1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 /*
30 * Utility routines for run-time linker. some are duplicated here from libc
31 * (with different names) to avoid name space collisions.
32 */
33 #include <sys/systeminfo.h>
34 #include <stdio.h>
35 #include <sys/time.h>
36 #include <sys/types.h>
37 #include <sys/mman.h>
38 #include <sys/lwp.h>
39 #include <sys/debug.h>
40 #include <stdarg.h>
41 #include <fcntl.h>
42 #include <string.h>
43 #include <dlfcn.h>
44 #include <unistd.h>
45 #include <stdlib.h>
46 #include <sys/auxv.h>
47 #include <limits.h>
48 #include <debug.h>
49 #include <conv.h>
50 #include "_rtld.h"
51 #include "_audit.h"
52 #include "_elf.h"
53 #include "msg.h"
54
55 /*
56 * Null function used as place where a debugger can set a breakpoint.
57 */
58 void
rtld_db_dlactivity(Lm_list * lml)59 rtld_db_dlactivity(Lm_list *lml)
60 {
61 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
62 r_debug.rtd_rdebug.r_state));
63 }
64
65 /*
66 * Null function used as place where debugger can set a pre .init
67 * processing breakpoint.
68 */
69 void
rtld_db_preinit(Lm_list * lml)70 rtld_db_preinit(Lm_list *lml)
71 {
72 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
73 r_debug.rtd_rdebug.r_state));
74 }
75
76 /*
77 * Null function used as place where debugger can set a post .init
78 * processing breakpoint.
79 */
80 void
rtld_db_postinit(Lm_list * lml)81 rtld_db_postinit(Lm_list *lml)
82 {
83 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
84 r_debug.rtd_rdebug.r_state));
85 }
86
87 /*
88 * Debugger Event Notification
89 *
90 * This function centralizes all debugger event notification (ala rtld_db).
91 *
92 * There's a simple intent, focused on insuring the primary link-map control
93 * list (or each link-map list) is consistent, and the indication that objects
94 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE
95 * event are posted for each of these, most debuggers don't care, as their
96 * view is that these events simply convey an "inconsistent" state.
97 *
98 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
99 * enter ld.so.1.
100 *
101 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
102 * required later (RT_FL_DBNOTIF):
103 *
104 * i. the first time we add or delete an object to the primary link-map
105 * control list.
106 * ii. the first time we move a secondary link-map control list to the primary
107 * link-map control list (effectively, this is like adding a group of
108 * objects to the primary link-map control list).
109 *
110 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set):
111 *
112 * i. each time we leave the runtime linker.
113 */
114 void
rd_event(Lm_list * lml,rd_event_e event,r_state_e state)115 rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
116 {
117 void (*fptr)(Lm_list *);
118
119 switch (event) {
120 case RD_PREINIT:
121 fptr = rtld_db_preinit;
122 break;
123 case RD_POSTINIT:
124 fptr = rtld_db_postinit;
125 break;
126 case RD_DLACTIVITY:
127 switch (state) {
128 case RT_CONSISTENT:
129 /*
130 * Do we need to send a notification?
131 */
132 if ((rtld_flags & RT_FL_DBNOTIF) == 0)
133 return;
134 rtld_flags &= ~RT_FL_DBNOTIF;
135 break;
136 case RT_ADD:
137 case RT_DELETE:
138 /*
139 * If we are already in an inconsistent state, no
140 * notification is required.
141 */
142 if (rtld_flags & RT_FL_DBNOTIF)
143 return;
144 rtld_flags |= RT_FL_DBNOTIF;
145 break;
146 };
147 fptr = rtld_db_dlactivity;
148 break;
149 default:
150 /*
151 * RD_NONE - do nothing
152 */
153 break;
154 };
155
156 /*
157 * Set event state and call 'notification' function.
158 *
159 * The debugging clients have previously been told about these
160 * notification functions and have set breakpoints on them if they
161 * are interested in the notification.
162 */
163 r_debug.rtd_rdebug.r_state = state;
164 r_debug.rtd_rdebug.r_rdevent = event;
165 fptr(lml);
166 r_debug.rtd_rdebug.r_rdevent = RD_NONE;
167 }
168
169 #if defined(__sparc) || defined(__x86)
170 /*
171 * Stack Cleanup.
