xref: /onnv-gate/usr/src/common/openssl/crypto/bn/bn_prime.c (revision 2139:6243c3338933)
1 /* crypto/bn/bn_prime.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include <stdio.h>
113 #include <time.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #include <openssl/rand.h>
117 
118 /* NB: these functions have been "upgraded", the deprecated versions (which are
119  * compatibility wrappers using these functions) are in bn_depr.c.
120  * - Geoff
121  */
122 
123 /* The quick sieve algorithm approach to weeding out primes is
124  * Philip Zimmermann's, as implemented in PGP.  I have had a read of
125  * his comments and implemented my own version.
126  */
127 #include "bn_prime.h"
128 
129 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
130 	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
131 static int probable_prime(BIGNUM *rnd, int bits);
132 static int probable_prime_dh(BIGNUM *rnd, int bits,
133 	const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
134 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
135 	const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
136 
BN_GENCB_call(BN_GENCB * cb,int a,int b)137 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
138 	{
139 	/* No callback means continue */
140 	if(!cb) return 1;
141 	switch(cb->ver)
142 		{
143 	case 1:
144 		/* Deprecated-style callbacks */
145 		if(!cb->cb.cb_1)
146 			return 1;
147 		cb->cb.cb_1(a, b, cb->arg);
148 		return 1;
149 	case 2:
150 		/* New-style callbacks */
151 		return cb->cb.cb_2(a, b, cb);
152 	default:
153 		break;
154 		}
155 	/* Unrecognised callback type */
156 	return 0;
157 	}
158 
BN_generate_prime_ex(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb)159 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
160 	const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
161 	{
162 	BIGNUM *t;
163 	int found=0;
164 	int i,j,c1=0;
165 	BN_CTX *ctx;
166 	int checks = BN_prime_checks_for_size(bits);
167 
168 	ctx=BN_CTX_new();
169 	if (ctx == NULL) goto err;
170 	BN_CTX_start(ctx);
171 	t = BN_CTX_get(ctx);
172 	if(!t) goto err;
173 loop:
174 	/* make a random number and set the top and bottom bits */
175 	if (add == NULL)
176 		{
177 		if (!probable_prime(ret,bits)) goto err;
178 		}
179 	else
180 		{
181 		if (safe)
182 			{
183 			if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
184 				 goto err;
185 			}
186 		else
187 			{
188 			if (!probable_prime_dh(ret,bits,add,rem,ctx))
189 				goto err;
190 			}
191 		}
192 	/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
193 	if(!BN_GENCB_call(cb, 0, c1++))
194 		/* aborted */
195 		goto err;
196 
197 	if (!safe)
198 		{
199 		i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
200 		if (i == -1) goto err;
201 		if (i == 0) goto loop;
202 		}
203 	else
204 		{
205 		/* for "safe prime" generation,
206 		 * check that (p-1)/2 is prime.
207 		 * Since a prime is odd, We just
208 		 * need to divide by 2 */
209 		if (!BN_rshift1(t,ret)) goto err;
210 
211 		for (i=0; i<checks; i++)
212 			{
213 			j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
214 			if (j == -1) goto err;
215 			if (j == 0) goto loop;
216 
217 			j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
218 			if (j == -1) goto err;
219 			if (j == 0) goto loop;
220 
221 			if(!BN_GENCB_call(cb, 2, c1-1))
222 				goto err;
223 			/* We have a safe prime test pass */
224 			}
225 		}
226 	/* we have a prime :-) */
227 	found = 1;
228 err:
229 	if (ctx != NULL)
230 		{
231 		BN_CTX_end(ctx);
232 		BN_CTX_free(ctx);
233 		}
234 	bn_check_top(ret);
