1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/signal.h>
29 #include <sys/cmn_err.h>
30
31 #include <sys/stropts.h>
32 #include <sys/socket.h>
33 #include <sys/socketvar.h>
34 #include <sys/sockio.h>
35 #include <sys/strsubr.h>
36 #include <sys/strsun.h>
37 #include <sys/atomic.h>
38 #include <sys/tihdr.h>
39
40 #include <fs/sockfs/sockcommon.h>
41 #include <fs/sockfs/sockfilter_impl.h>
42 #include <fs/sockfs/socktpi.h>
43 #include <fs/sockfs/sodirect.h>
44 #include <sys/ddi.h>
45 #include <inet/ip.h>
46 #include <sys/time.h>
47 #include <sys/cmn_err.h>
48
49 #ifdef SOCK_TEST
50 extern int do_useracc;
51 extern clock_t sock_test_timelimit;
52 #endif /* SOCK_TEST */
53
54 #define MBLK_PULL_LEN 64
55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
56
57 #ifdef DEBUG
58 boolean_t so_debug_length = B_FALSE;
59 static boolean_t so_check_length(sonode_t *so);
60 #endif
61
62 static int
so_acceptq_dequeue_locked(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)63 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
64 struct sonode **nsop)
65 {
66 struct sonode *nso = NULL;
67
68 *nsop = NULL;
69 ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
70 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
71 /*
72 * No need to check so_error here, because it is not
73 * possible for a listening socket to be reset or otherwise
74 * disconnected.
75 *
76 * So now we just need check if it's ok to wait.
77 */
78 if (dontblock)
79 return (EWOULDBLOCK);
80 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
81 return (EINTR);
82
83 if (cv_wait_sig_swap(&so->so_acceptq_cv,
84 &so->so_acceptq_lock) == 0)
85 return (EINTR);
86 }
87
88 ASSERT(nso != NULL);
89 ASSERT(so->so_acceptq_len > 0);
90 so->so_acceptq_len--;
91 nso->so_listener = NULL;
92
93 *nsop = nso;
94
95 return (0);
96 }
97
98 /*
99 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
100 *
101 * Pulls a connection off of the accept queue.
102 *
103 * Arguments:
104 * so - listening socket
105 * dontblock - indicate whether it's ok to sleep if there are no
106 * connections on the queue
107 * nsop - Value-return argument
108 *
109 * Return values:
110 * 0 when a connection is successfully dequeued, in which case nsop
111 * is set to point to the new connection. Upon failure a non-zero
112 * value is returned, and the value of nsop is set to NULL.
113 *
114 * Note:
115 * so_acceptq_dequeue() may return prematurly if the socket is falling
116 * back to TPI.
117 */
118 int
so_acceptq_dequeue(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)119 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
120 struct sonode **nsop)
121 {
122 int error;
123
124 mutex_enter(&so->so_acceptq_lock);
125 error = so_acceptq_dequeue_locked(so, dontblock, nsop);
126 mutex_exit(&so->so_acceptq_lock);
127
128 return (error);
129 }
130
131 static void
so_acceptq_flush_impl(struct sonode * so,list_t * list,boolean_t doclose)132 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose)
133 {
134 struct sonode *nso;
135
136 while ((nso = list_remove_head(list)) != NULL) {
137 nso->so_listener = NULL;
138 if (doclose) {
139 (void) socket_close(nso, 0, CRED());
140 } else {
141 /*
142 * Only used for fallback - not possible when filters
143 * are present.
144 */
145 ASSERT(so->so_filter_active == 0);
146 /*
147 * Since the socket is on the accept queue, there can
148 * only be one reference. We drop the reference and
149 * just blow off the socket.
150 */
151 ASSERT(nso->so_count == 1);
152 nso->so_count--;
153 /* drop the proto ref */
154 VN_RELE(SOTOV(nso));
155 }
156 socket_destroy(nso);
157 }
158 }
159 /*
160 * void so_acceptq_flush(struct sonode *so)
161 *
162 * Removes all pending connections from a listening socket, and
163 * frees the associated resources.
164 *
165 * Arguments
166 * so - listening socket
167 * doclose - make a close downcall for each socket on the accept queue
168 *
169 * Return values:
170 * None.
171 *
172 * Note:
173 * The caller has to ensure that no calls to so_acceptq_enqueue() or
174 * so_acceptq_dequeue() occur while the accept queue is being flushed.
175 * So either the socket needs to be in a state where no operations
176 * would come in, or so_lock needs to be obtained.
177 */
178 void
so_acceptq_flush(struct sonode * so,boolean_t doclose)179 so_acceptq_flush(struct sonode *so, boolean_t doclose)
180 {
181 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose);
182 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose);
183
184 so->so_acceptq_len = 0;
185 }
186
187 int
so_wait_connected_locked(struct sonode * so,boolean_t nonblock,sock_connid_t id)188 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
189 sock_connid_t id)
190 {
191 ASSERT(MUTEX_HELD(&so->so_lock));
192
193 /*
194 * The protocol has notified us that a connection attempt is being
195 * made, so before we wait for a notification to arrive we must
196 * clear out any errors associated with earlier connection attempts.
197 */
198 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
199 so->so_error = 0;
200
201 while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
202 if (nonblock)
203 return (EINPROGRESS);
204
205 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
206 return (EINTR);
207
208 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
209 return (EINTR);
210 }
211
212 if (so->so_error != 0)
213 return (sogeterr(so, B_TRUE));
214 /*
215 * Under normal circumstances, so_error should contain an error
216 * in case the connect failed. However, it is possible for another
217 * thread to come in a consume the error, so generate a sensible
218 * error in that case.
219 */
220 if ((so->so_state & SS_ISCONNECTED) == 0)
221 return (ECONNREFUSED);
222
223 return (0);
224 }
225
226 /*
227 * int so_wait_connected(struct sonode *so, boolean_t nonblock,
228 * sock_connid_t id)
229 *
230 * Wait until the socket is connected or an error has occured.
231 *
232 * Arguments:
233 * so - socket
234 * nonblock - indicate whether it's ok to sleep if the connection has
235 * not yet been established
236 * gen - generation number that was returned by the protocol
237 * when the operation was started
238 *
239 * Returns:
240 * 0 if the connection attempt was successful, or an error indicating why
241 * the connection attempt failed.
242 */
243 int
so_wait_connected(struct sonode * so,boolean_t nonblock,sock_connid_t id)244 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
245 {
246 int error;
247
248 mutex_enter(&so->so_lock);
249 error = so_wait_connected_locked(so, nonblock, id);
250 mutex_exit(&so->so_lock);
251
252 return (error);
253 }
254
255 int
so_snd_wait_qnotfull_locked(struct sonode * so,boolean_t dontblock)256 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
257 {
258 int error;
259
260 ASSERT(MUTEX_HELD(&so->so_lock));
261 while (SO_SND_FLOWCTRLD(so)) {
262 if (so->so_state & SS_CANTSENDMORE)
263 return (EPIPE);
264 if (dontblock)
265 return (EWOULDBLOCK);
266
267 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
268 return (EINTR);
269
270 if (so->so_sndtimeo == 0) {
271 /*
272 * Zero means disable timeout.
273 */
274 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
275 } else {
276 error = cv_reltimedwait_sig(&so->so_snd_cv,
277 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK);
278 }
279 if (error == 0)
280 return (EINTR);
281 else if (error == -1)
282 return (EAGAIN);
283 }
284 return (0);
285 }
286
287 /*
288 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
289 *
290 * Wait for the transport to notify us about send buffers becoming
291 * available.
292 */
293 int
so_snd_wait_qnotfull(struct sonode * so,boolean_t dontblock)294 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
295 {
296 int error = 0;
297
298 mutex_enter(&so->so_lock);
299 so->so_snd_wakeup = B_TRUE;
300 error = so_snd_wait_qnotfull_locked(so, dontblock);
301 so->so_snd_wakeup = B_FALSE;
302 mutex_exit(&so->so_lock);
303
304 return (error);
305 }
306
307 void
so_snd_qfull(struct sonode * so)308 so_snd_qfull(struct sonode *so)
309 {
310 mutex_enter(&so->so_lock);
311 so->so_snd_qfull = B_TRUE;
312 mutex_exit(&so->so_lock);
313 }
314
315 void
so_snd_qnotfull(struct sonode * so)316 so_snd_qnotfull(struct sonode *so)
317 {
318 mutex_enter(&so->so_lock);
319 so->so_snd_qfull = B_FALSE;
320 /* wake up everyone waiting for buffers */
321 cv_broadcast(&so->so_snd_cv);
322 mutex_exit(&so->so_lock);
323 }
324
325 /*
326 * Change the process/process group to which SIGIO is sent.
327 */
328 int
socket_chgpgrp(struct sonode * so,pid_t pid)329 socket_chgpgrp(struct sonode *so, pid_t pid)
330 {
331 int error;
332
333 ASSERT(MUTEX_HELD(&so->so_lock));
334 if (pid != 0) {
335 /*
336 * Permissions check by sending signal 0.
337 * Note that when kill fails it does a
338 * set_errno causing the system call to fail.
339 */
340 error = kill(pid, 0);
341 if (error != 0) {
342 return (error);
343 }
344 }
345 so->so_pgrp = pid;
346 return (0);
347 }
348
349
350 /*
351 * Generate a SIGIO, for 'writable' events include siginfo structure,
352 * for read events just send the signal.