172 *
173 * This function is invoked to 'remove' arguments that were passed in on the
174 * stack. This is most likely if ld.so.1 was invoked directly. In that case
175 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
176 * Which means we then need to slide everything above it on the stack down
177 * accordingly.
178 *
179 * While the stack layout is platform specific - it just so happens that __x86,
180 * and __sparc platforms share the following initial stack layout.
181 *
182 * !_______________________! high addresses
183 * ! !
184 * ! Information !
185 * ! Block !
186 * ! (size varies) !
187 * !_______________________!
188 * ! 0 word !
189 * !_______________________!
190 * ! Auxiliary !
191 * ! vector !
192 * ! 2 word entries !
193 * ! !
194 * !_______________________!
195 * ! 0 word !
196 * !_______________________!
197 * ! Environment !
198 * ! pointers !
199 * ! ... !
200 * ! (one word each) !
201 * !_______________________!
202 * ! 0 word !
203 * !_______________________!
204 * ! Argument ! low addresses
205 * ! pointers !
206 * ! Argc words !
207 * !_______________________!
208 * ! !
209 * ! Argc !
210 * !_______________________!
211 * ! ... !
212 *
213 */
214 static void
stack_cleanup(char ** argv,char *** envp,auxv_t ** auxv,int rmcnt)215 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
216 {
217 int ndx;
218 long *argc;
219 char **oargv, **nargv;
220 char **oenvp, **nenvp;
221 auxv_t *oauxv, *nauxv;
222
223 /*
224 * Slide ARGV[] and update argc. The argv pointer remains the same,
225 * however slide the applications arguments over the arguments to
226 * ld.so.1.
227 */
228 nargv = &argv[0];
229 oargv = &argv[rmcnt];
230
231 for (ndx = 0; oargv[ndx]; ndx++)
232 nargv[ndx] = oargv[ndx];
233 nargv[ndx] = oargv[ndx];
234
235 argc = (long *)((uintptr_t)argv - sizeof (long *));
236 *argc -= rmcnt;
237
238 /*
239 * Slide ENVP[], and update the environment array pointer.
240 */
241 ndx++;
242 nenvp = &nargv[ndx];
243 oenvp = &oargv[ndx];
244 *envp = nenvp;
245
246 for (ndx = 0; oenvp[ndx]; ndx++)
247 nenvp[ndx] = oenvp[ndx];
248 nenvp[ndx] = oenvp[ndx];
249
250 /*
251 * Slide AUXV[], and update the aux vector pointer.
252 */
253 ndx++;
254 nauxv = (auxv_t *)&nenvp[ndx];
255 oauxv = (auxv_t *)&oenvp[ndx];
256 *auxv = nauxv;
257
258 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
259 nauxv[ndx] = oauxv[ndx];
260 nauxv[ndx] = oauxv[ndx];
261 }
262 #else
263 /*
264 * Verify that the above routine is appropriate for any new platforms.
265 */
266 #error unsupported architecture!
267 #endif
268
269 /*
270 * Compare function for PathNode AVL tree.
271 */
272 static int
pnavl_compare(const void * n1,const void * n2)273 pnavl_compare(const void *n1, const void *n2)
274 {
275 uint_t hash1, hash2;
276 const char *st1, *st2;
277 int rc;
278
279 hash1 = ((PathNode *)n1)->pn_hash;
280 hash2 = ((PathNode *)n2)->pn_hash;
281
282 if (hash1 > hash2)
283 return (1);
284 if (hash1 < hash2)
285 return (-1);
286
287 st1 = ((PathNode *)n1)->pn_name;
288 st2 = ((PathNode *)n2)->pn_name;
289
290 rc = strcmp(st1, st2);
291 if (rc > 0)
292 return (1);
293 if (rc < 0)
294 return (-1);
295 return (0);
296 }
297
298 /*
299 * Create an AVL tree.
300 */
301 static avl_tree_t *
pnavl_create(size_t size)302 pnavl_create(size_t size)
303 {
304 avl_tree_t *avlt;
305
306 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL)
307 return (NULL);
308 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl));
309 return (avlt);
310 }
311
312 /*
313 * Determine whether a PathNode is recorded.
314 */
315 int
pnavl_recorded(avl_tree_t ** pnavl,const char * name,uint_t hash,avl_index_t * where)316 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash,
317 avl_index_t *where)
318 {
319 PathNode pn;
320
321 /*
322 * Create the avl tree if required.
