xref: /onnv-gate/usr/src/common/openssl/crypto/engine/hw_pk11.c (revision 11411:c2fe1bf96826)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /* crypto/engine/hw_pk11.c */
7 /*
8  * This product includes software developed by the OpenSSL Project for
9  * use in the OpenSSL Toolkit (http://www.openssl.org/).
10  *
11  * This project also referenced hw_pkcs11-0.9.7b.patch written by
12  * Afchine Madjlessi.
13  */
14 /*
15  * ====================================================================
16  * Copyright (c) 2000-2001 The OpenSSL Project.  All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  *
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in
27  *    the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * 3. All advertising materials mentioning features or use of this
31  *    software must display the following acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
34  *
35  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
36  *    endorse or promote products derived from this software without
37  *    prior written permission. For written permission, please contact
38  *    licensing@OpenSSL.org.
39  *
40  * 5. Products derived from this software may not be called "OpenSSL"
41  *    nor may "OpenSSL" appear in their names without prior written
42  *    permission of the OpenSSL Project.
43  *
44  * 6. Redistributions of any form whatsoever must retain the following
45  *    acknowledgment:
46  *    "This product includes software developed by the OpenSSL Project
47  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
50  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
53  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
55  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
56  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
58  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60  * OF THE POSSIBILITY OF SUCH DAMAGE.
61  * ====================================================================
62  *
63  * This product includes cryptographic software written by Eric Young
64  * (eay@cryptsoft.com).  This product includes software written by Tim
65  * Hudson (tjh@cryptsoft.com).
66  *
67  */
68 
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <sys/types.h>
73 #include <unistd.h>
74 
75 #include <openssl/e_os2.h>
76 #include <openssl/crypto.h>
77 #include <openssl/engine.h>
78 #include <openssl/dso.h>
79 #include <openssl/err.h>
80 #include <openssl/bn.h>
81 #include <openssl/md5.h>
82 #include <openssl/pem.h>
83 #ifndef OPENSSL_NO_RSA
84 #include <openssl/rsa.h>
85 #endif
86 #ifndef OPENSSL_NO_DSA
87 #include <openssl/dsa.h>
88 #endif
89 #ifndef OPENSSL_NO_DH
90 #include <openssl/dh.h>
91 #endif
92 #include <openssl/rand.h>
93 #include <openssl/objects.h>
94 #include <openssl/x509.h>
95 #include <openssl/aes.h>
96 #include <cryptlib.h>
97 #include <dlfcn.h>
98 #include <pthread.h>
99 
100 #ifndef OPENSSL_NO_HW
101 #ifndef OPENSSL_NO_HW_PK11
102 
103 /* label for debug messages printed on stderr */
104 #define	PK11_DBG	"PKCS#11 ENGINE DEBUG"
105 /* prints a lot of debug messages on stderr about slot selection process */
106 #undef	DEBUG_SLOT_SELECTION
107 /*
108  * Solaris specific code. See comment at check_hw_mechanisms() for more
109  * information.
110  */
111 #define	SOLARIS_HW_SLOT_SELECTION
112 
113 /*
114  * AES counter mode is not supported in the OpenSSL EVP API yet and neither
115  * there are official OIDs for mechanisms based on this mode. With our changes,
116  * an application can define its own EVP calls for AES counter mode and then
117  * it can make use of hardware acceleration through this engine. However, it's
118  * better if we keep AES CTR support code under ifdef's.
119  */
120 #define	SOLARIS_AES_CTR
121 
122 #include "security/cryptoki.h"
123 #include "security/pkcs11.h"
124 #include "hw_pk11_err.c"
125 
126 #ifdef	SOLARIS_AES_CTR
127 /*
128  * NIDs for AES counter mode that will be defined during the engine
129  * initialization.
130  */
131 int NID_aes_128_ctr = NID_undef;
132 int NID_aes_192_ctr = NID_undef;
133 int NID_aes_256_ctr = NID_undef;
134 #endif	/* SOLARIS_AES_CTR */
135 
136 #ifdef	SOLARIS_HW_SLOT_SELECTION
137 /*
138  * Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel
139  * library. See comment at check_hw_mechanisms() for more information.
140  */
141 int *hw_cnids;
142 int *hw_dnids;
143 #endif	/* SOLARIS_HW_SLOT_SELECTION */
144 
145 /* PKCS#11 session caches and their locks for all operation types */
146 static PK11_CACHE session_cache[OP_MAX];
147 
148 /*
149  * As stated in v2.20, 11.7 Object Management Function, in section for
150  * C_FindObjectsInit(), at most one search operation may be active at a given
151  * time in a given session. Therefore, C_Find{,Init,Final}Objects() should be
152  * grouped together to form one atomic search operation. This is already
153  * ensured by the property of unique PKCS#11 session handle used for each
154  * PK11_SESSION object.
155  *
156  * This is however not the biggest concern - maintaining consistency of the
157  * underlying object store is more important. The same section of the spec also
158  * says that one thread can be in the middle of a search operation while another
159  * thread destroys the object matching the search template which would result in
160  * invalid handle returned from the search operation.
161  *
162  * Hence, the following locks are used for both protection of the object stores.
163  * They are also used for active list protection.
164  */
165 pthread_mutex_t *find_lock[OP_MAX] = { NULL };
166 
167 /*
168  * lists of asymmetric key handles which are active (referenced by at least one
169  * PK11_SESSION structure, either held by a thread or present in free_session
170  * list) for given algorithm type
171  */
172 PK11_active *active_list[OP_MAX] = { NULL };
173 
174 /*
175  * Create all secret key objects in a global session so that they are available
176  * to use for other sessions. These other sessions may be opened or closed
177  * without losing the secret key objects.
178  */
179 static CK_SESSION_HANDLE	global_session = CK_INVALID_HANDLE;
180 
181 /* ENGINE level stuff */
182 static int pk11_init(ENGINE *e);
183 static int pk11_library_init(ENGINE *e);
184 static int pk11_finish(ENGINE *e);
185 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
186 static int pk11_destroy(ENGINE *e);
187 
188 /* RAND stuff */
189 static void pk11_rand_seed(const void *buf, int num);
190 static void pk11_rand_add(const void *buf, int num, double add_entropy);
191 static void pk11_rand_cleanup(void);
192 static int pk11_rand_bytes(unsigned char *buf, int num);
193 static int pk11_rand_status(void);
194 
195 /* These functions are also used in other files */
196 PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
197 void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);
198 
199 /* active list manipulation functions used in this file */
200 extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type);
201 extern void pk11_free_active_list(PK11_OPTYPE type);
202 
203 #ifndef OPENSSL_NO_RSA
204 int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
205 int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
206 int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
207 #endif
208 #ifndef OPENSSL_NO_DSA
209 int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
210 int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
211 int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
212 #endif
213 #ifndef OPENSSL_NO_DH
214 int pk11_destroy_dh_key_objects(PK11_SESSION *session);
215 int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock);
216 #endif
217 
218 /* Local helper functions */
219 static int pk11_free_all_sessions(void);
220 static int pk11_free_session_list(PK11_OPTYPE optype);
221 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype);
222 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session);
223 static int pk11_destroy_object(CK_SESSION_HANDLE session,
224 	CK_OBJECT_HANDLE oh);
225 static const char *get_PK11_LIBNAME(void);
226 static void free_PK11_LIBNAME(void);
227 static long set_PK11_LIBNAME(const char *name);
228 
229 /* Symmetric cipher and digest support functions */
230 static int cipher_nid_to_pk11(int nid);
231 #ifdef	SOLARIS_AES_CTR
232 static int pk11_add_NID(char *sn, char *ln);
233 static int pk11_add_aes_ctr_NIDs(void);
234 #endif	/* SOLARIS_AES_CTR */
235 static int pk11_usable_ciphers(const int **nids);
236 static int pk11_usable_digests(const int **nids);
237 static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
238 	const unsigned char *iv, int enc);
239 static int pk11_cipher_final(PK11_SESSION *sp);
240 static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
241 	const unsigned char *in, unsigned int inl);
242 static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx);
243 static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
244 	const int **nids, int nid);
245 static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
246 	const int **nids, int nid);
247 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
248 	const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp);
249 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
250 	int key_len);
251 static int md_nid_to_pk11(int nid);
252 static int pk11_digest_init(EVP_MD_CTX *ctx);
253 static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data,
254 	size_t count);
255 static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md);
256 static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from);
257 static int pk11_digest_cleanup(EVP_MD_CTX *ctx);
258 
259 static int pk11_choose_slots(int *any_slot_found);
260 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
261     CK_SLOT_ID current_slot, int *current_slot_n_cipher,
262     int *local_cipher_nids);
263 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
264     CK_SLOT_ID current_slot, int *current_slot_n_digest,
265     int *local_digest_nids);
266 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id,
267     CK_MECHANISM_TYPE mech, int *current_slot_n_cipher, int *local_cipher_nids,
268     int id);
269 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
270     CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
271     int id);
272 
273 static int pk11_init_all_locks(void);
274 static void pk11_free_all_locks(void);
275 
276 #ifdef	SOLARIS_HW_SLOT_SELECTION
277 static int check_hw_mechanisms(void);
278 static int nid_in_table(int nid, int *nid_table);
279 #endif	/* SOLARIS_HW_SLOT_SELECTION */
280 
281 /* Index for the supported ciphers */
282 enum pk11_cipher_id {
283 	PK11_DES_CBC,
284 	PK11_DES3_CBC,
285 	PK11_DES_ECB,
286 	PK11_DES3_ECB,
287 	PK11_RC4,
288 	PK11_AES_128_CBC,
289 	PK11_AES_192_CBC,
290 	PK11_AES_256_CBC,
291 	PK11_AES_128_ECB,
292 	PK11_AES_192_ECB,
293 	PK11_AES_256_ECB,
294 	PK11_BLOWFISH_CBC,
295 #ifdef	SOLARIS_AES_CTR
296 	PK11_AES_128_CTR,
297 	PK11_AES_192_CTR,
298 	PK11_AES_256_CTR,
299 #endif	/* SOLARIS_AES_CTR */
300 	PK11_CIPHER_MAX
301 };
302 
303 /* Index for the supported digests */
304 enum pk11_digest_id {
305 	PK11_MD5,
306 	PK11_SHA1,
307 	PK11_SHA224,
308 	PK11_SHA256,
309 	PK11_SHA384,
310 	PK11_SHA512,
311 	PK11_DIGEST_MAX
312 };
313 
314 #define	TRY_OBJ_DESTROY(sess_hdl, obj_hdl, retval, uselock, alg_type)	\
315 	{								\
316 	if (uselock)							\
317 		LOCK_OBJSTORE(alg_type);				\
318 	if (pk11_active_delete(obj_hdl, alg_type) == 1)			\
319 		{							\
320 		retval = pk11_destroy_object(sess_hdl, obj_hdl);	\
321 		}							\
322 	if (uselock)							\
323 		UNLOCK_OBJSTORE(alg_type);				\
324 	}
325 
326 static int cipher_nids[PK11_CIPHER_MAX];
327 static int digest_nids[PK11_DIGEST_MAX];
328 static int cipher_count		= 0;
329 static int digest_count		= 0;
330 static CK_BBOOL pk11_have_rsa	= CK_FALSE;
331 static CK_BBOOL pk11_have_dsa	= CK_FALSE;
332 static CK_BBOOL pk11_have_dh	= CK_FALSE;
333 static CK_BBOOL pk11_have_random = CK_FALSE;
334 
335 typedef struct PK11_CIPHER_st
336 	{
337 	enum pk11_cipher_id	id;
338 	int			nid;
339 	int			iv_len;
340 	int			min_key_len;
341 	int			max_key_len;
342 	CK_KEY_TYPE		key_type;
343 	CK_MECHANISM_TYPE	mech_type;
344 	} PK11_CIPHER;
345 
346 static PK11_CIPHER ciphers[] =
347 	{
348 	{ PK11_DES_CBC,		NID_des_cbc,		8,	 8,   8,
349 		CKK_DES,	CKM_DES_CBC, },
350 	{ PK11_DES3_CBC,	NID_des_ede3_cbc,	8,	24,  24,
351 		CKK_DES3,	CKM_DES3_CBC, },
352 	{ PK11_DES_ECB,		NID_des_ecb,		0,	 8,   8,
353 		CKK_DES,	CKM_DES_ECB, },
354 	{ PK11_DES3_ECB,	NID_des_ede3_ecb,	0,	24,  24,
355 		CKK_DES3,	CKM_DES3_ECB, },
356 	{ PK11_RC4,		NID_rc4,		0,	16, 256,
357 		CKK_RC4,	CKM_RC4, },
358 	{ PK11_AES_128_CBC,	NID_aes_128_cbc,	16,	16,  16,
359 		CKK_AES,	CKM_AES_CBC, },
360 	{ PK11_AES_192_CBC,	NID_aes_192_cbc,	16,	24,  24,
361 		CKK_AES,	CKM_AES_CBC, },
362 	{ PK11_AES_256_CBC,	NID_aes_256_cbc,	16,	32,  32,
363 		CKK_AES,	CKM_AES_CBC, },
364 	{ PK11_AES_128_ECB,	NID_aes_128_ecb,	0,	16,  16,
365 		CKK_AES,	CKM_AES_ECB, },
366 	{ PK11_AES_192_ECB,	NID_aes_192_ecb,	0,	24,  24,
367 		CKK_AES,	CKM_AES_ECB, },
368 	{ PK11_AES_256_ECB,	NID_aes_256_ecb,	0,	32,  32,
369 		CKK_AES,	CKM_AES_ECB, },
370 	{ PK11_BLOWFISH_CBC,	NID_bf_cbc,		8,	16,  16,
371 		CKK_BLOWFISH,	CKM_BLOWFISH_CBC, },
372 #ifdef	SOLARIS_AES_CTR
373 	/* we don't know the correct NIDs until the engine is initialized */
374 	{ PK11_AES_128_CTR,	NID_undef,		16,	16,  16,
375 		CKK_AES,	CKM_AES_CTR, },
376 	{ PK11_AES_192_CTR,	NID_undef,		16,	24,  24,
377 		CKK_AES,	CKM_AES_CTR, },
378 	{ PK11_AES_256_CTR,	NID_undef,		16,	32,  32,
379 		CKK_AES,	CKM_AES_CTR, },
380 #endif	/* SOLARIS_AES_CTR */
381 	};
382 
383 typedef struct PK11_DIGEST_st
384 	{
385 	enum pk11_digest_id	id;
386 	int			nid;
387 	CK_MECHANISM_TYPE	mech_type;
388 	} PK11_DIGEST;
389 
390 static PK11_DIGEST digests[] =
391 	{
392 	{PK11_MD5,	NID_md5,	CKM_MD5, },
393 	{PK11_SHA1,	NID_sha1,	CKM_SHA_1, },
394 	{PK11_SHA224,	NID_sha224,	CKM_SHA224, },
395 	{PK11_SHA256,	NID_sha256,	CKM_SHA256, },
396 	{PK11_SHA384,	NID_sha384,	CKM_SHA384, },
397 	{PK11_SHA512,	NID_sha512,	CKM_SHA512, },
398 	{0,		NID_undef,	0xFFFF, },
399 	};
400 
401 /*
402  * Structure to be used for the cipher_data/md_data in
403  * EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11
404  * session in multiple cipher_update calls
405  */
406 typedef struct PK11_CIPHER_STATE_st
407 	{
408 	PK11_SESSION	*sp;
409 	} PK11_CIPHER_STATE;
410 
411 
412 /*
413  * libcrypto EVP stuff - this is how we get wired to EVP so the engine gets
414  * called when libcrypto requests a cipher NID.
415  *
416  * Note how the PK11_CIPHER_STATE is used here.
417  */
418 
419 /* DES CBC EVP */
420 static const EVP_CIPHER pk11_des_cbc =
421 	{
422 	NID_des_cbc,
423 	8, 8, 8,
424 	EVP_CIPH_CBC_MODE,
425 	pk11_cipher_init,
426 	pk11_cipher_do_cipher,
427 	pk11_cipher_cleanup,
428 	sizeof (PK11_CIPHER_STATE),
429 	EVP_CIPHER_set_asn1_iv,
430 	EVP_CIPHER_get_asn1_iv,
431 	NULL
432 	};
433 
434 /* 3DES CBC EVP */
435 static const EVP_CIPHER pk11_3des_cbc =
436 	{
437 	NID_des_ede3_cbc,
438 	8, 24, 8,
439 	EVP_CIPH_CBC_MODE,
440 	pk11_cipher_init,
441 	pk11_cipher_do_cipher,
442 	pk11_cipher_cleanup,
443 	sizeof (PK11_CIPHER_STATE),
444 	EVP_CIPHER_set_asn1_iv,
445 	EVP_CIPHER_get_asn1_iv,
446 	NULL
447 	};
448 
449 /*
450  * ECB modes don't use an Initial Vector so that's why set_asn1_parameters and
451  * get_asn1_parameters fields are set to NULL.
