1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/t_lock.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/buf.h>
31 #include <sys/conf.h>
32 #include <sys/cred.h>
33 #include <sys/kmem.h>
34 #include <sys/sysmacros.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/debug.h>
38 #include <sys/errno.h>
39 #include <sys/time.h>
40 #include <sys/file.h>
41 #include <sys/user.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/strsun.h>
45 #include <sys/sunddi.h>
46 #include <sys/esunddi.h>
47 #include <sys/flock.h>
48 #include <sys/modctl.h>
49 #include <sys/cmn_err.h>
50 #include <sys/vmsystm.h>
51 #include <sys/policy.h>
52
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55
56 #include <sys/isa_defs.h>
57 #include <sys/inttypes.h>
58 #include <sys/systm.h>
59 #include <sys/cpuvar.h>
60 #include <sys/filio.h>
61 #include <sys/sendfile.h>
62 #include <sys/ddi.h>
63 #include <vm/seg.h>
64 #include <vm/seg_map.h>
65 #include <vm/seg_kpm.h>
66
67 #include <fs/sockfs/nl7c.h>
68 #include <fs/sockfs/sockcommon.h>
69 #include <fs/sockfs/sockfilter_impl.h>
70 #include <fs/sockfs/socktpi.h>
71
72 #ifdef SOCK_TEST
73 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */
74 #else
75 #define do_useracc 1
76 #endif /* SOCK_TEST */
77
78 extern int xnet_truncate_print;
79
80 extern void nl7c_init(void);
81 extern int sockfs_defer_nl7c_init;
82
83 /*
84 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
85 * as there isn't a formal definition of IOV_MAX ???
86 */
87 #define MSG_MAXIOVLEN 16
88
89 /*
90 * Kernel component of socket creation.
91 *
92 * The socket library determines which version number to use.
93 * First the library calls this with a NULL devpath. If this fails
94 * to find a transport (using solookup) the library will look in /etc/netconfig
95 * for the appropriate transport. If one is found it will pass in the
96 * devpath for the kernel to use.
97 */
98 int
so_socket(int family,int type,int protocol,char * devpath,int version)99 so_socket(int family, int type, int protocol, char *devpath, int version)
100 {
101 struct sonode *so;
102 vnode_t *vp;
103 struct file *fp;
104 int fd;
105 int error;
106
107 if (devpath != NULL) {
108 char *buf;
109 size_t kdevpathlen = 0;
110
111 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
112 if ((error = copyinstr(devpath, buf,
113 MAXPATHLEN, &kdevpathlen)) != 0) {
114 kmem_free(buf, MAXPATHLEN);
115 return (set_errno(error));
116 }
117 so = socket_create(family, type, protocol, buf, NULL,
118 SOCKET_SLEEP, version, CRED(), &error);
119 kmem_free(buf, MAXPATHLEN);
120 } else {
121 so = socket_create(family, type, protocol, NULL, NULL,
122 SOCKET_SLEEP, version, CRED(), &error);
123 }
124 if (so == NULL)
125 return (set_errno(error));
126
127 /* Allocate a file descriptor for the socket */
128 vp = SOTOV(so);
129 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
130 (void) socket_close(so, 0, CRED());
131 socket_destroy(so);
132 return (set_errno(error));
133 }
134
135 /*
136 * Now fill in the entries that falloc reserved
137 */
138 mutex_exit(&fp->f_tlock);
139 setf(fd, fp);
140
141 return (fd);
142 }
143
144 /*
145 * Map from a file descriptor to a socket node.
146 * Returns with the file descriptor held i.e. the caller has to
147 * use releasef when done with the file descriptor.
148 */
149 struct sonode *
getsonode(int sock,int * errorp,file_t ** fpp)150 getsonode(int sock, int *errorp, file_t **fpp)
151 {
152 file_t *fp;
153 vnode_t *vp;
154 struct sonode *so;
155
156 if ((fp = getf(sock)) == NULL) {
157 *errorp = EBADF;
158 eprintline(*errorp);
159 return (NULL);
160 }
161 vp = fp->f_vnode;
162 /* Check if it is a socket */
163 if (vp->v_type != VSOCK) {
164 releasef(sock);
165 *errorp = ENOTSOCK;
166 eprintline(*errorp);
167 return (NULL);
168 }
169 /*
170 * Use the stream head to find the real socket vnode.
171 * This is needed when namefs sits above sockfs.
172 */
173 if (vp->v_stream) {
174 ASSERT(vp->v_stream->sd_vnode);
175 vp = vp->v_stream->sd_vnode;
176
177 so = VTOSO(vp);
178 if (so->so_version == SOV_STREAM) {
179 releasef(sock);
180 *errorp = ENOTSOCK;
181 eprintsoline(so, *errorp);
182 return (NULL);
183 }
184 } else {
185 so = VTOSO(vp);
186 }
187 if (fpp)
188 *fpp = fp;
189 return (so);
190 }
191
192 /*
193 * Allocate and copyin a sockaddr.
194 * Ensures NULL termination for AF_UNIX addresses by extending them
195 * with one NULL byte if need be. Verifies that the length is not
196 * excessive to prevent an application from consuming all of kernel
197 * memory. Returns NULL when an error occurred.
198 */
199 static struct sockaddr *
copyin_name(struct sonode * so,struct sockaddr * name,socklen_t * namelenp,int * errorp)200 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
201 int *errorp)
202 {
203 char *faddr;
204 size_t namelen = (size_t)*namelenp;
205
206 ASSERT(namelen != 0);
207 if (namelen > SO_MAXARGSIZE) {
208 *errorp = EINVAL;
209 eprintsoline(so, *errorp);
210 return (NULL);
211 }
212
213 faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
214 if (copyin(name, faddr, namelen)) {
215 kmem_free(faddr, namelen);
216 *errorp = EFAULT;
217 eprintsoline(so, *errorp);
218 return (NULL);
219 }
220
221 /*
222 * Add space for NULL termination if needed.
223 * Do a quick check if the last byte is NUL.
224 */
225 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
226 /* Check if there is any NULL termination */
227 size_t i;
228 int foundnull = 0;
229
230 for (i = sizeof (name->sa_family); i < namelen; i++) {
231 if (faddr[i] == '\0') {
232 foundnull = 1;
233 break;
234 }
235 }
236 if (!foundnull) {
237 /* Add extra byte for NUL padding */
238 char *nfaddr;
239
240 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
241 bcopy(faddr, nfaddr, namelen);
242 kmem_free(faddr, namelen);
243
244 /* NUL terminate */
245 nfaddr[namelen] = '\0';
246 namelen++;
247 ASSERT((socklen_t)namelen == namelen);
248 *namelenp = (socklen_t)namelen;
249 faddr = nfaddr;
250 }
251 }
252 return ((struct sockaddr *)faddr);
253 }
254
255 /*
256 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
257 */
258 static int
copyout_arg(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)259 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
260 void *kaddr, socklen_t klen)
261 {
262 if (uaddr != NULL) {
263 if (ulen > klen)
264 ulen = klen;
265
266 if (ulen != 0) {
267 if (copyout(kaddr, uaddr, ulen))
268 return (EFAULT);
269 }
270 } else
271 ulen = 0;
272
273 if (ulenp != NULL) {
274 if (copyout(&ulen, ulenp, sizeof (ulen)))
275 return (EFAULT);
276 }
277 return (0);
278 }
279
280 /*
281 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
282 * If klen is greater than ulen it still uses the non-truncated
283 * klen to update ulenp.
284 */
285 static int
copyout_name(void * uaddr,socklen_t ulen,void * ulenp,void * kaddr,socklen_t klen)286 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
287 void *kaddr, socklen_t klen)
288 {
289 if (uaddr != NULL) {
290 if (ulen >= klen)
291 ulen = klen;
292 else if (ulen != 0 && xnet_truncate_print) {
293 printf("sockfs: truncating copyout of address using "
294 "XNET semantics for pid = %d. Lengths %d, %d\n",
295 curproc->p_pid, klen, ulen);
296 }
297
298 if (ulen != 0) {
299 if (copyout(kaddr, uaddr, ulen))
300 return (EFAULT);
301 } else
302 klen = 0;
303 } else
304 klen = 0;
305
306 if (ulenp != NULL) {
307 if (copyout(&klen, ulenp, sizeof (klen)))
308 return (EFAULT);
309 }
310 return (0);
311 }
312
313 /*
314 * The socketpair() code in libsocket creates two sockets (using
315 * the /etc/netconfig fallback if needed) before calling this routine
316 * to connect the two sockets together.
317 *
318 * For a SOCK_STREAM socketpair a listener is needed - in that case this
319 * routine will create a new file descriptor as part of accepting the
320 * connection. The library socketpair() will check if svs[2] has changed
321 * in which case it will close the changed fd.
322 *
323 * Note that this code could use the TPI feature of accepting the connection
324 * on the listening endpoint. However, that would require significant changes
325 * to soaccept.
326 */
327 int
so_socketpair(int sv[2])328 so_socketpair(int sv[2])
329 {
330 int svs[2];
331 struct sonode *so1, *so2;
332 int error;
333 struct sockaddr_ux *name;
334 size_t namelen;
335 sotpi_info_t *sti1;
336 sotpi_info_t *sti2;
337
338 dprint(1, ("so_socketpair(%p)\n", (void *)sv));
339
340 error = useracc(sv, sizeof (svs), B_WRITE);
341 if (error && do_useracc)
342 return (set_errno(EFAULT));
343
344 if (copyin(sv, svs, sizeof (svs)))
345 return (set_errno(EFAULT));
346
347 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
348 return (set_errno(error));
349
350 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
351 releasef(svs[0]);
352 return (set_errno(error));
353 }
354
355 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
356 error = EOPNOTSUPP;
357 goto done;
358 }
359
360 sti1 = SOTOTPI(so1);
361 sti2 = SOTOTPI(so2);
362
363 /*
364 * The code below makes assumptions about the "sockfs" implementation.
365 * So make sure that the correct implementation is really used.
366 */
367 ASSERT(so1->so_ops == &sotpi_sonodeops);
368 ASSERT(so2->so_ops == &sotpi_sonodeops);
369
370 if (so1->so_type == SOCK_DGRAM) {
371 /*
372 * Bind both sockets and connect them with each other.
373 * Need to allocate name/namelen for soconnect.
374 */
375 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
376 if (error) {
377 eprintsoline(so1, error);
378 goto done;
379 }
380 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
381 if (error) {
382 eprintsoline(so2, error);
383 goto done;
384 }
385 namelen = sizeof (struct sockaddr_ux);
386 name = kmem_alloc(namelen, KM_SLEEP);
387 name->sou_family = AF_UNIX;
388 name->sou_addr = sti2->sti_ux_laddr;
389 error = socket_connect(so1,
390 (struct sockaddr *)name,
391 (socklen_t)namelen,
392 0, _SOCONNECT_NOXLATE, CRED());
393 if (error) {
394 kmem_free(name, namelen);
395 eprintsoline(so1, error);
396 goto done;
397 }
398 name->sou_addr = sti1->sti_ux_laddr;
399 error = socket_connect(so2,
400 (struct sockaddr *)name,
401 (socklen_t)namelen,
402 0, _SOCONNECT_NOXLATE, CRED());
403 kmem_free(name, namelen);
404 if (error) {
405 eprintsoline(so2, error);
406 goto done;
407 }
408 releasef(svs[0]);
409 releasef(svs[1]);
410 } else {
411 /*
412 * Bind both sockets, with so1 being a listener.
413 * Connect so2 to so1 - nonblocking to avoid waiting for
414 * soaccept to complete.
415 * Accept a connection on so1. Pass out the new fd as sv[0].
416 * The library will detect the changed fd and close
417 * the original one.
