1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * ZFS syseventd module.
27 *
28 * The purpose of this module is to identify when devices are added to the
29 * system, and appropriately online or replace the affected vdevs.
30 *
31 * When a device is added to the system:
32 *
33 * 1. Search for any vdevs whose devid matches that of the newly added
34 * device.
35 *
36 * 2. If no vdevs are found, then search for any vdevs whose devfs path
37 * matches that of the new device.
38 *
39 * 3. If no vdevs match by either method, then ignore the event.
40 *
41 * 4. Attempt to online the device with a flag to indicate that it should
42 * be unspared when resilvering completes. If this succeeds, then the
43 * same device was inserted and we should continue normally.
44 *
45 * 5. If the pool does not have the 'autoreplace' property set, attempt to
46 * online the device again without the unspare flag, which will
47 * generate a FMA fault.
48 *
49 * 6. If the pool has the 'autoreplace' property set, and the matching vdev
50 * is a whole disk, then label the new disk and attempt a 'zpool
51 * replace'.
52 *
53 * The module responds to EC_DEV_ADD events for both disks and lofi devices,
54 * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event
55 * indicates that a device failed to open during pool load, but the autoreplace
56 * property was set. In this case, we deferred the associated FMA fault until
57 * our module had a chance to process the autoreplace logic. If the device
58 * could not be replaced, then the second online attempt will trigger the FMA
59 * fault that we skipped earlier.
60 */
61
62 #include <alloca.h>
63 #include <devid.h>
64 #include <fcntl.h>
65 #include <libnvpair.h>
66 #include <libsysevent.h>
67 #include <libzfs.h>
68 #include <limits.h>
69 #include <stdlib.h>
70 #include <string.h>
71 #include <syslog.h>
72 #include <sys/list.h>
73 #include <sys/sunddi.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/sysevent/dev.h>
76 #include <thread_pool.h>
77 #include <unistd.h>
78 #include "syseventd.h"
79
80 #if defined(__i386) || defined(__amd64)
81 #define PHYS_PATH ":q"
82 #define RAW_SLICE "p0"
83 #elif defined(__sparc)
84 #define PHYS_PATH ":c"
85 #define RAW_SLICE "s2"
86 #else
87 #error Unknown architecture
88 #endif
89
90 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
91
92 libzfs_handle_t *g_zfshdl;
93 list_t g_pool_list;
94 tpool_t *g_tpool;
95 boolean_t g_enumeration_done;
96 thread_t g_zfs_tid;
97
98 typedef struct unavailpool {
99 zpool_handle_t *uap_zhp;
100 list_node_t uap_node;
101 } unavailpool_t;
102
103 int
zfs_toplevel_state(zpool_handle_t * zhp)104 zfs_toplevel_state(zpool_handle_t *zhp)
105 {
106 nvlist_t *nvroot;
107 vdev_stat_t *vs;
108 unsigned int c;
109
110 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
111 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
112 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
113 (uint64_t **)&vs, &c) == 0);
114 return (vs->vs_state);
115 }
116
117 static int
zfs_unavail_pool(zpool_handle_t * zhp,void * data)118 zfs_unavail_pool(zpool_handle_t *zhp, void *data)
119 {
120 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
121 unavailpool_t *uap;
122 uap = malloc(sizeof (unavailpool_t));
123 uap->uap_zhp = zhp;
124 list_insert_tail((list_t *)data, uap);
125 } else {
126 zpool_close(zhp);
127 }
128 return (0);
129 }
130
131 /*
132 * The device associated with the given vdev (either by devid or physical path)
133 * has been added to the system. If 'isdisk' is set, then we only attempt a
134 * replacement if it's a whole disk. This also implies that we should label the
135 * disk first.
136 *
137 * First, we attempt to online the device (making sure to undo any spare
138 * operation when finished). If this succeeds, then we're done. If it fails,
139 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
140 * but that the label was not what we expected. If the 'autoreplace' property
141 * is not set, then we relabel the disk (if specified), and attempt a 'zpool
142 * replace'. If the online is successful, but the new state is something else
143 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
144 * race, and we should avoid attempting to relabel the disk.