452  */
453 static const EVP_CIPHER pk11_des_ecb =
454 	{
455 	NID_des_ecb,
456 	8, 8, 8,
457 	EVP_CIPH_ECB_MODE,
458 	pk11_cipher_init,
459 	pk11_cipher_do_cipher,
460 	pk11_cipher_cleanup,
461 	sizeof (PK11_CIPHER_STATE),
462 	NULL,
463 	NULL,
464 	NULL
465 	};
466 
467 static const EVP_CIPHER pk11_3des_ecb =
468 	{
469 	NID_des_ede3_ecb,
470 	8, 24, 8,
471 	EVP_CIPH_ECB_MODE,
472 	pk11_cipher_init,
473 	pk11_cipher_do_cipher,
474 	pk11_cipher_cleanup,
475 	sizeof (PK11_CIPHER_STATE),
476 	NULL,
477 	NULL,
478 	NULL
479 	};
480 
481 
482 static const EVP_CIPHER pk11_aes_128_cbc =
483 	{
484 	NID_aes_128_cbc,
485 	16, 16, 16,
486 	EVP_CIPH_CBC_MODE,
487 	pk11_cipher_init,
488 	pk11_cipher_do_cipher,
489 	pk11_cipher_cleanup,
490 	sizeof (PK11_CIPHER_STATE),
491 	EVP_CIPHER_set_asn1_iv,
492 	EVP_CIPHER_get_asn1_iv,
493 	NULL
494 	};
495 
496 static const EVP_CIPHER pk11_aes_192_cbc =
497 	{
498 	NID_aes_192_cbc,
499 	16, 24, 16,
500 	EVP_CIPH_CBC_MODE,
501 	pk11_cipher_init,
502 	pk11_cipher_do_cipher,
503 	pk11_cipher_cleanup,
504 	sizeof (PK11_CIPHER_STATE),
505 	EVP_CIPHER_set_asn1_iv,
506 	EVP_CIPHER_get_asn1_iv,
507 	NULL
508 	};
509 
510 static const EVP_CIPHER pk11_aes_256_cbc =
511 	{
512 	NID_aes_256_cbc,
513 	16, 32, 16,
514 	EVP_CIPH_CBC_MODE,
515 	pk11_cipher_init,
516 	pk11_cipher_do_cipher,
517 	pk11_cipher_cleanup,
518 	sizeof (PK11_CIPHER_STATE),
519 	EVP_CIPHER_set_asn1_iv,
520 	EVP_CIPHER_get_asn1_iv,
521 	NULL
522 	};
523 
524 /*
525  * ECB modes don't use IV so that's why set_asn1_parameters and
526  * get_asn1_parameters are set to NULL.
527  */
528 static const EVP_CIPHER pk11_aes_128_ecb =
529 	{
530 	NID_aes_128_ecb,
531 	16, 16, 0,
532 	EVP_CIPH_ECB_MODE,
533 	pk11_cipher_init,
534 	pk11_cipher_do_cipher,
535 	pk11_cipher_cleanup,
536 	sizeof (PK11_CIPHER_STATE),
537 	NULL,
538 	NULL,
539 	NULL
540 	};
541 
542 static const EVP_CIPHER pk11_aes_192_ecb =
543 	{
544 	NID_aes_192_ecb,
545 	16, 24, 0,
546 	EVP_CIPH_ECB_MODE,
547 	pk11_cipher_init,
548 	pk11_cipher_do_cipher,
549 	pk11_cipher_cleanup,
550 	sizeof (PK11_CIPHER_STATE),
551 	NULL,
552 	NULL,
553 	NULL
554 	};
555 
556 static const EVP_CIPHER pk11_aes_256_ecb =
557 	{
558 	NID_aes_256_ecb,
559 	16, 32, 0,
560 	EVP_CIPH_ECB_MODE,
561 	pk11_cipher_init,
562 	pk11_cipher_do_cipher,
563 	pk11_cipher_cleanup,
564 	sizeof (PK11_CIPHER_STATE),
565 	NULL,
566 	NULL,
567 	NULL
568 	};
569 
570 #ifdef	SOLARIS_AES_CTR
571 /*
572  * NID_undef's will be changed to the AES counter mode NIDs as soon they are
573  * created in pk11_library_init(). Note that the need to change these structures
574  * is the reason why we don't define them with the const keyword.
575  */
576 static EVP_CIPHER pk11_aes_128_ctr =
577 	{
578 	NID_undef,
579 	16, 16, 16,
580 	EVP_CIPH_CBC_MODE,
581 	pk11_cipher_init,
582 	pk11_cipher_do_cipher,
583 	pk11_cipher_cleanup,
584 	sizeof (PK11_CIPHER_STATE),
585 	EVP_CIPHER_set_asn1_iv,
586 	EVP_CIPHER_get_asn1_iv,
587 	NULL
588 	};
589 
590 static EVP_CIPHER pk11_aes_192_ctr =
591 	{
592 	NID_undef,
593 	16, 24, 16,
594 	EVP_CIPH_CBC_MODE,
595 	pk11_cipher_init,
596 	pk11_cipher_do_cipher,
597 	pk11_cipher_cleanup,
598 	sizeof (PK11_CIPHER_STATE),
599 	EVP_CIPHER_set_asn1_iv,
600 	EVP_CIPHER_get_asn1_iv,
601 	NULL
602 	};
603 
604 static EVP_CIPHER pk11_aes_256_ctr =
605 	{
606 	NID_undef,
607 	16, 32, 16,
608 	EVP_CIPH_CBC_MODE,
609 	pk11_cipher_init,
610 	pk11_cipher_do_cipher,
611 	pk11_cipher_cleanup,
612 	sizeof (PK11_CIPHER_STATE),
613 	EVP_CIPHER_set_asn1_iv,
614 	EVP_CIPHER_get_asn1_iv,
615 	NULL
616 	};
617 #endif	/* SOLARIS_AES_CTR */
618 
619 static const EVP_CIPHER pk11_bf_cbc =
620 	{
621 	NID_bf_cbc,
622 	8, 16, 8,
623 	EVP_CIPH_VARIABLE_LENGTH,
624 	pk11_cipher_init,
625 	pk11_cipher_do_cipher,
626 	pk11_cipher_cleanup,
627 	sizeof (PK11_CIPHER_STATE),
628 	EVP_CIPHER_set_asn1_iv,
629 	EVP_CIPHER_get_asn1_iv,
630 	NULL
631 	};
632 
633 static const EVP_CIPHER pk11_rc4 =
634 	{
635 	NID_rc4,
636 	1, 16, 0,
637 	EVP_CIPH_VARIABLE_LENGTH,
638 	pk11_cipher_init,
639 	pk11_cipher_do_cipher,
640 	pk11_cipher_cleanup,
641 	sizeof (PK11_CIPHER_STATE),
642 	NULL,
643 	NULL,
644 	NULL
645 	};
646 
647 static const EVP_MD pk11_md5 =
648 	{
649 	NID_md5,
650 	NID_md5WithRSAEncryption,
651 	MD5_DIGEST_LENGTH,
652 	0,
653 	pk11_digest_init,
654 	pk11_digest_update,
655 	pk11_digest_final,
656 	pk11_digest_copy,
657 	pk11_digest_cleanup,
658 	EVP_PKEY_RSA_method,
659 	MD5_CBLOCK,
660 	sizeof (PK11_CIPHER_STATE),
661 	};
662 
663 static const EVP_MD pk11_sha1 =
664 	{
665 	NID_sha1,
666 	NID_sha1WithRSAEncryption,
667 	SHA_DIGEST_LENGTH,
668 	0,
669 	pk11_digest_init,
670 	pk11_digest_update,
671 	pk11_digest_final,
672 	pk11_digest_copy,
673 	pk11_digest_cleanup,
674 	EVP_PKEY_RSA_method,
675 	SHA_CBLOCK,
676 	sizeof (PK11_CIPHER_STATE),
677 	};
678 
679 static const EVP_MD pk11_sha224 =
680 	{
681 	NID_sha224,
682 	NID_sha224WithRSAEncryption,
683 	SHA224_DIGEST_LENGTH,
684 	0,
685 	pk11_digest_init,
686 	pk11_digest_update,
687 	pk11_digest_final,
688 	pk11_digest_copy,
689 	pk11_digest_cleanup,
690 	EVP_PKEY_RSA_method,
691 	/* SHA-224 uses the same cblock size as SHA-256 */
692 	SHA256_CBLOCK,
693 	sizeof (PK11_CIPHER_STATE),
694 	};
695 
696 static const EVP_MD pk11_sha256 =
697 	{
698 	NID_sha256,
699 	NID_sha256WithRSAEncryption,
700 	SHA256_DIGEST_LENGTH,
701 	0,
702 	pk11_digest_init,
703 	pk11_digest_update,
704 	pk11_digest_final,
705 	pk11_digest_copy,
706 	pk11_digest_cleanup,
707 	EVP_PKEY_RSA_method,
708 	SHA256_CBLOCK,
709 	sizeof (PK11_CIPHER_STATE),
710 	};
711 
712 static const EVP_MD pk11_sha384 =
713 	{
714 	NID_sha384,
715 	NID_sha384WithRSAEncryption,
716 	SHA384_DIGEST_LENGTH,
717 	0,
718 	pk11_digest_init,
719 	pk11_digest_update,
720 	pk11_digest_final,
721 	pk11_digest_copy,
722 	pk11_digest_cleanup,
723 	EVP_PKEY_RSA_method,
724 	/* SHA-384 uses the same cblock size as SHA-512 */
725 	SHA512_CBLOCK,
726 	sizeof (PK11_CIPHER_STATE),
727 	};
728 
729 static const EVP_MD pk11_sha512 =
730 	{
731 	NID_sha512,
732 	NID_sha512WithRSAEncryption,
733 	SHA512_DIGEST_LENGTH,
734 	0,
735 	pk11_digest_init,
736 	pk11_digest_update,
737 	pk11_digest_final,
738 	pk11_digest_copy,
739 	pk11_digest_cleanup,
740 	EVP_PKEY_RSA_method,
741 	SHA512_CBLOCK,
742 	sizeof (PK11_CIPHER_STATE),
743 	};
744 
745 /*
746  * Initialization function. Sets up various PKCS#11 library components.
747  * The definitions for control commands specific to this engine
748  */
749 #define	PK11_CMD_SO_PATH		ENGINE_CMD_BASE
750 static const ENGINE_CMD_DEFN pk11_cmd_defns[] =
751 	{
752 		{
753 		PK11_CMD_SO_PATH,
754 		"SO_PATH",
755 		"Specifies the path to the 'pkcs#11' shared library",
756 		ENGINE_CMD_FLAG_STRING
757 		},
758 		{0, NULL, NULL, 0}
759 	};
760 
761 
762 static RAND_METHOD pk11_random =
763 	{
764 	pk11_rand_seed,
765 	pk11_rand_bytes,
766 	pk11_rand_cleanup,
767 	pk11_rand_add,
768 	pk11_rand_bytes,
769 	pk11_rand_status
770 	};
771 
772 
773 /* Constants used when creating the ENGINE */
774 static const char *engine_pk11_id = "pkcs11";
775 static const char *engine_pk11_name = "PKCS #11 engine support";
776 
777 CK_FUNCTION_LIST_PTR pFuncList = NULL;
778 static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList";
779 
780 /*
781  * These are the static string constants for the DSO file name and the function
782  * symbol names to bind to.
783  */
784 #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
785 static const char def_PK11_LIBNAME[] = "/usr/lib/64/libpkcs11.so.1";
786 #else
787 static const char def_PK11_LIBNAME[] = "/usr/lib/libpkcs11.so.1";
788 #endif
789 
790 static CK_BBOOL true = TRUE;
791 static CK_BBOOL false = FALSE;
792 static CK_SLOT_ID pubkey_SLOTID = 0;
793 static CK_SLOT_ID rand_SLOTID = 0;
794 static CK_SLOT_ID SLOTID = 0;
795 static CK_BBOOL pk11_library_initialized = FALSE;
796 static CK_BBOOL pk11_atfork_initialized = FALSE;
797 static int pk11_pid = 0;
798 
799 static DSO *pk11_dso = NULL;
800 
801 /* allocate and initialize all locks used by the engine itself */
pk11_init_all_locks(void)802 static int pk11_init_all_locks(void)
803 	{
804 	int type;
805 
806 #ifndef OPENSSL_NO_RSA
807 	find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
808 	if (find_lock[OP_RSA] == NULL)
809 		goto malloc_err;
810 	(void) pthread_mutex_init(find_lock[OP_RSA], NULL);
811 #endif /* OPENSSL_NO_RSA */
812 
813 #ifndef OPENSSL_NO_DSA
814 	find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
815 	if (find_lock[OP_DSA] == NULL)
816 		goto malloc_err;
817 	(void) pthread_mutex_init(find_lock[OP_DSA], NULL);
818 #endif /* OPENSSL_NO_DSA */
819 
820 #ifndef OPENSSL_NO_DH
821 	find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t));
822 	if (find_lock[OP_DH] == NULL)
823 		goto malloc_err;
824 	(void) pthread_mutex_init(find_lock[OP_DH], NULL);
825 #endif /* OPENSSL_NO_DH */
826 
827 	for (type = 0; type < OP_MAX; type++)
828 		{
829 		session_cache[type].lock =
830 		    OPENSSL_malloc(sizeof (pthread_mutex_t));
831 		if (session_cache[type].lock == NULL)
832 			goto malloc_err;
833 		(void) pthread_mutex_init(session_cache[type].lock, NULL);
834 		}
835 
836 	return (1);
837 
838 malloc_err:
839 	pk11_free_all_locks();
840 	PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE);
841 	return (0);
842 	}
843 
pk11_free_all_locks(void)844 static void pk11_free_all_locks(void)
845 	{
846 	int type;
847 
848 #ifndef OPENSSL_NO_RSA
849 	if (find_lock[OP_RSA] != NULL)
850 		{
851 		(void) pthread_mutex_destroy(find_lock[OP_RSA]);
852 		OPENSSL_free(find_lock[OP_RSA]);
853 		find_lock[OP_RSA] = NULL;
854 		}
855 #endif /* OPENSSL_NO_RSA */
856 #ifndef OPENSSL_NO_DSA
857 	if (find_lock[OP_DSA] != NULL)
858 		{
859 		(void) pthread_mutex_destroy(find_lock[OP_DSA]);
860 		OPENSSL_free(find_lock[OP_DSA]);
861 		find_lock[OP_DSA] = NULL;
862 		}
863 #endif /* OPENSSL_NO_DSA */
864 #ifndef OPENSSL_NO_DH
865 	if (find_lock[OP_DH] != NULL)
866 		{
867 		(void) pthread_mutex_destroy(find_lock[OP_DH]);
868 		OPENSSL_free(find_lock[OP_DH]);
869 		find_lock[OP_DH] = NULL;
870 		}
871 #endif /* OPENSSL_NO_DH */
872 
873 	for (type = 0; type < OP_MAX; type++)
874 		{
875 		if (session_cache[type].lock != NULL)
876 			{
877 			(void) pthread_mutex_destroy(session_cache[type].lock);
878 			OPENSSL_free(session_cache[type].lock);
879 			session_cache[type].lock = NULL;
880 			}
881 		}
882 	}
883 
884 /*
885  * This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support.