353 */
354 /*ARGSUSED*/
355 static void
socket_sigproc(proc_t * proc,int event)356 socket_sigproc(proc_t *proc, int event)
357 {
358 k_siginfo_t info;
359
360 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
361
362 if (event & SOCKETSIG_WRITE) {
363 info.si_signo = SIGPOLL;
364 info.si_code = POLL_OUT;
365 info.si_errno = 0;
366 info.si_fd = 0;
367 info.si_band = 0;
368 sigaddq(proc, NULL, &info, KM_NOSLEEP);
369 }
370 if (event & SOCKETSIG_READ) {
371 sigtoproc(proc, NULL, SIGPOLL);
372 }
373 if (event & SOCKETSIG_URG) {
374 sigtoproc(proc, NULL, SIGURG);
375 }
376 }
377
378 void
socket_sendsig(struct sonode * so,int event)379 socket_sendsig(struct sonode *so, int event)
380 {
381 proc_t *proc;
382
383 ASSERT(MUTEX_HELD(&so->so_lock));
384
385 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
386 event != SOCKETSIG_URG)) {
387 return;
388 }
389
390 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
391
392 if (so->so_pgrp > 0) {
393 /*
394 * XXX This unfortunately still generates
395 * a signal when a fd is closed but
396 * the proc is active.
397 */
398 mutex_enter(&pidlock);
399 proc = prfind(so->so_pgrp);
400 if (proc == NULL) {
401 mutex_exit(&pidlock);
402 return;
403 }
404 mutex_enter(&proc->p_lock);
405 mutex_exit(&pidlock);
406 socket_sigproc(proc, event);
407 mutex_exit(&proc->p_lock);
408 } else {
409 /*
410 * Send to process group. Hold pidlock across
411 * calls to socket_sigproc().
412 */
413 pid_t pgrp = -so->so_pgrp;
414
415 mutex_enter(&pidlock);
416 proc = pgfind(pgrp);
417 while (proc != NULL) {
418 mutex_enter(&proc->p_lock);
419 socket_sigproc(proc, event);
420 mutex_exit(&proc->p_lock);
421 proc = proc->p_pglink;
422 }
423 mutex_exit(&pidlock);
424 }
425 }
426
427 #define MIN(a, b) ((a) < (b) ? (a) : (b))
428 /* Copy userdata into a new mblk_t */
429 mblk_t *
socopyinuio(uio_t * uiop,ssize_t iosize,size_t wroff,ssize_t maxblk,size_t tail_len,int * errorp)430 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
431 size_t tail_len, int *errorp)
432 {
433 mblk_t *head = NULL, **tail = &head;
434
435 ASSERT(iosize == INFPSZ || iosize > 0);
436
437 if (iosize == INFPSZ || iosize > uiop->uio_resid)
438 iosize = uiop->uio_resid;
439
440 if (maxblk == INFPSZ)
441 maxblk = iosize;
442
443 /* Nothing to do in these cases, so we're done */
444 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
445 goto done;
446
447 /*
448 * We will enter the loop below if iosize is 0; it will allocate an
449 * empty message block and call uiomove(9F) which will just return.
450 * We could avoid that with an extra check but would only slow
451 * down the much more likely case where iosize is larger than 0.
452 */
453 do {
454 ssize_t blocksize;
455 mblk_t *mp;
456
457 blocksize = MIN(iosize, maxblk);
458 ASSERT(blocksize >= 0);
459 mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
460 if (mp == NULL) {
461 *errorp = ENOMEM;
462 return (head);
463 }
464 mp->b_rptr += wroff;
465 mp->b_wptr = mp->b_rptr + blocksize;
466
467 *tail = mp;
468 tail = &mp->b_cont;
469
470 /* uiomove(9F) either returns 0 or EFAULT */
471 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
472 UIO_WRITE, uiop)) != 0) {
473 ASSERT(*errorp != ENOMEM);
474 freemsg(head);
475 return (NULL);
476 }
477
478 iosize -= blocksize;
479 } while (iosize > 0);
480
481 done:
482 *errorp = 0;
483 return (head);
484 }
485
486 mblk_t *
socopyoutuio(mblk_t * mp,struct uio * uiop,ssize_t max_read,int * errorp)487 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
488 {
489 int error;
490 ptrdiff_t n;
491 mblk_t *nmp;
492
493 ASSERT(mp->b_wptr >= mp->b_rptr);
494
495 /*
496 * max_read is the offset of the oobmark and read can not go pass
497 * the oobmark.
498 */
499 if (max_read == INFPSZ || max_read > uiop->uio_resid)
500 max_read = uiop->uio_resid;
501
502 do {
503 if ((n = MIN(max_read, MBLKL(mp))) != 0) {
504 ASSERT(n > 0);
505
506 error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
507 if (error != 0) {
508 freemsg(mp);
509 *errorp = error;
510 return (NULL);
511 }
512 }
513
514 mp->b_rptr += n;
515 max_read -= n;
516 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
517 /*
518 * get rid of zero length mblks
519 */
520 nmp = mp;
521 mp = mp->b_cont;
522 freeb(nmp);
523 }
524 } while (mp != NULL && max_read > 0);
525
526 *errorp = 0;
527 return (mp);
528 }
529
530 static void
so_prepend_msg(struct sonode * so,mblk_t * mp,mblk_t * last_tail)531 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
532 {
533 ASSERT(last_tail != NULL);
534 mp->b_next = so->so_rcv_q_head;
535 mp->b_prev = last_tail;
536 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
537
538 if (so->so_rcv_q_head == NULL) {
539 ASSERT(so->so_rcv_q_last_head == NULL);
540 so->so_rcv_q_last_head = mp;
541 #ifdef DEBUG
542 } else {
543 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
544 #endif
545 }
546 so->so_rcv_q_head = mp;
547
548 #ifdef DEBUG
549 if (so_debug_length) {
550 mutex_enter(&so->so_lock);
551 ASSERT(so_check_length(so));
552 mutex_exit(&so->so_lock);
553 }
554 #endif
555 }
556
557 /*
558 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
559 * can be processed by so_dequeue_msg().
560 */
561 void
so_process_new_message(struct sonode * so,mblk_t * mp_head,mblk_t * mp_last_head)562 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
563 {
564 if (so->so_filter_active > 0 &&
565 (mp_head = sof_filter_data_in_proc(so, mp_head,
566 &mp_last_head)) == NULL)
567 return;
568
569 ASSERT(mp_head->b_prev != NULL);
570 if (so->so_rcv_q_head == NULL) {
571 so->so_rcv_q_head = mp_head;
572 so->so_rcv_q_last_head = mp_last_head;
573 ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
574 } else {
575 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
576 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
577
578 if (mp_head->b_next == NULL &&
579 DB_TYPE(mp_head) == M_DATA &&
580 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
581 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
582 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
583 mp_head->b_prev = NULL;
584 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
585 /*
586 * Append to last_head if more than one mblks, and both
587 * mp_head and last_head are I/OAT mblks.
588 */
589 ASSERT(mp_head->b_next != NULL);
590 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
591 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
592 mp_head->b_prev = NULL;
593
594 so->so_rcv_q_last_head->b_next = mp_head->b_next;
595 mp_head->b_next = NULL;
596 so->so_rcv_q_last_head = mp_last_head;
597 } else {
598 #ifdef DEBUG
599 {
600 mblk_t *tmp_mblk;
601 tmp_mblk = mp_head;
602 while (tmp_mblk != NULL) {
603 ASSERT(tmp_mblk->b_prev != NULL);
604 tmp_mblk = tmp_mblk->b_next;
605 }
606 }
607 #endif
608 so->so_rcv_q_last_head->b_next = mp_head;
609 so->so_rcv_q_last_head = mp_last_head;
610 }
611 }
612 }
613
614 /*
615 * Check flow control on a given sonode. Must have so_lock held, and
616 * this function will release the hold. Return true if flow control
617 * is cleared.
618 */
619 boolean_t
so_check_flow_control(struct sonode * so)620 so_check_flow_control(struct sonode *so)
621 {
622 ASSERT(MUTEX_HELD(&so->so_lock));
623
624 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat &&
625 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) {
626 so->so_flowctrld = B_FALSE;
627 mutex_exit(&so->so_lock);
628 /*
629 * Open up flow control. SCTP does not have any downcalls, and
630 * it will clr flow ctrl in sosctp_recvmsg().
631 */
632 if (so->so_downcalls != NULL &&
633 so->so_downcalls->sd_clr_flowctrl != NULL) {
634 (*so->so_downcalls->sd_clr_flowctrl)
635 (so->so_proto_handle);
636 }
637 /* filters can start injecting data */
638 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0);
639 return (B_TRUE);
640 } else {
641 mutex_exit(&so->so_lock);
642 return (B_FALSE);
643 }
644 }
645
646 int
so_dequeue_msg(struct sonode * so,mblk_t ** mctlp,struct uio * uiop,rval_t * rvalp,int flags)647 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
648 rval_t *rvalp, int flags)
649 {
650 mblk_t *mp, *nmp;
651 mblk_t *savemp, *savemptail;
652 mblk_t *new_msg_head;
653 mblk_t *new_msg_last_head;
654 mblk_t *last_tail;
655 boolean_t partial_read;
656 boolean_t reset_atmark = B_FALSE;
657 int more = 0;
658 int error;
659 ssize_t oobmark;
660 sodirect_t *sodp = so->so_direct;
661
662 partial_read = B_FALSE;
663 *mctlp = NULL;
664 again:
665 mutex_enter(&so->so_lock);
666 again1:
667 #ifdef DEBUG
668 if (so_debug_length) {
669 ASSERT(so_check_length(so));
670 }
671 #endif
672 if (so->so_state & SS_RCVATMARK) {
673 /* Check whether the caller is OK to read past the mark */
674 if (flags & MSG_NOMARK) {
675 mutex_exit(&so->so_lock);
676 return (EWOULDBLOCK);
677 }
678 reset_atmark = B_TRUE;
679 }
680 /*
681 * First move messages from the dump area to processing area
682 */
683 if (sodp != NULL) {
684 if (sodp->sod_enabled) {
685 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
686 /* nothing to uioamove */
687 sodp = NULL;
688 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
689 sodp->sod_uioa.uioa_state &= UIOA_CLR;
690 sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
691 /*
692 * try to uioamove() the data that
693 * has already queued.