323 */
324 if ((*pnavl == NULL) &&
325 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL))
326 return (0);
327
328 pn.pn_name = name;
329 if ((pn.pn_hash = hash) == 0)
330 pn.pn_hash = sgs_str_hash(name);
331
332 if (avl_find(*pnavl, &pn, where) == NULL)
333 return (0);
334
335 return (1);
336 }
337
338 /*
339 * Determine if a pathname has already been recorded on the full path name
340 * AVL tree. This tree maintains a node for each path name that ld.so.1 has
341 * successfully loaded. If the path name does not exist in this AVL tree, then
342 * the next insertion point is deposited in "where". This value can be used by
343 * fpavl_insert() to expedite the insertion.
344 */
345 Rt_map *
fpavl_recorded(Lm_list * lml,const char * name,uint_t hash,avl_index_t * where)346 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where)
347 {
348 FullPathNode fpn, *fpnp;
349
350 /*
351 * Create the avl tree if required.
352 */
353 if ((lml->lm_fpavl == NULL) &&
354 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL))
355 return (NULL);
356
357 fpn.fpn_node.pn_name = name;
358 if ((fpn.fpn_node.pn_hash = hash) == 0)
359 fpn.fpn_node.pn_hash = sgs_str_hash(name);
360
361 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
362 return (NULL);
363
364 return (fpnp->fpn_lmp);
365 }
366
367 /*
368 * Insert a name into the FullPathNode AVL tree for the link-map list. The
369 * objects NAME() is the path that would have originally been searched for, and
370 * is therefore the name to associate with any "where" value. If the object has
371 * a different PATHNAME(), perhaps because it has resolved to a different file
372 * (see fullpath()), then this name will be recorded as a separate FullPathNode
373 * (see load_file()).
374 */
375 int
fpavl_insert(Lm_list * lml,Rt_map * lmp,const char * name,avl_index_t where)376 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
377 {
378 FullPathNode *fpnp;
379 uint_t hash = sgs_str_hash(name);
380
381 if (where == 0) {
382 /* LINTED */
383 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where);
384
385 /*
386 * We better not get a hit now, we do not want duplicates in
387 * the tree.
388 */
389 ASSERT(_lmp == NULL);
390 }
391
392 /*
393 * Insert new node in tree.
394 */
395 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL)
396 return (0);
397
398 fpnp->fpn_node.pn_name = name;
399 fpnp->fpn_node.pn_hash = hash;
400 fpnp->fpn_lmp = lmp;
401
402 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
403 free(fpnp);
404 return (0);
405 }
406
407 ASSERT(lml->lm_fpavl != NULL);
408 avl_insert(lml->lm_fpavl, fpnp, where);
409 return (1);
410 }
411
412 /*
413 * Remove an object from the FullPathNode AVL tree.
414 */
415 void
fpavl_remove(Rt_map * lmp)416 fpavl_remove(Rt_map *lmp)
417 {
418 FullPathNode *fpnp;
419 Aliste idx;
420
421 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
422 avl_remove(LIST(lmp)->lm_fpavl, fpnp);
423 free(fpnp);
424 }
425 free(FPNODE(lmp));
426 FPNODE(lmp) = NULL;
427 }
428
429 /*
430 * Insert a path name into the not-found AVL tree.
431 *
432 * This tree maintains a node for each path name that ld.so.1 has explicitly
433 * inspected, but has failed to load during a single ld.so.1 operation. If the
434 * path name does not exist in this AVL tree, then the next insertion point is
435 * deposited in "where". This value can be used by nfavl_insert() to expedite
436 * the insertion.
437 */
438 void
nfavl_insert(const char * name,avl_index_t where)439 nfavl_insert(const char *name, avl_index_t where)
440 {
441 PathNode *pnp;
442 uint_t hash = sgs_str_hash(name);
443
444 if (where == 0) {
445 /* LINTED */
446 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where);
447
448 /*
449 * We better not get a hit now, we do not want duplicates in
450 * the tree.
451 */
452 ASSERT(in_nfavl == 0);
453 }
454
455 /*
456 * Insert new node in tree.