886  */
bind_pk11(ENGINE * e)887 static int bind_pk11(ENGINE *e)
888 	{
889 #ifndef OPENSSL_NO_RSA
890 	const RSA_METHOD *rsa = NULL;
891 	RSA_METHOD *pk11_rsa = PK11_RSA();
892 #endif	/* OPENSSL_NO_RSA */
893 	if (!pk11_library_initialized)
894 		if (!pk11_library_init(e))
895 			return (0);
896 
897 	if (!ENGINE_set_id(e, engine_pk11_id) ||
898 	    !ENGINE_set_name(e, engine_pk11_name) ||
899 	    !ENGINE_set_ciphers(e, pk11_engine_ciphers) ||
900 	    !ENGINE_set_digests(e, pk11_engine_digests))
901 		return (0);
902 #ifndef OPENSSL_NO_RSA
903 	if (pk11_have_rsa == CK_TRUE)
904 		{
905 		if (!ENGINE_set_RSA(e, PK11_RSA()) ||
906 		    !ENGINE_set_load_privkey_function(e, pk11_load_privkey) ||
907 		    !ENGINE_set_load_pubkey_function(e, pk11_load_pubkey))
908 			return (0);
909 #ifdef	DEBUG_SLOT_SELECTION
910 		fprintf(stderr, "%s: registered RSA\n", PK11_DBG);
911 #endif	/* DEBUG_SLOT_SELECTION */
912 		}
913 #endif	/* OPENSSL_NO_RSA */
914 #ifndef OPENSSL_NO_DSA
915 	if (pk11_have_dsa == CK_TRUE)
916 		{
917 		if (!ENGINE_set_DSA(e, PK11_DSA()))
918 			return (0);
919 #ifdef	DEBUG_SLOT_SELECTION
920 		fprintf(stderr, "%s: registered DSA\n", PK11_DBG);
921 #endif	/* DEBUG_SLOT_SELECTION */
922 		}
923 #endif	/* OPENSSL_NO_DSA */
924 #ifndef OPENSSL_NO_DH
925 	if (pk11_have_dh == CK_TRUE)
926 		{
927 		if (!ENGINE_set_DH(e, PK11_DH()))
928 			return (0);
929 #ifdef	DEBUG_SLOT_SELECTION
930 		fprintf(stderr, "%s: registered DH\n", PK11_DBG);
931 #endif	/* DEBUG_SLOT_SELECTION */
932 		}
933 #endif	/* OPENSSL_NO_DH */
934 	if (pk11_have_random)
935 		{
936 		if (!ENGINE_set_RAND(e, &pk11_random))
937 			return (0);
938 #ifdef	DEBUG_SLOT_SELECTION
939 		fprintf(stderr, "%s: registered random\n", PK11_DBG);
940 #endif	/* DEBUG_SLOT_SELECTION */
941 		}
942 	if (!ENGINE_set_init_function(e, pk11_init) ||
943 	    !ENGINE_set_destroy_function(e, pk11_destroy) ||
944 	    !ENGINE_set_finish_function(e, pk11_finish) ||
945 	    !ENGINE_set_ctrl_function(e, pk11_ctrl) ||
946 	    !ENGINE_set_cmd_defns(e, pk11_cmd_defns))
947 		return (0);
948 
949 /*
950  * Apache calls OpenSSL function RSA_blinding_on() once during startup
951  * which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp
952  * here, we wire it back to the OpenSSL software implementation.
953  * Since it is used only once, performance is not a concern.
954  */
955 #ifndef OPENSSL_NO_RSA
956 	rsa = RSA_PKCS1_SSLeay();
957 	pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp;
958 	pk11_rsa->bn_mod_exp = rsa->bn_mod_exp;
959 #endif	/* OPENSSL_NO_RSA */
960 
961 	/* Ensure the pk11 error handling is set up */
962 	ERR_load_pk11_strings();
963 
964 	return (1);
965 	}
966 
967 /* Dynamic engine support is disabled at a higher level for Solaris */
968 #ifdef	ENGINE_DYNAMIC_SUPPORT
bind_helper(ENGINE * e,const char * id)969 static int bind_helper(ENGINE *e, const char *id)
970 	{
971 	if (id && (strcmp(id, engine_pk11_id) != 0))
972 		return (0);
973 
974 	if (!bind_pk11(e))
975 		return (0);
976 
977 	return (1);
978 	}
979 
980 IMPLEMENT_DYNAMIC_CHECK_FN()
981 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
982 
983 #else
984 static ENGINE *engine_pk11(void)
985 	{
986 	ENGINE *ret = ENGINE_new();
987 
988 	if (!ret)
989 		return (NULL);
990 
991 	if (!bind_pk11(ret))
992 		{
993 		(void) ENGINE_free(ret);
994 		return (NULL);
995 		}
996 
997 	return (ret);
998 	}
999 
1000 void
1001 ENGINE_load_pk11(void)
1002 	{
1003 	ENGINE *e_pk11 = NULL;
1004 
1005 	/*
1006 	 * Do not use dynamic PKCS#11 library on Solaris due to
1007 	 * security reasons. We will link it in statically.
1008 	 */
1009 	/* Attempt to load PKCS#11 library */
1010 	if (!pk11_dso)
1011 		pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0);
1012 
1013 	if (pk11_dso == NULL)
1014 		{
1015 		PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE);
1016 		return;
1017 		}
1018 
1019 	e_pk11 = engine_pk11();
1020 	if (!e_pk11)
1021 		{
1022 		(void) DSO_free(pk11_dso);
1023 		pk11_dso = NULL;
1024 		return;
1025 		}
1026 
1027 	/*
1028 	 * At this point, the pk11 shared library is either dynamically
1029 	 * loaded or statically linked in. So, initialize the pk11
1030 	 * library before calling ENGINE_set_default since the latter
1031 	 * needs cipher and digest algorithm information
1032 	 */
1033 	if (!pk11_library_init(e_pk11))
1034 		{
1035 		(void) DSO_free(pk11_dso);
1036 		pk11_dso = NULL;
1037 		(void) ENGINE_free(e_pk11);
1038 		return;
1039 		}
1040 
1041 	(void) ENGINE_add(e_pk11);
1042 
1043 	(void) ENGINE_free(e_pk11);
1044 	ERR_clear_error();
1045 	}
1046 #endif	/* ENGINE_DYNAMIC_SUPPORT */
1047 
1048 /*
1049  * These are the static string constants for the DSO file name and
1050  * the function symbol names to bind to.
1051  */
1052 static const char *PK11_LIBNAME = NULL;
1053 
get_PK11_LIBNAME(void)1054 static const char *get_PK11_LIBNAME(void)
1055 	{
1056 	if (PK11_LIBNAME)
1057 		return (PK11_LIBNAME);
1058 
1059 	return (def_PK11_LIBNAME);
1060 	}
1061 
free_PK11_LIBNAME(void)1062 static void free_PK11_LIBNAME(void)
1063 	{
1064 	if (PK11_LIBNAME)
1065 		OPENSSL_free((void*)PK11_LIBNAME);
1066 
1067 	PK11_LIBNAME = NULL;
1068 	}
1069 
set_PK11_LIBNAME(const char * name)1070 static long set_PK11_LIBNAME(const char *name)
1071 	{
1072 	free_PK11_LIBNAME();
1073 
1074 	return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
1075 	}
1076 
1077 /* acquire all engine specific mutexes before fork */
pk11_fork_prepare(void)1078 static void pk11_fork_prepare(void)
1079 	{
1080 	int i;
1081 
1082 	if (!pk11_library_initialized)
1083 		return;
1084 
1085 	LOCK_OBJSTORE(OP_RSA);
1086 	LOCK_OBJSTORE(OP_DSA);
1087 	LOCK_OBJSTORE(OP_DH);
1088 	for (i = 0; i < OP_MAX; i++)
1089 		{
1090 		(void) pthread_mutex_lock(session_cache[i].lock);
1091 		}
1092 	}
1093 
1094 /* release all engine specific mutexes */
pk11_fork_parent(void)1095 static void pk11_fork_parent(void)
1096 	{
1097 	int i;
1098 
1099 	if (!pk11_library_initialized)
1100 		return;
1101 
1102 	for (i = OP_MAX - 1; i >= 0; i--)
1103 		{
1104 		(void) pthread_mutex_unlock(session_cache[i].lock);
1105 		}
1106 	UNLOCK_OBJSTORE(OP_DH);
1107 	UNLOCK_OBJSTORE(OP_DSA);
1108 	UNLOCK_OBJSTORE(OP_RSA);
1109 	}
1110 
1111 /*
1112  * same situation as in parent - we need to unlock all locks to make them
1113  * accessible to all threads.
1114  */
pk11_fork_child(void)1115 static void pk11_fork_child(void)
1116 	{
1117 	int i;
1118 
1119 	if (!pk11_library_initialized)
1120 		return;
1121 
1122 	for (i = OP_MAX - 1; i >= 0; i--)
1123 		{
1124 		(void) pthread_mutex_unlock(session_cache[i].lock);
1125 		}
1126 	UNLOCK_OBJSTORE(OP_DH);
1127 	UNLOCK_OBJSTORE(OP_DSA);
1128 	UNLOCK_OBJSTORE(OP_RSA);
1129 	}
1130 
1131 /* Initialization function for the pk11 engine */
pk11_init(ENGINE * e)1132 static int pk11_init(ENGINE *e)
1133 {
1134 	return (pk11_library_init(e));
1135 }
1136 
1137 /*
1138  * Initialization function. Sets up various PKCS#11 library components.
1139  * It selects a slot based on predefined critiera. In the process, it also
1140  * count how many ciphers and digests to support. Since the cipher and
1141  * digest information is needed when setting default engine, this function
1142  * needs to be called before calling ENGINE_set_default.
1143  */
1144 /* ARGSUSED */
pk11_library_init(ENGINE * e)1145 static int pk11_library_init(ENGINE *e)
1146 	{
1147 	CK_C_GetFunctionList p;
1148 	CK_RV rv = CKR_OK;
1149 	CK_INFO info;
1150 	CK_ULONG ul_state_len;
1151 	int any_slot_found;
1152 	int i;
1153 
1154 	/*
1155 	 * pk11_library_initialized is set to 0 in pk11_finish() which is called
1156 	 * from ENGINE_finish(). However, if there is still at least one
1157 	 * existing functional reference to the engine (see engine(3) for more
1158 	 * information), pk11_finish() is skipped. For example, this can happen
1159 	 * if an application forgets to clear one cipher context. In case of a
1160 	 * fork() when the application is finishing the engine so that it can be
1161 	 * reinitialized in the child, forgotten functional reference causes
1162 	 * pk11_library_initialized to stay 1. In that case we need the PID
1163 	 * check so that we properly initialize the engine again.
1164 	 */
1165 	if (pk11_library_initialized)
1166 		{
1167 		if (pk11_pid == getpid())
1168 			{
1169 			return (1);
1170 			}
1171 		else
1172 			{
1173 			global_session = CK_INVALID_HANDLE;
1174 			/*
1175 			 * free the locks first to prevent memory leak in case
1176 			 * the application calls fork() without finishing the
1177 			 * engine first.
1178 			 */
1179 			pk11_free_all_locks();
1180 			}
1181 		}
1182 
1183 	if (pk11_dso == NULL)
1184 		{
1185 		PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1186 		goto err;
1187 		}
1188 
1189 #ifdef	SOLARIS_AES_CTR
1190 	/*
1191 	 * We must do this before we start working with slots since we need all
1192 	 * NIDs there.
1193 	 */
1194 	if (pk11_add_aes_ctr_NIDs() == 0)
1195 		goto err;
1196 #endif	/* SOLARIS_AES_CTR */
1197 
1198 #ifdef	SOLARIS_HW_SLOT_SELECTION
1199 	if (check_hw_mechanisms() == 0)
1200 		goto err;
1201 #endif	/* SOLARIS_HW_SLOT_SELECTION */
1202 
1203 	/* get the C_GetFunctionList function from the loaded library */
1204 	p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso,
1205 		PK11_GET_FUNCTION_LIST);
1206 	if (!p)
1207 		{
1208 		PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1209 		goto err;
1210 		}
1211 
1212 	/* get the full function list from the loaded library */
1213 	rv = p(&pFuncList);
1214 	if (rv != CKR_OK)
1215 		{
1216 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv);
1217 		goto err;
1218 		}
1219 
1220 	rv = pFuncList->C_Initialize(NULL_PTR);
1221 	if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1222 		{
1223 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv);
1224 		goto err;
1225 		}
1226 
1227 	rv = pFuncList->C_GetInfo(&info);
1228 	if (rv != CKR_OK)
1229 		{
1230 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv);
1231 		goto err;
1232 		}
1233 
1234 	if (pk11_choose_slots(&any_slot_found) == 0)
1235 		goto err;
1236 
1237 	/*
1238 	 * The library we use, set in def_PK11_LIBNAME, may not offer any
1239 	 * slot(s). In that case, we must not proceed but we must not return an
1240 	 * error. The reason is that applications that try to set up the PKCS#11
1241 	 * engine don't exit on error during the engine initialization just
1242 	 * because no slot was present.
1243 	 */
1244 	if (any_slot_found == 0)
1245 		return (1);
1246 
1247 	if (global_session == CK_INVALID_HANDLE)
1248 		{
1249 		/* Open the global_session for the new process */
1250 		rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1251 			NULL_PTR, NULL_PTR, &global_session);
1252 		if (rv != CKR_OK)
1253 			{
1254 			PK11err_add_data(PK11_F_LIBRARY_INIT,
1255 			    PK11_R_OPENSESSION, rv);
1256 			goto err;
1257 			}
1258 		}
1259 
1260 	/*
1261 	 * Disable digest if C_GetOperationState is not supported since
1262 	 * this function is required by OpenSSL digest copy function
1263 	 */
1264 	if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len)
1265 			== CKR_FUNCTION_NOT_SUPPORTED) {
1266 #ifdef	DEBUG_SLOT_SELECTION
1267 		fprintf(stderr, "%s: C_GetOperationState() not supported, "
1268 		    "setting digest_count to 0\n", PK11_DBG);
1269 #endif	/* DEBUG_SLOT_SELECTION */
1270 		digest_count = 0;
1271 	}
1272 
1273 	pk11_library_initialized = TRUE;
1274 	pk11_pid = getpid();
1275 	/*
1276 	 * if initialization of the locks fails pk11_init_all_locks()
1277 	 * will do the cleanup.
1278 	 */
1279 	if (!pk11_init_all_locks())
1280 		goto err;
1281 	for (i = 0; i < OP_MAX; i++)
1282 		session_cache[i].head = NULL;
1283 	/*
1284 	 * initialize active lists. We only use active lists
1285 	 * for asymmetric ciphers.
1286 	 */
1287 	for (i = 0; i < OP_MAX; i++)
1288 		active_list[i] = NULL;
1289 
1290 	if (!pk11_atfork_initialized)
1291 		{
1292 		if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent,
1293 		    pk11_fork_child) != 0)
1294 			{
1295 			PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED);
1296 			goto err;
1297 			}
1298 		pk11_atfork_initialized = TRUE;
1299 		}
1300 
1301 	return (1);
1302 
1303 err:
1304 	return (0);
1305 	}
1306 
1307 /* Destructor (complements the "ENGINE_pk11()" constructor) */
1308 /* ARGSUSED */
pk11_destroy(ENGINE * e)1309 static int pk11_destroy(ENGINE *e)
1310 	{
1311 	free_PK11_LIBNAME();
1312 	ERR_unload_pk11_strings();
1313 	return (1);
1314 	}
1315 
1316 /*
1317  * Termination function to clean up the session, the token, and the pk11
1318  * library.
1319  */
1320 /* ARGSUSED */
pk11_finish(ENGINE * e)1321 static int pk11_finish(ENGINE *e)
1322 	{
1323 	int i;
1324 
1325 	if (pk11_dso == NULL)
1326 		{
1327 		PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED);
1328 		goto err;
1329 		}
1330 
1331 	OPENSSL_assert(pFuncList != NULL);
1332 
1333 	if (pk11_free_all_sessions() == 0)
1334 		goto err;
1335 
1336 	/* free all active lists */
1337 	for (i = 0; i < OP_MAX; i++)
1338 		pk11_free_active_list(i);
1339 
1340 	pFuncList->C_CloseSession(global_session);
1341 	global_session = CK_INVALID_HANDLE;
1342 
1343 	/*
1344 	 * Since we are part of a library (libcrypto.so), calling this function
1345 	 * may have side-effects.
1346 	 */
1347 #if 0
1348 	pFuncList->C_Finalize(NULL);
1349 #endif
1350 
1351 	if (!DSO_free(pk11_dso))
1352 		{
1353 		PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE);
1354 		goto err;
1355 		}
1356 	pk11_dso = NULL;
1357 	pFuncList = NULL;
1358 	pk11_library_initialized = FALSE;
1359 	pk11_pid = 0;
1360 	/*
1361 	 * There is no way how to unregister atfork handlers (other than
1362 	 * unloading the library) so we just free the locks. For this reason
1363 	 * the atfork handlers check if the engine is initialized and bail out
1364 	 * immediately if not. This is necessary in case a process finishes
1365 	 * the engine before calling fork().