145 */
146 static void
zfs_process_add(zpool_handle_t * zhp,nvlist_t * vdev,boolean_t isdisk)147 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk)
148 {
149 char *path;
150 vdev_state_t newstate;
151 nvlist_t *nvroot, *newvd;
152 uint64_t wholedisk = 0ULL;
153 char *physpath = NULL;
154 char rawpath[PATH_MAX], fullpath[PATH_MAX];
155 size_t len;
156
157 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
158 return;
159
160 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
161 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
162
163 /*
164 * We should have a way to online a device by guid. With the current
165 * interface, we are forced to chop off the 's0' for whole disks.
166 */
167 (void) strlcpy(fullpath, path, sizeof (fullpath));
168 if (wholedisk)
169 fullpath[strlen(fullpath) - 2] = '\0';
170
171 /*
172 * Attempt to online the device. It would be nice to online this by
173 * GUID, but the current interface only supports lookup by path.
174 */
175 if (zpool_vdev_online(zhp, fullpath,
176 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
177 (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED))
178 return;
179
180 /*
181 * If the pool doesn't have the autoreplace property set, then attempt a
182 * true online (without the unspare flag), which will trigger a FMA
183 * fault.
184 */
185 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
186 (isdisk && !wholedisk)) {
187 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
188 &newstate);
189 return;
190 }
191
192 if (isdisk) {
193 /*
194 * If this is a request to label a whole disk, then attempt to
195 * write out the label. Before we can label the disk, we need
196 * access to a raw node. Ideally, we'd like to walk the devinfo
197 * tree and find a raw node from the corresponding parent node.
198 * This is overly complicated, and since we know how we labeled
199 * this device in the first place, we know it's save to switch
200 * from /dev/dsk to /dev/rdsk and append the backup slice.
201 *
202 * If any part of this process fails, then do a force online to
203 * trigger a ZFS fault for the device (and any hot spare
204 * replacement).
205 */
206 if (strncmp(path, "/dev/dsk/", 9) != 0) {
207 (void) zpool_vdev_online(zhp, fullpath,
208 ZFS_ONLINE_FORCEFAULT, &newstate);
209 return;
210 }
211
212 (void) strlcpy(rawpath, path + 9, sizeof (rawpath));
213 len = strlen(rawpath);
214 rawpath[len - 2] = '\0';
215
216 if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0) {
217 (void) zpool_vdev_online(zhp, fullpath,
218 ZFS_ONLINE_FORCEFAULT, &newstate);
219 return;
220 }
221 }
222
223 /*
224 * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding
225 * the entire vdev structure is harmless, we construct a reduced set of
226 * path/physpath/wholedisk to keep it simple.
227 */
228 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
229 return;
230
231 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
232 nvlist_free(nvroot);
233 return;
234 }
235
236 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
237 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
238 (physpath != NULL && nvlist_add_string(newvd,
239 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
240 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
241 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
242 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd,
243 1) != 0) {
244 nvlist_free(newvd);
245 nvlist_free(nvroot);
246 return;
247 }
248
249 nvlist_free(newvd);
250
251 (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE);
252
253 nvlist_free(nvroot);
254
255 }
256
257 /*
258 * Utility functions to find a vdev matching given criteria.
259 */
260 typedef struct dev_data {
261 const char *dd_compare;
262 const char *dd_prop;
263 zfs_process_func_t dd_func;
264 boolean_t dd_found;
265 boolean_t dd_isdisk;
266 uint64_t dd_pool_guid;
267 uint64_t dd_vdev_guid;
268 } dev_data_t;
269
270 static void
zfs_iter_vdev(zpool_handle_t * zhp,nvlist_t * nvl,void * data)271 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
272 {
273 dev_data_t *dp = data;
274 char *path;
275 uint_t c, children;
276 nvlist_t **child;
277 size_t len;
278 uint64_t guid;
279
280 /*
281 * First iterate over any children.
282 */
283 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
284 &child, &children) == 0) {
285 for (c = 0; c < children; c++)
286 zfs_iter_vdev(zhp, child[c], data);
287 return;
288 }
289
290 if (dp->dd_vdev_guid != 0) {
291 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
292 &guid) != 0 || guid != dp->dd_vdev_guid)
293 return;
294 } else {
295 len = strlen(dp->dd_compare);
296
297 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
298 strncmp(dp->dd_compare, path, len) != 0)
299 return;
300
301 /*
302 * Normally, we want to have an exact match for the comparison
303 * string. However, we allow substring matches in the following
304 * cases:
305 *
306 * <path>: This is a devpath, and the target is one
307 * of its children.
