);
18367 }
18368 kmem_free(info, sizeof (hook_nic_event_t));
18369 }
18370 str = ill_hook_event2str(event);
18371 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18372 "information for %s (ENOMEM)\n", str, ill->ill_name));
18373 }
18374
18375 static int
ipif_arp_up_done_tail(ipif_t * ipif,enum ip_resolver_action res_act)18376 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18377 {
18378 int err = 0;
18379 const in_addr_t *addr = NULL;
18380 nce_t *nce = NULL;
18381 ill_t *ill = ipif->ipif_ill;
18382 ill_t *bound_ill;
18383 boolean_t added_ipif = B_FALSE;
18384 uint16_t state;
18385 uint16_t flags;
18386
18387 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18388 ill_t *, ill, ipif_t *, ipif);
18389 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18390 addr = &ipif->ipif_lcl_addr;
18391 }
18392
18393 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18394 if (res_act != Res_act_initial)
18395 return (EINVAL);
18396 }
18397
18398 if (addr != NULL) {
18399 ipmp_illgrp_t *illg = ill->ill_grp;
18400
18401 /* add unicast nce for the local addr */
18402
18403 if (IS_IPMP(ill)) {
18404 /*
18405 * If we're here via ipif_up(), then the ipif
18406 * won't be bound yet -- add it to the group,
18407 * which will bind it if possible. (We would
18408 * add it in ipif_up(), but deleting on failure
18409 * there is gruesome.) If we're here via
18410 * ipmp_ill_bind_ipif(), then the ipif has
18411 * already been added to the group and we
18412 * just need to use the binding.
18413 */
18414 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18415 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18416 if (bound_ill == NULL) {
18417 /*
18418 * We couldn't bind the ipif to an ill
18419 * yet, so we have nothing to publish.
18420 * Mark the address as ready and return.
18421 */
18422 ipif->ipif_addr_ready = 1;
18423 return (0);
18424 }
18425 added_ipif = B_TRUE;
18426 }
18427 } else {
18428 bound_ill = ill;
18429 }
18430
18431 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18432 NCE_F_NONUD);
18433 /*
18434 * If this is an initial bring-up (or the ipif was never
18435 * completely brought up), do DAD. Otherwise, we're here
18436 * because IPMP has rebound an address to this ill: send
18437 * unsolicited advertisements (ARP announcements) to
18438 * inform others.
18439 */
18440 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18441 state = ND_UNCHANGED; /* compute in nce_add_common() */
18442 } else {
18443 state = ND_REACHABLE;
18444 flags |= NCE_F_UNSOL_ADV;
18445 }
18446
18447 retry:
18448 err = nce_lookup_then_add_v4(ill,
18449 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18450 addr, flags, state, &nce);
18451
18452 /*
18453 * note that we may encounter EEXIST if we are moving
18454 * the nce as a result of a rebind operation.
18455 */
18456 switch (err) {
18457 case 0:
18458 ipif->ipif_added_nce = 1;
18459 nce->nce_ipif_cnt++;
18460 break;
18461 case EEXIST:
18462 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18463 ill->ill_name));
18464 if (!NCE_MYADDR(nce->nce_common)) {
18465 /*
18466 * A leftover nce from before this address
18467 * existed
18468 */
18469 ncec_delete(nce->nce_common);
18470 nce_refrele(nce);
18471 nce = NULL;
18472 goto retry;
18473 }
18474 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18475 nce_refrele(nce);
18476 nce = NULL;
18477 ip1dbg(("ipif_arp_up: NCE already exists "
18478 "for %s:%u\n", ill->ill_name,
18479 ipif->ipif_id));
18480 goto arp_up_done;
18481 }
18482 /*
18483 * Duplicate local addresses are permissible for
18484 * IPIF_POINTOPOINT interfaces which will get marked
18485 * IPIF_UNNUMBERED later in
18486 * ip_addr_availability_check().
18487 *
18488 * The nce_ipif_cnt field tracks the number of
18489 * ipifs that have nce_addr as their local address.