235 	return found;
236 	}
237 
BN_is_prime_ex(const BIGNUM * a,int checks,BN_CTX * ctx_passed,BN_GENCB * cb)238 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb)
239 	{
240 	return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
241 	}
242 
BN_is_prime_fasttest_ex(const BIGNUM * a,int checks,BN_CTX * ctx_passed,int do_trial_division,BN_GENCB * cb)243 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
244 		int do_trial_division, BN_GENCB *cb)
245 	{
246 	int i, j, ret = -1;
247 	int k;
248 	BN_CTX *ctx = NULL;
249 	BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
250 	BN_MONT_CTX *mont = NULL;
251 	const BIGNUM *A = NULL;
252 
253 	if (BN_cmp(a, BN_value_one()) <= 0)
254 		return 0;
255 
256 	if (checks == BN_prime_checks)
257 		checks = BN_prime_checks_for_size(BN_num_bits(a));
258 
259 	/* first look for small factors */
260 	if (!BN_is_odd(a))
261 		return 0;
262 	if (do_trial_division)
263 		{
264 		for (i = 1; i < NUMPRIMES; i++)
265 			if (BN_mod_word(a, primes[i]) == 0)
266 				return 0;
267 		if(!BN_GENCB_call(cb, 1, -1))
268 			goto err;
269 		}
270 
271 	if (ctx_passed != NULL)
272 		ctx = ctx_passed;
273 	else
274 		if ((ctx=BN_CTX_new()) == NULL)
275 			goto err;
276 	BN_CTX_start(ctx);
277 
278 	/* A := abs(a) */
279 	if (a->neg)
280 		{
281 		BIGNUM *t;
282 		if ((t = BN_CTX_get(ctx)) == NULL) goto err;
283 		BN_copy(t, a);
284 		t->neg = 0;
285 		A = t;
286 		}
287 	else
288 		A = a;
289 	A1 = BN_CTX_get(ctx);
290 	A1_odd = BN_CTX_get(ctx);
291 	check = BN_CTX_get(ctx);
292 	if (check == NULL) goto err;
293 
294 	/* compute A1 := A - 1 */
295 	if (!BN_copy(A1, A))
296 		goto err;
297 	if (!BN_sub_word(A1, 1))
298 		goto err;
299 	if (BN_is_zero(A1))
300 		{
301 		ret = 0;
302 		goto err;
303 		}
304 
305 	/* write  A1  as  A1_odd * 2^k */
306 	k = 1;
307 	while (!BN_is_bit_set(A1, k))
308 		k++;
309 	if (!BN_rshift(A1_odd, A1, k))
310 		goto err;
311 
312 	/* Montgomery setup for computations mod A */
313 	mont = BN_MONT_CTX_new();
314 	if (mont == NULL)
315 		goto err;
316 	if (!BN_MONT_CTX_set(mont, A, ctx))
317 		goto err;
318 
319 	for (i = 0; i < checks; i++)
320 		{
321 		if (!BN_pseudo_rand_range(check, A1))
322 			goto err;
323 		if (!BN_add_word(check, 1))
324 			goto err;
325 		/* now 1 <= check < A */
326 
327 		j = witness(check, A, A1, A1_odd, k, ctx, mont);
328 		if (j == -1) goto err;
329 		if (j)
330 			{
331 			ret=0;
332 			goto err;
333 			}
334 		if(!BN_GENCB_call(cb, 1, i))
335 			goto err;
336 		}
337 	ret=1;
338 err:
339 	if (ctx != NULL)
340 		{
341 		BN_CTX_end(ctx);
342 		if (ctx_passed == NULL)
343 			BN_CTX_free(ctx);
344 		}
345 	if (mont != NULL)
346 		BN_MONT_CTX_free(mont);
347 
348 	return(ret);
349 	}
350 
witness(BIGNUM * w,const BIGNUM * a,const BIGNUM * a1,const BIGNUM * a1_odd,int k,BN_CTX * ctx,BN_MONT_CTX * mont)351 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
352 	const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
353 	{
354 	if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
355 		return -1;
356 	if (BN_is_one(w))
357 		return 0; /* probably prime */
358 	if (BN_cmp(w, a1) == 0)
359 		return 0; /* w == -1 (mod a),  'a' is probably prime */
360 	while (--k)
361 		{
362 		if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
363 			return -1;
364 		if (BN_is_one(w))
365 			return 1; /* 'a' is composite, otherwise a previous 'w' would
366 			           * have been == -1 (mod 'a') */
367 		if (BN_cmp(w, a1) == 0)
368 			return 0; /* w == -1 (mod a), 'a' is probably prime */
369 		}