457 */
458 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
459 pnp->pn_name = name;
460 pnp->pn_hash = hash;
461 avl_insert(nfavl, pnp, where);
462 }
463 }
464
465 /*
466 * Insert the directory name, of a full path name, into the secure path AVL
467 * tree.
468 *
469 * This tree is used to maintain a list of directories in which the dependencies
470 * of a secure process have been found. This list provides a fall-back in the
471 * case that a $ORIGIN expansion is deemed insecure, when the expansion results
472 * in a path name that has already provided dependencies.
473 */
474 void
spavl_insert(const char * name)475 spavl_insert(const char *name)
476 {
477 char buffer[PATH_MAX], *str;
478 size_t size;
479 avl_index_t where;
480 PathNode *pnp;
481 uint_t hash;
482
483 /*
484 * Separate the directory name from the path name.
485 */
486 if ((str = strrchr(name, '/')) == name)
487 size = 1;
488 else
489 size = str - name;
490
491 (void) strncpy(buffer, name, size);
492 buffer[size] = '\0';
493 hash = sgs_str_hash(buffer);
494
495 /*
496 * Determine whether this directory name is already recorded, or if
497 * not, 'where" will provide the insertion point for the new string.
498 */
499 if (pnavl_recorded(&spavl, buffer, hash, &where))
500 return;
501
502 /*
503 * Insert new node in tree.
504 */
505 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) {
506 pnp->pn_name = strdup(buffer);
507 pnp->pn_hash = hash;
508 avl_insert(spavl, pnp, where);
509 }
510 }
511
512 /*
513 * Inspect the generic string AVL tree for the given string. If the string is
514 * not present, duplicate it, and insert the string in the AVL tree. Return the
515 * duplicated string to the caller.
516 *
517 * These strings are maintained for the life of ld.so.1 and represent path
518 * names, file names, and search paths. All other AVL trees that maintain
519 * FullPathNode and not-found path names use the same string pointer
520 * established for this string.
521 */
522 static avl_tree_t *stravl = NULL;
523 static char *strbuf = NULL;
524 static PathNode *pnbuf = NULL;
525 static size_t strsize = 0, pnsize = 0;
526
527 const char *
stravl_insert(const char * name,uint_t hash,size_t nsize,int substr)528 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr)
529 {
530 char str[PATH_MAX];
531 PathNode *pnp;
532 avl_index_t where;
533
534 /*
535 * Create the avl tree if required.
536 */
537 if ((stravl == NULL) &&
538 ((stravl = pnavl_create(sizeof (PathNode))) == NULL))
539 return (NULL);
540
541 /*
542 * Determine the string size if not provided by the caller.
543 */
544 if (nsize == 0)
545 nsize = strlen(name) + 1;
546 else if (substr) {
547 /*
548 * The string passed to us may be a multiple path string for
549 * which we only need the first component. Using the provided
550 * size, strip out the required string.
551 */
552 (void) strncpy(str, name, nsize);
553 str[nsize - 1] = '\0';
554 name = str;
555 }
556
557 /*
558 * Allocate a PathNode buffer if one doesn't exist, or any existing
559 * buffer has been used up.
560 */
561 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) {
562 pnsize = syspagsz;
563 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE),
564 MAP_PRIVATE)) == MAP_FAILED)
565 return (NULL);
566 }
567 /*
568 * Determine whether this string already exists.
569 */
570 pnbuf->pn_name = name;
571 if ((pnbuf->pn_hash = hash) == 0)
572 pnbuf->pn_hash = sgs_str_hash(name);
573
574 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL)
575 return (pnp->pn_name);
576
577 /*
578 * Allocate a string buffer if one does not exist, or if there is
579 * insufficient space for the new string in any existing buffer.
580 */
581 if ((strbuf == NULL) || (nsize > strsize)) {
582 strsize = S_ROUND(nsize, syspagsz);
583
584 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE),
585 MAP_PRIVATE)) == MAP_FAILED)
586 return (NULL);
587 }
588
589 (void) memcpy(strbuf, name, nsize);
590 pnp = pnbuf;
591 pnp->pn_name = strbuf;
592 avl_insert(stravl, pnp, where);
593
594 strbuf += nsize;
595 strsize -= nsize;
596 pnbuf++;
597 pnsize -= sizeof (PathNode);
598 return (pnp->pn_name);
599 }
600
601 /*
602 * Prior to calling an object, either via a .plt or through dlsym(), make sure
603 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire
604 * init's in the correct order, however, this order is typically based on needed
605 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
606 * still occur and result in bindings that were not captured during topological
607 * sorting. This routine compensates for this lack of binding information, and
608 * provides for dynamic .init firing.