694 */
695 sod_uioa_so_init(so, sodp, uiop);
696 }
697 } else {
698 sodp = NULL;
699 }
700 }
701 new_msg_head = so->so_rcv_head;
702 new_msg_last_head = so->so_rcv_last_head;
703 so->so_rcv_head = NULL;
704 so->so_rcv_last_head = NULL;
705 oobmark = so->so_oobmark;
706 /*
707 * We can release the lock as there can only be one reader
708 */
709 mutex_exit(&so->so_lock);
710
711 if (new_msg_head != NULL) {
712 so_process_new_message(so, new_msg_head, new_msg_last_head);
713 }
714 savemp = savemptail = NULL;
715 rvalp->r_vals = 0;
716 error = 0;
717 mp = so->so_rcv_q_head;
718
719 if (mp != NULL &&
720 (so->so_rcv_timer_tid == 0 ||
721 so->so_rcv_queued >= so->so_rcv_thresh)) {
722 partial_read = B_FALSE;
723
724 if (flags & MSG_PEEK) {
725 if ((nmp = dupmsg(mp)) == NULL &&
726 (nmp = copymsg(mp)) == NULL) {
727 size_t size = msgsize(mp);
728
729 error = strwaitbuf(size, BPRI_HI);
730 if (error) {
731 return (error);
732 }
733 goto again;
734 }
735 mp = nmp;
736 } else {
737 ASSERT(mp->b_prev != NULL);
738 last_tail = mp->b_prev;
739 mp->b_prev = NULL;
740 so->so_rcv_q_head = mp->b_next;
741 if (so->so_rcv_q_head == NULL) {
742 so->so_rcv_q_last_head = NULL;
743 }
744 mp->b_next = NULL;
745 }
746
747 ASSERT(mctlp != NULL);
748 /*
749 * First process PROTO or PCPROTO blocks, if any.
750 */
751 if (DB_TYPE(mp) != M_DATA) {
752 *mctlp = mp;
753 savemp = mp;
754 savemptail = mp;
755 ASSERT(DB_TYPE(mp) == M_PROTO ||
756 DB_TYPE(mp) == M_PCPROTO);
757 while (mp->b_cont != NULL &&
758 DB_TYPE(mp->b_cont) != M_DATA) {
759 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
760 DB_TYPE(mp->b_cont) == M_PCPROTO);
761 mp = mp->b_cont;
762 savemptail = mp;
763 }
764 mp = savemptail->b_cont;
765 savemptail->b_cont = NULL;
766 }
767
768 ASSERT(DB_TYPE(mp) == M_DATA);
769 /*
770 * Now process DATA blocks, if any. Note that for sodirect
771 * enabled socket, uio_resid can be 0.
772 */
773 if (uiop->uio_resid >= 0) {
774 ssize_t copied = 0;
775
776 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
777 mutex_enter(&so->so_lock);
778 ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
779 copied = sod_uioa_mblk(so, mp);
780 if (copied > 0)
781 partial_read = B_TRUE;
782 mutex_exit(&so->so_lock);
783 /* mark this mblk as processed */
784 mp = NULL;
785 } else {
786 ssize_t oldresid = uiop->uio_resid;
787
788 if (MBLKL(mp) < so_mblk_pull_len) {
789 if (pullupmsg(mp, -1) == 1) {
790 last_tail = mp;
791 }
792 }
793 /*
794 * Can not read beyond the oobmark
795 */
796 mp = socopyoutuio(mp, uiop,
797 oobmark == 0 ? INFPSZ : oobmark, &error);
798 if (error != 0) {
799 freemsg(*mctlp);
800 *mctlp = NULL;
801 more = 0;
802 goto done;
803 }
804 ASSERT(oldresid >= uiop->uio_resid);
805 copied = oldresid - uiop->uio_resid;
806 if (oldresid > uiop->uio_resid)
807 partial_read = B_TRUE;
808 }
809 ASSERT(copied >= 0);
810 if (copied > 0 && !(flags & MSG_PEEK)) {
811 mutex_enter(&so->so_lock);
812 so->so_rcv_queued -= copied;
813 ASSERT(so->so_oobmark >= 0);
814 if (so->so_oobmark > 0) {
815 so->so_oobmark -= copied;
816 ASSERT(so->so_oobmark >= 0);
817 if (so->so_oobmark == 0) {
818 ASSERT(so->so_state &
819 SS_OOBPEND);
820 so->so_oobmark = 0;
821 so->so_state |= SS_RCVATMARK;
822 }
823 }
824 /*
825 * so_check_flow_control() will drop
826 * so->so_lock.
827 */
828 rvalp->r_val2 = so_check_flow_control(so);
829 }
830 }
831 if (mp != NULL) { /* more data blocks in msg */
832 more |= MOREDATA;
833 if ((flags & (MSG_PEEK|MSG_TRUNC))) {
834 if (flags & MSG_PEEK) {
835 freemsg(mp);
836 } else {
837 unsigned int msize = msgdsize(mp);
838
839 freemsg(mp);
840 mutex_enter(&so->so_lock);
841 so->so_rcv_queued -= msize;
842 /*
843 * so_check_flow_control() will drop
844 * so->so_lock.
845 */
846 rvalp->r_val2 =
847 so_check_flow_control(so);
848 }
849 } else if (partial_read && !somsghasdata(mp)) {
850 /*
851 * Avoid queuing a zero-length tail part of
852 * a message. partial_read == 1 indicates that
853 * we read some of the message.
854 */
855 freemsg(mp);
856 more &= ~MOREDATA;
857 } else {
858 if (savemp != NULL &&
859 (flags & MSG_DUPCTRL)) {
860 mblk_t *nmp;
861 /*
862 * There should only be non data mblks
863 */
864 ASSERT(DB_TYPE(savemp) != M_DATA &&
865 DB_TYPE(savemptail) != M_DATA);
866 try_again:
867 if ((nmp = dupmsg(savemp)) == NULL &&
868 (nmp = copymsg(savemp)) == NULL) {
869
870 size_t size = msgsize(savemp);
871
872 error = strwaitbuf(size,
873 BPRI_HI);
874 if (error != 0) {
875 /*
876 * In case we
877 * cannot copy
878 * control data
879 * free the remaining
880 * data.
881 */
882 freemsg(mp);
883 goto done;
884 }
885 goto try_again;
886 }
887
888 ASSERT(nmp != NULL);
889 ASSERT(DB_TYPE(nmp) != M_DATA);
890 savemptail->b_cont = mp;
891 *mctlp = nmp;
892 mp = savemp;
893 }
894 /*
895 * putback mp
896 */
897 so_prepend_msg(so, mp, last_tail);
898 }
899 }
900
901 /* fast check so_rcv_head if there is more data */
902 if (partial_read && !(so->so_state & SS_RCVATMARK) &&
903 *mctlp == NULL && uiop->uio_resid > 0 &&
904 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
905 goto again;
906 }
907 } else if (!partial_read) {
908 mutex_enter(&so->so_lock);
909 if (so->so_error != 0) {
910 error = sogeterr(so, !(flags & MSG_PEEK));
911 mutex_exit(&so->so_lock);
912 return (error);
913 }
914 /*
915 * No pending data. Return right away for nonblocking
916 * socket, otherwise sleep waiting for data.
917 */
918 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
919 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
920 (flags & MSG_DONTWAIT)) {
921 error = EWOULDBLOCK;
922 } else {
923 if (so->so_state & (SS_CLOSING |
924 SS_FALLBACK_PENDING)) {
925 mutex_exit(&so->so_lock);
926 error = EINTR;
927 goto done;
928 }
929
930 if (so->so_rcv_head != NULL) {
931 goto again1;
932 }
933 so->so_rcv_wakeup = B_TRUE;
934 so->so_rcv_wanted = uiop->uio_resid;
935 if (so->so_rcvtimeo == 0) {
936 /*
937 * Zero means disable timeout.
938 */
939 error = cv_wait_sig(&so->so_rcv_cv,
940 &so->so_lock);
941 } else {
942 error = cv_reltimedwait_sig(
943 &so->so_rcv_cv, &so->so_lock,
944 so->so_rcvtimeo, TR_CLOCK_TICK);
945 }
946 so->so_rcv_wakeup = B_FALSE;
947 so->so_rcv_wanted = 0;
948
949 if (error == 0) {
950 error = EINTR;
951 } else if (error == -1) {
952 error = EAGAIN;
953 } else {
954 goto again1;
955 }
956 }
957 }
958 mutex_exit(&so->so_lock);
959 }
960 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
961 /*
962 * We are passed the mark, update state
963 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
964 * The draft Posix socket spec states that the mark should
965 * not be cleared when peeking. We follow the latter.
966 */
967 mutex_enter(&so->so_lock);
968 ASSERT(so_verify_oobstate(so));
969 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
970 freemsg(so->so_oobmsg);
971 so->so_oobmsg = NULL;
972 ASSERT(so_verify_oobstate(so));
973 mutex_exit(&so->so_lock);
974 }
975 ASSERT(so->so_rcv_wakeup == B_FALSE);
976 done:
977 if (sodp != NULL) {
978 mutex_enter(&so->so_lock);
979 if (sodp->sod_enabled &&
980 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
981 SOD_UIOAFINI(sodp);
982 if (sodp->sod_uioa.uioa_mbytes > 0) {
983 ASSERT(so->so_rcv_q_head != NULL ||
984 so->so_rcv_head != NULL);
985 so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
986 if (error == EWOULDBLOCK)
987 error = 0;
988 }
989 }
990 mutex_exit(&so->so_lock);
991 }
992 #ifdef DEBUG
993 if (so_debug_length) {
994 mutex_enter(&so->so_lock);
995 ASSERT(so_check_length(so));
996 mutex_exit(&so->so_lock);
997 }
998 #endif
999 rvalp->r_val1 = more;
1000 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1001 return (error);
1002 }
1003
1004 /*
1005 * Enqueue data from the protocol on the socket's rcv queue.