418 */
419 struct sonode *nso;
420 struct vnode *nvp;
421 struct file *nfp;
422 int nfd;
423
424 /*
425 * We could simply call socket_listen() here (which would do the
426 * binding automatically) if the code didn't rely on passing
427 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
428 */
429 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
430 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
431 CRED());
432 if (error) {
433 eprintsoline(so1, error);
434 goto done;
435 }
436 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
437 if (error) {
438 eprintsoline(so2, error);
439 goto done;
440 }
441
442 namelen = sizeof (struct sockaddr_ux);
443 name = kmem_alloc(namelen, KM_SLEEP);
444 name->sou_family = AF_UNIX;
445 name->sou_addr = sti1->sti_ux_laddr;
446 error = socket_connect(so2,
447 (struct sockaddr *)name,
448 (socklen_t)namelen,
449 FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
450 kmem_free(name, namelen);
451 if (error) {
452 if (error != EINPROGRESS) {
453 eprintsoline(so2, error); goto done;
454 }
455 }
456
457 error = socket_accept(so1, 0, CRED(), &nso);
458 if (error) {
459 eprintsoline(so1, error);
460 goto done;
461 }
462
463 /* wait for so2 being SS_CONNECTED ignoring signals */
464 mutex_enter(&so2->so_lock);
465 error = sowaitconnected(so2, 0, 1);
466 mutex_exit(&so2->so_lock);
467 if (error != 0) {
468 (void) socket_close(nso, 0, CRED());
469 socket_destroy(nso);
470 eprintsoline(so2, error);
471 goto done;
472 }
473
474 nvp = SOTOV(nso);
475 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
476 (void) socket_close(nso, 0, CRED());
477 socket_destroy(nso);
478 eprintsoline(nso, error);
479 goto done;
480 }
481 /*
482 * fill in the entries that falloc reserved
483 */
484 mutex_exit(&nfp->f_tlock);
485 setf(nfd, nfp);
486
487 releasef(svs[0]);
488 releasef(svs[1]);
489 svs[0] = nfd;
490
491 /*
492 * The socketpair library routine will close the original
493 * svs[0] when this code passes out a different file
494 * descriptor.
495 */
496 if (copyout(svs, sv, sizeof (svs))) {
497 (void) closeandsetf(nfd, NULL);
498 eprintline(EFAULT);
499 return (set_errno(EFAULT));
500 }
501 }
502 return (0);
503
504 done:
505 releasef(svs[0]);
506 releasef(svs[1]);
507 return (set_errno(error));
508 }
509
510 int
bind(int sock,struct sockaddr * name,socklen_t namelen,int version)511 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
512 {
513 struct sonode *so;
514 int error;
515
516 dprint(1, ("bind(%d, %p, %d)\n",
517 sock, (void *)name, namelen));
518
519 if ((so = getsonode(sock, &error, NULL)) == NULL)
520 return (set_errno(error));
521
522 /* Allocate and copyin name */
523 /*
524 * X/Open test does not expect EFAULT with NULL name and non-zero
525 * namelen.
526 */
527 if (name != NULL && namelen != 0) {
528 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
529 name = copyin_name(so, name, &namelen, &error);
530 if (name == NULL) {
531 releasef(sock);
532 return (set_errno(error));
533 }
534 } else {
535 name = NULL;
536 namelen = 0;
537 }
538
539 switch (version) {
540 default:
541 error = socket_bind(so, name, namelen, 0, CRED());
542 break;
543 case SOV_XPG4_2:
544 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
545 break;
546 case SOV_SOCKBSD:
547 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
548 break;
549 }
550 done:
551 releasef(sock);
552 if (name != NULL)
553 kmem_free(name, (size_t)namelen);
554
555 if (error)
556 return (set_errno(error));
557 return (0);
558 }
559
560 /* ARGSUSED2 */
561 int
listen(int sock,int backlog,int version)562 listen(int sock, int backlog, int version)
563 {
564 struct sonode *so;
565 int error;
566
567 dprint(1, ("listen(%d, %d)\n",
568 sock, backlog));
569
570 if ((so = getsonode(sock, &error, NULL)) == NULL)
571 return (set_errno(error));
572
573 error = socket_listen(so, backlog, CRED());
574
575 releasef(sock);
576 if (error)
577 return (set_errno(error));
578 return (0);
579 }
580
581 /*ARGSUSED3*/
582 int
accept(int sock,struct sockaddr * name,socklen_t * namelenp,int version)583 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
584 {
585 struct sonode *so;
586 file_t *fp;
587 int error;
588 socklen_t namelen;
589 struct sonode *nso;
590 struct vnode *nvp;
591 struct file *nfp;
592 int nfd;
593 struct sockaddr *addrp;
594 socklen_t addrlen;
595
596 dprint(1, ("accept(%d, %p, %p)\n",
597 sock, (void *)name, (void *)namelenp));
598
599 if ((so = getsonode(sock, &error, &fp)) == NULL)
600 return (set_errno(error));
601
602 if (name != NULL) {
603 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
604 if (copyin(namelenp, &namelen, sizeof (namelen))) {
605 releasef(sock);
606 return (set_errno(EFAULT));
607 }
608 if (namelen != 0) {
609 error = useracc(name, (size_t)namelen, B_WRITE);
610 if (error && do_useracc) {
611 releasef(sock);
612 return (set_errno(EFAULT));
613 }
614 } else
615 name = NULL;
616 } else {
617 namelen = 0;
618 }
619
620 /*
621 * Allocate the user fd before socket_accept() in order to
622 * catch EMFILE errors before calling socket_accept().
623 */
624 if ((nfd = ufalloc(0)) == -1) {
625 eprintsoline(so, EMFILE);
626 releasef(sock);
627 return (set_errno(EMFILE));
628 }
629 error = socket_accept(so, fp->f_flag, CRED(), &nso);
630 if (error) {
631 setf(nfd, NULL);
632 releasef(sock);
633 return (set_errno(error));
634 }
635
636 nvp = SOTOV(nso);
637
638 ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
639 if (namelen != 0) {
640 addrlen = so->so_max_addr_len;
641 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
642
643 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
644 &addrlen, B_TRUE, CRED())) == 0) {
645 error = copyout_name(name, namelen, namelenp,
646 addrp, addrlen);
647 } else {
648 ASSERT(error == EINVAL || error == ENOTCONN);
649 error = ECONNABORTED;
650 }
651 kmem_free(addrp, so->so_max_addr_len);
652 }
653
654 if (error) {
655 setf(nfd, NULL);
656 (void) socket_close(nso, 0, CRED());
657 socket_destroy(nso);
658 releasef(sock);
659 return (set_errno(error));
660 }
661 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
662 setf(nfd, NULL);
663 (void) socket_close(nso, 0, CRED());
664 socket_destroy(nso);
665 eprintsoline(so, error);
666 releasef(sock);
667 return (set_errno(error));
668 }
669 /*
670 * fill in the entries that falloc reserved
671 */
672 nfp->f_vnode = nvp;
673 mutex_exit(&nfp->f_tlock);
674 setf(nfd, nfp);
675
676 /*
677 * Copy FNDELAY and FNONBLOCK from listener to acceptor
678 */
679 if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
680 uint_t oflag = nfp->f_flag;
681 int arg = 0;
682
683 if (so->so_state & SS_NONBLOCK)
684 arg |= FNONBLOCK;
685 else if (so->so_state & SS_NDELAY)
686 arg |= FNDELAY;
687
688 /*
689 * This code is a simplification of the F_SETFL code in fcntl()
690 * Ignore any errors from VOP_SETFL.
691 */
692 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
693 != 0) {
694 eprintsoline(so, error);
695 error = 0;
696 } else {
697 mutex_enter(&nfp->f_tlock);
698 nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
699 nfp->f_flag |= arg;
700 mutex_exit(&nfp->f_tlock);
701 }
702 }
703 releasef(sock);
704 return (nfd);
705 }
706
707 int
connect(int sock,struct sockaddr * name,socklen_t namelen,int version)708 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
709 {
710 struct sonode *so;
711 file_t *fp;
712 int error;
713
714 dprint(1, ("connect(%d, %p, %d)\n",
715 sock, (void *)name, namelen));
716
717 if ((so = getsonode(sock, &error, &fp)) == NULL)
718 return (set_errno(error));
719
720 /* Allocate and copyin name */
721 if (namelen != 0) {
722 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
723 name = copyin_name(so, name, &namelen, &error);
724 if (name == NULL) {
725 releasef(sock);
726 return (set_errno(error));
727 }
728 } else
729 name = NULL;
730
731 error = socket_connect(so, name, namelen, fp->f_flag,
732 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
733 releasef(sock);
734 if (name)
735 kmem_free(name, (size_t)namelen);
736 if (error)
737 return (set_errno(error));
738 return (0);
739 }
740
741 /*ARGSUSED2*/
742 int
shutdown(int sock,int how,int version)743 shutdown(int sock, int how, int version)
744 {
745 struct sonode *so;
746 int error;
747
748 dprint(1, ("shutdown(%d, %d)\n",
749 sock, how));
750
751 if ((so = getsonode(sock, &error, NULL)) == NULL)
752 return (set_errno(error));
753
754 error = socket_shutdown(so, how, CRED());
755
756 releasef(sock);
757 if (error)
758 return (set_errno(error));
759 return (0);
760 }
761
762 /*
763 * Common receive routine.
764 */
765 static ssize_t
recvit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags,socklen_t * namelenp,socklen_t * controllenp,int * flagsp)766 recvit(int sock,
767 struct nmsghdr *msg,
768 struct uio *uiop,
769 int flags,
770 socklen_t *namelenp,
771 socklen_t *controllenp,
772 int *flagsp)
773 {
774 struct sonode *so;
775 file_t *fp;
776 void *name;
777 socklen_t namelen;
778 void *control;
779 socklen_t controllen;
780 ssize_t len;
781 int error;
782
783 if ((so = getsonode(sock, &error, &fp)) == NULL)
784 return (set_errno(error));
785
786 len = uiop->uio_resid;
787 uiop->uio_fmode = fp->f_flag;
788 uiop->uio_extflg = UIO_COPY_CACHED;
789
790 name = msg->msg_name;
791 namelen = msg->msg_namelen;
792 control = msg->msg_control;
793 controllen = msg->msg_controllen;
794
795 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
796 MSG_DONTWAIT | MSG_XPG4_2);
797
798 error = socket_recvmsg(so, msg, uiop, CRED());
799 if (error) {
800 releasef(sock);
801 return (set_errno(error));
802 }
803 lwp_stat_update(LWP_STAT_MSGRCV, 1);
804 releasef(sock);
805
806 error = copyout_name(name, namelen, namelenp,
807 msg->msg_name, msg->msg_namelen);
808 if (error)
809 goto err;
810
811 if (flagsp != NULL) {
812 /*
813 * Clear internal flag.
814 */
815 msg->msg_flags &= ~MSG_XPG4_2;
816
817 /*
818 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
819 * when controllen is zero and there is control data to
820 * copy out.
821 */
822 if (controllen != 0 &&
823 (msg->msg_controllen > controllen || control == NULL)) {
824 dprint(1, ("recvit: CTRUNC %d %d %p\n",
825 msg->msg_controllen, controllen, control));
826
827 msg->msg_flags |= MSG_CTRUNC;
828 }
829 if (copyout(&msg->msg_flags, flagsp,
830 sizeof (msg->msg_flags))) {
831 error = EFAULT;
832 goto err;
833 }
834 }
835 /*
836 * Note: This MUST be done last. There can be no "goto err" after this
837 * point since it could make so_closefds run twice on some part
838 * of the file descriptor array.
839 */
840 if (controllen != 0) {
841 if (!(flags & MSG_XPG4_2)) {
842 /*
843 * Good old msg_accrights can only return a multiple
844 * of 4 bytes.
845 */
846 controllen &= ~((int)sizeof (uint32_t) - 1);
847 }
848 error = copyout_arg(control, controllen, controllenp,
849 msg->msg_control, msg->msg_controllen);
850 if (error)
851 goto err;
852
853 if (msg->msg_controllen > controllen || control == NULL) {
854 if (control == NULL)
855 controllen = 0;
856 so_closefds(msg->msg_control, msg->msg_controllen,
857 !(flags & MSG_XPG4_2), controllen);
858 }
859 }
860 if (msg->msg_namelen != 0)
861 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
862 if (msg->msg_controllen != 0)
863 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
864 return (len - uiop->uio_resid);
865
866 err:
867 /*
868 * If we fail and the control part contains file descriptors
869 * we have to close the fd's.