308 *
309 * <path/> This is a devid for a whole disk, and
310 * the target is one of its children.
311 */
312 if (path[len] != '\0' && path[len] != ':' &&
313 path[len - 1] != '/')
314 return;
315 }
316
317 (dp->dd_func)(zhp, nvl, dp->dd_isdisk);
318 }
319
320 void
zfs_enable_ds(void * arg)321 zfs_enable_ds(void *arg)
322 {
323 unavailpool_t *pool = (unavailpool_t *)arg;
324
325 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
326 zpool_close(pool->uap_zhp);
327 free(pool);
328 }
329
330 static int
zfs_iter_pool(zpool_handle_t * zhp,void * data)331 zfs_iter_pool(zpool_handle_t *zhp, void *data)
332 {
333 nvlist_t *config, *nvl;
334 dev_data_t *dp = data;
335 uint64_t pool_guid;
336 unavailpool_t *pool;
337
338 if ((config = zpool_get_config(zhp, NULL)) != NULL) {
339 if (dp->dd_pool_guid == 0 ||
340 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
341 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
342 (void) nvlist_lookup_nvlist(config,
343 ZPOOL_CONFIG_VDEV_TREE, &nvl);
344 zfs_iter_vdev(zhp, nvl, data);
345 }
346 }
347 if (g_enumeration_done) {
348 for (pool = list_head(&g_pool_list); pool != NULL;
349 pool = list_next(&g_pool_list, pool)) {
350
351 if (strcmp(zpool_get_name(zhp),
352 zpool_get_name(pool->uap_zhp)))
353 continue;
354 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
355 list_remove(&g_pool_list, pool);
356 (void) tpool_dispatch(g_tpool, zfs_enable_ds,
357 pool);
358 break;
359 }
360 }
361 }
362
363 zpool_close(zhp);
364 return (0);
365 }
366
367 /*
368 * Given a physical device path, iterate over all (pool, vdev) pairs which
369 * correspond to the given path.
370 */
371 static boolean_t
devpath_iter(const char * devpath,zfs_process_func_t func,boolean_t wholedisk)372 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
373 {
374 dev_data_t data = { 0 };
375
376 data.dd_compare = devpath;
377 data.dd_func = func;
378 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
379 data.dd_found = B_FALSE;
380 data.dd_isdisk = wholedisk;
381
382 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
383
384 return (data.dd_found);
385 }
386
387 /*
388 * Given a /devices path, lookup the corresponding devid for each minor node,
389 * and find any vdevs with matching devids. Doing this straight up would be
390 * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of
391 * the fact that each devid ends with "/<minornode>". Once we find any valid
392 * minor node, we chop off the portion after the last slash, and then search for
393 * matching vdevs, which is O(vdevs in system).
394 */
395 static boolean_t
devid_iter(const char * devpath,zfs_process_func_t func,boolean_t wholedisk)396 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
397 {
398 size_t len = strlen(devpath) + sizeof ("/devices") +
399 sizeof (PHYS_PATH) - 1;
400 char *fullpath;
401 int fd;
402 ddi_devid_t devid;
403 char *devidstr, *fulldevid;
404 dev_data_t data = { 0 };
405
406 /*
407 * Try to open a known minor node.
408 */
409 fullpath = alloca(len);
410 (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH);
411 if ((fd = open(fullpath, O_RDONLY)) < 0)
412 return (B_FALSE);
413
414 /*
415 * Determine the devid as a string, with no trailing slash for the minor
416 * node.
417 */
418 if (devid_get(fd, &devid) != 0) {
419 (void) close(fd);
420 return (B_FALSE);
421 }
422 (void) close(fd);
423
424 if ((devidstr = devid_str_encode(devid, NULL)) == NULL) {
425 devid_free(devid);
426 return (B_FALSE);
427 }
428
429 len = strlen(devidstr) + 2;
430 fulldevid = alloca(len);
431 (void) snprintf(fulldevid, len, "%s/", devidstr);
432
433 data.dd_compare = fulldevid;
434 data.dd_func = func;
435 data.dd_prop = ZPOOL_CONFIG_DEVID;
436 data.dd_found = B_FALSE;
437 data.dd_isdisk = wholedisk;
438
439 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
440
441 devid_str_free(devidstr);
442 devid_free(devid);
443
444 return (data.dd_found);
445 }
446
447 /*
448 * This function is called when we receive a devfs add event. This can be
449 * either a disk event or a lofi event, and the behavior is slightly different
450 * depending on which it is.