1006 *
1007 * We try to hook new M_DATA mblks onto an existing chain, however,
1008 * that cannot be done if the existing chain has already been
1009 * processed by I/OAT. Non-M_DATA mblks are just linked together via
1010 * b_next. In all cases the b_prev of the enqueued mblk is set to
1011 * point to the last mblk in its b_cont chain.
1012 */
1013 void
so_enqueue_msg(struct sonode * so,mblk_t * mp,size_t msg_size)1014 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1015 {
1016 ASSERT(MUTEX_HELD(&so->so_lock));
1017
1018 #ifdef DEBUG
1019 if (so_debug_length) {
1020 ASSERT(so_check_length(so));
1021 }
1022 #endif
1023 so->so_rcv_queued += msg_size;
1024
1025 if (so->so_rcv_head == NULL) {
1026 ASSERT(so->so_rcv_last_head == NULL);
1027 so->so_rcv_head = mp;
1028 so->so_rcv_last_head = mp;
1029 } else if ((DB_TYPE(mp) == M_DATA &&
1030 DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1031 ((DB_FLAGS(mp) & DBLK_UIOA) ==
1032 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1033 /* Added to the end */
1034 ASSERT(so->so_rcv_last_head != NULL);
1035 ASSERT(so->so_rcv_last_head->b_prev != NULL);
1036 so->so_rcv_last_head->b_prev->b_cont = mp;
1037 } else {
1038 /* Start a new end */
1039 so->so_rcv_last_head->b_next = mp;
1040 so->so_rcv_last_head = mp;
1041 }
1042 while (mp->b_cont != NULL)
1043 mp = mp->b_cont;
1044
1045 so->so_rcv_last_head->b_prev = mp;
1046 #ifdef DEBUG
1047 if (so_debug_length) {
1048 ASSERT(so_check_length(so));
1049 }
1050 #endif
1051 }
1052
1053 /*
1054 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1055 */
1056 boolean_t
somsghasdata(mblk_t * mp)1057 somsghasdata(mblk_t *mp)
1058 {
1059 for (; mp; mp = mp->b_cont)
1060 if (mp->b_datap->db_type == M_DATA) {
1061 ASSERT(mp->b_wptr >= mp->b_rptr);
1062 if (mp->b_wptr > mp->b_rptr)
1063 return (B_TRUE);
1064 }
1065 return (B_FALSE);
1066 }
1067
1068 /*
1069 * Flush the read side of sockfs.
1070 *
1071 * The caller must be sure that a reader is not already active when the
1072 * buffer is being flushed.
1073 */
1074 void
so_rcv_flush(struct sonode * so)1075 so_rcv_flush(struct sonode *so)
1076 {
1077 mblk_t *mp;
1078
1079 ASSERT(MUTEX_HELD(&so->so_lock));
1080
1081 if (so->so_oobmsg != NULL) {
1082 freemsg(so->so_oobmsg);
1083 so->so_oobmsg = NULL;
1084 so->so_oobmark = 0;
1085 so->so_state &=
1086 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1087 }
1088
1089 /*
1090 * Free messages sitting in the recv queues
1091 */
1092 while (so->so_rcv_q_head != NULL) {
1093 mp = so->so_rcv_q_head;
1094 so->so_rcv_q_head = mp->b_next;
1095 mp->b_next = mp->b_prev = NULL;
1096 freemsg(mp);
1097 }
1098 while (so->so_rcv_head != NULL) {
1099 mp = so->so_rcv_head;
1100 so->so_rcv_head = mp->b_next;
1101 mp->b_next = mp->b_prev = NULL;
1102 freemsg(mp);
1103 }
1104 so->so_rcv_queued = 0;
1105 so->so_rcv_q_head = NULL;
1106 so->so_rcv_q_last_head = NULL;
1107 so->so_rcv_head = NULL;
1108 so->so_rcv_last_head = NULL;
1109 }
1110
1111 /*
1112 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1113 */
1114 int
sorecvoob(struct sonode * so,struct nmsghdr * msg,struct uio * uiop,int flags,boolean_t oob_inline)1115 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1116 boolean_t oob_inline)
1117 {
1118 mblk_t *mp, *nmp;
1119 int error;
1120
1121 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1122 flags));
1123
1124 if (msg != NULL) {
1125 /*
1126 * There is never any oob data with addresses or control since
1127 * the T_EXDATA_IND does not carry any options.
1128 */
1129 msg->msg_controllen = 0;
1130 msg->msg_namelen = 0;
1131 msg->msg_flags = 0;
1132 }
1133
1134 mutex_enter(&so->so_lock);
1135 ASSERT(so_verify_oobstate(so));
1136 if (oob_inline ||
1137 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1138 dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1139 mutex_exit(&so->so_lock);
1140 return (EINVAL);
1141 }
1142 if (!(so->so_state & SS_HAVEOOBDATA)) {
1143 dprintso(so, 1, ("sorecvoob: no data yet\n"));
1144 mutex_exit(&so->so_lock);
1145 return (EWOULDBLOCK);
1146 }
1147 ASSERT(so->so_oobmsg != NULL);
1148 mp = so->so_oobmsg;
1149 if (flags & MSG_PEEK) {
1150 /*
1151 * Since recv* can not return ENOBUFS we can not use dupmsg.
1152 * Instead we revert to the consolidation private
1153 * allocb_wait plus bcopy.
1154 */
1155 mblk_t *mp1;
1156
1157 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1158 ASSERT(mp1);
1159
1160 while (mp != NULL) {
1161 ssize_t size;
1162
1163 size = MBLKL(mp);
1164 bcopy(mp->b_rptr, mp1->b_wptr, size);
1165 mp1->b_wptr += size;
1166 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1167 mp = mp->b_cont;
1168 }
1169 mp = mp1;
1170 } else {
1171 /*
1172 * Update the state indicating that the data has been consumed.
1173 * Keep SS_OOBPEND set until data is consumed past the mark.
1174 */
1175 so->so_oobmsg = NULL;
1176 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1177 }
1178 ASSERT(so_verify_oobstate(so));
1179 mutex_exit(&so->so_lock);
1180
1181 error = 0;
1182 nmp = mp;
1183 while (nmp != NULL && uiop->uio_resid > 0) {
1184 ssize_t n = MBLKL(nmp);
1185
1186 n = MIN(n, uiop->uio_resid);
1187 if (n > 0)
1188 error = uiomove(nmp->b_rptr, n,
1189 UIO_READ, uiop);
1190 if (error)
1191 break;
1192 nmp = nmp->b_cont;
1193 }
1194 ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1195 freemsg(mp);
1196 return (error);
1197 }
1198
1199 /*
1200 * Allocate and initializ sonode
1201 */
1202 /* ARGSUSED */
1203 struct sonode *
socket_sonode_create(struct sockparams * sp,int family,int type,int protocol,int version,int sflags,int * errorp,struct cred * cr)1204 socket_sonode_create(struct sockparams *sp, int family, int type,
1205 int protocol, int version, int sflags, int *errorp, struct cred *cr)
1206 {
1207 sonode_t *so;
1208 int kmflags;
1209
1210 /*
1211 * Choose the right set of sonodeops based on the upcall and
1212 * down call version that the protocol has provided
1213 */
1214 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1215 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1216 /*
1217 * mismatch
1218 */
1219 #ifdef DEBUG
1220 cmn_err(CE_CONT, "protocol and socket module version mismatch");
1221 #endif
1222 *errorp = EINVAL;
1223 return (NULL);
1224 }
1225
1226 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1227
1228 so = kmem_cache_alloc(socket_cache, kmflags);
1229 if (so == NULL) {
1230 *errorp = ENOMEM;
1231 return (NULL);
1232 }
1233
1234 sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1235
1236 if (version == SOV_DEFAULT)
1237 version = so_default_version;
1238
1239 so->so_version = (short)version;
1240
1241 /*
1242 * set the default values to be INFPSZ
1243 * if a protocol desires it can change the value later
1244 */
1245 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1246 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1247 so->so_proto_props.sopp_maxpsz = INFPSZ;
1248 so->so_proto_props.sopp_maxblk = INFPSZ;
1249
1250 return (so);
1251 }
1252
1253 int
socket_init_common(struct sonode * so,struct sonode * pso,int flags,cred_t * cr)1254 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1255 {
1256 int error = 0;
1257
1258 if (pso != NULL) {
1259 /*
1260 * We have a passive open, so inherit basic state from
1261 * the parent (listener).
1262 *
1263 * No need to grab the new sonode's lock, since there is no
1264 * one that can have a reference to it.
1265 */
1266 mutex_enter(&pso->so_lock);
1267
1268 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1269 so->so_pgrp = pso->so_pgrp;
1270 so->so_rcvtimeo = pso->so_rcvtimeo;
1271 so->so_sndtimeo = pso->so_sndtimeo;
1272 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1273 /*
1274 * Make note of the socket level options. TCP and IP level
1275 * options are already inherited. We could do all this after
1276 * accept is successful but doing it here simplifies code and
1277 * no harm done for error case.
1278 */
1279 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1280 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1281 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1282 so->so_proto_props = pso->so_proto_props;
1283 so->so_mode = pso->so_mode;
1284 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1285
1286 mutex_exit(&pso->so_lock);
1287
1288 /*
1289 * If the parent has any filters, try to inherit them.