870 */
871 if (msg->msg_controllen != 0)
872 so_closefds(msg->msg_control, msg->msg_controllen,
873 !(flags & MSG_XPG4_2), 0);
874 if (msg->msg_namelen != 0)
875 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
876 if (msg->msg_controllen != 0)
877 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
878 return (set_errno(error));
879 }
880
881 /*
882 * Native system call
883 */
884 ssize_t
recv(int sock,void * buffer,size_t len,int flags)885 recv(int sock, void *buffer, size_t len, int flags)
886 {
887 struct nmsghdr lmsg;
888 struct uio auio;
889 struct iovec aiov[1];
890
891 dprint(1, ("recv(%d, %p, %ld, %d)\n",
892 sock, buffer, len, flags));
893
894 if ((ssize_t)len < 0) {
895 return (set_errno(EINVAL));
896 }
897
898 aiov[0].iov_base = buffer;
899 aiov[0].iov_len = len;
900 auio.uio_loffset = 0;
901 auio.uio_iov = aiov;
902 auio.uio_iovcnt = 1;
903 auio.uio_resid = len;
904 auio.uio_segflg = UIO_USERSPACE;
905 auio.uio_limit = 0;
906
907 lmsg.msg_namelen = 0;
908 lmsg.msg_controllen = 0;
909 lmsg.msg_flags = 0;
910 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
911 }
912
913 ssize_t
recvfrom(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t * namelenp)914 recvfrom(int sock, void *buffer, size_t len, int flags,
915 struct sockaddr *name, socklen_t *namelenp)
916 {
917 struct nmsghdr lmsg;
918 struct uio auio;
919 struct iovec aiov[1];
920
921 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
922 sock, buffer, len, flags, (void *)name, (void *)namelenp));
923
924 if ((ssize_t)len < 0) {
925 return (set_errno(EINVAL));
926 }
927
928 aiov[0].iov_base = buffer;
929 aiov[0].iov_len = len;
930 auio.uio_loffset = 0;
931 auio.uio_iov = aiov;
932 auio.uio_iovcnt = 1;
933 auio.uio_resid = len;
934 auio.uio_segflg = UIO_USERSPACE;
935 auio.uio_limit = 0;
936
937 lmsg.msg_name = (char *)name;
938 if (namelenp != NULL) {
939 if (copyin(namelenp, &lmsg.msg_namelen,
940 sizeof (lmsg.msg_namelen)))
941 return (set_errno(EFAULT));
942 } else {
943 lmsg.msg_namelen = 0;
944 }
945 lmsg.msg_controllen = 0;
946 lmsg.msg_flags = 0;
947
948 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
949 }
950
951 /*
952 * Uses the MSG_XPG4_2 flag to determine if the caller is using
953 * struct omsghdr or struct nmsghdr.
954 */
955 ssize_t
recvmsg(int sock,struct nmsghdr * msg,int flags)956 recvmsg(int sock, struct nmsghdr *msg, int flags)
957 {
958 STRUCT_DECL(nmsghdr, u_lmsg);
959 STRUCT_HANDLE(nmsghdr, umsgptr);
960 struct nmsghdr lmsg;
961 struct uio auio;
962 struct iovec aiov[MSG_MAXIOVLEN];
963 int iovcnt;
964 ssize_t len;
965 int i;
966 int *flagsp;
967 model_t model;
968
969 dprint(1, ("recvmsg(%d, %p, %d)\n",
970 sock, (void *)msg, flags));
971
972 model = get_udatamodel();
973 STRUCT_INIT(u_lmsg, model);
974 STRUCT_SET_HANDLE(umsgptr, model, msg);
975
976 if (flags & MSG_XPG4_2) {
977 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
978 return (set_errno(EFAULT));
979 flagsp = STRUCT_FADDR(umsgptr, msg_flags);
980 } else {
981 /*
982 * Assumes that nmsghdr and omsghdr are identically shaped
983 * except for the added msg_flags field.
984 */
985 if (copyin(msg, STRUCT_BUF(u_lmsg),
986 SIZEOF_STRUCT(omsghdr, model)))
987 return (set_errno(EFAULT));
988 STRUCT_FSET(u_lmsg, msg_flags, 0);
989 flagsp = NULL;
990 }
991
992 /*
993 * Code below us will kmem_alloc memory and hang it
994 * off msg_control and msg_name fields. This forces
995 * us to copy the structure to its native form.
996 */
997 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
998 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
999 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1000 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1001 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1002 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1003 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1004
1005 iovcnt = lmsg.msg_iovlen;
1006
1007 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1008 return (set_errno(EMSGSIZE));
1009 }
1010
1011 #ifdef _SYSCALL32_IMPL
1012 /*
1013 * 32-bit callers need to have their iovec expanded, while ensuring
1014 * that they can't move more than 2Gbytes of data in a single call.
1015 */
1016 if (model == DATAMODEL_ILP32) {
1017 struct iovec32 aiov32[MSG_MAXIOVLEN];
1018 ssize32_t count32;
1019
1020 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1021 iovcnt * sizeof (struct iovec32)))
1022 return (set_errno(EFAULT));
1023
1024 count32 = 0;
1025 for (i = 0; i < iovcnt; i++) {
1026 ssize32_t iovlen32;
1027
1028 iovlen32 = aiov32[i].iov_len;
1029 count32 += iovlen32;
1030 if (iovlen32 < 0 || count32 < 0)
1031 return (set_errno(EINVAL));
1032 aiov[i].iov_len = iovlen32;
1033 aiov[i].iov_base =
1034 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1035 }
1036 } else
1037 #endif /* _SYSCALL32_IMPL */
1038 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1039 return (set_errno(EFAULT));
1040 }
1041 len = 0;
1042 for (i = 0; i < iovcnt; i++) {
1043 ssize_t iovlen = aiov[i].iov_len;
1044 len += iovlen;
1045 if (iovlen < 0 || len < 0) {
1046 return (set_errno(EINVAL));
1047 }
1048 }
1049 auio.uio_loffset = 0;
1050 auio.uio_iov = aiov;
1051 auio.uio_iovcnt = iovcnt;
1052 auio.uio_resid = len;
1053 auio.uio_segflg = UIO_USERSPACE;
1054 auio.uio_limit = 0;
1055
1056 if (lmsg.msg_control != NULL &&
1057 (do_useracc == 0 ||
1058 useracc(lmsg.msg_control, lmsg.msg_controllen,
1059 B_WRITE) != 0)) {
1060 return (set_errno(EFAULT));
1061 }
1062
1063 return (recvit(sock, &lmsg, &auio, flags,
1064 STRUCT_FADDR(umsgptr, msg_namelen),
1065 STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1066 }
1067
1068 /*
1069 * Common send function.
1070 */
1071 static ssize_t
sendit(int sock,struct nmsghdr * msg,struct uio * uiop,int flags)1072 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1073 {
1074 struct sonode *so;
1075 file_t *fp;
1076 void *name;
1077 socklen_t namelen;
1078 void *control;
1079 socklen_t controllen;
1080 ssize_t len;
1081 int error;
1082
1083 if ((so = getsonode(sock, &error, &fp)) == NULL)
1084 return (set_errno(error));
1085
1086 uiop->uio_fmode = fp->f_flag;
1087
1088 if (so->so_family == AF_UNIX)
1089 uiop->uio_extflg = UIO_COPY_CACHED;
1090 else
1091 uiop->uio_extflg = UIO_COPY_DEFAULT;
1092
1093 /* Allocate and copyin name and control */
1094 name = msg->msg_name;
1095 namelen = msg->msg_namelen;
1096 if (name != NULL && namelen != 0) {
1097 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1098 name = copyin_name(so,
1099 (struct sockaddr *)name,
1100 &namelen, &error);
1101 if (name == NULL)
1102 goto done3;
1103 /* copyin_name null terminates addresses for AF_UNIX */
1104 msg->msg_namelen = namelen;
1105 msg->msg_name = name;
1106 } else {
1107 msg->msg_name = name = NULL;
1108 msg->msg_namelen = namelen = 0;
1109 }
1110
1111 control = msg->msg_control;
1112 controllen = msg->msg_controllen;
1113 if ((control != NULL) && (controllen != 0)) {
1114 /*
1115 * Verify that the length is not excessive to prevent
1116 * an application from consuming all of kernel memory.
1117 */
1118 if (controllen > SO_MAXARGSIZE) {
1119 error = EINVAL;
1120 goto done2;
1121 }
1122 control = kmem_alloc(controllen, KM_SLEEP);
1123
1124 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1125 if (copyin(msg->msg_control, control, controllen)) {
1126 error = EFAULT;
1127 goto done1;
1128 }
1129 msg->msg_control = control;
1130 } else {
1131 msg->msg_control = control = NULL;
1132 msg->msg_controllen = controllen = 0;
1133 }
1134
1135 len = uiop->uio_resid;
1136 msg->msg_flags = flags;
1137
1138 error = socket_sendmsg(so, msg, uiop, CRED());
1139 done1:
1140 if (control != NULL)
1141 kmem_free(control, controllen);
1142 done2:
1143 if (name != NULL)
1144 kmem_free(name, namelen);
1145 done3:
1146 if (error != 0) {
1147 releasef(sock);
1148 return (set_errno(error));
1149 }
1150 lwp_stat_update(LWP_STAT_MSGSND, 1);
1151 releasef(sock);
1152 return (len - uiop->uio_resid);
1153 }
1154
1155 /*
1156 * Native system call
1157 */
1158 ssize_t
send(int sock,void * buffer,size_t len,int flags)1159 send(int sock, void *buffer, size_t len, int flags)
1160 {
1161 struct nmsghdr lmsg;
1162 struct uio auio;
1163 struct iovec aiov[1];
1164
1165 dprint(1, ("send(%d, %p, %ld, %d)\n",
1166 sock, buffer, len, flags));
1167
1168 if ((ssize_t)len < 0) {
1169 return (set_errno(EINVAL));
1170 }
1171
1172 aiov[0].iov_base = buffer;
1173 aiov[0].iov_len = len;
1174 auio.uio_loffset = 0;
1175 auio.uio_iov = aiov;
1176 auio.uio_iovcnt = 1;
1177 auio.uio_resid = len;
1178 auio.uio_segflg = UIO_USERSPACE;
1179 auio.uio_limit = 0;
1180
1181 lmsg.msg_name = NULL;
1182 lmsg.msg_control = NULL;
1183 if (!(flags & MSG_XPG4_2)) {
1184 /*
1185 * In order to be compatible with the libsocket/sockmod
1186 * implementation we set EOR for all send* calls.
1187 */
1188 flags |= MSG_EOR;
1189 }
1190 return (sendit(sock, &lmsg, &auio, flags));
1191 }
1192
1193 /*
1194 * Uses the MSG_XPG4_2 flag to determine if the caller is using
1195 * struct omsghdr or struct nmsghdr.
1196 */
1197 ssize_t
sendmsg(int sock,struct nmsghdr * msg,int flags)1198 sendmsg(int sock, struct nmsghdr *msg, int flags)
1199 {
1200 struct nmsghdr lmsg;
1201 STRUCT_DECL(nmsghdr, u_lmsg);
1202 struct uio auio;
1203 struct iovec aiov[MSG_MAXIOVLEN];
1204 int iovcnt;
1205 ssize_t len;
1206 int i;
1207 model_t model;
1208
1209 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1210
1211 model = get_udatamodel();
1212 STRUCT_INIT(u_lmsg, model);
1213
1214 if (flags & MSG_XPG4_2) {
1215 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1216 STRUCT_SIZE(u_lmsg)))
1217 return (set_errno(EFAULT));
1218 } else {
1219 /*
1220 * Assumes that nmsghdr and omsghdr are identically shaped
1221 * except for the added msg_flags field.