451 */
452 static int
zfs_deliver_add(nvlist_t * nvl,boolean_t is_lofi)453 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi)
454 {
455 char *devpath, *devname;
456 char path[PATH_MAX], realpath[PATH_MAX];
457 char *colon, *raw;
458 int ret;
459
460 /*
461 * The main unit of operation is the physical device path. For disks,
462 * this is the device node, as all minor nodes are affected. For lofi
463 * devices, this includes the minor path. Unfortunately, this isn't
464 * represented in the DEV_PHYS_PATH for various reasons.
465 */
466 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0)
467 return (-1);
468
469 /*
470 * If this is a lofi device, then also get the minor instance name.
471 * Unfortunately, the current payload doesn't include an easy way to get
472 * this information. So we cheat by resolving the 'dev_name' (which
473 * refers to the raw device) and taking the portion between ':(*),raw'.
474 */
475 (void) strlcpy(realpath, devpath, sizeof (realpath));
476 if (is_lofi) {
477 if (nvlist_lookup_string(nvl, DEV_NAME,
478 &devname) == 0 &&
479 (ret = resolvepath(devname, path,
480 sizeof (path))) > 0) {
481 path[ret] = '\0';
482 colon = strchr(path, ':');
483 if (colon != NULL)
484 raw = strstr(colon + 1, ",raw");
485 if (colon != NULL && raw != NULL) {
486 *raw = '\0';
487 (void) snprintf(realpath,
488 sizeof (realpath), "%s%s",
489 devpath, colon);
490 *raw = ',';
491 }
492 }
493 }
494
495 /*
496 * Iterate over all vdevs with a matching devid, and then those with a
497 * matching /devices path. For disks, we only want to pay attention to
498 * vdevs marked as whole disks. For lofi, we don't care (because we're
499 * matching an exact minor name).
500 */
501 if (!devid_iter(realpath, zfs_process_add, !is_lofi))
502 (void) devpath_iter(realpath, zfs_process_add, !is_lofi);
503
504 return (0);
505 }
506
507 /*
508 * Called when we receive a VDEV_CHECK event, which indicates a device could not
509 * be opened during initial pool open, but the autoreplace property was set on
510 * the pool. In this case, we treat it as if it were an add event.
511 */
512 static int
zfs_deliver_check(nvlist_t * nvl)513 zfs_deliver_check(nvlist_t *nvl)
514 {
515 dev_data_t data = { 0 };
516
517 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
518 &data.dd_pool_guid) != 0 ||
519 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
520 &data.dd_vdev_guid) != 0)
521 return (0);
522
523 data.dd_isdisk = B_TRUE;
524 data.dd_func = zfs_process_add;
525
526 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
527
528 return (0);
529 }
530
531 #define DEVICE_PREFIX "/devices"
532
533 static int
zfsdle_vdev_online(zpool_handle_t * zhp,void * data)534 zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
535 {
536 char *devname = data;
537 boolean_t avail_spare, l2cache;
538 vdev_state_t newstate;
539 nvlist_t *tgt;
540
541 syseventd_print(9, "zfsdle_vdev_online: searching for %s in pool %s\n",
542 devname, zpool_get_name(zhp));
543
544 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
545 &avail_spare, &l2cache, NULL)) != NULL) {
546 char *path, fullpath[MAXPATHLEN];
547 uint64_t wholedisk = 0ULL;
548
549 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH,
550 &path) == 0);
551 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
552 &wholedisk) == 0);
553
554 (void) strlcpy(fullpath, path, sizeof (fullpath));
555 if (wholedisk)
556 fullpath[strlen(fullpath) - 2] = '\0';
557
558 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
559 syseventd_print(9, "zfsdle_vdev_online: setting device"
560 " device %s to ONLINE state in pool %s.\n",
561 fullpath, zpool_get_name(zhp));
562 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL)
563 (void) zpool_vdev_online(zhp, fullpath, 0,
564 &newstate);
565 }
566 zpool_close(zhp);
567 return (1);
568 }
569 zpool_close(zhp);
570 return (0);
571 }
572
573 int
zfs_deliver_dle(nvlist_t * nvl)574 zfs_deliver_dle(nvlist_t *nvl)
575 {
576 char *devname;
577 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) {
578 syseventd_print(9, "zfs_deliver_event: no physpath\n");
579 return (-1);
580 }
581 if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) {
582 syseventd_print(9, "zfs_deliver_event: invalid "
583 "device '%s'", devname);
584 return (-1);
585 }
586
587 /*
588 * We try to find the device using the physical
589 * path that has been supplied. We need to strip off
590 * the /devices prefix before starting our search.