609 */
610 void
is_dep_init(Rt_map * dlmp,Rt_map * clmp)611 is_dep_init(Rt_map *dlmp, Rt_map *clmp)
612 {
613 Rt_map **tobj;
614
615 /*
616 * If the caller is an auditor, and the destination isn't, then don't
617 * run any .inits (see comments in load_completion()).
618 */
619 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) &&
620 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0))
621 return;
622
623 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST))
624 return;
625
626 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
627 (FLG_RT_RELOCED | FLG_RT_INITDONE))
628 return;
629
630 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
631 (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
632 DBG_CALL(Dbg_util_no_init(dlmp));
633 return;
634 }
635
636 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
637 tobj[0] = dlmp;
638 call_init(tobj, DBG_INIT_DYN);
639 }
640 }
641
642 /*
643 * Execute .{preinit|init|fini}array sections
644 */
645 void
call_array(Addr * array,uint_t arraysz,Rt_map * lmp,Word shtype)646 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
647 {
648 int start, stop, incr, ndx;
649 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr));
650
651 if (array == NULL)
652 return;
653
654 /*
655 * initarray & preinitarray are walked from beginning to end - while
656 * finiarray is walked from end to beginning.
657 */
658 if (shtype == SHT_FINI_ARRAY) {
659 start = arraycnt - 1;
660 stop = incr = -1;
661 } else {
662 start = 0;
663 stop = arraycnt;
664 incr = 1;
665 }
666
667 /*
668 * Call the .*array[] entries
669 */
670 for (ndx = start; ndx != stop; ndx += incr) {
671 uint_t rtldflags;
672 void (*fptr)(void) = (void(*)())array[ndx];
673
674 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
675
676 APPLICATION_ENTER(rtldflags);
677 leave(LIST(lmp), 0);
678 (*fptr)();
679 (void) enter(0);
680 APPLICATION_RETURN(rtldflags);
681 }
682 }
683
684 /*
685 * Execute any .init sections. These are passed to us in an lmp array which
686 * (by default) will have been sorted.
687 */
688 void
call_init(Rt_map ** tobj,int flag)689 call_init(Rt_map **tobj, int flag)
690 {
691 Rt_map **_tobj, **_nobj;
692 static APlist *pending = NULL;
693
694 /*
695 * If we're in the middle of an INITFIRST, this must complete before
696 * any new init's are fired. In this case add the object list to the
697 * pending queue and return. We'll pick up the queue after any
698 * INITFIRST objects have their init's fired.
699 */
700 if (rtld_flags & RT_FL_INITFIRST) {
701 (void) aplist_append(&pending, tobj, AL_CNT_PENDING);
702 return;
703 }
704
705 /*
706 * Traverse the tobj array firing each objects init.
707 */
708 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
709 Rt_map *lmp = *_tobj;
710 void (*iptr)() = INIT(lmp);
711
712 if (FLAGS(lmp) & FLG_RT_INITCALL)
713 continue;
714
715 FLAGS(lmp) |= FLG_RT_INITCALL;
716
717 /*
718 * Establish an initfirst state if necessary - no other inits
719 * will be fired (because of additional relocation bindings)
720 * when in this state.
721 */
722 if (FLAGS(lmp) & FLG_RT_INITFRST)
723 rtld_flags |= RT_FL_INITFIRST;
724
725 if (INITARRAY(lmp) || iptr)
726 DBG_CALL(Dbg_util_call_init(lmp, flag));
727
728 if (iptr) {
729 uint_t rtldflags;
730
731 APPLICATION_ENTER(rtldflags);
732 leave(LIST(lmp), 0);
733 (*iptr)();
734 (void) enter(0);
735 APPLICATION_RETURN(rtldflags);
736 }
737
738 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
739 SHT_INIT_ARRAY);
740
741 if (INITARRAY(lmp) || iptr)
742 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
743
744 /*
745 * Set the initdone flag regardless of whether this object
746 * actually contains an .init section. This flag prevents us
747 * from processing this section again for an .init and also
748 * signifies that a .fini must be called should it exist.