1366 	 */
1367 	pk11_free_all_locks();
1368 
1369 	return (1);
1370 
1371 err:
1372 	return (0);
1373 	}
1374 
1375 /* Standard engine interface function to set the dynamic library path */
1376 /* ARGSUSED */
pk11_ctrl(ENGINE * e,int cmd,long i,void * p,void (* f)())1377 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
1378 	{
1379 	int initialized = ((pk11_dso == NULL) ? 0 : 1);
1380 
1381 	switch (cmd)
1382 		{
1383 	case PK11_CMD_SO_PATH:
1384 		if (p == NULL)
1385 			{
1386 			PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER);
1387 			return (0);
1388 			}
1389 
1390 		if (initialized)
1391 			{
1392 			PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED);
1393 			return (0);
1394 			}
1395 
1396 		return (set_PK11_LIBNAME((const char *)p));
1397 	default:
1398 		break;
1399 		}
1400 
1401 	PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED);
1402 
1403 	return (0);
1404 	}
1405 
1406 
1407 /* Required function by the engine random interface. It does nothing here */
pk11_rand_cleanup(void)1408 static void pk11_rand_cleanup(void)
1409 	{
1410 	return;
1411 	}
1412 
1413 /* ARGSUSED */
pk11_rand_add(const void * buf,int num,double add)1414 static void pk11_rand_add(const void *buf, int num, double add)
1415 	{
1416 	PK11_SESSION *sp;
1417 
1418 	if ((sp = pk11_get_session(OP_RAND)) == NULL)
1419 		return;
1420 
1421 	/*
1422 	 * Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since
1423 	 * the calling functions do not care anyway
1424 	 */
1425 	pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num);
1426 	pk11_return_session(sp, OP_RAND);
1427 
1428 	return;
1429 	}
1430 
pk11_rand_seed(const void * buf,int num)1431 static void pk11_rand_seed(const void *buf, int num)
1432 	{
1433 	pk11_rand_add(buf, num, 0);
1434 	}
1435 
pk11_rand_bytes(unsigned char * buf,int num)1436 static int pk11_rand_bytes(unsigned char *buf, int num)
1437 	{
1438 	CK_RV rv;
1439 	PK11_SESSION *sp;
1440 
1441 	if ((sp = pk11_get_session(OP_RAND)) == NULL)
1442 		return (0);
1443 
1444 	rv = pFuncList->C_GenerateRandom(sp->session, buf, num);
1445 	if (rv != CKR_OK)
1446 		{
1447 		PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv);
1448 		pk11_return_session(sp, OP_RAND);
1449 		return (0);
1450 		}
1451 
1452 	pk11_return_session(sp, OP_RAND);
1453 	return (1);
1454 	}
1455 
1456 /* Required function by the engine random interface. It does nothing here */
pk11_rand_status(void)1457 static int pk11_rand_status(void)
1458 	{
1459 	return (1);
1460 	}
1461 
1462 /* Free all BIGNUM structures from PK11_SESSION. */
pk11_free_nums(PK11_SESSION * sp,PK11_OPTYPE optype)1463 static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype)
1464 	{
1465 	switch (optype)
1466 		{
1467 #ifndef	OPENSSL_NO_RSA
1468 		case OP_RSA:
1469 			if (sp->opdata_rsa_n_num != NULL)
1470 				{
1471 				BN_free(sp->opdata_rsa_n_num);
1472 				sp->opdata_rsa_n_num = NULL;
1473 				}
1474 			if (sp->opdata_rsa_e_num != NULL)
1475 				{
1476 				BN_free(sp->opdata_rsa_e_num);
1477 				sp->opdata_rsa_e_num = NULL;
1478 				}
1479 			if (sp->opdata_rsa_d_num != NULL)
1480 				{
1481 				BN_free(sp->opdata_rsa_d_num);
1482 				sp->opdata_rsa_d_num = NULL;
1483 				}
1484 			break;
1485 #endif
1486 #ifndef	OPENSSL_NO_DSA
1487 		case OP_DSA:
1488 			if (sp->opdata_dsa_pub_num != NULL)
1489 				{
1490 				BN_free(sp->opdata_dsa_pub_num);
1491 				sp->opdata_dsa_pub_num = NULL;
1492 				}
1493 			if (sp->opdata_dsa_priv_num != NULL)
1494 				{
1495 				BN_free(sp->opdata_dsa_priv_num);
1496 				sp->opdata_dsa_priv_num = NULL;
1497 				}
1498 			break;
1499 #endif
1500 #ifndef	OPENSSL_NO_DH
1501 		case OP_DH:
1502 			if (sp->opdata_dh_priv_num != NULL)
1503 				{
1504 				BN_free(sp->opdata_dh_priv_num);
1505 				sp->opdata_dh_priv_num = NULL;
1506 				}
1507 			break;
1508 #endif
1509 		default:
1510 			break;
1511 		}
1512 	}
1513 
1514 /*
1515  * Get new PK11_SESSION structure ready for use. Every process must have
1516  * its own freelist of PK11_SESSION structures so handle fork() here
1517  * by destroying the old and creating new freelist.
1518  * The returned PK11_SESSION structure is disconnected from the freelist.
1519  */
1520 PK11_SESSION *
pk11_get_session(PK11_OPTYPE optype)1521 pk11_get_session(PK11_OPTYPE optype)
1522 	{
1523 	PK11_SESSION *sp = NULL, *sp1, *freelist;
1524 	pthread_mutex_t *freelist_lock;
1525 	CK_RV rv;
1526 
1527 	switch (optype)
1528 		{
1529 		case OP_RSA:
1530 		case OP_DSA:
1531 		case OP_DH:
1532 		case OP_RAND:
1533 		case OP_DIGEST:
1534 		case OP_CIPHER:
1535 			freelist_lock = session_cache[optype].lock;
1536 			break;
1537 		default:
1538 			PK11err(PK11_F_GET_SESSION,
1539 				PK11_R_INVALID_OPERATION_TYPE);
1540 			return (NULL);
1541 		}
1542 	(void) pthread_mutex_lock(freelist_lock);
1543 	freelist = session_cache[optype].head;
1544 	sp = freelist;
1545 
1546 	/*
1547 	 * If the free list is empty, allocate new unitialized (filled
1548 	 * with zeroes) PK11_SESSION structure otherwise return first
1549 	 * structure from the freelist.
1550 	 */
1551 	if (sp == NULL)
1552 		{
1553 		if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL)
1554 			{
1555 			PK11err(PK11_F_GET_SESSION,
1556 				PK11_R_MALLOC_FAILURE);
1557 			goto err;
1558 			}
1559 		(void) memset(sp, 0, sizeof (PK11_SESSION));
1560 		}
1561 	else
1562 		{
1563 		freelist = sp->next;
1564 		}
1565 
1566 	if (sp->pid != 0 && sp->pid != getpid())
1567 		{
1568 		/*
1569 		 * We are a new process and thus need to free any inherited
1570 		 * PK11_SESSION objects.
1571 		 */
1572 		while ((sp1 = freelist) != NULL)
1573 			{
1574 			freelist = sp1->next;
1575 			/*
1576 			 * NOTE: we do not want to call pk11_free_all_sessions()
1577 			 * here because it would close underlying PKCS#11
1578 			 * sessions and destroy all objects.
1579 			 */
1580 			pk11_free_nums(sp1, optype);
1581 			OPENSSL_free(sp1);
1582 			}
1583 
1584 		/* we have to free the active list as well. */
1585 		pk11_free_active_list(optype);
1586 
1587 		/* Initialize the process */
1588 		rv = pFuncList->C_Initialize(NULL_PTR);
1589 		if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1590 			{
1591 			PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE,
1592 			    rv);
1593 			OPENSSL_free(sp);
1594 			sp = NULL;
1595 			goto err;
1596 			}
1597 
1598 		/*
1599 		 * Choose slot here since the slot table is different on this
1600 		 * process. If we are here then we must have found at least one
1601 		 * usable slot before so we don't need to check any_slot_found.
1602 		 * See pk11_library_init()'s usage of this function for more
1603 		 * information.
1604 		 */
1605 #ifdef	SOLARIS_HW_SLOT_SELECTION
1606 		if (check_hw_mechanisms() == 0)
1607 			goto err;
1608 #endif	/* SOLARIS_HW_SLOT_SELECTION */
1609 		if (pk11_choose_slots(NULL) == 0)
1610 			goto err;
1611 
1612 		/* Open the global_session for the new process */
1613 		rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1614 			NULL_PTR, NULL_PTR, &global_session);
1615 		if (rv != CKR_OK)
1616 			{
1617 			PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION,
1618 			    rv);
1619 			OPENSSL_free(sp);
1620 			sp = NULL;
1621 			goto err;
1622 			}
1623 
1624 		/* It is an inherited session and needs re-initialization. */
1625 		if (pk11_setup_session(sp, optype) == 0)
1626 			{
1627 			OPENSSL_free(sp);
1628 			sp = NULL;
1629 			}
1630 		}
1631 	if (sp->pid == 0)
1632 		{
1633 		/* It is a new session and needs initialization. */
1634 		if (pk11_setup_session(sp, optype) == 0)
1635 			{
1636 			OPENSSL_free(sp);
1637 			sp = NULL;
1638 			}
1639 		}
1640 
1641 	/* set new head for the list of PK11_SESSION objects */
1642 	session_cache[optype].head = freelist;
1643 
1644 err:
1645 	if (sp != NULL)
1646 		sp->next = NULL;
1647 
1648 	(void) pthread_mutex_unlock(freelist_lock);
1649 
1650 	return (sp);
1651 	}
1652 
1653 
1654 void
pk11_return_session(PK11_SESSION * sp,PK11_OPTYPE optype)1655 pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1656 	{
1657 	pthread_mutex_t *freelist_lock;
1658 	PK11_SESSION *freelist;
1659 
1660 	if (sp == NULL || sp->pid != getpid())
1661 		return;
1662 
1663 	switch (optype)
1664 		{
1665 		case OP_RSA:
1666 		case OP_DSA:
1667 		case OP_DH:
1668 		case OP_RAND:
1669 		case OP_DIGEST:
1670 		case OP_CIPHER:
1671 			freelist_lock = session_cache[optype].lock;
1672 			break;
1673 		default:
1674 			PK11err(PK11_F_RETURN_SESSION,
1675 				PK11_R_INVALID_OPERATION_TYPE);
1676 			return;
1677 		}
1678 
1679 	(void) pthread_mutex_lock(freelist_lock);
1680 	freelist = session_cache[optype].head;
1681 	sp->next = freelist;
1682 	session_cache[optype].head = sp;
1683 	(void) pthread_mutex_unlock(freelist_lock);
1684 	}
1685 
1686 
1687 /* Destroy all objects. This function is called when the engine is finished */
pk11_free_all_sessions()1688 static int pk11_free_all_sessions()
1689 	{
1690 	int ret = 1;
1691 	int type;
1692 
1693 #ifndef OPENSSL_NO_RSA
1694 	(void) pk11_destroy_rsa_key_objects(NULL);
1695 #endif	/* OPENSSL_NO_RSA */
1696 #ifndef OPENSSL_NO_DSA
1697 	(void) pk11_destroy_dsa_key_objects(NULL);
1698 #endif	/* OPENSSL_NO_DSA */
1699 #ifndef OPENSSL_NO_DH
1700 	(void) pk11_destroy_dh_key_objects(NULL);
1701 #endif	/* OPENSSL_NO_DH */
1702 	(void) pk11_destroy_cipher_key_objects(NULL);
1703 
1704 	/*
1705 	 * We try to release as much as we can but any error means that we will
1706 	 * return 0 on exit.
1707 	 */
1708 	for (type = 0; type < OP_MAX; type++)
1709 		{
1710 		if (pk11_free_session_list(type) == 0)
1711 			ret = 0;
1712 		}
1713 
1714 	return (ret);
1715 	}
1716 
1717 /*
1718  * Destroy session structures from the linked list specified. Free as many
1719  * sessions as possible but any failure in C_CloseSession() means that we
1720  * return an error on return.
1721  */
pk11_free_session_list(PK11_OPTYPE optype)1722 static int pk11_free_session_list(PK11_OPTYPE optype)
1723 	{
1724 	CK_RV rv;
1725 	PK11_SESSION *sp = NULL;
1726 	PK11_SESSION *freelist = NULL;
1727 	pid_t mypid = getpid();
1728 	pthread_mutex_t *freelist_lock;
1729 	int ret = 1;
1730 
1731 	switch (optype)
1732 		{
1733 		case OP_RSA:
1734 		case OP_DSA:
1735 		case OP_DH:
1736 		case OP_RAND:
1737 		case OP_DIGEST:
1738 		case OP_CIPHER:
1739 			freelist_lock = session_cache[optype].lock;
1740 			break;
1741 		default:
1742 			PK11err(PK11_F_FREE_ALL_SESSIONS,
1743 				PK11_R_INVALID_OPERATION_TYPE);
1744 			return (0);
1745 		}
1746 
1747 	(void) pthread_mutex_lock(freelist_lock);
1748 	freelist = session_cache[optype].head;
1749 	while ((sp = freelist) != NULL)
1750 		{
1751 		if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid)
1752 			{
1753 			rv = pFuncList->C_CloseSession(sp->session);
1754 			if (rv != CKR_OK)
1755 				{
1756 				PK11err_add_data(PK11_F_FREE_ALL_SESSIONS,
1757 					PK11_R_CLOSESESSION, rv);
1758 				ret = 0;
1759 				}
1760 			}
1761 		freelist = sp->next;
1762 		pk11_free_nums(sp, optype);
1763 		OPENSSL_free(sp);
1764 		}
1765 
1766 	(void) pthread_mutex_unlock(freelist_lock);
1767 	return (ret);
1768 	}
1769 
1770 
pk11_setup_session(PK11_SESSION * sp,PK11_OPTYPE optype)1771 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1772 	{
1773 	CK_RV rv;
1774 	CK_SLOT_ID myslot;
1775 
1776 	switch (optype)
1777 		{
1778 		case OP_RSA:
1779 		case OP_DSA:
1780 		case OP_DH:
1781 			myslot = pubkey_SLOTID;
1782 			break;
1783 		case OP_RAND:
1784 			myslot = rand_SLOTID;
1785 			break;
1786 		case OP_DIGEST:
1787 		case OP_CIPHER:
1788 			myslot = SLOTID;
1789 			break;
1790 		default:
1791 			PK11err(PK11_F_SETUP_SESSION,
1792 			    PK11_R_INVALID_OPERATION_TYPE);
1793 			return (0);
1794 		}
1795 
1796 	sp->session = CK_INVALID_HANDLE;
1797 #ifdef	DEBUG_SLOT_SELECTION
1798 	fprintf(stderr, "%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype);
1799 #endif	/* DEBUG_SLOT_SELECTION */
1800 	rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1801 		NULL_PTR, NULL_PTR, &sp->session);
1802 	if (rv == CKR_CRYPTOKI_NOT_INITIALIZED)
1803 		{
1804 		/*
1805 		 * We are probably a child process so force the
1806 		 * reinitialize of the session
1807 		 */
1808 		pk11_library_initialized = FALSE;
1809 		if (!pk11_library_init(NULL))
1810 			return (0);
1811 		rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1812 			NULL_PTR, NULL_PTR, &sp->session);
1813 		}
1814 	if (rv != CKR_OK)
1815 		{
1816 		PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv);
1817 		return (0);
1818 		}
1819 
1820 	sp->pid = getpid();
1821 
1822 	switch (optype)
1823 		{
1824 #ifndef OPENSSL_NO_RSA
1825 		case OP_RSA:
1826 			sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1827 			sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1828 			sp->opdata_rsa_pub = NULL;
1829 			sp->opdata_rsa_n_num = NULL;
1830 			sp->opdata_rsa_e_num = NULL;
1831 			sp->opdata_rsa_priv = NULL;
1832 			sp->opdata_rsa_d_num = NULL;
1833 			break;
1834 #endif	/* OPENSSL_NO_RSA */
1835 #ifndef OPENSSL_NO_DSA
1836 		case OP_DSA:
1837 			sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
1838 			sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
1839 			sp->opdata_dsa_pub = NULL;
1840 			sp->opdata_dsa_pub_num = NULL;
1841 			sp->opdata_dsa_priv = NULL;
1842 			sp->opdata_dsa_priv_num = NULL;
1843 			break;
1844 #endif	/* OPENSSL_NO_DSA */
1845 #ifndef OPENSSL_NO_DH
1846 		case OP_DH:
1847 			sp->opdata_dh_key = CK_INVALID_HANDLE;
1848 			sp->opdata_dh = NULL;
1849 			sp->opdata_dh_priv_num = NULL;
1850 			break;
1851 #endif	/* OPENSSL_NO_DH */
1852 		case OP_CIPHER:
1853 			sp->opdata_cipher_key = CK_INVALID_HANDLE;
1854 			sp->opdata_encrypt = -1;
1855 			break;
1856 		}
1857 
1858 	return (1);
1859 	}
1860 
1861 #ifndef OPENSSL_NO_RSA
1862 /* Destroy RSA public key from single session. */
1863 int
pk11_destroy_rsa_object_pub(PK11_SESSION * sp,CK_BBOOL uselock)1864 pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
1865 	{
1866 	int ret = 0;
1867 
1868 	if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
1869 		{
1870 		TRY_OBJ_DESTROY(sp->session, sp->opdata_rsa_pub_key,
1871 		    ret, uselock, OP_RSA);
1872 		sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1873 		sp->opdata_rsa_pub = NULL;
1874 		if (sp->opdata_rsa_n_num != NULL)
1875 			{
1876 			BN_free(sp->opdata_rsa_n_num);
1877 			sp->opdata_rsa_n_num = NULL;
1878 			}
1879 		if (sp->opdata_rsa_e_num != NULL)
1880 			{
1881 			BN_free(sp->opdata_rsa_e_num);
1882 			sp->opdata_rsa_e_num = NULL;
1883 			}
1884 		}
1885 
1886 	return (ret);
1887 	}
1888 
1889 /* Destroy RSA private key from single session. */
1890 int
pk11_destroy_rsa_object_priv(PK11_SESSION * sp,CK_BBOOL uselock)1891 pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
1892 	{
1893 	int ret = 0;
1894 
1895 	if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
1896 		{
1897 		TRY_OBJ_DESTROY(sp->session, sp->opdata_rsa_priv_key,
1898 		    ret, uselock, OP_RSA);
1899 		sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1900 		sp->opdata_rsa_priv = NULL;
1901 		if (sp->opdata_rsa_d_num != NULL)
1902 			{
1903 			BN_free(sp->opdata_rsa_d_num);
1904 			sp->opdata_rsa_d_num = NULL;
1905 			}
1906 		}
1907 
1908 	return (ret);
1909 	}
1910 
1911 /*
1912  * Destroy RSA key object wrapper. If session is NULL, try to destroy all
1913  * objects in the free list.