18490 */
18491 ipif->ipif_addr_ready = 1;
18492 ipif->ipif_added_nce = 1;
18493 nce->nce_ipif_cnt++;
18494 err = 0;
18495 break;
18496 default:
18497 ASSERT(nce == NULL);
18498 goto arp_up_done;
18499 }
18500 if (arp_no_defense) {
18501 if ((ipif->ipif_flags & IPIF_UP) &&
18502 !ipif->ipif_addr_ready)
18503 ipif_up_notify(ipif);
18504 ipif->ipif_addr_ready = 1;
18505 }
18506 } else {
18507 /* zero address. nothing to publish */
18508 ipif->ipif_addr_ready = 1;
18509 }
18510 if (nce != NULL)
18511 nce_refrele(nce);
18512 arp_up_done:
18513 if (added_ipif && err != 0)
18514 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18515 return (err);
18516 }
18517
18518 int
ipif_arp_up(ipif_t * ipif,enum ip_resolver_action res_act,boolean_t was_dup)18519 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18520 {
18521 int err = 0;
18522 ill_t *ill = ipif->ipif_ill;
18523 boolean_t first_interface, wait_for_dlpi = B_FALSE;
18524
18525 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18526 ill_t *, ill, ipif_t *, ipif);
18527
18528 /*
18529 * need to bring up ARP or setup mcast mapping only
18530 * when the first interface is coming UP.
18531 */
18532 first_interface = (ill->ill_ipif_up_count == 0 &&
18533 ill->ill_ipif_dup_count == 0 && !was_dup);
18534
18535 if (res_act == Res_act_initial && first_interface) {
18536 /*
18537 * Send ATTACH + BIND
18538 */
18539 err = arp_ll_up(ill);
18540 if (err != EINPROGRESS && err != 0)
18541 return (err);
18542
18543 /*
18544 * Add NCE for local address. Start DAD.
18545 * we'll wait to hear that DAD has finished
18546 * before using the interface.
18547 */
18548 if (err == EINPROGRESS)
18549 wait_for_dlpi = B_TRUE;
18550 }
18551
18552 if (!wait_for_dlpi)
18553 (void) ipif_arp_up_done_tail(ipif, res_act);
18554
18555 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18556 }
18557
18558 /*
18559 * Finish processing of "arp_up" after all the DLPI message
18560 * exchanges have completed between arp and the driver.
18561 */
18562 void
arp_bringup_done(ill_t * ill,int err)18563 arp_bringup_done(ill_t *ill, int err)
18564 {
18565 mblk_t *mp1;
18566 ipif_t *ipif;
18567 conn_t *connp = NULL;
18568 ipsq_t *ipsq;
18569 queue_t *q;
18570
18571 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18572
18573 ASSERT(IAM_WRITER_ILL(ill));
18574
18575 ipsq = ill->ill_phyint->phyint_ipsq;
18576 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18577 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18578 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18579 if (mp1 == NULL) /* bringup was aborted by the user */
18580 return;
18581
18582 /*
18583 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18584 * must have an associated conn_t. Otherwise, we're bringing this
18585 * interface back up as part of handling an asynchronous event (e.g.,
18586 * physical address change).
18587 */
18588 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18589 ASSERT(connp != NULL);
18590 q = CONNP_TO_WQ(connp);
18591 } else {
18592 ASSERT(connp == NULL);
18593 q = ill->ill_rq;
18594 }
18595 if (err == 0) {
18596 if (ipif->ipif_isv6) {
18597 if ((err = ipif_up_done_v6(ipif)) != 0)
18598 ip0dbg(("arp_bringup_done: init failed\n"));
18599 } else {
18600 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18601 if (err != 0 ||
18602 (err = ipif_up_done(ipif)) != 0) {
18603 ip0dbg(("arp_bringup_done: "
18604 "init failed err %x\n", err));
18605 (void) ipif_arp_down(ipif);
18606 }
18607
18608 }
18609 } else {
18610 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18611 }
18612
18613 if ((err == 0) && (ill->ill_up_ipifs)) {
18614 err = ill_up_ipifs(ill, q, mp1);
18615 if (err == EINPROGRESS)
18616 return;
18617 }
18618
18619 /*
18620 * If we have a moved ipif to bring up, and everything has succeeded
18621 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18622 * down -- the admin can try to bring it up by hand if need be.