370 	/* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
371 	 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
372 	bn_check_top(w);
373 	return 1;
374 	}
375 
probable_prime(BIGNUM * rnd,int bits)376 static int probable_prime(BIGNUM *rnd, int bits)
377 	{
378 	int i;
379 	BN_ULONG mods[NUMPRIMES];
380 	BN_ULONG delta,d;
381 
382 again:
383 	if (!BN_rand(rnd,bits,1,1)) return(0);
384 	/* we now have a random number 'rand' to test. */
385 	for (i=1; i<NUMPRIMES; i++)
386 		mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
387 	delta=0;
388 	loop: for (i=1; i<NUMPRIMES; i++)
389 		{
390 		/* check that rnd is not a prime and also
391 		 * that gcd(rnd-1,primes) == 1 (except for 2) */
392 		if (((mods[i]+delta)%primes[i]) <= 1)
393 			{
394 			d=delta;
395 			delta+=2;
396 			/* perhaps need to check for overflow of
397 			 * delta (but delta can be up to 2^32)
398 			 * 21-May-98 eay - added overflow check */
399 			if (delta < d) goto again;
400 			goto loop;
401 			}
402 		}
403 	if (!BN_add_word(rnd,delta)) return(0);
404 	bn_check_top(rnd);
405 	return(1);
406 	}
407 
probable_prime_dh(BIGNUM * rnd,int bits,const BIGNUM * add,const BIGNUM * rem,BN_CTX * ctx)408 static int probable_prime_dh(BIGNUM *rnd, int bits,
409 	const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
410 	{
411 	int i,ret=0;
412 	BIGNUM *t1;
413 
414 	BN_CTX_start(ctx);
415 	if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
416 
417 	if (!BN_rand(rnd,bits,0,1)) goto err;
418 
419 	/* we need ((rnd-rem) % add) == 0 */
420 
421 	if (!BN_mod(t1,rnd,add,ctx)) goto err;
422 	if (!BN_sub(rnd,rnd,t1)) goto err;
423 	if (rem == NULL)
424 		{ if (!BN_add_word(rnd,1)) goto err; }
425 	else
426 		{ if (!BN_add(rnd,rnd,rem)) goto err; }
427 
428 	/* we now have a random number 'rand' to test. */
429 
430 	loop: for (i=1; i<NUMPRIMES; i++)
431 		{
432 		/* check that rnd is a prime */
433 		if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
434 			{
435 			if (!BN_add(rnd,rnd,add)) goto err;
436 			goto loop;
437 			}
438 		}
439 	ret=1;
440 err:
441 	BN_CTX_end(ctx);
442 	bn_check_top(rnd);
443 	return(ret);
444 	}
445 
probable_prime_dh_safe(BIGNUM * p,int bits,const BIGNUM * padd,const BIGNUM * rem,BN_CTX * ctx)446 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
447 	const BIGNUM *rem, BN_CTX *ctx)
448 	{
449 	int i,ret=0;
450 	BIGNUM *t1,*qadd,*q;
451 
452 	bits--;
453 	BN_CTX_start(ctx);
454 	t1 = BN_CTX_get(ctx);
455 	q = BN_CTX_get(ctx);
456 	qadd = BN_CTX_get(ctx);
457 	if (qadd == NULL) goto err;
458 
459 	if (!BN_rshift1(qadd,padd)) goto err;
460 
461 	if (!BN_rand(q,bits,0,1)) goto err;
462 
463 	/* we need ((rnd-rem) % add) == 0 */
464 	if (!BN_mod(t1,q,qadd,ctx)) goto err;
465 	if (!BN_sub(q,q,t1)) goto err;
466 	if (rem == NULL)
467 		{ if (!BN_add_word(q,1)) goto err; }
468 	else
469 		{
470 		if (!BN_rshift1(t1,rem)) goto err;
471 		if (!BN_add(q,q,t1)) goto err;
472 		}
473 
474 	/* we now have a random number 'rand' to test. */
475 	if (!BN_lshift1(p,q)) goto err;
476 	if (!BN_add_word(p,1)) goto err;
477 
478 	loop: for (i=1; i<NUMPRIMES; i++)
479 		{
480 		/* check that p and q are prime */
481 		/* check that for p and q
482 		 * gcd(p-1,primes) == 1 (except for 2) */
483 		if (	(BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
484 			(BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
485 			{
486 			if (!BN_add(p,p,padd)) goto err;
487 			if (!BN_add(q,q,qadd)) goto err;
488 			goto loop;
489 			}
490 		}
491 	ret=1;
492 err:
493 	BN_CTX_end(ctx);
494 	bn_check_top(p);
495 	return(ret);
496 	}
497