1222 */
1223 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1224 SIZEOF_STRUCT(omsghdr, model)))
1225 return (set_errno(EFAULT));
1226 /*
1227 * In order to be compatible with the libsocket/sockmod
1228 * implementation we set EOR for all send* calls.
1229 */
1230 flags |= MSG_EOR;
1231 }
1232
1233 /*
1234 * Code below us will kmem_alloc memory and hang it
1235 * off msg_control and msg_name fields. This forces
1236 * us to copy the structure to its native form.
1237 */
1238 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1239 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1240 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1241 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1242 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1243 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1244 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1245
1246 iovcnt = lmsg.msg_iovlen;
1247
1248 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1249 /*
1250 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1251 * be compatible with SunOS 4.X and 4.4BSD.
1252 */
1253 if (iovcnt != 0 || (flags & MSG_XPG4_2))
1254 return (set_errno(EMSGSIZE));
1255 }
1256
1257 #ifdef _SYSCALL32_IMPL
1258 /*
1259 * 32-bit callers need to have their iovec expanded, while ensuring
1260 * that they can't move more than 2Gbytes of data in a single call.
1261 */
1262 if (model == DATAMODEL_ILP32) {
1263 struct iovec32 aiov32[MSG_MAXIOVLEN];
1264 ssize32_t count32;
1265
1266 if (iovcnt != 0 &&
1267 copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1268 iovcnt * sizeof (struct iovec32)))
1269 return (set_errno(EFAULT));
1270
1271 count32 = 0;
1272 for (i = 0; i < iovcnt; i++) {
1273 ssize32_t iovlen32;
1274
1275 iovlen32 = aiov32[i].iov_len;
1276 count32 += iovlen32;
1277 if (iovlen32 < 0 || count32 < 0)
1278 return (set_errno(EINVAL));
1279 aiov[i].iov_len = iovlen32;
1280 aiov[i].iov_base =
1281 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1282 }
1283 } else
1284 #endif /* _SYSCALL32_IMPL */
1285 if (iovcnt != 0 &&
1286 copyin(lmsg.msg_iov, aiov,
1287 (unsigned)iovcnt * sizeof (struct iovec))) {
1288 return (set_errno(EFAULT));
1289 }
1290 len = 0;
1291 for (i = 0; i < iovcnt; i++) {
1292 ssize_t iovlen = aiov[i].iov_len;
1293 len += iovlen;
1294 if (iovlen < 0 || len < 0) {
1295 return (set_errno(EINVAL));
1296 }
1297 }
1298 auio.uio_loffset = 0;
1299 auio.uio_iov = aiov;
1300 auio.uio_iovcnt = iovcnt;
1301 auio.uio_resid = len;
1302 auio.uio_segflg = UIO_USERSPACE;
1303 auio.uio_limit = 0;
1304
1305 return (sendit(sock, &lmsg, &auio, flags));
1306 }
1307
1308 ssize_t
sendto(int sock,void * buffer,size_t len,int flags,struct sockaddr * name,socklen_t namelen)1309 sendto(int sock, void *buffer, size_t len, int flags,
1310 struct sockaddr *name, socklen_t namelen)
1311 {
1312 struct nmsghdr lmsg;
1313 struct uio auio;
1314 struct iovec aiov[1];
1315
1316 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1317 sock, buffer, len, flags, (void *)name, namelen));
1318
1319 if ((ssize_t)len < 0) {
1320 return (set_errno(EINVAL));
1321 }
1322
1323 aiov[0].iov_base = buffer;
1324 aiov[0].iov_len = len;
1325 auio.uio_loffset = 0;
1326 auio.uio_iov = aiov;
1327 auio.uio_iovcnt = 1;
1328 auio.uio_resid = len;
1329 auio.uio_segflg = UIO_USERSPACE;
1330 auio.uio_limit = 0;
1331
1332 lmsg.msg_name = (char *)name;
1333 lmsg.msg_namelen = namelen;
1334 lmsg.msg_control = NULL;
1335 if (!(flags & MSG_XPG4_2)) {
1336 /*
1337 * In order to be compatible with the libsocket/sockmod
1338 * implementation we set EOR for all send* calls.
1339 */
1340 flags |= MSG_EOR;
1341 }
1342 return (sendit(sock, &lmsg, &auio, flags));
1343 }
1344
1345 /*ARGSUSED3*/
1346 int
getpeername(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1347 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1348 {
1349 struct sonode *so;
1350 int error;
1351 socklen_t namelen;
1352 socklen_t sock_addrlen;
1353 struct sockaddr *sock_addrp;
1354
1355 dprint(1, ("getpeername(%d, %p, %p)\n",
1356 sock, (void *)name, (void *)namelenp));
1357
1358 if ((so = getsonode(sock, &error, NULL)) == NULL)
1359 goto bad;
1360
1361 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1362 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1363 (name == NULL && namelen != 0)) {
1364 error = EFAULT;
1365 goto rel_out;
1366 }
1367 sock_addrlen = so->so_max_addr_len;
1368 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1369
1370 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1371 B_FALSE, CRED())) == 0) {
1372 ASSERT(sock_addrlen <= so->so_max_addr_len);
1373 error = copyout_name(name, namelen, namelenp,
1374 (void *)sock_addrp, sock_addrlen);
1375 }
1376 kmem_free(sock_addrp, so->so_max_addr_len);
1377 rel_out:
1378 releasef(sock);
1379 bad: return (error != 0 ? set_errno(error) : 0);
1380 }
1381
1382 /*ARGSUSED3*/
1383 int
getsockname(int sock,struct sockaddr * name,socklen_t * namelenp,int version)1384 getsockname(int sock, struct sockaddr *name,
1385 socklen_t *namelenp, int version)
1386 {
1387 struct sonode *so;
1388 int error;
1389 socklen_t namelen, sock_addrlen;
1390 struct sockaddr *sock_addrp;
1391
1392 dprint(1, ("getsockname(%d, %p, %p)\n",
1393 sock, (void *)name, (void *)namelenp));
1394
1395 if ((so = getsonode(sock, &error, NULL)) == NULL)
1396 goto bad;
1397
1398 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1399 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1400 (name == NULL && namelen != 0)) {
1401 error = EFAULT;
1402 goto rel_out;
1403 }
1404
1405 sock_addrlen = so->so_max_addr_len;
1406 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1407 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1408 CRED())) == 0) {
1409 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1410 ASSERT(sock_addrlen <= so->so_max_addr_len);
1411 error = copyout_name(name, namelen, namelenp,
1412 (void *)sock_addrp, sock_addrlen);
1413 }
1414 kmem_free(sock_addrp, so->so_max_addr_len);
1415 rel_out:
1416 releasef(sock);
1417 bad: return (error != 0 ? set_errno(error) : 0);
1418 }
1419
1420 /*ARGSUSED5*/
1421 int
getsockopt(int sock,int level,int option_name,void * option_value,socklen_t * option_lenp,int version)1422 getsockopt(int sock,
1423 int level,
1424 int option_name,
1425 void *option_value,
1426 socklen_t *option_lenp,
1427 int version)
1428 {
1429 struct sonode *so;
1430 socklen_t optlen, optlen_res;
1431 void *optval;
1432 int error;
1433
1434 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1435 sock, level, option_name, option_value, (void *)option_lenp));
1436
1437 if ((so = getsonode(sock, &error, NULL)) == NULL)
1438 return (set_errno(error));
1439
1440 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1441 if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1442 releasef(sock);
1443 return (set_errno(EFAULT));
1444 }
1445 /*
1446 * Verify that the length is not excessive to prevent
1447 * an application from consuming all of kernel memory.
1448 */
1449 if (optlen > SO_MAXARGSIZE) {
1450 error = EINVAL;
1451 releasef(sock);
1452 return (set_errno(error));
1453 }
1454 optval = kmem_alloc(optlen, KM_SLEEP);
1455 optlen_res = optlen;
1456 error = socket_getsockopt(so, level, option_name, optval,
1457 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1458 CRED());
1459 releasef(sock);
1460 if (error) {
1461 kmem_free(optval, optlen);
1462 return (set_errno(error));
1463 }
1464 error = copyout_arg(option_value, optlen, option_lenp,
1465 optval, optlen_res);
1466 kmem_free(optval, optlen);
1467 if (error)
1468 return (set_errno(error));
1469 return (0);
1470 }
1471
1472 /*ARGSUSED5*/
1473 int
setsockopt(int sock,int level,int option_name,void * option_value,socklen_t option_len,int version)1474 setsockopt(int sock,
1475 int level,
1476 int option_name,
1477 void *option_value,
1478 socklen_t option_len,
1479 int version)
1480 {
1481 struct sonode *so;
1482 intptr_t buffer[2];
1483 void *optval = NULL;
1484 int error;
1485
1486 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1487 sock, level, option_name, option_value, option_len));
1488
1489 if ((so = getsonode(sock, &error, NULL)) == NULL)
1490 return (set_errno(error));
1491
1492 if (option_value != NULL) {
1493 if (option_len != 0) {
1494 /*
1495 * Verify that the length is not excessive to prevent
1496 * an application from consuming all of kernel memory.
1497 */
1498 if (option_len > SO_MAXARGSIZE) {
1499 error = EINVAL;
1500 goto done2;
1501 }
1502 optval = option_len <= sizeof (buffer) ?
1503 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1504 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1505 if (copyin(option_value, optval, (size_t)option_len)) {
1506 error = EFAULT;
1507 goto done1;
1508 }
1509 }
1510 } else
1511 option_len = 0;
1512
1513 error = socket_setsockopt(so, level, option_name, optval,
1514 (t_uscalar_t)option_len, CRED());
1515 done1:
1516 if (optval != buffer)
1517 kmem_free(optval, (size_t)option_len);
1518 done2:
1519 releasef(sock);
1520 if (error)
1521 return (set_errno(error));
1522 return (0);
1523 }
1524
1525 static int
sockconf_add_sock(int family,int type,int protocol,char * name)1526 sockconf_add_sock(int family, int type, int protocol, char *name)
1527 {
1528 int error = 0;
1529 char *kdevpath = NULL;
1530 char *kmodule = NULL;
1531 char *buf = NULL;
1532 size_t pathlen = 0;
1533 struct sockparams *sp;
1534
1535 if (name == NULL)
1536 return (EINVAL);
1537 /*
1538 * Copyin the name.
1539 * This also makes it possible to check for too long pathnames.
1540 * Compress the space needed for the name before passing it
1541 * to soconfig - soconfig will store the string until
1542 * the configuration is removed.
1543 */
1544 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1545 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1546 kmem_free(buf, MAXPATHLEN);
1547 return (error);
1548 }
1549 if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1550 /* For device */
1551
1552 /*
1553 * Special handling for NCA:
1554 *
1555 * DEV_NCA is never opened even if an application
1556 * requests for AF_NCA. The device opened is instead a
1557 * predefined AF_INET transport (NCA_INET_DEV).
1558 *
1559 * Prior to Volo (PSARC/2007/587) NCA would determine
1560 * the device using a lookup, which worked then because
1561 * all protocols were based on TPI. Since TPI is no
1562 * longer the default, we have to explicitly state
1563 * which device to use.