18623 */
18624 if (ill->ill_move_ipif != NULL) {
18625 ipif = ill->ill_move_ipif;
18626 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18627 ipif->ipif_ill->ill_name));
18628 ill->ill_move_ipif = NULL;
18629 if (err == 0) {
18630 err = ipif_up(ipif, q, mp1);
18631 if (err == EINPROGRESS)
18632 return;
18633 }
18634 }
18635
18636 /*
18637 * The operation must complete without EINPROGRESS since
18638 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18639 * Otherwise, the operation will be stuck forever in the ipsq.
18640 */
18641 ASSERT(err != EINPROGRESS);
18642 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18643 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18644 int, ipsq->ipsq_xop->ipx_current_ioctl,
18645 ill_t *, ill, ipif_t *, ipif);
18646 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18647 } else {
18648 ipsq_current_finish(ipsq);
18649 }
18650 }
18651
18652 /*
18653 * Finish processing of arp replumb after all the DLPI message
18654 * exchanges have completed between arp and the driver.
18655 */
18656 void
arp_replumb_done(ill_t * ill,int err)18657 arp_replumb_done(ill_t *ill, int err)
18658 {
18659 mblk_t *mp1;
18660 ipif_t *ipif;
18661 conn_t *connp = NULL;
18662 ipsq_t *ipsq;
18663 queue_t *q;
18664
18665 ASSERT(IAM_WRITER_ILL(ill));
18666
18667 ipsq = ill->ill_phyint->phyint_ipsq;
18668 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18669 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18670 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18671 if (mp1 == NULL) {
18672 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18673 ipsq->ipsq_xop->ipx_current_ioctl));
18674 /* bringup was aborted by the user */
18675 return;
18676 }
18677 /*
18678 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18679 * must have an associated conn_t. Otherwise, we're bringing this
18680 * interface back up as part of handling an asynchronous event (e.g.,
18681 * physical address change).
18682 */
18683 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18684 ASSERT(connp != NULL);
18685 q = CONNP_TO_WQ(connp);
18686 } else {
18687 ASSERT(connp == NULL);
18688 q = ill->ill_rq;
18689 }
18690 if ((err == 0) && (ill->ill_up_ipifs)) {
18691 err = ill_up_ipifs(ill, q, mp1);
18692 if (err == EINPROGRESS)
18693 return;
18694 }
18695 /*
18696 * The operation must complete without EINPROGRESS since
18697 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18698 * Otherwise, the operation will be stuck forever in the ipsq.
18699 */
18700 ASSERT(err != EINPROGRESS);
18701 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18702 DTRACE_PROBE4(ipif__ioctl, char *,
18703 "arp_replumb_done finish",
18704 int, ipsq->ipsq_xop->ipx_current_ioctl,
18705 ill_t *, ill, ipif_t *, ipif);
18706 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18707 } else {
18708 ipsq_current_finish(ipsq);
18709 }
18710 }
18711
18712 void
ipif_up_notify(ipif_t * ipif)18713 ipif_up_notify(ipif_t *ipif)
18714 {
18715 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18716 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18717 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18718 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18719 NE_LIF_UP, NULL, 0);
18720 }
18721
18722 /*
18723 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18724 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on
18725 * TPI end points with STREAMS modules pushed above. This is assured by not
18726 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18727 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18728 * while unwinding from the ispq and that could be a thread from the bottom.