1290 */
1291 if (pso->so_filter_active > 0 &&
1292 (error = sof_sonode_inherit_filters(so, pso)) != 0)
1293 return (error);
1294
1295 } else {
1296 struct sockparams *sp = so->so_sockparams;
1297 sock_upcalls_t *upcalls_to_use;
1298
1299 /*
1300 * Attach automatic filters, if there are any.
1301 */
1302 if (!list_is_empty(&sp->sp_auto_filters) &&
1303 (error = sof_sonode_autoattach_filters(so, cr)) != 0)
1304 return (error);
1305
1306 /* OK to attach filters */
1307 so->so_state |= SS_FILOP_OK;
1308
1309 /*
1310 * Based on the version number select the right upcalls to
1311 * pass down. Currently we only have one version so choose
1312 * default
1313 */
1314 upcalls_to_use = &so_upcalls;
1315
1316 /* active open, so create a lower handle */
1317 so->so_proto_handle =
1318 sp->sp_smod_info->smod_proto_create_func(so->so_family,
1319 so->so_type, so->so_protocol, &so->so_downcalls,
1320 &so->so_mode, &error, flags, cr);
1321
1322 if (so->so_proto_handle == NULL) {
1323 ASSERT(error != 0);
1324 /*
1325 * To be safe; if a lower handle cannot be created, and
1326 * the proto does not give a reason why, assume there
1327 * was a lack of memory.
1328 */
1329 return ((error == 0) ? ENOMEM : error);
1330 }
1331 ASSERT(so->so_downcalls != NULL);
1332 ASSERT(so->so_downcalls->sd_send != NULL ||
1333 so->so_downcalls->sd_send_uio != NULL);
1334 if (so->so_downcalls->sd_recv_uio != NULL) {
1335 ASSERT(so->so_downcalls->sd_poll != NULL);
1336 so->so_pollev |= SO_POLLEV_ALWAYS;
1337 }
1338
1339 (*so->so_downcalls->sd_activate)(so->so_proto_handle,
1340 (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1341
1342 /* Wildcard */
1343
1344 /*
1345 * FIXME No need for this, the protocol can deal with it in
1346 * sd_create(). Should update ICMP.
1347 */
1348 if (so->so_protocol != so->so_sockparams->sp_protocol) {
1349 int protocol = so->so_protocol;
1350 int error;
1351 /*
1352 * Issue SO_PROTOTYPE setsockopt.
1353 */
1354 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1355 &protocol, (t_uscalar_t)sizeof (protocol), cr);
1356 if (error) {
1357 (void) (*so->so_downcalls->sd_close)
1358 (so->so_proto_handle, 0, cr);
1359
1360 mutex_enter(&so->so_lock);
1361 so_rcv_flush(so);
1362 mutex_exit(&so->so_lock);
1363 /*
1364 * Setsockopt often fails with ENOPROTOOPT but
1365 * socket() should fail with
1366 * EPROTONOSUPPORT/EPROTOTYPE.
1367 */
1368 return (EPROTONOSUPPORT);
1369 }
1370 }
1371 }
1372
1373 if (uioasync.enabled)
1374 sod_sock_init(so);
1375
1376 /* put an extra reference on the socket for the protocol */
1377 VN_HOLD(SOTOV(so));
1378
1379 return (0);
1380 }
1381
1382 /*
1383 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1384 * struct cred *cr, int32_t *rvalp)
1385 *
1386 * Handle ioctls that manipulate basic socket state; non-blocking,
1387 * async, etc.
1388 *
1389 * Returns:
1390 * < 0 - ioctl was not handle
1391 * >= 0 - ioctl was handled, if > 0, then it is an errno
1392 *
1393 * Notes:
1394 * Assumes the standard receive buffer is used to obtain info for
1395 * NREAD.
1396 */
1397 /* ARGSUSED */
1398 int
socket_ioctl_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1399 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1400 struct cred *cr, int32_t *rvalp)
1401 {
1402 switch (cmd) {
1403 case SIOCSQPTR:
1404 /*
1405 * SIOCSQPTR is valid only when helper stream is created
1406 * by the protocol.
1407 */
1408
1409 return (EOPNOTSUPP);
1410 case FIONBIO: {
1411 int32_t value;
1412
1413 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1414 (mode & (int)FKIOCTL)))
1415 return (EFAULT);
1416
1417 mutex_enter(&so->so_lock);
1418 if (value) {
1419 so->so_state |= SS_NDELAY;
1420 } else {
1421 so->so_state &= ~SS_NDELAY;
1422 }
1423 mutex_exit(&so->so_lock);
1424 return (0);
1425 }
1426 case FIOASYNC: {
1427 int32_t value;
1428
1429 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1430 (mode & (int)FKIOCTL)))
1431 return (EFAULT);
1432
1433 mutex_enter(&so->so_lock);
1434
1435 if (value) {
1436 /* Turn on SIGIO */
1437 so->so_state |= SS_ASYNC;
1438 } else {
1439 /* Turn off SIGIO */
1440 so->so_state &= ~SS_ASYNC;
1441 }
1442 mutex_exit(&so->so_lock);
1443
1444 return (0);
1445 }
1446
1447 case SIOCSPGRP:
1448 case FIOSETOWN: {
1449 int error;
1450 pid_t pid;
1451
1452 if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1453 (mode & (int)FKIOCTL)))
1454 return (EFAULT);
1455
1456 mutex_enter(&so->so_lock);
1457 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1458 mutex_exit(&so->so_lock);
1459 return (error);
1460 }
1461 case SIOCGPGRP:
1462 case FIOGETOWN:
1463 if (so_copyout(&so->so_pgrp, (void *)arg,
1464 sizeof (pid_t), (mode & (int)FKIOCTL)))
1465 return (EFAULT);
1466
1467 return (0);
1468 case SIOCATMARK: {
1469 int retval;
1470
1471 /*
1472 * Only protocols that support urgent data can handle ATMARK.
1473 */
1474 if ((so->so_mode & SM_EXDATA) == 0)
1475 return (EINVAL);
1476
1477 /*
1478 * If the protocol is maintaining its own buffer, then the
1479 * request must be passed down.
1480 */
1481 if (so->so_downcalls->sd_recv_uio != NULL)
1482 return (-1);
1483
1484 retval = (so->so_state & SS_RCVATMARK) != 0;
1485
1486 if (so_copyout(&retval, (void *)arg, sizeof (int),
1487 (mode & (int)FKIOCTL))) {
1488 return (EFAULT);
1489 }
1490 return (0);
1491 }
1492
1493 case FIONREAD: {
1494 int retval;
1495
1496 /*
1497 * If the protocol is maintaining its own buffer, then the
1498 * request must be passed down.
1499 */
1500 if (so->so_downcalls->sd_recv_uio != NULL)
1501 return (-1);
1502
1503 retval = MIN(so->so_rcv_queued, INT_MAX);
1504
1505 if (so_copyout(&retval, (void *)arg,
1506 sizeof (retval), (mode & (int)FKIOCTL))) {
1507 return (EFAULT);
1508 }
1509 return (0);
1510 }
1511
1512 case _I_GETPEERCRED: {
1513 int error = 0;
1514
1515 if ((mode & FKIOCTL) == 0)
1516 return (EINVAL);
1517
1518 mutex_enter(&so->so_lock);
1519 if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1520 error = ENOTSUP;
1521 } else if ((so->so_state & SS_ISCONNECTED) == 0) {
1522 error = ENOTCONN;
1523 } else if (so->so_peercred != NULL) {
1524 k_peercred_t *kp = (k_peercred_t *)arg;
1525 kp->pc_cr = so->so_peercred;
1526 kp->pc_cpid = so->so_cpid;
1527 crhold(so->so_peercred);
1528 } else {
1529 error = EINVAL;
1530 }
1531 mutex_exit(&so->so_lock);
1532 return (error);
1533 }
1534 default:
1535 return (-1);
1536 }
1537 }
1538
1539 /*
1540 * Handle the I_NREAD STREAM ioctl.
1541 */
1542 static int
so_strioc_nread(struct sonode * so,intptr_t arg,int mode,int32_t * rvalp)1543 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1544 {
1545 size_t size = 0;
1546 int retval;
1547 int count = 0;
1548 mblk_t *mp;
1549 clock_t wakeup = drv_usectohz(10);
1550
1551 if (so->so_downcalls == NULL ||
1552 so->so_downcalls->sd_recv_uio != NULL)
1553 return (EINVAL);
1554
1555 mutex_enter(&so->so_lock);
1556 /* Wait for reader to get out of the way. */
1557 while (so->so_flag & SOREADLOCKED) {
1558 /*
1559 * If reader is waiting for data, then there should be nothing
1560 * on the rcv queue.
1561 */
1562 if (so->so_rcv_wakeup)
1563 goto out;
1564
1565 /* Do a timed sleep, in case the reader goes to sleep. */
1566 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup,
1567 TR_CLOCK_TICK);
1568 }
1569
1570 /*
1571 * Since we are holding so_lock no new reader will come in, and the
1572 * protocol will not be able to enqueue data. So it's safe to walk
1573 * both rcv queues.
1574 */
1575 mp = so->so_rcv_q_head;
1576 if (mp != NULL) {
1577 size = msgdsize(so->so_rcv_q_head);
1578 for (; mp != NULL; mp = mp->b_next)
1579 count++;
1580 } else {
1581 /*
1582 * In case the processing list was empty, get the size of the
1583 * next msg in line.
1584 */
1585 size = msgdsize(so->so_rcv_head);
1586 }
1587
1588 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1589 count++;
1590 out:
1591 mutex_exit(&so->so_lock);
1592
1593 /*
1594 * Drop down from size_t to the "int" required by the
1595 * interface. Cap at INT_MAX.
1596 */
1597 retval = MIN(size, INT_MAX);
1598 if (so_copyout(&retval, (void *)arg, sizeof (retval),
1599 (mode & (int)FKIOCTL))) {
1600 return (EFAULT);
1601 } else {
1602 *rvalp = count;
1603 return (0);
1604 }
1605 }
1606
1607 /*
1608 * Process STREAM ioctls.