1564 */
1565 if (strcmp(buf, NCA_DEV) == 0) {
1566 /* only support entry <28, 2, 0> */
1567 if (family != AF_NCA || type != SOCK_STREAM ||
1568 protocol != 0) {
1569 kmem_free(buf, MAXPATHLEN);
1570 return (EINVAL);
1571 }
1572
1573 pathlen = strlen(NCA_INET_DEV) + 1;
1574 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1575 bcopy(NCA_INET_DEV, kdevpath, pathlen);
1576 kdevpath[pathlen - 1] = '\0';
1577 } else {
1578 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1579 bcopy(buf, kdevpath, pathlen);
1580 kdevpath[pathlen - 1] = '\0';
1581 }
1582 } else {
1583 /* For socket module */
1584 kmodule = kmem_alloc(pathlen, KM_SLEEP);
1585 bcopy(buf, kmodule, pathlen);
1586 kmodule[pathlen - 1] = '\0';
1587 pathlen = 0;
1588 }
1589 kmem_free(buf, MAXPATHLEN);
1590
1591 /* sockparams_create frees mod name and devpath upon failure */
1592 sp = sockparams_create(family, type, protocol, kmodule,
1593 kdevpath, pathlen, 0, KM_SLEEP, &error);
1594 if (sp != NULL) {
1595 error = sockparams_add(sp);
1596 if (error != 0)
1597 sockparams_destroy(sp);
1598 }
1599
1600 return (error);
1601 }
1602
1603 static int
sockconf_remove_sock(int family,int type,int protocol)1604 sockconf_remove_sock(int family, int type, int protocol)
1605 {
1606 return (sockparams_delete(family, type, protocol));
1607 }
1608
1609 static int
sockconfig_remove_filter(const char * uname)1610 sockconfig_remove_filter(const char *uname)
1611 {
1612 char kname[SOF_MAXNAMELEN];
1613 size_t len;
1614 int error;
1615 sof_entry_t *ent;
1616
1617 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1618 return (error);
1619
1620 ent = sof_entry_remove_by_name(kname);
1621 if (ent == NULL)
1622 return (ENXIO);
1623
1624 mutex_enter(&ent->sofe_lock);
1625 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1626 if (ent->sofe_refcnt == 0) {
1627 mutex_exit(&ent->sofe_lock);
1628 sof_entry_free(ent);
1629 } else {
1630 /* let the last socket free the filter */
1631 ent->sofe_flags |= SOFEF_CONDEMED;
1632 mutex_exit(&ent->sofe_lock);
1633 }
1634
1635 return (0);
1636 }
1637
1638 static int
sockconfig_add_filter(const char * uname,void * ufilpropp)1639 sockconfig_add_filter(const char *uname, void *ufilpropp)
1640 {
1641 struct sockconfig_filter_props filprop;
1642 sof_entry_t *ent;
1643 int error;
1644 size_t tuplesz, len;
1645 char hintbuf[SOF_MAXNAMELEN];
1646
1647 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1648 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1649
1650 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1651 &len)) != 0) {
1652 sof_entry_free(ent);
1653 return (error);
1654 }
1655
1656 if (get_udatamodel() == DATAMODEL_NATIVE) {
1657 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1658 sof_entry_free(ent);
1659 return (EFAULT);
1660 }
1661 }
1662 #ifdef _SYSCALL32_IMPL
1663 else {
1664 struct sockconfig_filter_props32 filprop32;
1665
1666 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1667 sof_entry_free(ent);
1668 return (EFAULT);
1669 }
1670 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1671 filprop.sfp_autoattach = filprop32.sfp_autoattach;
1672 filprop.sfp_hint = filprop32.sfp_hint;
1673 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1674 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1675 filprop.sfp_socktuple =
1676 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1677 }
1678 #endif /* _SYSCALL32_IMPL */
1679
1680 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1681 sizeof (ent->sofe_modname), &len)) != 0) {
1682 sof_entry_free(ent);
1683 return (error);
1684 }
1685
1686 /*
1687 * A filter must specify at least one socket tuple.
1688 */
1689 if (filprop.sfp_socktuple_cnt == 0 ||
1690 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1691 sof_entry_free(ent);
1692 return (EINVAL);
1693 }
1694 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1695 ent->sofe_hint = filprop.sfp_hint;
1696
1697 /*
1698 * Verify the hint, and copy in the hint argument, if necessary.
1699 */
1700 switch (ent->sofe_hint) {
1701 case SOF_HINT_BEFORE:
1702 case SOF_HINT_AFTER:
1703 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1704 sizeof (hintbuf), &len)) != 0) {
1705 sof_entry_free(ent);
1706 return (error);
1707 }
1708 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1709 bcopy(hintbuf, ent->sofe_hintarg, len);
1710 /* FALLTHRU */
1711 case SOF_HINT_TOP:
1712 case SOF_HINT_BOTTOM:
1713 /* hints cannot be used with programmatic filters */
1714 if (ent->sofe_flags & SOFEF_PROG) {
1715 sof_entry_free(ent);
1716 return (EINVAL);
1717 }
1718 break;
1719 case SOF_HINT_NONE:
1720 break;
1721 default:
1722 /* bad hint value */
1723 sof_entry_free(ent);
1724 return (EINVAL);
1725 }
1726
1727 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1728 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1729 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1730
1731 if (get_udatamodel() == DATAMODEL_NATIVE) {
1732 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1733 tuplesz)) {
1734 sof_entry_free(ent);
1735 return (EFAULT);
1736 }
1737 }
1738 #ifdef _SYSCALL32_IMPL
1739 else {
1740 int i;
1741 caddr_t data = (caddr_t)filprop.sfp_socktuple;
1742 sof_socktuple_t *tup = ent->sofe_socktuple;
1743 sof_socktuple32_t tup32;
1744
1745 tup = ent->sofe_socktuple;
1746 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1747 ASSERT(tup < ent->sofe_socktuple + tuplesz);
1748
1749 if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1750 sof_entry_free(ent);
1751 return (EFAULT);
1752 }
1753 tup->sofst_family = tup32.sofst_family;
1754 tup->sofst_type = tup32.sofst_type;
1755 tup->sofst_protocol = tup32.sofst_protocol;
1756
1757 data += sizeof (tup32);
1758 }
1759 }
1760 #endif /* _SYSCALL32_IMPL */
1761
1762 /* Sockets can start using the filter as soon as the filter is added */
1763 if ((error = sof_entry_add(ent)) != 0)
1764 sof_entry_free(ent);
1765
1766 return (error);
1767 }
1768
1769 /*
1770 * Socket configuration system call. It is used to add and remove
1771 * socket types.
1772 */
1773 int
sockconfig(int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1774 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1775 {
1776 int error = 0;
1777
1778 if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1779 return (set_errno(EPERM));
1780
1781 if (sockfs_defer_nl7c_init) {
1782 nl7c_init();
1783 sockfs_defer_nl7c_init = 0;
1784 }
1785
1786 switch (cmd) {
1787 case SOCKCONFIG_ADD_SOCK:
1788 error = sockconf_add_sock((int)(uintptr_t)arg1,
1789 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1790 break;
1791 case SOCKCONFIG_REMOVE_SOCK:
1792 error = sockconf_remove_sock((int)(uintptr_t)arg1,
1793 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1794 break;
1795 case SOCKCONFIG_ADD_FILTER:
1796 error = sockconfig_add_filter((const char *)arg1, arg2);
1797 break;
1798 case SOCKCONFIG_REMOVE_FILTER:
1799 error = sockconfig_remove_filter((const char *)arg1);
1800 break;
1801 default:
1802 #ifdef DEBUG
1803 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1804 #endif
1805 error = EINVAL;
1806 break;
1807 }
1808
1809 if (error != 0) {
1810 eprintline(error);
1811 return (set_errno(error));
1812 }
1813 return (0);
1814 }
1815
1816
1817 /*
1818 * Sendfile is implemented through two schemes, direct I/O or by
1819 * caching in the filesystem page cache. We cache the input file by
1820 * default and use direct I/O only if sendfile_max_size is set
1821 * appropriately as explained below. Note that this logic is consistent
1822 * with other filesystems where caching is turned on by default
1823 * unless explicitly turned off by using the DIRECTIO ioctl.
1824 *
1825 * We choose a slightly different scheme here. One can turn off
1826 * caching by setting sendfile_max_size to 0. One can also enable
1827 * caching of files <= sendfile_max_size by setting sendfile_max_size
1828 * to an appropriate value. By default sendfile_max_size is set to the
1829 * maximum value so that all files are cached. In future, we may provide
1830 * better interfaces for caching the file.
1831 *
1832 * Sendfile through Direct I/O (Zero copy)
1833 * --------------------------------------
1834 *
1835 * As disks are normally slower than the network, we can't have a
1836 * single thread that reads the disk and writes to the network. We
1837 * need to have parallelism. This is done by having the sendfile
1838 * thread create another thread that reads from the filesystem
1839 * and queues it for network processing. In this scheme, the data
1840 * is never copied anywhere i.e it is zero copy unlike the other
1841 * scheme.
1842 *
1843 * We have a sendfile queue (snfq) where each sendfile
1844 * request (snf_req_t) is queued for processing by a thread. Number
1845 * of threads is dynamically allocated and they exit if they are idling
1846 * beyond a specified amount of time. When each request (snf_req_t) is
1847 * processed by a thread, it produces a number of mblk_t structures to
1848 * be consumed by the sendfile thread. snf_deque and snf_enque are
1849 * used for consuming and producing mblks. Size of the filesystem
1850 * read is determined by the tunable (sendfile_read_size). A single
1851 * mblk holds sendfile_read_size worth of data (except the last
1852 * read of the file) which is sent down as a whole to the network.
1853 * sendfile_read_size is set to 1 MB as this seems to be the optimal
1854 * value for the UFS filesystem backed by a striped storage array.
1855 *
1856 * Synchronisation between read (producer) and write (consumer) threads.
1857 * --------------------------------------------------------------------
1858 *
1859 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1860 * adding and deleting items in this list. Error can happen anytime
1861 * during read or write. There could be unprocessed mblks in the
1862 * sr_ib_XXX list when a read or write error occurs. Whenever error
1863 * is encountered, we need two things to happen :
1864 *
1865 * a) One of the threads need to clean the mblks.
1866 * b) When one thread encounters an error, the other should stop.
1867 *
1868 * For (a), we don't want to penalize the reader thread as it could do
1869 * some useful work processing other requests. For (b), the error can
1870 * be detected by examining sr_read_error or sr_write_error.
1871 * sr_lock protects sr_read_error and sr_write_error. If both reader and
1872 * writer encounters error, we need to report the write error back to
1873 * the application as that's what would have happened if the operations
1874 * were done sequentially. With this in mind, following should work :
1875 *
1876 * - Check for errors before read or write.
1877 * - If the reader encounters error, set the error in sr_read_error.
1878 * Check sr_write_error, if it is set, send cv_signal as it is
1879 * waiting for reader to complete. If it is not set, the writer
1880 * is either running sinking data to the network or blocked
1881 * because of flow control. For handling the latter case, we
1882 * always send a signal. In any case, it will examine sr_read_error
1883 * and return. sr_read_error is marked with SR_READ_DONE to tell
1884 * the writer that the reader is done in all the cases.
1885 * - If the writer encounters error, set the error in sr_write_error.
1886 * The reader thread is either blocked because of flow control or
1887 * running reading data from the disk. For the former, we need to
1888 * wakeup the thread. Again to keep it simple, we always wake up
1889 * the reader thread. Then, wait for the read thread to complete
1890 * if it is not done yet. Cleanup and return.
1891 *
1892 * High and low water marks for the read thread.
1893 * --------------------------------------------
1894 *
1895 * If sendfile() is used to send data over a slow network, we need to
1896 * make sure that the read thread does not produce data at a faster
1897 * rate than the network. This can happen if the disk is faster than
1898 * the network. In such a case, we don't want to build a very large queue.
1899 * But we would still like to get all of the network throughput possible.
1900 * This implies that network should never block waiting for data.
1901 * As there are lot of disk throughput/network throughput combinations
1902 * possible, it is difficult to come up with an accurate number.
1903 * A typical 10K RPM disk has a max seek latency 17ms and rotational
1904 * latency of 3ms for reading a disk block. Thus, the total latency to
1905 * initiate a new read, transfer data from the disk and queue for
1906 * transmission would take about a max of 25ms. Todays max transfer rate
1907 * for network is 100MB/sec. If the thread is blocked because of flow
1908 * control, it would take 25ms to get new data ready for transmission.
1909 * We have to make sure that network is not idling, while we are initiating
1910 * new transfers. So, at 100MB/sec, to keep network busy we would need
1911 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1912 * We need to pick a high water mark so that the woken up thread would
1913 * do considerable work before blocking again to prevent thrashing. Currently,
1914 * we pick this to be 10 times that of the low water mark.