18729 */
18730 /* ARGSUSED */
18731 int
ip_sioctl_ilb_cmd(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * arg)18732 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18733 ip_ioctl_cmd_t *ipip, void *arg)
18734 {
18735 mblk_t *cmd_mp = mp->b_cont->b_cont;
18736 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18737 int ret = 0;
18738 int i;
18739 size_t size;
18740 ip_stack_t *ipst;
18741 zoneid_t zoneid;
18742 ilb_stack_t *ilbs;
18743
18744 ipst = CONNQ_TO_IPST(q);
18745 ilbs = ipst->ips_netstack->netstack_ilb;
18746 zoneid = Q_TO_CONN(q)->conn_zoneid;
18747
18748 switch (command) {
18749 case ILB_CREATE_RULE: {
18750 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18751
18752 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18753 ret = EINVAL;
18754 break;
18755 }
18756
18757 ret = ilb_rule_add(ilbs, zoneid, cmd);
18758 break;
18759 }
18760 case ILB_DESTROY_RULE:
18761 case ILB_ENABLE_RULE:
18762 case ILB_DISABLE_RULE: {
18763 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18764
18765 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18766 ret = EINVAL;
18767 break;
18768 }
18769
18770 if (cmd->flags & ILB_RULE_ALLRULES) {
18771 if (command == ILB_DESTROY_RULE) {
18772 ilb_rule_del_all(ilbs, zoneid);
18773 break;
18774 } else if (command == ILB_ENABLE_RULE) {
18775 ilb_rule_enable_all(ilbs, zoneid);
18776 break;
18777 } else if (command == ILB_DISABLE_RULE) {
18778 ilb_rule_disable_all(ilbs, zoneid);
18779 break;
18780 }
18781 } else {
18782 if (command == ILB_DESTROY_RULE) {
18783 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18784 } else if (command == ILB_ENABLE_RULE) {
18785 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18786 NULL);
18787 } else if (command == ILB_DISABLE_RULE) {
18788 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18789 NULL);
18790 }
18791 }
18792 break;
18793 }
18794 case ILB_NUM_RULES: {
18795 ilb_num_rules_cmd_t *cmd;
18796
18797 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18798 ret = EINVAL;
18799 break;
18800 }
18801 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18802 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18803 break;
18804 }
18805 case ILB_RULE_NAMES: {
18806 ilb_rule_names_cmd_t *cmd;
18807
18808 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18809 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18810 cmd->num_names == 0) {
18811 ret = EINVAL;
18812 break;
18813 }
18814 size = cmd->num_names * ILB_RULE_NAMESZ;
18815 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18816 size != cmd_mp->b_wptr) {
18817 ret = EINVAL;
18818 break;
18819 }
18820 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18821 break;
18822 }
18823 case ILB_NUM_SERVERS: {
18824 ilb_num_servers_cmd_t *cmd;
18825
18826 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18827 ret = EINVAL;
18828 break;
18829 }
18830 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18831 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18832 &(cmd->num));
18833 break;
18834 }
18835 case ILB_LIST_RULE: {
18836 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18837
18838 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18839 ret = EINVAL;
18840 break;
18841 }
18842 ret = ilb_rule_list(ilbs, zoneid, cmd);
18843 break;
18844 }
18845 case ILB_LIST_SERVERS: {
18846 ilb_servers_info_cmd_t *cmd;
18847
18848 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18849 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18850 cmd->num_servers == 0) {
18851 ret = EINVAL;
18852 break;
18853 }
18854 size = cmd->num_servers * sizeof (ilb_server_info_t);
18855 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18856 size != cmd_mp->b_wptr) {
18857 ret = EINVAL;
18858 break;
18859 }
18860
18861 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18862 &cmd->num_servers);
18863 break;
18864 }
18865 case ILB_ADD_SERVERS: {
18866 ilb_servers_info_cmd_t *cmd;
18867 ilb_rule_t *rule;
18868
18869 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18870 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18871 ret = EINVAL;
18872 break;
18873 }
18874 size = cmd->num_servers * sizeof (ilb_server_info_t);