1609 *
1610 * Returns:
1611 * < 0 - ioctl was not handle
1612 * >= 0 - ioctl was handled, if > 0, then it is an errno
1613 */
1614 int
socket_strioc_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1615 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1616 struct cred *cr, int32_t *rvalp)
1617 {
1618 int retval;
1619
1620 /* Only STREAM iotcls are handled here */
1621 if ((cmd & 0xffffff00U) != STR)
1622 return (-1);
1623
1624 switch (cmd) {
1625 case I_CANPUT:
1626 /*
1627 * We return an error for I_CANPUT so that isastream(3C) will
1628 * not report the socket as being a STREAM.
1629 */
1630 return (EOPNOTSUPP);
1631 case I_NREAD:
1632 /* Avoid doing a fallback for I_NREAD. */
1633 return (so_strioc_nread(so, arg, mode, rvalp));
1634 case I_LOOK:
1635 /* Avoid doing a fallback for I_LOOK. */
1636 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1637 (mode & (int)FKIOCTL))) {
1638 return (EFAULT);
1639 }
1640 return (0);
1641 default:
1642 break;
1643 }
1644
1645 /*
1646 * Try to fall back to TPI, and if successful, reissue the ioctl.
1647 */
1648 if ((retval = so_tpi_fallback(so, cr)) == 0) {
1649 /* Reissue the ioctl */
1650 ASSERT(so->so_rcv_q_head == NULL);
1651 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1652 } else {
1653 return (retval);
1654 }
1655 }
1656
1657 /*
1658 * This is called for all socket types to verify that the buffer size is large
1659 * enough for the option, and if we can, handle the request as well. Most
1660 * options will be forwarded to the protocol.
1661 */
1662 int
socket_getopt_common(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)1663 socket_getopt_common(struct sonode *so, int level, int option_name,
1664 void *optval, socklen_t *optlenp, int flags)
1665 {
1666 if (level != SOL_SOCKET)
1667 return (-1);
1668
1669 switch (option_name) {
1670 case SO_ERROR:
1671 case SO_DOMAIN:
1672 case SO_TYPE:
1673 case SO_ACCEPTCONN: {
1674 int32_t value;
1675 socklen_t optlen = *optlenp;
1676
1677 if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1678 return (EINVAL);
1679 }
1680
1681 switch (option_name) {
1682 case SO_ERROR:
1683 mutex_enter(&so->so_lock);
1684 value = sogeterr(so, B_TRUE);
1685 mutex_exit(&so->so_lock);
1686 break;
1687 case SO_DOMAIN:
1688 value = so->so_family;
1689 break;
1690 case SO_TYPE:
1691 value = so->so_type;
1692 break;
1693 case SO_ACCEPTCONN:
1694 if (so->so_state & SS_ACCEPTCONN)
1695 value = SO_ACCEPTCONN;
1696 else
1697 value = 0;
1698 break;
1699 }
1700
1701 bcopy(&value, optval, sizeof (value));
1702 *optlenp = sizeof (value);
1703
1704 return (0);
1705 }
1706 case SO_SNDTIMEO:
1707 case SO_RCVTIMEO: {
1708 clock_t value;
1709 socklen_t optlen = *optlenp;
1710
1711 if (get_udatamodel() == DATAMODEL_NONE ||
1712 get_udatamodel() == DATAMODEL_NATIVE) {
1713 if (optlen < sizeof (struct timeval))
1714 return (EINVAL);
1715 } else {
1716 if (optlen < sizeof (struct timeval32))
1717 return (EINVAL);
1718 }
1719 if (option_name == SO_RCVTIMEO)
1720 value = drv_hztousec(so->so_rcvtimeo);
1721 else
1722 value = drv_hztousec(so->so_sndtimeo);
1723
1724 if (get_udatamodel() == DATAMODEL_NONE ||
1725 get_udatamodel() == DATAMODEL_NATIVE) {
1726 ((struct timeval *)(optval))->tv_sec =
1727 value / (1000 * 1000);
1728 ((struct timeval *)(optval))->tv_usec =
1729 value % (1000 * 1000);
1730 *optlenp = sizeof (struct timeval);
1731 } else {
1732 ((struct timeval32 *)(optval))->tv_sec =
1733 value / (1000 * 1000);
1734 ((struct timeval32 *)(optval))->tv_usec =
1735 value % (1000 * 1000);
1736 *optlenp = sizeof (struct timeval32);
1737 }
1738 return (0);
1739 }
1740 case SO_DEBUG:
1741 case SO_REUSEADDR:
1742 case SO_KEEPALIVE:
1743 case SO_DONTROUTE:
1744 case SO_BROADCAST:
1745 case SO_USELOOPBACK:
1746 case SO_OOBINLINE:
1747 case SO_SNDBUF:
1748 #ifdef notyet
1749 case SO_SNDLOWAT:
1750 case SO_RCVLOWAT:
1751 #endif /* notyet */
1752 case SO_DGRAM_ERRIND: {
1753 socklen_t optlen = *optlenp;
1754
1755 if (optlen < (t_uscalar_t)sizeof (int32_t))
1756 return (EINVAL);
1757 break;
1758 }
1759 case SO_RCVBUF: {
1760 socklen_t optlen = *optlenp;
1761
1762 if (optlen < (t_uscalar_t)sizeof (int32_t))
1763 return (EINVAL);
1764
1765 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1766 /*
1767 * XXX If SO_RCVBUF has been set and this is an
1768 * XPG 4.2 application then do not ask the transport
1769 * since the transport might adjust the value and not
1770 * return exactly what was set by the application.
1771 * For non-XPG 4.2 application we return the value
1772 * that the transport is actually using.
1773 */
1774 *(int32_t *)optval = so->so_xpg_rcvbuf;
1775 *optlenp = sizeof (so->so_xpg_rcvbuf);
1776 return (0);
1777 }
1778 /*
1779 * If the option has not been set then get a default
1780 * value from the transport.
1781 */
1782 break;
1783 }
1784 case SO_LINGER: {
1785 socklen_t optlen = *optlenp;
1786
1787 if (optlen < (t_uscalar_t)sizeof (struct linger))
1788 return (EINVAL);
1789 break;
1790 }
1791 case SO_SND_BUFINFO: {
1792 socklen_t optlen = *optlenp;
1793
1794 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1795 return (EINVAL);
1796 ((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1797 (so->so_proto_props).sopp_wroff;
1798 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1799 (so->so_proto_props).sopp_maxblk;
1800 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1801 (so->so_proto_props).sopp_maxpsz;
1802 ((struct so_snd_bufinfo *)(optval))->sbi_tail =
1803 (so->so_proto_props).sopp_tail;
1804 *optlenp = sizeof (struct so_snd_bufinfo);
1805 return (0);
1806 }
1807 case SO_SND_COPYAVOID: {
1808 sof_instance_t *inst;
1809
1810 /*
1811 * Avoid zero-copy if there is a filter with a data_out
1812 * callback. We could let the operation succeed, but then
1813 * the filter would have to copy the data anyway.
1814 */
1815 for (inst = so->so_filter_top; inst != NULL;
1816 inst = inst->sofi_next) {
1817 if (SOF_INTERESTED(inst, data_out))
1818 return (EOPNOTSUPP);
1819 }
1820 break;
1821 }
1822
1823 default:
1824 break;
1825 }
1826
1827 /* Unknown Option */
1828 return (-1);
1829 }
1830
1831 void
socket_sonode_destroy(struct sonode * so)1832 socket_sonode_destroy(struct sonode *so)
1833 {
1834 sonode_fini(so);
1835 kmem_cache_free(socket_cache, so);
1836 }
1837
1838 int
so_zcopy_wait(struct sonode * so)1839 so_zcopy_wait(struct sonode *so)
1840 {
1841 int error = 0;
1842
1843 mutex_enter(&so->so_lock);
1844 while (!(so->so_copyflag & STZCNOTIFY)) {
1845 if (so->so_state & SS_CLOSING) {
1846 mutex_exit(&so->so_lock);
1847 return (EINTR);
1848 }
1849 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1850 error = EINTR;
1851 break;
1852 }
1853 }
1854 so->so_copyflag &= ~STZCNOTIFY;
1855 mutex_exit(&so->so_lock);
1856 return (error);
1857 }
1858
1859 void
so_timer_callback(void * arg)1860 so_timer_callback(void *arg)
1861 {
1862 struct sonode *so = (struct sonode *)arg;
1863
1864 mutex_enter(&so->so_lock);
1865
1866 so->so_rcv_timer_tid = 0;
1867 if (so->so_rcv_queued > 0) {
1868 so_notify_data(so, so->so_rcv_queued);
1869 } else {
1870 mutex_exit(&so->so_lock);
1871 }
1872 }
1873
1874 #ifdef DEBUG
1875 /*
1876 * Verify that the length stored in so_rcv_queued and the length of data blocks
1877 * queued is same.
1878 */
1879 static boolean_t
so_check_length(sonode_t * so)1880 so_check_length(sonode_t *so)
1881 {
1882 mblk_t *mp = so->so_rcv_q_head;
1883 int len = 0;
1884
1885 ASSERT(MUTEX_HELD(&so->so_lock));
1886
1887 if (mp != NULL) {
1888 len = msgdsize(mp);
1889 while ((mp = mp->b_next) != NULL)
1890 len += msgdsize(mp);
1891 }
1892 mp = so->so_rcv_head;
1893 if (mp != NULL) {
1894 len += msgdsize(mp);
1895 while ((mp = mp->b_next) != NULL)
1896 len += msgdsize(mp);
1897 }
1898 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1899 }
1900 #endif
1901
1902 int
so_get_mod_version(struct sockparams * sp)1903 so_get_mod_version(struct sockparams *sp)
1904 {
1905 ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1906 return (sp->sp_smod_info->smod_version);
1907 }
1908
1909 /*
1910 * so_start_fallback()
1911 *
1912 * Block new socket operations from coming in, and wait for active operations
1913 * to complete. Threads that are sleeping will be woken up so they can get
1914 * out of the way.