1914  */
1915 int
pk11_destroy_rsa_key_objects(PK11_SESSION * session)1916 pk11_destroy_rsa_key_objects(PK11_SESSION *session)
1917 	{
1918 	int ret = 1;
1919 	PK11_SESSION *sp = NULL;
1920 	PK11_SESSION *local_free_session;
1921 	CK_BBOOL uselock = TRUE;
1922 
1923 	if (session != NULL)
1924 		local_free_session = session;
1925 	else
1926 		{
1927 		(void) pthread_mutex_lock(session_cache[OP_RSA].lock);
1928 		local_free_session = session_cache[OP_RSA].head;
1929 		uselock = FALSE;
1930 		}
1931 
1932 	/*
1933 	 * go through the list of sessions and delete key objects
1934 	 */
1935 	while ((sp = local_free_session) != NULL)
1936 		{
1937 		local_free_session = sp->next;
1938 
1939 		/*
1940 		 * Do not terminate list traversal if one of the
1941 		 * destroy operations fails.
1942 		 */
1943 		if (pk11_destroy_rsa_object_pub(sp, uselock) == 0)
1944 			{
1945 			ret = 0;
1946 			continue;
1947 			}
1948 		if (pk11_destroy_rsa_object_priv(sp, uselock) == 0)
1949 			{
1950 			ret = 0;
1951 			continue;
1952 			}
1953 		}
1954 
1955 	if (session == NULL)
1956 		(void) pthread_mutex_unlock(session_cache[OP_RSA].lock);
1957 
1958 	return (ret);
1959 	}
1960 #endif	/* OPENSSL_NO_RSA */
1961 
1962 #ifndef OPENSSL_NO_DSA
1963 /* Destroy DSA public key from single session. */
1964 int
pk11_destroy_dsa_object_pub(PK11_SESSION * sp,CK_BBOOL uselock)1965 pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
1966 	{
1967 	int ret = 0;
1968 
1969 	if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE)
1970 		{
1971 		TRY_OBJ_DESTROY(sp->session, sp->opdata_dsa_pub_key,
1972 		    ret, uselock, OP_DSA);
1973 		sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
1974 		sp->opdata_dsa_pub = NULL;
1975 		if (sp->opdata_dsa_pub_num != NULL)
1976 			{
1977 			BN_free(sp->opdata_dsa_pub_num);
1978 			sp->opdata_dsa_pub_num = NULL;
1979 			}
1980 		}
1981 
1982 	return (ret);
1983 	}
1984 
1985 /* Destroy DSA private key from single session. */
1986 int
pk11_destroy_dsa_object_priv(PK11_SESSION * sp,CK_BBOOL uselock)1987 pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
1988 	{
1989 	int ret = 0;
1990 
1991 	if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE)
1992 		{
1993 		TRY_OBJ_DESTROY(sp->session, sp->opdata_dsa_priv_key,
1994 		    ret, uselock, OP_DSA);
1995 		sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
1996 		sp->opdata_dsa_priv = NULL;
1997 		if (sp->opdata_dsa_priv_num != NULL)
1998 			{
1999 			BN_free(sp->opdata_dsa_priv_num);
2000 			sp->opdata_dsa_priv_num = NULL;
2001 			}
2002 		}
2003 
2004 	return (ret);
2005 	}
2006 
2007 /*
2008  * Destroy DSA key object wrapper. If session is NULL, try to destroy all
2009  * objects in the free list.
2010  */
2011 int
pk11_destroy_dsa_key_objects(PK11_SESSION * session)2012 pk11_destroy_dsa_key_objects(PK11_SESSION *session)
2013 	{
2014 	int ret = 1;
2015 	PK11_SESSION *sp = NULL;
2016 	PK11_SESSION *local_free_session;
2017 	CK_BBOOL uselock = TRUE;
2018 
2019 	if (session != NULL)
2020 		local_free_session = session;
2021 	else
2022 		{
2023 		(void) pthread_mutex_lock(session_cache[OP_DSA].lock);
2024 		local_free_session = session_cache[OP_DSA].head;
2025 		uselock = FALSE;
2026 		}
2027 
2028 	/*
2029 	 * go through the list of sessions and delete key objects
2030 	 */
2031 	while ((sp = local_free_session) != NULL)
2032 		{
2033 		local_free_session = sp->next;
2034 
2035 		/*
2036 		 * Do not terminate list traversal if one of the
2037 		 * destroy operations fails.
2038 		 */
2039 		if (pk11_destroy_dsa_object_pub(sp, uselock) == 0)
2040 			{
2041 			ret = 0;
2042 			continue;
2043 			}
2044 		if (pk11_destroy_dsa_object_priv(sp, uselock) == 0)
2045 			{
2046 			ret = 0;
2047 			continue;
2048 			}
2049 		}
2050 
2051 	if (session == NULL)
2052 		(void) pthread_mutex_unlock(session_cache[OP_DSA].lock);
2053 
2054 	return (ret);
2055 	}
2056 #endif	/* OPENSSL_NO_DSA */
2057 
2058 #ifndef OPENSSL_NO_DH
2059 /* Destroy DH key from single session. */
2060 int
pk11_destroy_dh_object(PK11_SESSION * sp,CK_BBOOL uselock)2061 pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock)
2062 	{
2063 	int ret = 0;
2064 
2065 	if (sp->opdata_dh_key != CK_INVALID_HANDLE)
2066 		{
2067 		TRY_OBJ_DESTROY(sp->session, sp->opdata_dh_key,
2068 		    ret, uselock, OP_DH);
2069 		sp->opdata_dh_key = CK_INVALID_HANDLE;
2070 		sp->opdata_dh = NULL;
2071 		if (sp->opdata_dh_priv_num != NULL)
2072 			{
2073 			BN_free(sp->opdata_dh_priv_num);
2074 			sp->opdata_dh_priv_num = NULL;
2075 			}
2076 		}
2077 
2078 	return (ret);
2079 	}
2080 
2081 /*
2082  * Destroy DH key object wrapper.
2083  *
2084  * arg0: pointer to PKCS#11 engine session structure
2085  *       if session is NULL, try to destroy all objects in the free list
2086  */
2087 int
pk11_destroy_dh_key_objects(PK11_SESSION * session)2088 pk11_destroy_dh_key_objects(PK11_SESSION *session)
2089 	{
2090 	int ret = 1;
2091 	PK11_SESSION *sp = NULL;
2092 	PK11_SESSION *local_free_session;
2093 	CK_BBOOL uselock = TRUE;
2094 
2095 	if (session != NULL)
2096 		local_free_session = session;
2097 	else
2098 		{
2099 		(void) pthread_mutex_lock(session_cache[OP_DH].lock);
2100 		local_free_session = session_cache[OP_DH].head;
2101 		uselock = FALSE;
2102 		}
2103 
2104 	while ((sp = local_free_session) != NULL)
2105 		{
2106 		local_free_session = sp->next;
2107 
2108 		/*
2109 		 * Do not terminate list traversal if one of the
2110 		 * destroy operations fails.
2111 		 */
2112 		if (pk11_destroy_dh_object(sp, uselock) == 0)
2113 			{
2114 			ret = 0;
2115 			continue;
2116 			}
2117 		}
2118 err:
2119 	if (session == NULL)
2120 		(void) pthread_mutex_unlock(session_cache[OP_DH].lock);
2121 
2122 	return (ret);
2123 	}
2124 #endif	/* OPENSSL_NO_DH */
2125 
pk11_destroy_object(CK_SESSION_HANDLE session,CK_OBJECT_HANDLE oh)2126 static int pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh)
2127 	{
2128 	CK_RV rv;
2129 	rv = pFuncList->C_DestroyObject(session, oh);
2130 	if (rv != CKR_OK)
2131 		{
2132 		PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT,
2133 		    rv);
2134 		return (0);
2135 		}
2136 
2137 	return (1);
2138 	}
2139 
2140 
2141 /* Symmetric ciphers and digests support functions */
2142 
2143 static int
cipher_nid_to_pk11(int nid)2144 cipher_nid_to_pk11(int nid)
2145 	{
2146 	int i;
2147 
2148 	for (i = 0; i < PK11_CIPHER_MAX; i++)
2149 		if (ciphers[i].nid == nid)
2150 			return (ciphers[i].id);
2151 	return (-1);
2152 	}
2153 
2154 static int
pk11_usable_ciphers(const int ** nids)2155 pk11_usable_ciphers(const int **nids)
2156 	{
2157 	if (cipher_count > 0)
2158 		*nids = cipher_nids;
2159 	else
2160 		*nids = NULL;
2161 	return (cipher_count);
2162 	}
2163 
2164 static int
pk11_usable_digests(const int ** nids)2165 pk11_usable_digests(const int **nids)
2166 	{
2167 	if (digest_count > 0)
2168 		*nids = digest_nids;
2169 	else
2170 		*nids = NULL;
2171 	return (digest_count);
2172 	}
2173 
2174 /*
2175  * Init context for encryption or decryption using a symmetric key.
2176  */
pk11_init_symmetric(EVP_CIPHER_CTX * ctx,PK11_CIPHER * pcipher,PK11_SESSION * sp,CK_MECHANISM_PTR pmech)2177 static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher,
2178 	PK11_SESSION *sp, CK_MECHANISM_PTR pmech)
2179 	{
2180 	CK_RV rv;
2181 #ifdef	SOLARIS_AES_CTR
2182 	CK_AES_CTR_PARAMS ctr_params;
2183 #endif	/* SOLARIS_AES_CTR */
2184 
2185 	/*
2186 	 * We expect pmech->mechanism to be already set and
2187 	 * pParameter/ulParameterLen initialized to NULL/0 before
2188 	 * pk11_init_symetric() is called.
2189 	 */
2190 	OPENSSL_assert(pmech->mechanism != NULL);
2191 	OPENSSL_assert(pmech->pParameter == NULL);
2192 	OPENSSL_assert(pmech->ulParameterLen == 0);
2193 
2194 #ifdef	SOLARIS_AES_CTR
2195 	if (ctx->cipher->nid == NID_aes_128_ctr ||
2196 	    ctx->cipher->nid == NID_aes_192_ctr ||
2197 	    ctx->cipher->nid == NID_aes_256_ctr)
2198 		{
2199 		pmech->pParameter = (void *)(&ctr_params);
2200 		pmech->ulParameterLen = sizeof (ctr_params);
2201 		/*
2202 		 * For now, we are limited to the fixed length of the counter,
2203 		 * it covers the whole counter block. That's what RFC 4344
2204 		 * needs. For more information on internal structure of the
2205 		 * counter block, see RFC 3686. If needed in the future, we can
2206 		 * add code so that the counter length can be set via
2207 		 * ENGINE_ctrl() function.
2208 		 */
2209 		ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8;
2210 		OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE);
2211 		(void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE);
2212 		}
2213 	else
2214 #endif	/* SOLARIS_AES_CTR */
2215 		{
2216 		if (pcipher->iv_len > 0)
2217 			{
2218 			pmech->pParameter = (void *)ctx->iv;
2219 			pmech->ulParameterLen = pcipher->iv_len;
2220 			}
2221 		}
2222 
2223 	/* if we get here, the encryption needs to be reinitialized */
2224 	if (ctx->encrypt)
2225 		rv = pFuncList->C_EncryptInit(sp->session, pmech,
2226 			sp->opdata_cipher_key);
2227 	else
2228 		rv = pFuncList->C_DecryptInit(sp->session, pmech,
2229 			sp->opdata_cipher_key);
2230 
2231 	if (rv != CKR_OK)
2232 		{
2233 		PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ?
2234 		    PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv);
2235 		pk11_return_session(sp, OP_CIPHER);
2236 		return (0);
2237 		}
2238 
2239 	return (1);
2240 	}
2241 
2242 /* ARGSUSED */
2243 static int
pk11_cipher_init(EVP_CIPHER_CTX * ctx,const unsigned char * key,const unsigned char * iv,int enc)2244 pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2245     const unsigned char *iv, int enc)
2246 	{
2247 	CK_MECHANISM mech;
2248 	int index;
2249 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2250 	PK11_SESSION *sp;
2251 	PK11_CIPHER *p_ciph_table_row;
2252 
2253 	state->sp = NULL;
2254 
2255 	index = cipher_nid_to_pk11(ctx->cipher->nid);
2256 	if (index < 0 || index >= PK11_CIPHER_MAX)
2257 		return (0);
2258 
2259 	p_ciph_table_row = &ciphers[index];
2260 	/*
2261 	 * iv_len in the ctx->cipher structure is the maximum IV length for the
2262 	 * current cipher and it must be less or equal to the IV length in our
2263 	 * ciphers table. The key length must be in the allowed interval. From
2264 	 * all cipher modes that the PKCS#11 engine supports only RC4 allows a
2265 	 * key length to be in some range, all other NIDs have a precise key
2266 	 * length. Every application can define its own EVP functions so this
2267 	 * code serves as a sanity check.
2268 	 *
2269 	 * Note that the reason why the IV length in ctx->cipher might be
2270 	 * greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs
2271 	 * macro to define functions that return EVP structures for all DES
2272 	 * modes. So, even ECB modes get 8 byte IV.
2273 	 */
2274 	if (ctx->cipher->iv_len < p_ciph_table_row->iv_len ||
2275 	    ctx->key_len < p_ciph_table_row->min_key_len ||
2276 	    ctx->key_len > p_ciph_table_row->max_key_len) {
2277 		PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM);
2278 		return (0);
2279 	}
2280 
2281 	if ((sp = pk11_get_session(OP_CIPHER)) == NULL)
2282 		return (0);
2283 
2284 	/* if applicable, the mechanism parameter is used for IV */
2285 	mech.mechanism = p_ciph_table_row->mech_type;
2286 	mech.pParameter = NULL;
2287 	mech.ulParameterLen = 0;
2288 
2289 	/* The key object is destroyed here if it is not the current key. */
2290 	(void) check_new_cipher_key(sp, key, ctx->key_len);
2291 
2292 	/*
2293 	 * If the key is the same and the encryption is also the same, then
2294 	 * just reuse it. However, we must not forget to reinitialize the
2295 	 * context that was finalized in pk11_cipher_cleanup().
2296 	 */
2297 	if (sp->opdata_cipher_key != CK_INVALID_HANDLE &&
2298 	    sp->opdata_encrypt == ctx->encrypt)
2299 		{
2300 		state->sp = sp;
2301 		if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2302 			return (0);
2303 
2304 		return (1);
2305 		}
2306 
2307 	/*
2308 	 * Check if the key has been invalidated. If so, a new key object
2309 	 * needs to be created.
2310 	 */
2311 	if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2312 		{
2313 		sp->opdata_cipher_key = pk11_get_cipher_key(
2314 			ctx, key, p_ciph_table_row->key_type, sp);
2315 		}
2316 
2317 	if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1)
2318 		{
2319 		/*
2320 		 * The previous encryption/decryption is different. Need to
2321 		 * terminate the previous * active encryption/decryption here.
2322 		 */
2323 		if (!pk11_cipher_final(sp))
2324 			{
2325 			pk11_return_session(sp, OP_CIPHER);
2326 			return (0);
2327 			}
2328 		}
2329 
2330 	if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2331 		{
2332 		pk11_return_session(sp, OP_CIPHER);
2333 		return (0);
2334 		}
2335 
2336 	/* now initialize the context with a new key */
2337 	if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2338 		return (0);
2339 
2340 	sp->opdata_encrypt = ctx->encrypt;
2341 	state->sp = sp;
2342 
2343 	return (1);
2344 	}
2345 
2346 /*
2347  * When reusing the same key in an encryption/decryption session for a
2348  * decryption/encryption session, we need to close the active session
2349  * and recreate a new one. Note that the key is in the global session so
2350  * that it needs not be recreated.