18875 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18876 size != cmd_mp->b_wptr) {
18877 ret = EINVAL;
18878 break;
18879 }
18880 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18881 if (rule == NULL) {
18882 ASSERT(ret != 0);
18883 break;
18884 }
18885 for (i = 0; i < cmd->num_servers; i++) {
18886 ilb_server_info_t *s;
18887
18888 s = &cmd->servers[i];
18889 s->err = ilb_server_add(ilbs, rule, s);
18890 }
18891 ILB_RULE_REFRELE(rule);
18892 break;
18893 }
18894 case ILB_DEL_SERVERS:
18895 case ILB_ENABLE_SERVERS:
18896 case ILB_DISABLE_SERVERS: {
18897 ilb_servers_cmd_t *cmd;
18898 ilb_rule_t *rule;
18899 int (*f)();
18900
18901 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18902 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18903 ret = EINVAL;
18904 break;
18905 }
18906 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18907 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18908 size != cmd_mp->b_wptr) {
18909 ret = EINVAL;
18910 break;
18911 }
18912
18913 if (command == ILB_DEL_SERVERS)
18914 f = ilb_server_del;
18915 else if (command == ILB_ENABLE_SERVERS)
18916 f = ilb_server_enable;
18917 else if (command == ILB_DISABLE_SERVERS)
18918 f = ilb_server_disable;
18919
18920 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18921 if (rule == NULL) {
18922 ASSERT(ret != 0);
18923 break;
18924 }
18925
18926 for (i = 0; i < cmd->num_servers; i++) {
18927 ilb_server_arg_t *s;
18928
18929 s = &cmd->servers[i];
18930 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18931 }
18932 ILB_RULE_REFRELE(rule);
18933 break;
18934 }
18935 case ILB_LIST_NAT_TABLE: {
18936 ilb_list_nat_cmd_t *cmd;
18937
18938 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18939 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18940 ret = EINVAL;
18941 break;
18942 }
18943 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18944 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18945 size != cmd_mp->b_wptr) {
18946 ret = EINVAL;
18947 break;
18948 }
18949
18950 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18951 &cmd->flags);
18952 break;
18953 }
18954 case ILB_LIST_STICKY_TABLE: {
18955 ilb_list_sticky_cmd_t *cmd;
18956
18957 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18958 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18959 ret = EINVAL;
18960 break;
18961 }
18962 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18963 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18964 size != cmd_mp->b_wptr) {
18965 ret = EINVAL;
18966 break;
18967 }
18968
18969 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18970 &cmd->num_sticky, &cmd->flags);
18971 break;
18972 }
18973 default:
18974 ret = EINVAL;
18975 break;
18976 }
18977 done:
18978 return (ret);
18979 }
18980
18981 /* Remove all cache entries for this logical interface */
18982 void
ipif_nce_down(ipif_t * ipif)18983 ipif_nce_down(ipif_t *ipif)
18984 {
18985 ill_t *ill = ipif->ipif_ill;
18986 nce_t *nce;
18987
18988 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18989 ill_t *, ill, ipif_t *, ipif);
18990 if (ipif->ipif_added_nce) {
18991 if (ipif->ipif_isv6)
18992 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18993 else
18994 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18995 if (nce != NULL) {
18996 if (--nce->nce_ipif_cnt == 0)
18997 ncec_delete(nce->nce_common);
18998 ipif->ipif_added_nce = 0;
18999 nce_refrele(nce);
19000 } else {
19001 /*
19002 * nce may already be NULL because it was already
19003 * flushed, e.g., due to a call to nce_flush
19004 */
19005 ipif->ipif_added_nce = 0;
19006 }
19007 }
19008 /*
19009 * Make IPMP aware of the deleted data address.
19010 */
19011 if (IS_IPMP(ill))
19012 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
19013
19014 /*
19015 * Remove all other nces dependent on this ill when the last ipif
19016 * is going away.
19017 */
19018 if (ill->ill_ipif_up_count == 0) {
19019 ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
19020 (uchar_t *)ill, ill->ill_ipst);
19021 if (IS_UNDER_IPMP(ill))
19022 nce_flush(ill, B_TRUE);
19023 }
19024 }
19025
19026 /*
19027 * find the first interface that uses usill for its source address.