1915 *
1916 * The caller must be a reader on so_fallback_rwlock.
1917 */
1918 static boolean_t
so_start_fallback(struct sonode * so)1919 so_start_fallback(struct sonode *so)
1920 {
1921 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1922
1923 mutex_enter(&so->so_lock);
1924 if (so->so_state & SS_FALLBACK_PENDING) {
1925 mutex_exit(&so->so_lock);
1926 return (B_FALSE);
1927 }
1928 so->so_state |= SS_FALLBACK_PENDING;
1929 /*
1930 * Poke all threads that might be sleeping. Any operation that comes
1931 * in after the cv_broadcast will observe the fallback pending flag
1932 * which cause the call to return where it would normally sleep.
1933 */
1934 cv_broadcast(&so->so_state_cv); /* threads in connect() */
1935 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */
1936 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */
1937 mutex_enter(&so->so_acceptq_lock);
1938 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */
1939 mutex_exit(&so->so_acceptq_lock);
1940 mutex_exit(&so->so_lock);
1941
1942 /*
1943 * The main reason for the rw_tryupgrade call is to provide
1944 * observability during the fallback process. We want to
1945 * be able to see if there are pending operations.
1946 */
1947 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1948 /*
1949 * It is safe to drop and reaquire the fallback lock, because
1950 * we are guaranteed that another fallback cannot take place.
1951 */
1952 rw_exit(&so->so_fallback_rwlock);
1953 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1954 rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1955 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1956 }
1957
1958 return (B_TRUE);
1959 }
1960
1961 /*
1962 * so_end_fallback()
1963 *
1964 * Allow socket opertions back in.
1965 *
1966 * The caller must be a writer on so_fallback_rwlock.
1967 */
1968 static void
so_end_fallback(struct sonode * so)1969 so_end_fallback(struct sonode *so)
1970 {
1971 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1972
1973 mutex_enter(&so->so_lock);
1974 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1975 mutex_exit(&so->so_lock);
1976
1977 rw_downgrade(&so->so_fallback_rwlock);
1978 }
1979
1980 /*
1981 * so_quiesced_cb()
1982 *
1983 * Callback passed to the protocol during fallback. It is called once
1984 * the endpoint is quiescent.
1985 *
1986 * No requests from the user, no notifications from the protocol, so it
1987 * is safe to synchronize the state. Data can also be moved without
1988 * risk for reordering.
1989 *
1990 * We do not need to hold so_lock, since there can be only one thread
1991 * operating on the sonode.
1992 */
1993 static mblk_t *
so_quiesced_cb(sock_upper_handle_t sock_handle,sock_quiesce_arg_t * arg,struct T_capability_ack * tcap,struct sockaddr * laddr,socklen_t laddrlen,struct sockaddr * faddr,socklen_t faddrlen,short opts)1994 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg,
1995 struct T_capability_ack *tcap,
1996 struct sockaddr *laddr, socklen_t laddrlen,
1997 struct sockaddr *faddr, socklen_t faddrlen, short opts)
1998 {
1999 struct sonode *so = (struct sonode *)sock_handle;
2000 boolean_t atmark;
2001 mblk_t *retmp = NULL, **tailmpp = &retmp;
2002
2003 if (tcap != NULL)
2004 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen,
2005 opts);
2006
2007 /*
2008 * Some protocols do not quiece the data path during fallback. Once
2009 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
2010 * fail and the protocol is responsible for saving the data for later
2011 * delivery (i.e., once the fallback has completed).
2012 */
2013 mutex_enter(&so->so_lock);
2014 so->so_state |= SS_FALLBACK_DRAIN;
2015 SOCKET_TIMER_CANCEL(so);
2016 mutex_exit(&so->so_lock);
2017
2018 if (so->so_rcv_head != NULL) {
2019 if (so->so_rcv_q_last_head == NULL)
2020 so->so_rcv_q_head = so->so_rcv_head;
2021 else
2022 so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2023 so->so_rcv_q_last_head = so->so_rcv_last_head;
2024 }
2025
2026 atmark = (so->so_state & SS_RCVATMARK) != 0;
2027 /*
2028 * Clear any OOB state having to do with pending data. The TPI
2029 * code path will set the appropriate oob state when we move the
2030 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2031 * data has already been consumed.
2032 */
2033 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2034
2035 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2036
2037 /*
2038 * Move data to the STREAM head.
2039 */
2040 while (so->so_rcv_q_head != NULL) {
2041 mblk_t *mp = so->so_rcv_q_head;
2042 size_t mlen = msgdsize(mp);
2043
2044 so->so_rcv_q_head = mp->b_next;
2045 mp->b_next = NULL;
2046 mp->b_prev = NULL;
2047
2048 /*
2049 * Send T_EXDATA_IND if we are at the oob mark.
2050 */
2051 if (atmark) {
2052 struct T_exdata_ind *tei;
2053 mblk_t *mp1 = arg->soqa_exdata_mp;
2054
2055 arg->soqa_exdata_mp = NULL;
2056 ASSERT(mp1 != NULL);
2057 mp1->b_datap->db_type = M_PROTO;
2058 tei = (struct T_exdata_ind *)mp1->b_rptr;
2059 tei->PRIM_type = T_EXDATA_IND;
2060 tei->MORE_flag = 0;
2061 mp1->b_wptr = (uchar_t *)&tei[1];
2062
2063 if (IS_SO_OOB_INLINE(so)) {
2064 mp1->b_cont = mp;
2065 } else {
2066 ASSERT(so->so_oobmsg != NULL);
2067 mp1->b_cont = so->so_oobmsg;
2068 so->so_oobmsg = NULL;
2069
2070 /* process current mp next time around */
2071 mp->b_next = so->so_rcv_q_head;
2072 so->so_rcv_q_head = mp;
2073 mlen = 0;
2074 }
2075 mp = mp1;
2076
2077 /* we have consumed the oob mark */
2078 atmark = B_FALSE;
2079 } else if (so->so_oobmark > 0) {
2080 /*
2081 * Check if the OOB mark is within the current
2082 * mblk chain. In that case we have to split it up.
2083 */
2084 if (so->so_oobmark < mlen) {
2085 mblk_t *urg_mp = mp;
2086
2087 atmark = B_TRUE;
2088 mp = NULL;
2089 mlen = so->so_oobmark;
2090
2091 /*
2092 * It is assumed that the OOB mark does
2093 * not land within a mblk.
2094 */
2095 do {
2096 so->so_oobmark -= MBLKL(urg_mp);
2097 mp = urg_mp;
2098 urg_mp = urg_mp->b_cont;
2099 } while (so->so_oobmark > 0);
2100 mp->b_cont = NULL;
2101 if (urg_mp != NULL) {
2102 urg_mp->b_next = so->so_rcv_q_head;
2103 so->so_rcv_q_head = urg_mp;
2104 }
2105 } else {
2106 so->so_oobmark -= mlen;
2107 if (so->so_oobmark == 0)
2108 atmark = B_TRUE;
2109 }
2110 }
2111
2112 /*
2113 * Queue data on the STREAM head.
2114 */
2115 so->so_rcv_queued -= mlen;
2116 *tailmpp = mp;
2117 tailmpp = &mp->b_next;
2118 }
2119 so->so_rcv_head = NULL;
2120 so->so_rcv_last_head = NULL;
2121 so->so_rcv_q_head = NULL;
2122 so->so_rcv_q_last_head = NULL;
2123
2124 /*
2125 * Check if the oob byte is at the end of the data stream, or if the
2126 * oob byte has not yet arrived. In the latter case we have to send a
2127 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2128 * is needed to guarantee correct behavior for SIOCATMARK. See block
2129 * comment in socktpi.h for more details.
2130 */
2131 if (atmark || so->so_oobmark > 0) {
2132 mblk_t *mp;
2133
2134 if (atmark && so->so_oobmsg != NULL) {
2135 struct T_exdata_ind *tei;
2136
2137 mp = arg->soqa_exdata_mp;
2138 arg->soqa_exdata_mp = NULL;
2139 ASSERT(mp != NULL);
2140 mp->b_datap->db_type = M_PROTO;
2141 tei = (struct T_exdata_ind *)mp->b_rptr;
2142 tei->PRIM_type = T_EXDATA_IND;
2143 tei->MORE_flag = 0;
2144 mp->b_wptr = (uchar_t *)&tei[1];
2145
2146 mp->b_cont = so->so_oobmsg;
2147 so->so_oobmsg = NULL;
2148
2149 *tailmpp = mp;
2150 tailmpp = &mp->b_next;
2151 } else {
2152 /* Send up the signal */
2153 mp = arg->soqa_exdata_mp;
2154 arg->soqa_exdata_mp = NULL;
2155 ASSERT(mp != NULL);
2156 DB_TYPE(mp) = M_PCSIG;
2157 *mp->b_wptr++ = (uchar_t)SIGURG;
2158 *tailmpp = mp;
2159 tailmpp = &mp->b_next;
2160
2161 /* Send up the mark indicator */
2162 mp = arg->soqa_urgmark_mp;
2163 arg->soqa_urgmark_mp = NULL;
2164 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2165 *tailmpp = mp;
2166 tailmpp = &mp->b_next;
2167
2168 so->so_oobmark = 0;
2169 }
2170 }
2171 ASSERT(so->so_oobmark == 0);
2172 ASSERT(so->so_rcv_queued == 0);
2173
2174 return (retmp);
2175 }
2176
2177 #ifdef DEBUG
2178 /*
2179 * Do an integrity check of the sonode. This should be done if a
2180 * fallback fails after sonode has initially been converted to use
2181 * TPI and subsequently have to be reverted.