1915 *
1916 * Sendfile with segmap caching (One copy from page cache to mblks).
1917 * ----------------------------------------------------------------
1918 *
1919 * We use the segmap cache for caching the file, if the size of file
1920 * is <= sendfile_max_size. In this case we don't use threads as VM
1921 * is reasonably fast enough to keep up with the network. If the underlying
1922 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1923 * of data into segmap space, and use the virtual address from segmap
1924 * directly through desballoc() to avoid copy. Once the transport is done
1925 * with the data, the mapping will be released through segmap_release()
1926 * called by the call-back routine.
1927 *
1928 * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1929 * to copy the data from the filesystem into our temporary network buffer.
1930 *
1931 * To disable caching, set sendfile_max_size to 0.
1932 */
1933
1934 uint_t sendfile_read_size = 1024 * 1024;
1935 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024
1936 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1937 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1938 struct sendfile_stats sf_stats;
1939 struct sendfile_queue *snfq;
1940 clock_t snfq_timeout;
1941 off64_t sendfile_max_size;
1942
1943 static void snf_enque(snf_req_t *, mblk_t *);
1944 static mblk_t *snf_deque(snf_req_t *);
1945
1946 void
sendfile_init(void)1947 sendfile_init(void)
1948 {
1949 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1950
1951 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1952 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1953 snfq->snfq_max_threads = max_ncpus;
1954 snfq_timeout = SNFQ_TIMEOUT;
1955 /* Cache all files by default. */
1956 sendfile_max_size = MAXOFFSET_T;
1957 }
1958
1959 /*
1960 * Queues a mblk_t for network processing.
1961 */
1962 static void
snf_enque(snf_req_t * sr,mblk_t * mp)1963 snf_enque(snf_req_t *sr, mblk_t *mp)
1964 {
1965 mp->b_next = NULL;
1966 mutex_enter(&sr->sr_lock);
1967 if (sr->sr_mp_head == NULL) {
1968 sr->sr_mp_head = sr->sr_mp_tail = mp;
1969 cv_signal(&sr->sr_cv);
1970 } else {
1971 sr->sr_mp_tail->b_next = mp;
1972 sr->sr_mp_tail = mp;
1973 }
1974 sr->sr_qlen += MBLKL(mp);
1975 while ((sr->sr_qlen > sr->sr_hiwat) &&
1976 (sr->sr_write_error == 0)) {
1977 sf_stats.ss_full_waits++;
1978 cv_wait(&sr->sr_cv, &sr->sr_lock);
1979 }
1980 mutex_exit(&sr->sr_lock);
1981 }
1982
1983 /*
1984 * De-queues a mblk_t for network processing.
1985 */
1986 static mblk_t *
snf_deque(snf_req_t * sr)1987 snf_deque(snf_req_t *sr)
1988 {
1989 mblk_t *mp;
1990
1991 mutex_enter(&sr->sr_lock);
1992 /*
1993 * If we have encountered an error on read or read is
1994 * completed and no more mblks, return NULL.
1995 * We need to check for NULL sr_mp_head also as
1996 * the reads could have completed and there is
1997 * nothing more to come.
1998 */
1999 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2000 ((sr->sr_read_error & SR_READ_DONE) &&
2001 sr->sr_mp_head == NULL)) {
2002 mutex_exit(&sr->sr_lock);
2003 return (NULL);
2004 }
2005 /*
2006 * To start with neither SR_READ_DONE is marked nor
2007 * the error is set. When we wake up from cv_wait,
2008 * following are the possibilities :
2009 *
2010 * a) sr_read_error is zero and mblks are queued.
2011 * b) sr_read_error is set to SR_READ_DONE
2012 * and mblks are queued.
2013 * c) sr_read_error is set to SR_READ_DONE
2014 * and no mblks.
2015 * d) sr_read_error is set to some error other
2016 * than SR_READ_DONE.
2017 */
2018
2019 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2020 sf_stats.ss_empty_waits++;
2021 cv_wait(&sr->sr_cv, &sr->sr_lock);
2022 }
2023 /* Handle (a) and (b) first - the normal case. */
2024 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2025 (sr->sr_mp_head != NULL)) {
2026 mp = sr->sr_mp_head;
2027 sr->sr_mp_head = mp->b_next;
2028 sr->sr_qlen -= MBLKL(mp);
2029 if (sr->sr_qlen < sr->sr_lowat)
2030 cv_signal(&sr->sr_cv);
2031 mutex_exit(&sr->sr_lock);
2032 mp->b_next = NULL;
2033 return (mp);
2034 }
2035 /* Handle (c) and (d). */
2036 mutex_exit(&sr->sr_lock);
2037 return (NULL);
2038 }
2039
2040 /*
2041 * Reads data from the filesystem and queues it for network processing.
2042 */
2043 void
snf_async_read(snf_req_t * sr)2044 snf_async_read(snf_req_t *sr)
2045 {
2046 size_t iosize;
2047 u_offset_t fileoff;
2048 u_offset_t size;
2049 int ret_size;
2050 int error;
2051 file_t *fp;
2052 mblk_t *mp;
2053 struct vnode *vp;
2054 int extra = 0;
2055 int maxblk = 0;
2056 int wroff = 0;
2057 struct sonode *so;
2058
2059 fp = sr->sr_fp;
2060 size = sr->sr_file_size;
2061 fileoff = sr->sr_file_off;
2062
2063 /*
2064 * Ignore the error for filesystems that doesn't support DIRECTIO.
2065 */
2066 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2067 kcred, NULL, NULL);
2068
2069 vp = sr->sr_vp;
2070 if (vp->v_type == VSOCK) {
2071 stdata_t *stp;
2072
2073 /*
2074 * Get the extra space to insert a header and a trailer.
2075 */
2076 so = VTOSO(vp);
2077 stp = vp->v_stream;
2078 if (stp == NULL) {
2079 wroff = so->so_proto_props.sopp_wroff;
2080 maxblk = so->so_proto_props.sopp_maxblk;
2081 extra = wroff + so->so_proto_props.sopp_tail;
2082 } else {
2083 wroff = (int)(stp->sd_wroff);
2084 maxblk = (int)(stp->sd_maxblk);
2085 extra = wroff + (int)(stp->sd_tail);
2086 }
2087 }
2088
2089 while ((size != 0) && (sr->sr_write_error == 0)) {
2090
2091 iosize = (int)MIN(sr->sr_maxpsz, size);
2092
2093 /*
2094 * Socket filters can limit the mblk size,
2095 * so limit reads to maxblk if there are
2096 * filters present.
2097 */
2098 if (vp->v_type == VSOCK &&
2099 so->so_filter_active > 0 && maxblk != INFPSZ)
2100 iosize = (int)MIN(iosize, maxblk);
2101
2102 if (is_system_labeled()) {
2103 mp = allocb_cred(iosize + extra, CRED(),
2104 curproc->p_pid);
2105 } else {
2106 mp = allocb(iosize + extra, BPRI_MED);
2107 }
2108 if (mp == NULL) {
2109 error = EAGAIN;
2110 break;
2111 }
2112
2113 mp->b_rptr += wroff;
2114
2115 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2116
2117 /* Error or Reached EOF ? */
2118 if ((error != 0) || (ret_size == 0)) {
2119 freeb(mp);
2120 break;
2121 }
2122 mp->b_wptr = mp->b_rptr + ret_size;
2123
2124 snf_enque(sr, mp);
2125 size -= ret_size;
2126 fileoff += ret_size;
2127 }
2128 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2129 kcred, NULL, NULL);
2130 mutex_enter(&sr->sr_lock);
2131 sr->sr_read_error = error;
2132 sr->sr_read_error |= SR_READ_DONE;
2133 cv_signal(&sr->sr_cv);
2134 mutex_exit(&sr->sr_lock);
2135 }
2136
2137 void
snf_async_thread(void)2138 snf_async_thread(void)
2139 {
2140 snf_req_t *sr;
2141 callb_cpr_t cprinfo;
2142 clock_t time_left = 1;
2143
2144 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2145
2146 mutex_enter(&snfq->snfq_lock);
2147 for (;;) {
2148 /*
2149 * If we didn't find a entry, then block until woken up
2150 * again and then look through the queues again.
2151 */
2152 while ((sr = snfq->snfq_req_head) == NULL) {
2153 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2154 if (time_left <= 0) {
2155 snfq->snfq_svc_threads--;
2156 CALLB_CPR_EXIT(&cprinfo);
2157 thread_exit();
2158 /* NOTREACHED */
2159 }
2160 snfq->snfq_idle_cnt++;
2161
2162 time_left = cv_reltimedwait(&snfq->snfq_cv,
2163 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2164 snfq->snfq_idle_cnt--;
2165
2166 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2167 }
2168 snfq->snfq_req_head = sr->sr_next;
2169 snfq->snfq_req_cnt--;
2170 mutex_exit(&snfq->snfq_lock);
2171 snf_async_read(sr);
2172 mutex_enter(&snfq->snfq_lock);
2173 }
2174 }
2175
2176
2177 snf_req_t *
create_thread(int operation,struct vnode * vp,file_t * fp,u_offset_t fileoff,u_offset_t size)2178 create_thread(int operation, struct vnode *vp, file_t *fp,
2179 u_offset_t fileoff, u_offset_t size)
2180 {
2181 snf_req_t *sr;
2182 stdata_t *stp;
2183
2184 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2185
2186 sr->sr_vp = vp;
2187 sr->sr_fp = fp;
2188 stp = vp->v_stream;
2189
2190 /*
2191 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2192 * stream might be closed before thread returns from snf_async_read.
2193 */
2194 if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2195 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2196 } else {
2197 sr->sr_maxpsz = MAXBSIZE;
2198 }
2199
2200 sr->sr_operation = operation;
2201 sr->sr_file_off = fileoff;
2202 sr->sr_file_size = size;
2203 sr->sr_hiwat = sendfile_req_hiwat;
2204 sr->sr_lowat = sendfile_req_lowat;
2205 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2206 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2207 /*
2208 * See whether we need another thread for servicing this
2209 * request. If there are already enough requests queued
2210 * for the threads, create one if not exceeding
2211 * snfq_max_threads.
2212 */
2213 mutex_enter(&snfq->snfq_lock);
2214 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2215 snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2216 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2217 TS_RUN, minclsyspri);
2218 snfq->snfq_svc_threads++;
2219 }
2220 if (snfq->snfq_req_head == NULL) {
2221 snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2222 cv_signal(&snfq->snfq_cv);
2223 } else {
2224 snfq->snfq_req_tail->sr_next = sr;
2225 snfq->snfq_req_tail = sr;
2226 }
2227 snfq->snfq_req_cnt++;
2228 mutex_exit(&snfq->snfq_lock);
2229 return (sr);
2230 }
2231
2232 int
snf_direct_io(file_t * fp,file_t * rfp,u_offset_t fileoff,u_offset_t size,ssize_t * count)2233 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2234 ssize_t *count)
2235 {
2236 snf_req_t *sr;
2237 mblk_t *mp;
2238 int iosize;
2239 int error = 0;
2240 short fflag;
2241 struct vnode *vp;
2242 int ksize;
2243 struct nmsghdr msg;
2244
2245 ksize = 0;
2246 *count = 0;
2247 bzero(&msg, sizeof (msg));
2248
2249 vp = fp->f_vnode;
2250 fflag = fp->f_flag;
2251 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2252 return (EAGAIN);
2253
2254 /*
2255 * We check for read error in snf_deque. It has to check
2256 * for successful READ_DONE and return NULL, and we might
2257 * as well make an additional check there.