2351  *
2352  * It is more appropriate to use C_En/DecryptFinish here. At the time of this
2353  * development, these two functions in the PKCS#11 libraries used return
2354  * unexpected errors when passing in 0 length output. It may be a good
2355  * idea to try them again if performance is a problem here and fix
2356  * C_En/DecryptFinial if there are bugs there causing the problem.
2357  */
2358 static int
pk11_cipher_final(PK11_SESSION * sp)2359 pk11_cipher_final(PK11_SESSION *sp)
2360 	{
2361 	CK_RV rv;
2362 
2363 	rv = pFuncList->C_CloseSession(sp->session);
2364 	if (rv != CKR_OK)
2365 		{
2366 		PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv);
2367 		return (0);
2368 		}
2369 
2370 	rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
2371 		NULL_PTR, NULL_PTR, &sp->session);
2372 	if (rv != CKR_OK)
2373 		{
2374 		PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv);
2375 		return (0);
2376 		}
2377 
2378 	return (1);
2379 	}
2380 
2381 /*
2382  * An engine interface function. The calling function allocates sufficient
2383  * memory for the output buffer "out" to hold the results.
2384  */
2385 static int
pk11_cipher_do_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,unsigned int inl)2386 pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2387 	const unsigned char *in, unsigned int inl)
2388 	{
2389 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2390 	PK11_SESSION *sp;
2391 	CK_RV rv;
2392 	unsigned long outl = inl;
2393 
2394 	if (state == NULL || state->sp == NULL)
2395 		return (0);
2396 
2397 	sp = (PK11_SESSION *) state->sp;
2398 
2399 	if (!inl)
2400 		return (1);
2401 
2402 	/* RC4 is the only stream cipher we support */
2403 	if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0)
2404 		return (0);
2405 
2406 	if (ctx->encrypt)
2407 		{
2408 		rv = pFuncList->C_EncryptUpdate(sp->session,
2409 			(unsigned char *)in, inl, out, &outl);
2410 
2411 		if (rv != CKR_OK)
2412 			{
2413 			PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2414 			    PK11_R_ENCRYPTUPDATE, rv);
2415 			return (0);
2416 			}
2417 		}
2418 	else
2419 		{
2420 		rv = pFuncList->C_DecryptUpdate(sp->session,
2421 			(unsigned char *)in, inl, out, &outl);
2422 
2423 		if (rv != CKR_OK)
2424 			{
2425 			PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2426 			    PK11_R_DECRYPTUPDATE, rv);
2427 			return (0);
2428 			}
2429 		}
2430 
2431 	/*
2432 	 * For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always
2433 	 * the same size of input.
2434 	 * The application has guaranteed to call the block ciphers with
2435 	 * correctly aligned buffers.
2436 	 */
2437 	if (inl != outl)
2438 		return (0);
2439 
2440 	return (1);
2441 	}
2442 
2443 /*
2444  * Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal()
2445  * here is the right thing because in EVP_DecryptFinal_ex(), engine's
2446  * do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but
2447  * the engine can't find out that it's the finalizing call. We wouldn't
2448  * necessarily have to finalize the context here since reinitializing it with
2449  * C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness,
2450  * let's do it. Some implementations might leak memory if the previously used
2451  * context is initialized without finalizing it first.
2452  */
2453 static int
pk11_cipher_cleanup(EVP_CIPHER_CTX * ctx)2454 pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx)
2455 	{
2456 	CK_RV rv;
2457 	CK_ULONG len = EVP_MAX_BLOCK_LENGTH;
2458 	CK_BYTE buf[EVP_MAX_BLOCK_LENGTH];
2459 	PK11_CIPHER_STATE *state = ctx->cipher_data;
2460 
2461 	if (state != NULL && state->sp != NULL)
2462 		{
2463 		/*
2464 		 * We are not interested in the data here, we just need to get
2465 		 * rid of the context.
2466 		 */
2467 		if (ctx->encrypt)
2468 			rv = pFuncList->C_EncryptFinal(
2469 			    state->sp->session, buf, &len);
2470 		else
2471 			rv = pFuncList->C_DecryptFinal(
2472 			    state->sp->session, buf, &len);
2473 
2474 		if (rv != CKR_OK)
2475 			{
2476 			PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ?
2477 			    PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv);
2478 			pk11_return_session(state->sp, OP_CIPHER);
2479 			return (0);
2480 			}
2481 
2482 		pk11_return_session(state->sp, OP_CIPHER);
2483 		state->sp = NULL;
2484 		}
2485 
2486 	return (1);
2487 	}
2488 
2489 /*
2490  * Registered by the ENGINE when used to find out how to deal with
2491  * a particular NID in the ENGINE. This says what we'll do at the
2492  * top level - note, that list is restricted by what we answer with
2493  */
2494 /* ARGSUSED */
2495 static int
pk11_engine_ciphers(ENGINE * e,const EVP_CIPHER ** cipher,const int ** nids,int nid)2496 pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
2497 	const int **nids, int nid)
2498 	{
2499 	if (!cipher)
2500 		return (pk11_usable_ciphers(nids));
2501 
2502 	switch (nid)
2503 		{
2504 		case NID_des_ede3_cbc:
2505 			*cipher = &pk11_3des_cbc;
2506 			break;
2507 		case NID_des_cbc:
2508 			*cipher = &pk11_des_cbc;
2509 			break;
2510 		case NID_des_ede3_ecb:
2511 			*cipher = &pk11_3des_ecb;
2512 			break;
2513 		case NID_des_ecb:
2514 			*cipher = &pk11_des_ecb;
2515 			break;
2516 		case NID_aes_128_cbc:
2517 			*cipher = &pk11_aes_128_cbc;
2518 			break;
2519 		case NID_aes_192_cbc:
2520 			*cipher = &pk11_aes_192_cbc;
2521 			break;
2522 		case NID_aes_256_cbc:
2523 			*cipher = &pk11_aes_256_cbc;
2524 			break;
2525 		case NID_aes_128_ecb:
2526 			*cipher = &pk11_aes_128_ecb;
2527 			break;
2528 		case NID_aes_192_ecb:
2529 			*cipher = &pk11_aes_192_ecb;
2530 			break;
2531 		case NID_aes_256_ecb:
2532 			*cipher = &pk11_aes_256_ecb;
2533 			break;
2534 		case NID_bf_cbc:
2535 			*cipher = &pk11_bf_cbc;
2536 			break;
2537 		case NID_rc4:
2538 			*cipher = &pk11_rc4;
2539 			break;
2540 		default:
2541 #ifdef	SOLARIS_AES_CTR
2542 			/*
2543 			 * These can't be in separated cases because the NIDs
2544 			 * here are not constants.
2545 			 */
2546 			if (nid == NID_aes_128_ctr)
2547 				*cipher = &pk11_aes_128_ctr;
2548 			else if (nid == NID_aes_192_ctr)
2549 				*cipher = &pk11_aes_192_ctr;
2550 			else if (nid == NID_aes_256_ctr)
2551 				*cipher = &pk11_aes_256_ctr;
2552 			else
2553 #endif	/* SOLARIS_AES_CTR */
2554 			*cipher = NULL;
2555 			break;
2556 		}
2557 	return (*cipher != NULL);
2558 	}
2559 
2560 /* ARGSUSED */
2561 static int
pk11_engine_digests(ENGINE * e,const EVP_MD ** digest,const int ** nids,int nid)2562 pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
2563 	const int **nids, int nid)
2564 	{
2565 	if (!digest)
2566 		return (pk11_usable_digests(nids));
2567 
2568 	switch (nid)
2569 		{
2570 		case NID_md5:
2571 			*digest = &pk11_md5;
2572 			break;
2573 		case NID_sha1:
2574 			*digest = &pk11_sha1;
2575 			break;
2576 		case NID_sha224:
2577 			*digest = &pk11_sha224;
2578 			break;
2579 		case NID_sha256:
2580 			*digest = &pk11_sha256;
2581 			break;
2582 		case NID_sha384:
2583 			*digest = &pk11_sha384;
2584 			break;
2585 		case NID_sha512:
2586 			*digest = &pk11_sha512;
2587 			break;
2588 		default:
2589 			*digest = NULL;
2590 			break;
2591 		}
2592 	return (*digest != NULL);
2593 	}
2594 
2595 
2596 /* Create a secret key object in a PKCS#11 session */
pk11_get_cipher_key(EVP_CIPHER_CTX * ctx,const unsigned char * key,CK_KEY_TYPE key_type,PK11_SESSION * sp)2597 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
2598 	const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp)
2599 	{
2600 	CK_RV rv;
2601 	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
2602 	CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY;
2603 	CK_ULONG ul_key_attr_count = 6;
2604 
2605 	CK_ATTRIBUTE  a_key_template[] =
2606 		{
2607 		{CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)},
2608 		{CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)},
2609 		{CKA_TOKEN, &false, sizeof (false)},
2610 		{CKA_ENCRYPT, &true, sizeof (true)},
2611 		{CKA_DECRYPT, &true, sizeof (true)},
2612 		{CKA_VALUE, (void*) NULL, 0},
2613 		};
2614 
2615 	/*
2616 	 * Create secret key object in global_session. All other sessions
2617 	 * can use the key handles. Here is why:
2618 	 * OpenSSL will call EncryptInit and EncryptUpdate using a secret key.
2619 	 * It may then call DecryptInit and DecryptUpdate using the same key.
2620 	 * To use the same key object, we need to call EncryptFinal with
2621 	 * a 0 length message. Currently, this does not work for 3DES
2622 	 * mechanism. To get around this problem, we close the session and
2623 	 * then create a new session to use the same key object. When a session
2624 	 * is closed, all the object handles will be invalid. Thus, create key
2625 	 * objects in a global session, an individual session may be closed to
2626 	 * terminate the active operation.
2627 	 */
2628 	CK_SESSION_HANDLE session = global_session;
2629 	a_key_template[0].pValue = &obj_key;
2630 	a_key_template[1].pValue = &key_type;
2631 	a_key_template[5].pValue = (void *) key;
2632 	a_key_template[5].ulValueLen = (unsigned long) ctx->key_len;
2633 
2634 	rv = pFuncList->C_CreateObject(session,
2635 		a_key_template, ul_key_attr_count, &h_key);
2636 	if (rv != CKR_OK)
2637 		{
2638 		PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT,
2639 		    rv);
2640 		goto err;
2641 		}
2642 
2643 	/*
2644 	 * Save the key information used in this session.
2645 	 * The max can be saved is PK11_KEY_LEN_MAX.
2646 	 */
2647 	sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ?
2648 		PK11_KEY_LEN_MAX : ctx->key_len;
2649 	(void) memcpy(sp->opdata_key, key, sp->opdata_key_len);
2650 err:
2651 
2652 	return (h_key);
2653 	}
2654 
2655 static int
md_nid_to_pk11(int nid)2656 md_nid_to_pk11(int nid)
2657 	{
2658 	int i;
2659 
2660 	for (i = 0; i < PK11_DIGEST_MAX; i++)
2661 		if (digests[i].nid == nid)
2662 			return (digests[i].id);
2663 	return (-1);
2664 	}
2665 
2666 static int
pk11_digest_init(EVP_MD_CTX * ctx)2667 pk11_digest_init(EVP_MD_CTX *ctx)
2668 	{
2669 	CK_RV rv;
2670 	CK_MECHANISM mech;
2671 	int index;
2672 	PK11_SESSION *sp;
2673 	PK11_DIGEST *pdp;
2674 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2675 
2676 	state->sp = NULL;
2677 
2678 	index = md_nid_to_pk11(ctx->digest->type);
2679 	if (index < 0 || index >= PK11_DIGEST_MAX)
2680 		return (0);
2681 
2682 	pdp = &digests[index];
2683 	if ((sp = pk11_get_session(OP_DIGEST)) == NULL)
2684 		return (0);
2685 
2686 	/* at present, no parameter is needed for supported digests */
2687 	mech.mechanism = pdp->mech_type;
2688 	mech.pParameter = NULL;
2689 	mech.ulParameterLen = 0;
2690 
2691 	rv = pFuncList->C_DigestInit(sp->session, &mech);
2692 
2693 	if (rv != CKR_OK)
2694 		{
2695 		PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv);
2696 		pk11_return_session(sp, OP_DIGEST);
2697 		return (0);
2698 		}
2699 
2700 	state->sp = sp;
2701 
2702 	return (1);
2703 	}
2704 
2705 static int
pk11_digest_update(EVP_MD_CTX * ctx,const void * data,size_t count)2706 pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
2707 	{
2708 	CK_RV rv;
2709 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2710 
2711 	/* 0 length message will cause a failure in C_DigestFinal */
2712 	if (count == 0)
2713 		return (1);
2714 
2715 	if (state == NULL || state->sp == NULL)
2716 		return (0);
2717 
2718 	rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data,
2719 		count);
2720 
2721 	if (rv != CKR_OK)
2722 		{
2723 		PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv);
2724 		pk11_return_session(state->sp, OP_DIGEST);
2725 		state->sp = NULL;
2726 		return (0);
2727 		}
2728 
2729 	return (1);
2730 	}
2731 
2732 static int
pk11_digest_final(EVP_MD_CTX * ctx,unsigned char * md)2733 pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
2734 	{
2735 	CK_RV rv;
2736 	unsigned long len;
2737 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2738 	len = ctx->digest->md_size;
2739 
2740 	if (state == NULL || state->sp == NULL)
2741 		return (0);
2742 
2743 	rv = pFuncList->C_DigestFinal(state->sp->session, md, &len);
2744 
2745 	if (rv != CKR_OK)
2746 		{
2747 		PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv);
2748 		pk11_return_session(state->sp, OP_DIGEST);
2749 		state->sp = NULL;
2750 		return (0);
2751 		}
2752 
2753 	if (ctx->digest->md_size != len)
2754 		return (0);
2755 
2756 	/*
2757 	 * Final is called and digest is returned, so return the session
2758 	 * to the pool
2759 	 */
2760 	pk11_return_session(state->sp, OP_DIGEST);
2761 	state->sp = NULL;
2762 
2763 	return (1);
2764 	}
2765 
2766 static int
pk11_digest_copy(EVP_MD_CTX * to,const EVP_MD_CTX * from)2767 pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
2768 	{
2769 	CK_RV rv;
2770 	int ret = 0;
2771 	PK11_CIPHER_STATE *state, *state_to;
2772 	CK_BYTE_PTR pstate = NULL;
2773 	CK_ULONG ul_state_len;
2774 
2775 	/* The copy-from state */
2776 	state = (PK11_CIPHER_STATE *) from->md_data;
2777 	if (state == NULL || state->sp == NULL)
2778 		goto err;
2779 
2780 	/* Initialize the copy-to state */
2781 	if (!pk11_digest_init(to))
2782 		goto err;
2783 	state_to = (PK11_CIPHER_STATE *) to->md_data;
2784 
2785 	/* Get the size of the operation state of the copy-from session */
2786 	rv = pFuncList->C_GetOperationState(state->sp->session, NULL,
2787 		&ul_state_len);
2788 
2789 	if (rv != CKR_OK)
2790 		{
2791 		PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2792 		    rv);
2793 		goto err;
2794 		}
2795 	if (ul_state_len == 0)
2796 		{
2797 		goto err;
2798 		}
2799 
2800 	pstate = OPENSSL_malloc(ul_state_len);
2801 	if (pstate == NULL)
2802 		{
2803 		PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE);
2804 		goto err;
2805 		}
2806 
2807 	/* Get the operation state of the copy-from session */
2808 	rv = pFuncList->C_GetOperationState(state->sp->session, pstate,
2809 		&ul_state_len);
2810 
2811 	if (rv != CKR_OK)
2812 		{
2813 		PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2814 		    rv);
2815 		goto err;
2816 		}
2817 
2818 	/* Set the operation state of the copy-to session */
2819 	rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate,
2820 		ul_state_len, 0, 0);
2821 
2822 	if (rv != CKR_OK)
2823 		{
2824 		PK11err_add_data(PK11_F_DIGEST_COPY,
2825 		    PK11_R_SET_OPERATION_STATE, rv);
2826 		goto err;
2827 		}
2828 
2829 	ret = 1;
2830 err:
2831 	if (pstate != NULL)
2832 		OPENSSL_free(pstate);
2833 
2834 	return (ret);
2835 	}
2836 
2837 /* Return any pending session state to the pool */
2838 static int
pk11_digest_cleanup(EVP_MD_CTX * ctx)2839 pk11_digest_cleanup(EVP_MD_CTX *ctx)
2840 	{
2841 	PK11_CIPHER_STATE *state = ctx->md_data;
2842 	unsigned char buf[EVP_MAX_MD_SIZE];
2843 
2844 	if (state != NULL && state->sp != NULL)
2845 		{
2846 		/*
2847 		 * If state->sp is not NULL then pk11_digest_final() has not
2848 		 * been called yet. We must call it now to free any memory
2849 		 * that might have been allocated in the token when
2850 		 * pk11_digest_init() was called. pk11_digest_final()
2851 		 * will return the session to the cache.