2182 *
2183 * Failure to pass the integrity check will panic the system.
2184 */
2185 void
so_integrity_check(struct sonode * cur,struct sonode * orig)2186 so_integrity_check(struct sonode *cur, struct sonode *orig)
2187 {
2188 VERIFY(cur->so_vnode == orig->so_vnode);
2189 VERIFY(cur->so_ops == orig->so_ops);
2190 /*
2191 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2192 * The other state flags might be affected by a notification from the
2193 * protocol.
2194 */
2195 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2196 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2197 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2198 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2199 (orig->so_state & CHECK_STATE));
2200 VERIFY(cur->so_mode == orig->so_mode);
2201 VERIFY(cur->so_flag == orig->so_flag);
2202 VERIFY(cur->so_count == orig->so_count);
2203 /* Cannot VERIFY so_proto_connid; proto can update it */
2204 VERIFY(cur->so_sockparams == orig->so_sockparams);
2205 /* an error might have been recorded, but it can not be lost */
2206 VERIFY(cur->so_error != 0 || orig->so_error == 0);
2207 VERIFY(cur->so_family == orig->so_family);
2208 VERIFY(cur->so_type == orig->so_type);
2209 VERIFY(cur->so_protocol == orig->so_protocol);
2210 VERIFY(cur->so_version == orig->so_version);
2211 /* New conns might have arrived, but none should have been lost */
2212 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2213 VERIFY(list_head(&cur->so_acceptq_list) ==
2214 list_head(&orig->so_acceptq_list));
2215 VERIFY(cur->so_backlog == orig->so_backlog);
2216 /* New OOB migth have arrived, but mark should not have been lost */
2217 VERIFY(cur->so_oobmark >= orig->so_oobmark);
2218 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2219 VERIFY(cur->so_pgrp == orig->so_pgrp);
2220 VERIFY(cur->so_peercred == orig->so_peercred);
2221 VERIFY(cur->so_cpid == orig->so_cpid);
2222 VERIFY(cur->so_zoneid == orig->so_zoneid);
2223 /* New data migth have arrived, but none should have been lost */
2224 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2225 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2226 VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2227 VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2228 VERIFY(cur->so_downcalls == orig->so_downcalls);
2229 /* Cannot VERIFY so_proto_props; they can be updated by proto */
2230 }
2231 #endif
2232
2233 /*
2234 * so_tpi_fallback()
2235 *
2236 * This is the fallback initation routine; things start here.
2237 *
2238 * Basic strategy:
2239 * o Block new socket operations from coming in
2240 * o Allocate/initate info needed by TPI
2241 * o Quiesce the connection, at which point we sync
2242 * state and move data
2243 * o Change operations (sonodeops) associated with the socket
2244 * o Unblock threads waiting for the fallback to finish
2245 */
2246 int
so_tpi_fallback(struct sonode * so,struct cred * cr)2247 so_tpi_fallback(struct sonode *so, struct cred *cr)
2248 {
2249 int error;
2250 queue_t *q;
2251 struct sockparams *sp;
2252 struct sockparams *newsp = NULL;
2253 so_proto_fallback_func_t fbfunc;
2254 const char *devpath;
2255 boolean_t direct;
2256 struct sonode *nso;
2257 sock_quiesce_arg_t arg = { NULL, NULL };
2258 #ifdef DEBUG
2259 struct sonode origso;
2260 #endif
2261 error = 0;
2262 sp = so->so_sockparams;
2263 fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2264
2265 /*
2266 * Cannot fallback if the socket has active filters
2267 */
2268 if (so->so_filter_active > 0)
2269 return (EINVAL);
2270
2271 switch (so->so_family) {
2272 case AF_INET:
2273 devpath = sp->sp_smod_info->smod_fallback_devpath_v4;
2274 break;
2275 case AF_INET6:
2276 devpath = sp->sp_smod_info->smod_fallback_devpath_v6;
2277 break;
2278 default:
2279 return (EINVAL);
2280 }
2281
2282 /*
2283 * Fallback can only happen if the socket module has a TPI device
2284 * and fallback function.
2285 */
2286 if (devpath == NULL || fbfunc == NULL)
2287 return (EINVAL);
2288
2289 /*
2290 * Initiate fallback; upon success we know that no new requests
2291 * will come in from the user.
2292 */
2293 if (!so_start_fallback(so))
2294 return (EAGAIN);
2295 #ifdef DEBUG
2296 /*
2297 * Make a copy of the sonode in case we need to make an integrity
2298 * check later on.
2299 */
2300 bcopy(so, &origso, sizeof (*so));
2301 #endif
2302
2303 sp->sp_stats.sps_nfallback.value.ui64++;
2304
2305 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2306 so->so_protocol, devpath, KM_SLEEP, &error);
2307 if (error != 0)
2308 goto out;
2309
2310 if (so->so_direct != NULL) {
2311 sodirect_t *sodp = so->so_direct;
2312 mutex_enter(&so->so_lock);
2313
2314 so->so_direct->sod_enabled = B_FALSE;
2315 so->so_state &= ~SS_SODIRECT;
2316 ASSERT(sodp->sod_uioafh == NULL);
2317 mutex_exit(&so->so_lock);
2318 }
2319
2320 /* Turn sonode into a TPI socket */
2321 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2322 if (error != 0)
2323 goto out;
2324 /*
2325 * When it comes to urgent data we have two cases to deal with;
2326 * (1) The oob byte has already arrived, or (2) the protocol has
2327 * notified that oob data is pending, but it has not yet arrived.
2328 *
2329 * For (1) all we need to do is send a T_EXDATA_IND to indicate were
2330 * in the byte stream the oob byte is. For (2) we have to send a
2331 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether
2332 * the oob byte will be the next byte from the protocol.
2333 *
2334 * So in the worst case we need two mblks, one for the signal, another
2335 * for mark indication. In that case we use the exdata_mp for the sig.
2336 */
2337 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind),
2338 BPRI_MED, STR_NOSIG, NULL);
2339 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
2340
2341 /*
2342 * Now tell the protocol to start using TPI. so_quiesced_cb be
2343 * called once it's safe to synchronize state.
2344 */
2345 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2346 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb,
2347 &arg);
2348 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2349
2350 if (error != 0) {
2351 /* protocol was unable to do a fallback, revert the sonode */
2352 sotpi_revert_sonode(so, cr);
2353 goto out;
2354 }
2355
2356 /*
2357 * Walk the accept queue and notify the proto that they should
2358 * fall back to TPI. The protocol will send up the T_CONN_IND.
2359 */
2360 nso = list_head(&so->so_acceptq_list);
2361 while (nso != NULL) {
2362 int rval;
2363 struct sonode *next;
2364
2365 if (arg.soqa_exdata_mp == NULL) {
2366 arg.soqa_exdata_mp =
2367 allocb_wait(sizeof (struct T_exdata_ind),
2368 BPRI_MED, STR_NOSIG, NULL);
2369 }
2370 if (arg.soqa_urgmark_mp == NULL) {
2371 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED,
2372 STR_NOSIG, NULL);
2373 }
2374
2375 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2376 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct,
2377 so_quiesced_cb, &arg);
2378 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2379 if (rval != 0) {
2380 /* Abort the connection */
2381 zcmn_err(getzoneid(), CE_WARN,
2382 "Failed to convert socket in accept queue to TPI. "
2383 "Pid = %d\n", curproc->p_pid);
2384 next = list_next(&so->so_acceptq_list, nso);
2385 list_remove(&so->so_acceptq_list, nso);
2386 so->so_acceptq_len--;
2387
2388 (void) socket_close(nso, 0, CRED());
2389 socket_destroy(nso);
2390 nso = next;
2391 } else {
2392 nso = list_next(&so->so_acceptq_list, nso);
2393 }
2394 }
2395
2396 /*
2397 * Now flush the acceptq, this will destroy all sockets. They will
2398 * be recreated in sotpi_accept().
2399 */
2400 so_acceptq_flush(so, B_FALSE);
2401
2402 mutex_enter(&so->so_lock);
2403 so->so_state |= SS_FALLBACK_COMP;
2404 mutex_exit(&so->so_lock);
2405
2406 /*
2407 * Swap the sonode ops. Socket opertations that come in once this
2408 * is done will proceed without blocking.
2409 */
2410 so->so_ops = &sotpi_sonodeops;
2411
2412 /*
2413 * Wake up any threads stuck in poll. This is needed since the poll
2414 * head changes when the fallback happens (moves from the sonode to
2415 * the STREAMS head).
2416 */
2417 pollwakeup(&so->so_poll_list, POLLERR);
2418
2419 /*
2420 * When this non-STREAM socket was created we placed an extra ref on
2421 * the associated vnode to support asynchronous close. Drop that ref
2422 * here.
2423 */
2424 ASSERT(SOTOV(so)->v_count >= 2);
2425 VN_RELE(SOTOV(so));
2426 out:
2427 so_end_fallback(so);
2428
2429 if (error != 0) {
2430 #ifdef DEBUG
2431 so_integrity_check(so, &origso);
2432 #endif
2433 zcmn_err(getzoneid(), CE_WARN,
2434 "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2435 error, curproc->p_pid);
2436 if (newsp != NULL)
2437 SOCKPARAMS_DEC_REF(newsp);
2438 }
2439 if (arg.soqa_exdata_mp != NULL)
2440 freemsg(arg.soqa_exdata_mp);
2441 if (arg.soqa_urgmark_mp != NULL)
2442 freemsg(arg.soqa_urgmark_mp);
2443
2444 return (error);
2445 }
2446