591 */
592 devname += strlen(DEVICE_PREFIX);
593 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) {
594 syseventd_print(9, "zfs_deliver_event: device '%s' not"
595 " found\n", devname);
596 return (1);
597 }
598 return (0);
599 }
600
601
602 /*ARGSUSED*/
603 static int
zfs_deliver_event(sysevent_t * ev,int unused)604 zfs_deliver_event(sysevent_t *ev, int unused)
605 {
606 const char *class = sysevent_get_class_name(ev);
607 const char *subclass = sysevent_get_subclass_name(ev);
608 nvlist_t *nvl;
609 int ret;
610 boolean_t is_lofi, is_check, is_dle = B_FALSE;
611
612 if (strcmp(class, EC_DEV_ADD) == 0) {
613 /*
614 * We're mainly interested in disk additions, but we also listen
615 * for new lofi devices, to allow for simplified testing.
616 */
617 if (strcmp(subclass, ESC_DISK) == 0)
618 is_lofi = B_FALSE;
619 else if (strcmp(subclass, ESC_LOFI) == 0)
620 is_lofi = B_TRUE;
621 else
622 return (0);
623
624 is_check = B_FALSE;
625 } else if (strcmp(class, EC_ZFS) == 0 &&
626 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
627 /*
628 * This event signifies that a device failed to open during pool
629 * load, but the 'autoreplace' property was set, so we should
630 * pretend it's just been added.
631 */
632 is_check = B_TRUE;
633 } else if (strcmp(class, EC_DEV_STATUS) == 0 &&
634 strcmp(subclass, ESC_DEV_DLE) == 0) {
635 is_dle = B_TRUE;
636 } else {
637 return (0);
638 }
639
640 if (sysevent_get_attr_list(ev, &nvl) != 0)
641 return (-1);
642
643 if (is_dle)
644 ret = zfs_deliver_dle(nvl);
645 else if (is_check)
646 ret = zfs_deliver_check(nvl);
647 else
648 ret = zfs_deliver_add(nvl, is_lofi);
649
650 nvlist_free(nvl);
651 return (ret);
652 }
653
654 /*ARGSUSED*/
655 void *
zfs_enum_pools(void * arg)656 zfs_enum_pools(void *arg)
657 {
658 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
659 if (!list_is_empty(&g_pool_list))
660 g_tpool = tpool_create(1, sysconf(_SC_NPROCESSORS_ONLN),
661 0, NULL);
662 g_enumeration_done = B_TRUE;
663 return (NULL);
664 }
665
666 static struct slm_mod_ops zfs_mod_ops = {
667 SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event
668 };
669
670 struct slm_mod_ops *
slm_init()671 slm_init()
672 {
673 if ((g_zfshdl = libzfs_init()) == NULL)
674 return (NULL);
675 /*
676 * collect a list of unavailable pools (asynchronously,
677 * since this can take a while)
678 */
679 list_create(&g_pool_list, sizeof (struct unavailpool),
680 offsetof(struct unavailpool, uap_node));
681 if (thr_create(NULL, 0, zfs_enum_pools, NULL, 0, &g_zfs_tid) != 0)
682 return (NULL);
683 return (&zfs_mod_ops);
684 }
685
686 void
slm_fini()687 slm_fini()
688 {
689 unavailpool_t *pool;
690
691 if (g_tpool != NULL) {
692 tpool_wait(g_tpool);
693 tpool_destroy(g_tpool);
694 }
695 while ((pool = (list_head(&g_pool_list))) != NULL) {
696 list_remove(&g_pool_list, pool);
697 zpool_close(pool->uap_zhp);
698 free(pool);
699 }
700 (void) thr_join(g_zfs_tid, NULL, NULL);
701 list_destroy(&g_pool_list);
702 libzfs_fini(g_zfshdl);
703 }
704