2852 		 */
2853 		if (!pk11_digest_final(ctx, buf))
2854 			return (0);
2855 		}
2856 
2857 	return (1);
2858 	}
2859 
2860 /*
2861  * Check if the new key is the same as the key object in the session. If the key
2862  * is the same, no need to create a new key object. Otherwise, the old key
2863  * object needs to be destroyed and a new one will be created. Return 1 for
2864  * cache hit, 0 for cache miss. Note that we must check the key length first
2865  * otherwise we could end up reusing a different, longer key with the same
2866  * prefix.
2867  */
check_new_cipher_key(PK11_SESSION * sp,const unsigned char * key,int key_len)2868 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
2869 	int key_len)
2870 	{
2871 	if (sp->opdata_key_len != key_len ||
2872 	    memcmp(sp->opdata_key, key, key_len) != 0)
2873 		{
2874 		(void) pk11_destroy_cipher_key_objects(sp);
2875 		return (0);
2876 		}
2877 	return (1);
2878 	}
2879 
2880 /* Destroy one or more secret key objects. */
pk11_destroy_cipher_key_objects(PK11_SESSION * session)2881 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session)
2882 	{
2883 	int ret = 0;
2884 	PK11_SESSION *sp = NULL;
2885 	PK11_SESSION *local_free_session;
2886 
2887 	if (session != NULL)
2888 		local_free_session = session;
2889 	else
2890 		{
2891 		(void) pthread_mutex_lock(session_cache[OP_CIPHER].lock);
2892 		local_free_session = session_cache[OP_CIPHER].head;
2893 		}
2894 
2895 	while ((sp = local_free_session) != NULL)
2896 		{
2897 		local_free_session = sp->next;
2898 
2899 		if (sp->opdata_cipher_key != CK_INVALID_HANDLE)
2900 			{
2901 			/*
2902 			 * The secret key object is created in the
2903 			 * global_session. See pk11_get_cipher_key
2904 			 */
2905 			if (pk11_destroy_object(global_session,
2906 				sp->opdata_cipher_key) == 0)
2907 				goto err;
2908 			sp->opdata_cipher_key = CK_INVALID_HANDLE;
2909 			}
2910 		}
2911 	ret = 1;
2912 err:
2913 
2914 	if (session == NULL)
2915 		(void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock);
2916 
2917 	return (ret);
2918 	}
2919 
2920 
2921 /*
2922  * Public key mechanisms optionally supported
2923  *
2924  * CKM_RSA_X_509
2925  * CKM_RSA_PKCS
2926  * CKM_DSA
2927  *
2928  * The first slot that supports at least one of those mechanisms is chosen as a
2929  * public key slot.
2930  *
2931  * Symmetric ciphers optionally supported
2932  *
2933  * CKM_DES3_CBC
2934  * CKM_DES_CBC
2935  * CKM_AES_CBC
2936  * CKM_DES3_ECB
2937  * CKM_DES_ECB
2938  * CKM_AES_ECB
2939  * CKM_AES_CTR
2940  * CKM_RC4
2941  * CKM_BLOWFISH_CBC
2942  *
2943  * Digests optionally supported
2944  *
2945  * CKM_MD5
2946  * CKM_SHA_1
2947  * CKM_SHA224
2948  * CKM_SHA256
2949  * CKM_SHA384
2950  * CKM_SHA512
2951  *
2952  * The output of this function is a set of global variables indicating which
2953  * mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of
2954  * mechanisms, one for symmetric ciphers and one for digests. Also, 3 global
2955  * variables carry information about which slot was chosen for (a) public key
2956  * mechanisms, (b) random operations, and (c) symmetric ciphers and digests.
2957  */
2958 static int
pk11_choose_slots(int * any_slot_found)2959 pk11_choose_slots(int *any_slot_found)
2960 	{
2961 	CK_SLOT_ID_PTR pSlotList = NULL_PTR;
2962 	CK_ULONG ulSlotCount = 0;
2963 	CK_MECHANISM_INFO mech_info;
2964 	CK_TOKEN_INFO token_info;
2965 	int i;
2966 	CK_RV rv;
2967 	CK_SLOT_ID best_slot_sofar;
2968 	CK_BBOOL found_candidate_slot = CK_FALSE;
2969 	int slot_n_cipher = 0;
2970 	int slot_n_digest = 0;
2971 	CK_SLOT_ID current_slot = 0;
2972 	int current_slot_n_cipher = 0;
2973 	int current_slot_n_digest = 0;
2974 
2975 	int local_cipher_nids[PK11_CIPHER_MAX];
2976 	int local_digest_nids[PK11_DIGEST_MAX];
2977 
2978 	/* let's initialize the output parameter */
2979 	if (any_slot_found != NULL)
2980 		*any_slot_found = 0;
2981 
2982 	/* Get slot list for memory allocation */
2983 	rv = pFuncList->C_GetSlotList(0, NULL_PTR, &ulSlotCount);
2984 
2985 	if (rv != CKR_OK)
2986 		{
2987 		PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
2988 		return (0);
2989 		}
2990 
2991 	/* it's not an error if we didn't find any providers */
2992 	if (ulSlotCount == 0)
2993 		{
2994 #ifdef	DEBUG_SLOT_SELECTION
2995 		fprintf(stderr, "%s: no crypto providers found\n", PK11_DBG);
2996 #endif	/* DEBUG_SLOT_SELECTION */
2997 		return (1);
2998 		}
2999 
3000 	pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
3001 
3002 	if (pSlotList == NULL)
3003 		{
3004 		PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE);
3005 		return (0);
3006 		}
3007 
3008 	/* Get the slot list for processing */
3009 	rv = pFuncList->C_GetSlotList(0, pSlotList, &ulSlotCount);
3010 	if (rv != CKR_OK)
3011 		{
3012 		PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
3013 		OPENSSL_free(pSlotList);
3014 		return (0);
3015 		}
3016 
3017 #ifdef	DEBUG_SLOT_SELECTION
3018 	fprintf(stderr, "%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME);
3019 	fprintf(stderr, "%s: number of slots: %d\n", PK11_DBG, ulSlotCount);
3020 
3021 	fprintf(stderr, "%s: == checking rand slots ==\n", PK11_DBG);
3022 #endif	/* DEBUG_SLOT_SELECTION */
3023 	for (i = 0; i < ulSlotCount; i++)
3024 		{
3025 		current_slot = pSlotList[i];
3026 
3027 #ifdef	DEBUG_SLOT_SELECTION
3028 	fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3029 #endif	/* DEBUG_SLOT_SELECTION */
3030 		/* Check if slot has random support. */
3031 		rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3032 		if (rv != CKR_OK)
3033 			continue;
3034 
3035 #ifdef	DEBUG_SLOT_SELECTION
3036 	fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3037 #endif	/* DEBUG_SLOT_SELECTION */
3038 
3039 		if (token_info.flags & CKF_RNG)
3040 			{
3041 #ifdef	DEBUG_SLOT_SELECTION
3042 	fprintf(stderr, "%s: this token has CKF_RNG flag\n", PK11_DBG);
3043 #endif	/* DEBUG_SLOT_SELECTION */
3044 			pk11_have_random = CK_TRUE;
3045 			rand_SLOTID = current_slot;
3046 			break;
3047 			}
3048 		}
3049 
3050 #ifdef	DEBUG_SLOT_SELECTION
3051 	fprintf(stderr, "%s: == checking pubkey slots ==\n", PK11_DBG);
3052 #endif	/* DEBUG_SLOT_SELECTION */
3053 
3054 	pubkey_SLOTID = pSlotList[0];
3055 	for (i = 0; i < ulSlotCount; i++)
3056 		{
3057 		CK_BBOOL slot_has_rsa = CK_FALSE;
3058 		CK_BBOOL slot_has_dsa = CK_FALSE;
3059 		CK_BBOOL slot_has_dh = CK_FALSE;
3060 		current_slot = pSlotList[i];
3061 
3062 #ifdef	DEBUG_SLOT_SELECTION
3063 	fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3064 #endif	/* DEBUG_SLOT_SELECTION */
3065 		rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3066 		if (rv != CKR_OK)
3067 			continue;
3068 
3069 #ifdef	DEBUG_SLOT_SELECTION
3070 	fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3071 #endif	/* DEBUG_SLOT_SELECTION */
3072 
3073 #ifndef OPENSSL_NO_RSA
3074 		/*
3075 		 * Check if this slot is capable of signing and
3076 		 * verifying with CKM_RSA_PKCS.
3077 		 */
3078 		rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS,
3079 			&mech_info);
3080 
3081 		if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3082 				(mech_info.flags & CKF_VERIFY)))
3083 			{
3084 			/*
3085 			 * Check if this slot is capable of encryption,
3086 			 * decryption, sign, and verify with CKM_RSA_X_509.
3087 			 */
3088 			rv = pFuncList->C_GetMechanismInfo(current_slot,
3089 			    CKM_RSA_X_509, &mech_info);
3090 
3091 			if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3092 			    (mech_info.flags & CKF_VERIFY) &&
3093 			    (mech_info.flags & CKF_ENCRYPT) &&
3094 			    (mech_info.flags & CKF_VERIFY_RECOVER) &&
3095 			    (mech_info.flags & CKF_DECRYPT)))
3096 				{
3097 				slot_has_rsa = CK_TRUE;
3098 				}
3099 			}
3100 #endif	/* OPENSSL_NO_RSA */
3101 
3102 #ifndef OPENSSL_NO_DSA
3103 		/*
3104 		 * Check if this slot is capable of signing and
3105 		 * verifying with CKM_DSA.
3106 		 */
3107 		rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA,
3108 			&mech_info);
3109 		if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3110 		    (mech_info.flags & CKF_VERIFY)))
3111 			{
3112 			slot_has_dsa = CK_TRUE;
3113 			}
3114 
3115 #endif	/* OPENSSL_NO_DSA */
3116 
3117 #ifndef OPENSSL_NO_DH
3118 		/*
3119 		 * Check if this slot is capable of DH key generataion and
3120 		 * derivation.
3121 		 */
3122 		rv = pFuncList->C_GetMechanismInfo(current_slot,
3123 		    CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info);
3124 
3125 		if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR))
3126 			{
3127 			rv = pFuncList->C_GetMechanismInfo(current_slot,
3128 				CKM_DH_PKCS_DERIVE, &mech_info);
3129 			if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE))
3130 				{
3131 				slot_has_dh = CK_TRUE;
3132 				}
3133 			}
3134 #endif	/* OPENSSL_NO_DH */
3135 
3136 		if (!found_candidate_slot &&
3137 		    (slot_has_rsa || slot_has_dsa || slot_has_dh))
3138 			{
3139 #ifdef	DEBUG_SLOT_SELECTION
3140 			fprintf(stderr,
3141 			    "%s: potential slot: %d\n", PK11_DBG, current_slot);
3142 #endif	/* DEBUG_SLOT_SELECTION */
3143 			best_slot_sofar = current_slot;
3144 			pk11_have_rsa = slot_has_rsa;
3145 			pk11_have_dsa = slot_has_dsa;
3146 			pk11_have_dh = slot_has_dh;
3147 			found_candidate_slot = CK_TRUE;
3148 #ifdef	DEBUG_SLOT_SELECTION
3149 			fprintf(stderr,
3150 			    "%s: setting found_candidate_slot to CK_TRUE\n",
3151 			    PK11_DBG);
3152 			fprintf(stderr,
3153 			    "%s: best so far slot: %d\n", PK11_DBG,
3154 			    best_slot_sofar);
3155 			}
3156 		else
3157 			{
3158 			fprintf(stderr,
3159 			    "%s: no rsa/dsa/dh\n", PK11_DBG);
3160 			}
3161 #else
3162 			} /* if */
3163 #endif	/* DEBUG_SLOT_SELECTION */
3164 		} /* for */
3165 
3166 	if (found_candidate_slot)
3167 		{
3168 		pubkey_SLOTID = best_slot_sofar;
3169 		}
3170 
3171 	found_candidate_slot = CK_FALSE;
3172 	best_slot_sofar = 0;
3173 
3174 #ifdef	DEBUG_SLOT_SELECTION
3175 	fprintf(stderr, "%s: == checking cipher/digest ==\n", PK11_DBG);
3176 #endif	/* DEBUG_SLOT_SELECTION */
3177 
3178 	SLOTID = pSlotList[0];
3179 	for (i = 0; i < ulSlotCount; i++)
3180 		{
3181 #ifdef	DEBUG_SLOT_SELECTION
3182 	fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3183 #endif	/* DEBUG_SLOT_SELECTION */
3184 
3185 		current_slot = pSlotList[i];
3186 		current_slot_n_cipher = 0;
3187 		current_slot_n_digest = 0;
3188 		(void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids));
3189 		(void) memset(local_digest_nids, 0, sizeof (local_digest_nids));
3190 
3191 		pk11_find_symmetric_ciphers(pFuncList, current_slot,
3192 		    &current_slot_n_cipher, local_cipher_nids);
3193 
3194 		pk11_find_digests(pFuncList, current_slot,
3195 		    &current_slot_n_digest, local_digest_nids);
3196 
3197 #ifdef	DEBUG_SLOT_SELECTION
3198 		fprintf(stderr, "%s: current_slot_n_cipher %d\n", PK11_DBG,
3199 			current_slot_n_cipher);
3200 		fprintf(stderr, "%s: current_slot_n_digest %d\n", PK11_DBG,
3201 			current_slot_n_digest);
3202 		fprintf(stderr, "%s: best so far cipher/digest slot: %d\n",
3203 			PK11_DBG, best_slot_sofar);
3204 #endif	/* DEBUG_SLOT_SELECTION */
3205 
3206 		/*
3207 		 * If the current slot supports more ciphers/digests than
3208 		 * the previous best one we change the current best to this one,
3209 		 * otherwise leave it where it is.