2258 */
2259 while ((mp = snf_deque(sr)) != NULL) {
2260
2261 if (ISSIG(curthread, JUSTLOOKING)) {
2262 freeb(mp);
2263 error = EINTR;
2264 break;
2265 }
2266 iosize = MBLKL(mp);
2267
2268 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2269
2270 if (error != 0) {
2271 if (mp != NULL)
2272 freeb(mp);
2273 break;
2274 }
2275 ksize += iosize;
2276 }
2277 *count = ksize;
2278
2279 mutex_enter(&sr->sr_lock);
2280 sr->sr_write_error = error;
2281 /* Look at the big comments on why we cv_signal here. */
2282 cv_signal(&sr->sr_cv);
2283
2284 /* Wait for the reader to complete always. */
2285 while (!(sr->sr_read_error & SR_READ_DONE)) {
2286 cv_wait(&sr->sr_cv, &sr->sr_lock);
2287 }
2288 /* If there is no write error, check for read error. */
2289 if (error == 0)
2290 error = (sr->sr_read_error & ~SR_READ_DONE);
2291
2292 if (error != 0) {
2293 mblk_t *next_mp;
2294
2295 mp = sr->sr_mp_head;
2296 while (mp != NULL) {
2297 next_mp = mp->b_next;
2298 mp->b_next = NULL;
2299 freeb(mp);
2300 mp = next_mp;
2301 }
2302 }
2303 mutex_exit(&sr->sr_lock);
2304 kmem_free(sr, sizeof (snf_req_t));
2305 return (error);
2306 }
2307
2308 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2309 #define SNF_VPMMAXPGS (VPMMAXPGS/2)
2310
2311 /*
2312 * Maximum no.of elements in the list returned by vpm, including
2313 * NULL for the last entry
2314 */
2315 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1)
2316
2317 typedef struct {
2318 unsigned int snfv_ref;
2319 frtn_t snfv_frtn;
2320 vnode_t *snfv_vp;
2321 struct vmap snfv_vml[SNF_MAXVMAPS];
2322 } snf_vmap_desbinfo;
2323
2324 typedef struct {
2325 frtn_t snfi_frtn;
2326 caddr_t snfi_base;
2327 uint_t snfi_mapoff;
2328 size_t snfi_len;
2329 vnode_t *snfi_vp;
2330 } snf_smap_desbinfo;
2331
2332 /*
2333 * The callback function used for vpm mapped mblks called when the last ref of
2334 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2335 * can be the driver too due to lazy reclaim.
2336 */
2337 void
snf_vmap_desbfree(snf_vmap_desbinfo * snfv)2338 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2339 {
2340 ASSERT(snfv->snfv_ref != 0);
2341 if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) {
2342 vpm_unmap_pages(snfv->snfv_vml, S_READ);
2343 VN_RELE(snfv->snfv_vp);
2344 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2345 }
2346 }
2347
2348 /*
2349 * The callback function used for segmap'ped mblks called when the last ref of
2350 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2351 * can be the driver too due to lazy reclaim.
2352 */
2353 void
snf_smap_desbfree(snf_smap_desbinfo * snfi)2354 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2355 {
2356 if (! IS_KPM_ADDR(snfi->snfi_base)) {
2357 /*
2358 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2359 * segmap_kpm as long as the latter never falls back to
2360 * "use_segmap_range". (See segmap_getmapflt().)
2361 *
2362 * Using S_OTHER saves an redundant hat_setref() in
2363 * segmap_unlock()
2364 */
2365 (void) segmap_fault(kas.a_hat, segkmap,
2366 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2367 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2368 F_SOFTUNLOCK, S_OTHER);
2369 }
2370 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2371 VN_RELE(snfi->snfi_vp);
2372 kmem_free(snfi, sizeof (*snfi));
2373 }
2374
2375 /*
2376 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2377 * When segmap is used, the mblk contains a segmap slot of no more
2378 * than MAXBSIZE.
2379 *
2380 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2381 * in each iteration and sent by socket_sendmblk until an error occurs or
2382 * the requested size has been transferred. An mblk is esballoca'ed from
2383 * each mapped page and a chain of these mblk is sent to the transport layer.
2384 * vpm will be called to unmap the pages when all mblks have been freed by
2385 * free_func.
2386 *
2387 * At the end of the whole sendfile() operation, we wait till the data from
2388 * the last mblk is ack'ed by the transport before returning so that the
2389 * caller of sendfile() can safely modify the file content.
2390 */
2391 int
snf_segmap(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t total_size,ssize_t * count,boolean_t nowait)2392 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2393 ssize_t *count, boolean_t nowait)
2394 {
2395 caddr_t base;
2396 int mapoff;
2397 vnode_t *vp;
2398 mblk_t *mp = NULL;
2399 int chain_size;
2400 int error;
2401 clock_t deadlk_wait;
2402 short fflag;
2403 int ksize;
2404 struct vattr va;
2405 boolean_t dowait = B_FALSE;
2406 struct nmsghdr msg;
2407
2408 vp = fp->f_vnode;
2409 fflag = fp->f_flag;
2410 ksize = 0;
2411 bzero(&msg, sizeof (msg));
2412
2413 for (;;) {
2414 if (ISSIG(curthread, JUSTLOOKING)) {
2415 error = EINTR;
2416 break;
2417 }
2418
2419 if (vpm_enable) {
2420 snf_vmap_desbinfo *snfv;
2421 mblk_t *nmp;
2422 int mblk_size;
2423 int maxsize;
2424 int i;
2425
2426 mapoff = fileoff & PAGEOFFSET;
2427 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2428
2429 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2430 KM_SLEEP);
2431
2432 /*
2433 * Get vpm mappings for maxsize with read access.
2434 * If the pages aren't available yet, we get
2435 * DEADLK, so wait and try again a little later using
2436 * an increasing wait. We might be here a long time.
2437 *
2438 * If delay_sig returns EINTR, be sure to exit and
2439 * pass it up to the caller.
2440 */
2441 deadlk_wait = 0;
2442 while ((error = vpm_map_pages(fvp, fileoff,
2443 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2444 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2445 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2446 if ((error = delay_sig(deadlk_wait)) != 0) {
2447 break;
2448 }
2449 }
2450 if (error != 0) {
2451 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2452 error = (error == EINTR) ? EINTR : EIO;
2453 goto out;
2454 }
2455 snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2456 snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2457
2458 /* Construct the mblk chain from the page mappings */
2459 chain_size = 0;
2460 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2461 total_size > 0; i++) {
2462 ASSERT(chain_size < maxsize);
2463 mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2464 mapoff, total_size);
2465 nmp = esballoca(
2466 (uchar_t *)snfv->snfv_vml[i].vs_addr +
2467 mapoff, mblk_size, BPRI_HI,
2468 &snfv->snfv_frtn);
2469
2470 /*
2471 * We return EAGAIN after unmapping the pages
2472 * if we cannot allocate the the head of the
2473 * chain. Otherwise, we continue sending the
2474 * mblks constructed so far.
2475 */
2476 if (nmp == NULL) {
2477 if (i == 0) {
2478 vpm_unmap_pages(snfv->snfv_vml,
2479 S_READ);
2480 kmem_free(snfv,
2481 sizeof (snf_vmap_desbinfo));
2482 error = EAGAIN;
2483 goto out;
2484 }
2485 break;
2486 }
2487 /* Mark this dblk with the zero-copy flag */
2488 nmp->b_datap->db_struioflag |= STRUIO_ZC;
2489 nmp->b_wptr += mblk_size;
2490 chain_size += mblk_size;
2491 fileoff += mblk_size;
2492 total_size -= mblk_size;
2493 snfv->snfv_ref++;
2494 mapoff = 0;
2495 if (i > 0)
2496 linkb(mp, nmp);
2497 else
2498 mp = nmp;
2499 }
2500 VN_HOLD(fvp);
2501 snfv->snfv_vp = fvp;
2502 } else {
2503 /* vpm not supported. fallback to segmap */
2504 snf_smap_desbinfo *snfi;
2505
2506 mapoff = fileoff & MAXBOFFSET;
2507 chain_size = MAXBSIZE - mapoff;
2508 if (chain_size > total_size)
2509 chain_size = total_size;
2510 /*
2511 * we don't forcefault because we'll call
2512 * segmap_fault(F_SOFTLOCK) next.
2513 *
2514 * S_READ will get the ref bit set (by either
2515 * segmap_getmapflt() or segmap_fault()) and page
2516 * shared locked.
2517 */
2518 base = segmap_getmapflt(segkmap, fvp, fileoff,
2519 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2520
2521 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2522 snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2523 PAGESIZE)- (mapoff & PAGEMASK);
2524 /*
2525 * We must call segmap_fault() even for segmap_kpm
2526 * because that's how error gets returned.
2527 * (segmap_getmapflt() never fails but segmap_fault()
2528 * does.)
2529 *
2530 * If the pages aren't available yet, we get
2531 * DEADLK, so wait and try again a little later using
2532 * an increasing wait. We might be here a long time.
2533 *
2534 * If delay_sig returns EINTR, be sure to exit and
2535 * pass it up to the caller.
2536 */
2537 deadlk_wait = 0;
2538 while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2539 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2540 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2541 S_READ))) == EDEADLK) {
2542 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2543 if ((error = delay_sig(deadlk_wait)) != 0) {
2544 break;
2545 }
2546 }
2547 if (error != 0) {
2548 (void) segmap_release(segkmap, base, 0);
2549 kmem_free(snfi, sizeof (*snfi));
2550 error = (error == EINTR) ? EINTR : EIO;
2551 goto out;
2552 }
2553 snfi->snfi_frtn.free_func = snf_smap_desbfree;
2554 snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2555 snfi->snfi_base = base;
2556 snfi->snfi_mapoff = mapoff;
2557 mp = esballoca((uchar_t *)base + mapoff, chain_size,
2558 BPRI_HI, &snfi->snfi_frtn);
2559
2560 if (mp == NULL) {
2561 (void) segmap_fault(kas.a_hat, segkmap,
2562 (caddr_t)(uintptr_t)(((uintptr_t)base +
2563 mapoff) & PAGEMASK), snfi->snfi_len,
2564 F_SOFTUNLOCK, S_OTHER);
2565 (void) segmap_release(segkmap, base, 0);
2566 kmem_free(snfi, sizeof (*snfi));
2567 freemsg(mp);
2568 error = EAGAIN;
2569 goto out;
2570 }
2571 VN_HOLD(fvp);
2572 snfi->snfi_vp = fvp;
2573 mp->b_wptr += chain_size;
2574
2575 /* Mark this dblk with the zero-copy flag */
2576 mp->b_datap->db_struioflag |= STRUIO_ZC;
2577 fileoff += chain_size;
2578 total_size -= chain_size;
2579 }
2580
2581 if (total_size == 0 && !nowait) {
2582 ASSERT(!dowait);
2583 dowait = B_TRUE;
2584 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2585 }
2586 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2587 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2588 if (error != 0) {
2589 /*
2590 * mp contains the mblks that were not sent by
2591 * socket_sendmblk. Use its size to update *count
2592 */
2593 *count = ksize + (chain_size - msgdsize(mp));
2594 if (mp != NULL)
2595 freemsg(mp);
2596 return (error);
2597 }
2598 ksize += chain_size;
2599 if (total_size == 0)
2600 goto done;
2601
2602 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2603 va.va_mask = AT_SIZE;
2604 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2605 if (error)
2606 break;
2607 /* Read as much as possible. */
2608 if (fileoff >= va.va_size)
2609 break;
2610 if (total_size + fileoff > va.va_size)
2611 total_size = va.va_size - fileoff;
2612 }
2613 out:
2614 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2615 done:
2616 *count = ksize;
2617 if (dowait) {
2618 stdata_t *stp;
2619
2620 stp = vp->v_stream;
2621 if (stp == NULL) {
2622 struct sonode *so;
2623 so = VTOSO(vp);
2624 error = so_zcopy_wait(so);
2625 } else {
2626 mutex_enter(&stp->sd_lock);
2627 while (!(stp->sd_flag & STZCNOTIFY)) {
2628 if (cv_wait_sig(&stp->sd_zcopy_wait,
2629 &stp->sd_lock) == 0) {
2630 error = EINTR;
2631 break;
2632 }
2633 }
2634 stp->sd_flag &= ~STZCNOTIFY;
2635 mutex_exit(&stp->sd_lock);
2636 }
2637 }
2638 return (error);
2639 }
2640
2641 int
snf_cache(file_t * fp,vnode_t * fvp,u_offset_t fileoff,u_offset_t size,uint_t maxpsz,ssize_t * count)2642 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2643 uint_t maxpsz, ssize_t *count)
2644 {
2645 struct vnode *vp;
2646 mblk_t *mp;
2647 int iosize;
2648 int extra = 0;
2649 int error;
2650 short fflag;
2651 int ksize;
2652 int ioflag;
2653 struct uio auio;
2654 struct iovec aiov;
2655 struct vattr va;
2656 int maxblk = 0;
2657 int wroff = 0;
2658 struct sonode *so;
2659 struct nmsghdr msg;
2660
2661 vp = fp->f_vnode;
2662 if (vp->v_type == VSOCK) {
2663 stdata_t *stp;
2664
2665 /*
2666 * Get the extra space to insert a header and a trailer.