19028 */
19029 ill_t *
ill_lookup_usesrc(ill_t * usill)19030 ill_lookup_usesrc(ill_t *usill)
19031 {
19032 ip_stack_t *ipst = usill->ill_ipst;
19033 ill_t *ill;
19034
19035 ASSERT(usill != NULL);
19036
19037 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19038 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19039 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19040 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19041 ill = ill->ill_usesrc_grp_next) {
19042 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19043 !ILL_IS_CONDEMNED(ill)) {
19044 ill_refhold(ill);
19045 break;
19046 }
19047 }
19048 rw_exit(&ipst->ips_ill_g_lock);
19049 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19050 return (ill);
19051 }
19052
19053 /*
19054 * This comment applies to both ip_sioctl_get_ifhwaddr and
19055 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19056 * is the same.
19057 *
19058 * The goal here is to find an IP interface that corresponds to the name
19059 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19060 * chain and to fill out a sockaddr/sockaddr_storage structure with the
19061 * mac address.
19062 *
19063 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19064 * of different reasons:
19065 * ENXIO - the device name is not known to IP.
19066 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19067 * by ill_phys_addr not pointing to an actual address.
19068 * EPFNOSUPPORT - this will indicate that a request is being made for a
19069 * mac address that will not fit in the data structure supplier (struct
19070 * sockaddr).
19071 *
19072 */
19073 /* ARGSUSED */
19074 int
ip_sioctl_get_ifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19075 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19076 ip_ioctl_cmd_t *ipip, void *if_req)
19077 {
19078 struct sockaddr *sock;
19079 struct ifreq *ifr;
19080 mblk_t *mp1;
19081 ill_t *ill;
19082
19083 ASSERT(ipif != NULL);
19084 ill = ipif->ipif_ill;
19085
19086 if (ill->ill_phys_addr == NULL) {
19087 return (EADDRNOTAVAIL);
19088 }
19089 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19090 return (EPFNOSUPPORT);
19091 }
19092
19093 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19094
19095 /* Existence of mp1 has been checked in ip_wput_nondata */
19096 mp1 = mp->b_cont->b_cont;
19097 ifr = (struct ifreq *)mp1->b_rptr;
19098
19099 sock = &ifr->ifr_addr;
19100 /*
19101 * The "family" field in the returned structure is set to a value
19102 * that represents the type of device to which the address belongs.
19103 * The value returned may differ to that on Linux but it will still
19104 * represent the correct symbol on Solaris.
19105 */
19106 sock->sa_family = arp_hw_type(ill->ill_mactype);
19107 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19108
19109 return (0);
19110 }
19111
19112 /*
19113 * The expection of applications using SIOCGIFHWADDR is that data will
19114 * be returned in the sa_data field of the sockaddr structure. With
19115 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19116 * equivalent. In light of this, struct sockaddr_dl is used as it
19117 * offers more space for address storage in sll_data.
19118 */
19119 /* ARGSUSED */
19120 int
ip_sioctl_get_lifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19121 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19122 ip_ioctl_cmd_t *ipip, void *if_req)
19123 {
19124 struct sockaddr_dl *sock;
19125 struct lifreq *lifr;
19126 mblk_t *mp1;
19127 ill_t *ill;
19128
19129 ASSERT(ipif != NULL);
19130 ill = ipif->ipif_ill;
19131
19132 if (ill->ill_phys_addr == NULL) {
19133 return (EADDRNOTAVAIL);
19134 }
19135 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19136 return (EPFNOSUPPORT);
19137 }
19138
19139 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19140
19141 /* Existence of mp1 has been checked in ip_wput_nondata */
19142 mp1 = mp->b_cont->b_cont;
19143 lifr = (struct lifreq *)mp1->b_rptr;
19144
19145 /*
19146 * sockaddr_ll is used here because it is also the structure used in
19147 * responding to the same ioctl in sockpfp. The only other choice is
19148 * sockaddr_dl which contains fields that are not required here
19149 * because its purpose is different.
19150 */
19151 lifr->lifr_type = ill->ill_type;
19152 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19153 sock->sdl_family = AF_LINK;
19154 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19155 sock->sdl_type = ill->ill_mactype;
19156 sock->sdl_nlen = 0;
19157 sock->sdl_slen = 0;
19158 sock->sdl_alen = ill->ill_phys_addr_length;
19159 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19160
19161 return (0);
19162 }
19163