3210 		 */
3211 		if ((current_slot_n_cipher + current_slot_n_digest) >
3212 		    (slot_n_cipher + slot_n_digest))
3213 			{
3214 #ifdef	DEBUG_SLOT_SELECTION
3215 			fprintf(stderr,
3216 				"%s: changing best so far slot to %d\n",
3217 				PK11_DBG, current_slot);
3218 #endif	/* DEBUG_SLOT_SELECTION */
3219 			best_slot_sofar = SLOTID = current_slot;
3220 			cipher_count = slot_n_cipher = current_slot_n_cipher;
3221 			digest_count = slot_n_digest = current_slot_n_digest;
3222 			(void) memcpy(cipher_nids, local_cipher_nids,
3223 			    sizeof (local_cipher_nids));
3224 			(void) memcpy(digest_nids, local_digest_nids,
3225 			    sizeof (local_digest_nids));
3226 			}
3227 		}
3228 
3229 #ifdef	DEBUG_SLOT_SELECTION
3230 	fprintf(stderr,
3231 	    "%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID);
3232 	fprintf(stderr,
3233 	    "%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID);
3234 	fprintf(stderr,
3235 	    "%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID);
3236 	fprintf(stderr,
3237 	    "%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa);
3238 	fprintf(stderr,
3239 	    "%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa);
3240 	fprintf(stderr,
3241 	    "%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh);
3242 	fprintf(stderr,
3243 	    "%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random);
3244 	fprintf(stderr,
3245 	    "%s: cipher_count %d\n", PK11_DBG, cipher_count);
3246 	fprintf(stderr,
3247 	    "%s: digest_count %d\n", PK11_DBG, digest_count);
3248 #endif	/* DEBUG_SLOT_SELECTION */
3249 
3250 	if (pSlotList != NULL)
3251 		OPENSSL_free(pSlotList);
3252 
3253 #ifdef	SOLARIS_HW_SLOT_SELECTION
3254 	OPENSSL_free(hw_cnids);
3255 	OPENSSL_free(hw_dnids);
3256 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3257 
3258 	if (any_slot_found != NULL)
3259 		*any_slot_found = 1;
3260 	return (1);
3261 	}
3262 
pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,int slot_id,CK_MECHANISM_TYPE mech,int * current_slot_n_cipher,int * local_cipher_nids,int id)3263 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,
3264     int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_cipher,
3265     int *local_cipher_nids, int id)
3266 	{
3267 	CK_MECHANISM_INFO mech_info;
3268 	CK_RV rv;
3269 
3270 #ifdef	DEBUG_SLOT_SELECTION
3271 	fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3272 #endif	/* DEBUG_SLOT_SELECTION */
3273 	rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);
3274 
3275 	if (rv != CKR_OK)
3276 		{
3277 #ifdef	DEBUG_SLOT_SELECTION
3278 		fprintf(stderr, " not found\n");
3279 #endif	/* DEBUG_SLOT_SELECTION */
3280 		return;
3281 		}
3282 
3283 	if ((mech_info.flags & CKF_ENCRYPT) &&
3284 	    (mech_info.flags & CKF_DECRYPT))
3285 		{
3286 #ifdef	SOLARIS_HW_SLOT_SELECTION
3287 		if (nid_in_table(ciphers[id].nid, hw_cnids))
3288 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3289 			{
3290 #ifdef	DEBUG_SLOT_SELECTION
3291 		fprintf(stderr, " usable\n");
3292 #endif	/* DEBUG_SLOT_SELECTION */
3293 			local_cipher_nids[(*current_slot_n_cipher)++] =
3294 			    ciphers[id].nid;
3295 			}
3296 #ifdef	SOLARIS_HW_SLOT_SELECTION
3297 #ifdef	DEBUG_SLOT_SELECTION
3298 		else
3299 			{
3300 		fprintf(stderr, " rejected, software implementation only\n");
3301 			}
3302 #endif	/* DEBUG_SLOT_SELECTION */
3303 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3304 		}
3305 #ifdef	DEBUG_SLOT_SELECTION
3306 	else
3307 		{
3308 		fprintf(stderr, " unusable\n");
3309 		}
3310 #endif	/* DEBUG_SLOT_SELECTION */
3311 
3312 	return;
3313 	}
3314 
pk11_get_digest(CK_FUNCTION_LIST_PTR pflist,int slot_id,CK_MECHANISM_TYPE mech,int * current_slot_n_digest,int * local_digest_nids,int id)3315 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
3316     CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
3317     int id)
3318 	{
3319 	CK_MECHANISM_INFO mech_info;
3320 	CK_RV rv;
3321 
3322 #ifdef	DEBUG_SLOT_SELECTION
3323 	fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3324 #endif	/* DEBUG_SLOT_SELECTION */
3325 	rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);
3326 
3327 	if (rv != CKR_OK)
3328 		{
3329 #ifdef	DEBUG_SLOT_SELECTION
3330 		fprintf(stderr, " not found\n");
3331 #endif	/* DEBUG_SLOT_SELECTION */
3332 		return;
3333 		}
3334 
3335 	if (mech_info.flags & CKF_DIGEST)
3336 		{
3337 #ifdef	SOLARIS_HW_SLOT_SELECTION
3338 		if (nid_in_table(digests[id].nid, hw_dnids))
3339 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3340 			{
3341 #ifdef	DEBUG_SLOT_SELECTION
3342 		fprintf(stderr, " usable\n");
3343 #endif	/* DEBUG_SLOT_SELECTION */
3344 			local_digest_nids[(*current_slot_n_digest)++] =
3345 			    digests[id].nid;
3346 			}
3347 #ifdef	SOLARIS_HW_SLOT_SELECTION
3348 #ifdef	DEBUG_SLOT_SELECTION
3349 		else
3350 			{
3351 		fprintf(stderr, " rejected, software implementation only\n");
3352 			}
3353 #endif	/* DEBUG_SLOT_SELECTION */
3354 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3355 		}
3356 #ifdef	DEBUG_SLOT_SELECTION
3357 	else
3358 		{
3359 		fprintf(stderr, " unusable\n");
3360 		}
3361 #endif	/* DEBUG_SLOT_SELECTION */
3362 
3363 	return;
3364 	}
3365 
3366 #ifdef	SOLARIS_AES_CTR
3367 /* create a new NID when we have no OID for that mechanism */
pk11_add_NID(char * sn,char * ln)3368 static int pk11_add_NID(char *sn, char *ln)
3369 	{
3370 	ASN1_OBJECT *o;
3371 	int nid;
3372 
3373 	if ((o = ASN1_OBJECT_create(OBJ_new_nid(1), (unsigned char *)"",
3374 	    1, sn, ln)) == NULL)
3375 		{
3376 		return (0);
3377 		}
3378 
3379 	/* will return NID_undef on error */
3380 	nid = OBJ_add_object(o);
3381 	ASN1_OBJECT_free(o);
3382 
3383 	return (nid);
3384 	}
3385 
3386 /*
3387  * Create new NIDs for AES counter mode. OpenSSL doesn't support them now so we
3388  * have to help ourselves here.
3389  */
pk11_add_aes_ctr_NIDs(void)3390 static int pk11_add_aes_ctr_NIDs(void)
3391 	{
3392 	/* are we already set? */
3393 	if (NID_aes_256_ctr != NID_undef)
3394 		return (1);
3395 
3396 	/*
3397 	 * There are no official names for AES counter modes yet so we just
3398 	 * follow the format of those that exist.
3399 	 */
3400 	if ((NID_aes_128_ctr = pk11_add_NID("AES-128-CTR", "aes-128-ctr")) ==
3401 	    NID_undef)
3402 		goto err;
3403 	ciphers[PK11_AES_128_CTR].nid = pk11_aes_128_ctr.nid = NID_aes_128_ctr;
3404 	if ((NID_aes_192_ctr = pk11_add_NID("AES-192-CTR", "aes-192-ctr")) ==
3405 	    NID_undef)
3406 		goto err;
3407 	ciphers[PK11_AES_192_CTR].nid = pk11_aes_192_ctr.nid = NID_aes_192_ctr;
3408 	if ((NID_aes_256_ctr = pk11_add_NID("AES-256-CTR", "aes-256-ctr")) ==
3409 	    NID_undef)
3410 		goto err;
3411 	ciphers[PK11_AES_256_CTR].nid = pk11_aes_256_ctr.nid = NID_aes_256_ctr;
3412 	return (1);
3413 
3414 err:
3415 	PK11err(PK11_F_ADD_AES_CTR_NIDS, PK11_R_ADD_NID_FAILED);
3416 	return (0);
3417 	}
3418 #endif	/* SOLARIS_AES_CTR */
3419 
3420 /* Find what symmetric ciphers this slot supports. */
pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,CK_SLOT_ID current_slot,int * current_slot_n_cipher,int * local_cipher_nids)3421 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
3422     CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids)
3423 	{
3424 	int i;
3425 
3426 	for (i = 0; i < PK11_CIPHER_MAX; ++i)
3427 		{
3428 		pk11_get_symmetric_cipher(pflist, current_slot,
3429 		    ciphers[i].mech_type, current_slot_n_cipher,
3430 		    local_cipher_nids, ciphers[i].id);
3431 		}
3432 	}
3433 
3434 /* Find what digest algorithms this slot supports. */
pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,CK_SLOT_ID current_slot,int * current_slot_n_digest,int * local_digest_nids)3435 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
3436     CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids)
3437 	{
3438 	int i;
3439 
3440 	for (i = 0; i < PK11_DIGEST_MAX; ++i)
3441 		{
3442 		pk11_get_digest(pflist, current_slot, digests[i].mech_type,
3443 		    current_slot_n_digest, local_digest_nids, digests[i].id);
3444 		}
3445 	}
3446 
3447 #ifdef	SOLARIS_HW_SLOT_SELECTION
3448 /*
3449  * It would be great if we could use pkcs11_kernel directly since this library
3450  * offers hardware slots only. That's the easiest way to achieve the situation
3451  * where we use the hardware accelerators when present and OpenSSL native code
3452  * otherwise. That presumes the fact that OpenSSL native code is faster than the
3453  * code in the soft token. It's a logical assumption - Crypto Framework has some
3454  * inherent overhead so going there for the software implementation of a
3455  * mechanism should be logically slower in contrast to the OpenSSL native code,
3456  * presuming that both implementations are of similar speed. For example, the
3457  * soft token for AES is roughly three times slower than OpenSSL for 64 byte
3458  * blocks and still 20% slower for 8KB blocks. So, if we want to ship products
3459  * that use the PKCS#11 engine by default, we must somehow avoid that regression
3460  * on machines without hardware acceleration. That's why switching to the
3461  * pkcs11_kernel library seems like a very good idea.
3462  *
3463  * The problem is that OpenSSL built with SunStudio is roughly 2x slower for
3464  * asymmetric operations (RSA/DSA/DH) than the soft token built with the same
3465  * compiler. That means that if we switched to pkcs11_kernel from the libpkcs11
3466  * library, we would have had a performance regression on machines without
3467  * hardware acceleration for asymmetric operations for all applications that use
3468  * the PKCS#11 engine. There is one such application - Apache web server since
3469  * it's shipped configured to use the PKCS#11 engine by default. Having said
3470  * that, we can't switch to the pkcs11_kernel library now and have to come with
3471  * a solution that, on non-accelerated machines, uses the OpenSSL native code
3472  * for all symmetric ciphers and digests while it uses the soft token for
3473  * asymmetric operations.
3474  *
3475  * This is the idea: dlopen() pkcs11_kernel directly and find out what
3476  * mechanisms are there. We don't care about duplications (more slots can
3477  * support the same mechanism), we just want to know what mechanisms can be
3478  * possibly supported in hardware on that particular machine. As said before,
3479  * pkcs11_kernel will show you hardware providers only.
3480  *
3481  * Then, we rely on the fact that since we use libpkcs11 library we will find
3482  * the metaslot. When we go through the metaslot's mechanisms for symmetric
3483  * ciphers and digests, we check that any found mechanism is in the table
3484  * created using the pkcs11_kernel library. So, as a result we have two arrays
3485  * of mechanisms that were advertised as supported in hardware which was the
3486  * goal of that whole excercise. Thus, we can use libpkcs11 but avoid soft token
3487  * code for symmetric ciphers and digests. See pk11_choose_slots() for more
3488  * information.
3489  *
3490  * This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined
3491  * the code won't be used.
3492  */
3493 #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
3494 static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1";
3495 #else
3496 static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1";
3497 #endif
3498 
3499 /*
3500  * Check hardware capabilities of the machines. The output are two lists,
3501  * hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware
3502  * providers together. They are not sorted and may contain duplicate mechanisms.
3503  */
check_hw_mechanisms(void)3504 static int check_hw_mechanisms(void)
3505 	{
3506 	int i;
3507 	CK_RV rv;
3508 	void *handle;
3509 	CK_C_GetFunctionList p;
3510 	CK_TOKEN_INFO token_info;
3511 	CK_ULONG ulSlotCount = 0;
3512 	int n_cipher = 0, n_digest = 0;
3513 	CK_FUNCTION_LIST_PTR pflist = NULL;
3514 	CK_SLOT_ID_PTR pSlotList = NULL_PTR;
3515 	int *tmp_hw_cnids, *tmp_hw_dnids;
3516 	int hw_ctable_size, hw_dtable_size;
3517 
3518 #ifdef	DEBUG_SLOT_SELECTION
3519 	fprintf(stderr, "%s: SOLARIS_HW_SLOT_SELECTION code running\n",
3520 	    PK11_DBG);
3521 #endif
3522 	if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY)) == NULL)
3523 		{
3524 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3525 		goto err;
3526 		}
3527 
3528 	if ((p = (CK_C_GetFunctionList)dlsym(handle,
3529 	    PK11_GET_FUNCTION_LIST)) == NULL)
3530 		{
3531 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3532 		goto err;
3533 		}
3534 
3535 	/* get the full function list from the loaded library */
3536 	if (p(&pflist) != CKR_OK)
3537 		{
3538 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3539 		goto err;
3540 		}
3541 
3542 	rv = pflist->C_Initialize(NULL_PTR);
3543 	if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
3544 		{
3545 		PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS,
3546 		    PK11_R_INITIALIZE, rv);
3547 		goto err;
3548 		}
3549 
3550 	if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK)
3551 		{
3552 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3553 		goto err;
3554 		}
3555 
3556 	/* no slots, set the hw mechanism tables as empty */
3557 	if (ulSlotCount == 0)
3558 		{
3559 #ifdef	DEBUG_SLOT_SELECTION
3560 	fprintf(stderr, "%s: no hardware mechanisms found\n", PK11_DBG);
3561 #endif
3562 		hw_cnids = OPENSSL_malloc(sizeof (int));
3563 		hw_dnids = OPENSSL_malloc(sizeof (int));
3564 		if (hw_cnids == NULL || hw_dnids == NULL)
3565 			{
3566 			PK11err(PK11_F_CHECK_HW_MECHANISMS,
3567 			    PK11_R_MALLOC_FAILURE);
3568 			return (0);
3569 			}
3570 		/* this means empty tables */
3571 		hw_cnids[0] = NID_undef;
3572 		hw_dnids[0] = NID_undef;
3573 		return (1);
3574 		}
3575 
3576 	pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
3577 	if (pSlotList == NULL)
3578 		{
3579 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3580 		goto err;
3581 		}
3582 
3583 	/* Get the slot list for processing */
3584 	if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK)
3585 		{
3586 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3587 		goto err;
3588 		}
3589 
3590 	/*
3591 	 * We don't care about duplicit mechanisms in multiple slots and also
3592 	 * reserve one slot for the terminal NID_undef which we use to stop the
3593 	 * search.
3594 	 */
3595 	hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1;
3596 	hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1;
3597 	tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int));
3598 	tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int));
3599 	if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL)
3600 		{
3601 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3602 		goto err;
3603 		}
3604 
3605 	/*
3606 	 * Do not use memset since we should not rely on the fact that NID_undef
3607 	 * is zero now.
3608 	 */
3609 	for (i = 0; i < hw_ctable_size; ++i)
3610 		tmp_hw_cnids[i] = NID_undef;
3611 	for (i = 0; i < hw_dtable_size; ++i)
3612 		tmp_hw_dnids[i] = NID_undef;
3613 
3614 #ifdef	DEBUG_SLOT_SELECTION
3615 	fprintf(stderr, "%s: provider: %s\n", PK11_DBG, pkcs11_kernel);
3616 	fprintf(stderr, "%s: found %d hardware slots\n", PK11_DBG, ulSlotCount);
3617 	fprintf(stderr, "%s: now looking for mechs supported in hw\n",
3618 	    PK11_DBG);
3619 #endif	/* DEBUG_SLOT_SELECTION */
3620 
3621 	for (i = 0; i < ulSlotCount; i++)
3622 		{
3623 		if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK)
3624 			continue;
3625 
3626 #ifdef	DEBUG_SLOT_SELECTION
3627 	fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3628 #endif	/* DEBUG_SLOT_SELECTION */
3629 
3630 		/*
3631 		 * We are filling the hw mech tables here. Global tables are
3632 		 * still NULL so all mechanisms are put into tmp tables.
3633 		 */
3634 		pk11_find_symmetric_ciphers(pflist, pSlotList[i],
3635 		    &n_cipher, tmp_hw_cnids);
3636 		pk11_find_digests(pflist, pSlotList[i],
3637 		    &n_digest, tmp_hw_dnids);
3638 		}
3639 
3640 	/*
3641 	 * Since we are part of a library (libcrypto.so), calling this function
3642 	 * may have side-effects. Also, C_Finalize() is triggered by
3643 	 * dlclose(3C).
3644 	 */
3645 #if 0
3646 	pflist->C_Finalize(NULL);
3647 #endif
3648 	OPENSSL_free(pSlotList);
3649 	(void) dlclose(handle);
3650 	hw_cnids = tmp_hw_cnids;
3651 	hw_dnids = tmp_hw_dnids;
3652 
3653 #ifdef	DEBUG_SLOT_SELECTION
3654 	fprintf(stderr, "%s: hw mechs check complete\n", PK11_DBG);
3655 #endif	/* DEBUG_SLOT_SELECTION */
3656 	return (1);
3657 
3658 err:
3659 	if (pSlotList != NULL)
3660 		OPENSSL_free(pSlotList);
3661 	if (tmp_hw_cnids != NULL)
3662 		OPENSSL_free(tmp_hw_cnids);
3663 	if (tmp_hw_dnids != NULL)
3664 		OPENSSL_free(tmp_hw_dnids);
3665 
3666 	return (0);
3667 	}
3668 
3669 /*
3670  * Check presence of a NID in the table of NIDs. The table may be NULL (i.e.,
3671  * non-existent).
3672  */
nid_in_table(int nid,int * nid_table)3673 static int nid_in_table(int nid, int *nid_table)
3674 	{
3675 	int i = 0;
3676 
3677 	/*
3678 	 * a special case. NULL means that we are initializing a new
3679 	 * table.
3680 	 */
3681 	if (nid_table == NULL)
3682 		return (1);
3683 
3684 	/*
3685 	 * the table is never full, there is always at least one
3686 	 * NID_undef.
3687 	 */
3688 	while (nid_table[i] != NID_undef)
3689 		{
3690 		if (nid_table[i++] == nid)
3691 			{
3692 #ifdef	DEBUG_SLOT_SELECTION
3693 	fprintf(stderr, " (NID %d in hw table, idx %d)", nid, i);
3694 #endif	/* DEBUG_SLOT_SELECTION */
3695 			return (1);
3696 			}
3697 		}
3698 
3699 	return (0);
3700 	}
3701 #endif	/* SOLARIS_HW_SLOT_SELECTION */
3702 
3703 #endif	/* OPENSSL_NO_HW_PK11 */
3704 #endif	/* OPENSSL_NO_HW */
3705