2667 */
2668 so = VTOSO(vp);
2669 stp = vp->v_stream;
2670 if (stp == NULL) {
2671 wroff = so->so_proto_props.sopp_wroff;
2672 maxblk = so->so_proto_props.sopp_maxblk;
2673 extra = wroff + so->so_proto_props.sopp_tail;
2674 } else {
2675 wroff = (int)(stp->sd_wroff);
2676 maxblk = (int)(stp->sd_maxblk);
2677 extra = wroff + (int)(stp->sd_tail);
2678 }
2679 }
2680 bzero(&msg, sizeof (msg));
2681 fflag = fp->f_flag;
2682 ksize = 0;
2683 auio.uio_iov = &aiov;
2684 auio.uio_iovcnt = 1;
2685 auio.uio_segflg = UIO_SYSSPACE;
2686 auio.uio_llimit = MAXOFFSET_T;
2687 auio.uio_fmode = fflag;
2688 auio.uio_extflg = UIO_COPY_CACHED;
2689 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2690 /* If read sync is not asked for, filter sync flags */
2691 if ((ioflag & FRSYNC) == 0)
2692 ioflag &= ~(FSYNC|FDSYNC);
2693 for (;;) {
2694 if (ISSIG(curthread, JUSTLOOKING)) {
2695 error = EINTR;
2696 break;
2697 }
2698 iosize = (int)MIN(maxpsz, size);
2699
2700 /*
2701 * Socket filters can limit the mblk size,
2702 * so limit reads to maxblk if there are
2703 * filters present.
2704 */
2705 if (vp->v_type == VSOCK &&
2706 so->so_filter_active > 0 && maxblk != INFPSZ)
2707 iosize = (int)MIN(iosize, maxblk);
2708
2709 if (is_system_labeled()) {
2710 mp = allocb_cred(iosize + extra, CRED(),
2711 curproc->p_pid);
2712 } else {
2713 mp = allocb(iosize + extra, BPRI_MED);
2714 }
2715 if (mp == NULL) {
2716 error = EAGAIN;
2717 break;
2718 }
2719
2720 mp->b_rptr += wroff;
2721
2722 aiov.iov_base = (caddr_t)mp->b_rptr;
2723 aiov.iov_len = iosize;
2724 auio.uio_loffset = fileoff;
2725 auio.uio_resid = iosize;
2726
2727 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2728 iosize -= auio.uio_resid;
2729
2730 if (error == EINTR && iosize != 0)
2731 error = 0;
2732
2733 if (error != 0 || iosize == 0) {
2734 freeb(mp);
2735 break;
2736 }
2737 mp->b_wptr = mp->b_rptr + iosize;
2738
2739 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2740
2741 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2742
2743 if (error != 0) {
2744 *count = ksize;
2745 if (mp != NULL)
2746 freeb(mp);
2747 return (error);
2748 }
2749 ksize += iosize;
2750 size -= iosize;
2751 if (size == 0)
2752 goto done;
2753
2754 fileoff += iosize;
2755 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2756 va.va_mask = AT_SIZE;
2757 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2758 if (error)
2759 break;
2760 /* Read as much as possible. */
2761 if (fileoff >= va.va_size)
2762 size = 0;
2763 else if (size + fileoff > va.va_size)
2764 size = va.va_size - fileoff;
2765 }
2766 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2767 done:
2768 *count = ksize;
2769 return (error);
2770 }
2771
2772 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2773 /*
2774 * Largefile support for 32 bit applications only.
2775 */
2776 int
sosendfile64(file_t * fp,file_t * rfp,const struct ksendfilevec64 * sfv,ssize32_t * count32)2777 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2778 ssize32_t *count32)
2779 {
2780 ssize32_t sfv_len;
2781 u_offset_t sfv_off, va_size;
2782 struct vnode *vp, *fvp, *realvp;
2783 struct vattr va;
2784 stdata_t *stp;
2785 ssize_t count = 0;
2786 int error = 0;
2787 boolean_t dozcopy = B_FALSE;
2788 uint_t maxpsz;
2789
2790 sfv_len = (ssize32_t)sfv->sfv_len;
2791 if (sfv_len < 0) {
2792 error = EINVAL;
2793 goto out;
2794 }
2795
2796 if (sfv_len == 0) goto out;
2797
2798 sfv_off = (u_offset_t)sfv->sfv_off;
2799
2800 /* Same checks as in pread */
2801 if (sfv_off > MAXOFFSET_T) {
2802 error = EINVAL;
2803 goto out;
2804 }
2805 if (sfv_off + sfv_len > MAXOFFSET_T)
2806 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2807
2808 /*
2809 * There are no more checks on sfv_len. So, we cast it to
2810 * u_offset_t and share the snf_direct_io/snf_cache code between
2811 * 32 bit and 64 bit.
2812 *
2813 * TODO: should do nbl_need_check() like read()?
2814 */
2815 if (sfv_len > sendfile_max_size) {
2816 sf_stats.ss_file_not_cached++;
2817 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2818 &count);
2819 goto out;
2820 }
2821 fvp = rfp->f_vnode;
2822 if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2823 fvp = realvp;
2824 /*
2825 * Grab the lock as a reader to prevent the file size
2826 * from changing underneath.
2827 */
2828 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2829 va.va_mask = AT_SIZE;
2830 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2831 va_size = va.va_size;
2832 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2833 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2834 goto out;
2835 }
2836 /* Read as much as possible. */
2837 if (sfv_off + sfv_len > va_size)
2838 sfv_len = va_size - sfv_off;
2839
2840 vp = fp->f_vnode;
2841 stp = vp->v_stream;
2842 /*
2843 * When the NOWAIT flag is not set, we enable zero-copy only if the
2844 * transfer size is large enough. This prevents performance loss
2845 * when the caller sends the file piece by piece.
2846 */
2847 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2848 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2849 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2850 uint_t copyflag;
2851 copyflag = stp != NULL ? stp->sd_copyflag :
2852 VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2853 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2854 int on = 1;
2855
2856 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2857 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2858 dozcopy = B_TRUE;
2859 } else {
2860 dozcopy = copyflag & STZCVMSAFE;
2861 }
2862 }
2863 if (dozcopy) {
2864 sf_stats.ss_file_segmap++;
2865 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2866 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2867 } else {
2868 if (vp->v_type == VSOCK && stp == NULL) {
2869 sonode_t *so = VTOSO(vp);
2870 maxpsz = so->so_proto_props.sopp_maxpsz;
2871 } else if (stp != NULL) {
2872 maxpsz = stp->sd_qn_maxpsz;
2873 } else {
2874 maxpsz = maxphys;
2875 }
2876
2877 if (maxpsz == INFPSZ)
2878 maxpsz = maxphys;
2879 else
2880 maxpsz = roundup(maxpsz, MAXBSIZE);
2881 sf_stats.ss_file_cached++;
2882 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2883 maxpsz, &count);
2884 }
2885 out:
2886 releasef(sfv->sfv_fd);
2887 *count32 = (ssize32_t)count;
2888 return (error);
2889 }
2890 #endif
2891
2892 #ifdef _SYSCALL32_IMPL
2893 /*
2894 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2895 * ssize_t rather than ssize32_t; see the comments above read32 for details.
2896 */
2897
2898 ssize_t
recv32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)2899 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2900 {
2901 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2902 }
2903
2904 ssize_t
recvfrom32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,caddr32_t namelenp)2905 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2906 caddr32_t name, caddr32_t namelenp)
2907 {
2908 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2909 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2910 }
2911
2912 ssize_t
send32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags)2913 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2914 {
2915 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2916 }
2917
2918 ssize_t
sendto32(int32_t sock,caddr32_t buffer,size32_t len,int32_t flags,caddr32_t name,socklen_t namelen)2919 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2920 caddr32_t name, socklen_t namelen)
2921 {
2922 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2923 (void *)(uintptr_t)name, namelen));
2924 }
2925 #endif /* _SYSCALL32_IMPL */
2926
2927 /*
2928 * Function wrappers (mostly around the sonode switch) for
2929 * backward compatibility.
2930 */
2931
2932 int
soaccept(struct sonode * so,int fflag,struct sonode ** nsop)2933 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2934 {
2935 return (socket_accept(so, fflag, CRED(), nsop));
2936 }
2937
2938 int
sobind(struct sonode * so,struct sockaddr * name,socklen_t namelen,int backlog,int flags)2939 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2940 int backlog, int flags)
2941 {
2942 int error;
2943
2944 error = socket_bind(so, name, namelen, flags, CRED());
2945 if (error == 0 && backlog != 0)
2946 return (socket_listen(so, backlog, CRED()));
2947
2948 return (error);
2949 }
2950
2951 int
solisten(struct sonode * so,int backlog)2952 solisten(struct sonode *so, int backlog)
2953 {
2954 return (socket_listen(so, backlog, CRED()));
2955 }
2956
2957 int
soconnect(struct sonode * so,struct sockaddr * name,socklen_t namelen,int fflag,int flags)2958 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2959 int fflag, int flags)
2960 {
2961 return (socket_connect(so, name, namelen, fflag, flags, CRED()));
2962 }
2963
2964 int
sorecvmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)2965 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2966 {
2967 return (socket_recvmsg(so, msg, uiop, CRED()));
2968 }
2969
2970 int
sosendmsg(struct sonode * so,struct nmsghdr * msg,struct uio * uiop)2971 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2972 {
2973 return (socket_sendmsg(so, msg, uiop, CRED()));
2974 }
2975
2976 int
soshutdown(struct sonode * so,int how)2977 soshutdown(struct sonode *so, int how)
2978 {
2979 return (socket_shutdown(so, how, CRED()));
2980 }
2981
2982 int
sogetsockopt(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)2983 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2984 socklen_t *optlenp, int flags)
2985 {
2986 return (socket_getsockopt(so, level, option_name, optval, optlenp,
2987 flags, CRED()));
2988 }
2989
2990 int
sosetsockopt(struct sonode * so,int level,int option_name,const void * optval,t_uscalar_t optlen)2991 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
2992 t_uscalar_t optlen)
2993 {
2994 return (socket_setsockopt(so, level, option_name, optval, optlen,
2995 CRED()));
2996 }
2997
2998 /*
2999 * Because this is backward compatibility interface it only needs to be
3000 * able to handle the creation of TPI sockfs sockets.
3001 */
3002 struct sonode *
socreate(struct sockparams * sp,int family,int type,int protocol,int version,int * errorp)3003 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3004 int *errorp)
3005 {
3006 struct sonode *so;
3007
3008 ASSERT(sp != NULL);
3009
3010 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3011 version, SOCKET_SLEEP, errorp, CRED());
3012 if (so == NULL) {
3013 SOCKPARAMS_DEC_REF(sp);
3014 } else {
3015 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3016 /* Cannot fail, only bumps so_count */
3017 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3018 } else {
3019 socket_destroy(so);
3020 so = NULL;
3021 }
3022 }
3023 return (so);
3024 }
3025