749 * Clear the sort field for use in later .fini processing.
750 */
751 FLAGS(lmp) |= FLG_RT_INITDONE;
752 SORTVAL(lmp) = -1;
753
754 /*
755 * If we're firing an INITFIRST object, and other objects must
756 * be fired which are not INITFIRST, make sure we grab any
757 * pending objects that might have been delayed as this
758 * INITFIRST was processed.
759 */
760 if ((rtld_flags & RT_FL_INITFIRST) &&
761 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
762 Aliste idx;
763 Rt_map **pobj;
764
765 rtld_flags &= ~RT_FL_INITFIRST;
766
767 for (APLIST_TRAVERSE(pending, idx, pobj)) {
768 aplist_delete(pending, &idx);
769 call_init(pobj, DBG_INIT_PEND);
770 }
771 }
772 }
773 free(tobj);
774 }
775
776 /*
777 * Call .fini sections for the topologically sorted list of objects. This
778 * routine is called from remove_hdl() for any objects being torn down as part
779 * of a dlclose() operation, and from atexit() processing for all the remaining
780 * objects within the process.
781 */
782 void
call_fini(Lm_list * lml,Rt_map ** tobj,Rt_map * clmp)783 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp)
784 {
785 Rt_map **_tobj;
786
787 for (_tobj = tobj; *_tobj != NULL; _tobj++) {
788 Rt_map *lmp = *_tobj;
789
790 /*
791 * Only fire a .fini if the objects corresponding .init has
792 * completed. We collect all .fini sections of objects that
793 * had their .init collected, but that doesn't mean that at
794 * the time of collection, that the .init had completed.
795 */
796 if (FLAGS(lmp) & FLG_RT_INITDONE) {
797 void (*fptr)(void) = FINI(lmp);
798
799 if (FINIARRAY(lmp) || fptr)
800 DBG_CALL(Dbg_util_call_fini(lmp));
801
802 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
803 SHT_FINI_ARRAY);
804
805 if (fptr) {
806 uint_t rtldflags;
807
808 APPLICATION_ENTER(rtldflags);
809 leave(lml, 0);
810 (*fptr)();
811 (void) enter(0);
812 APPLICATION_RETURN(rtldflags);
813 }
814 }
815
816 /*
817 * Skip main, this is explicitly called last in atexit_fini().
818 */
819 if (FLAGS(lmp) & FLG_RT_ISMAIN)
820 continue;
821
822 /*
823 * This object has exercised its last instructions (regardless
824 * of whether it will be unmapped or not). Audit this closure.
825 */
826 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0)
827 audit_objclose(lmp, clmp);
828 }
829
830 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
831 pltcntu32, pltcntu44, pltcntfull, pltcntfar));
832
833 free(tobj);
834 }
835
836 /*
837 * Function called by atexit(3C). Calls all .fini sections within the objects
838 * that make up the process. As .fini processing is the last opportunity for
839 * any new bindings to be established, this is also a convenient location to
840 * check for unused objects.
841 */
842 void
atexit_fini()843 atexit_fini()
844 {
845 Rt_map **tobj, *lmp;
846 Lm_list *lml;
847 Aliste idx;
848
849 (void) enter(0);
850
851 rtld_flags |= RT_FL_ATEXIT;
852
853 lml = &lml_main;
854 lml->lm_flags |= LML_FLG_ATEXIT;
855 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
856 lmp = (Rt_map *)lml->lm_head;
857
858 /*
859 * Reverse topologically sort the main link-map for .fini execution.
860 */
861 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
862 (tobj != (Rt_map **)S_ERROR))
863 call_fini(lml, tobj, NULL);
864
865 /*
866 * Now that all .fini code has been run, see what unreferenced objects
867 * remain.
868 */
869 unused(lml);
870
871 /*
872 * Traverse any alternative link-map lists, looking for non-auditors.
873 */
874 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
875 /*
876 * Ignore the base-link-map list, which has already been
877 * processed, the runtime linkers link-map list, which is
878 * processed last, and any auditors.
879 */
880 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
881 (lml->lm_tflags & LML_TFLG_AUD_MASK) ||
882 ((lmp = (Rt_map *)lml->lm_head) == NULL))
883 continue;
884
885 lml->lm_flags |= LML_FLG_ATEXIT;
886 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
887
888 /*
889 * Reverse topologically sort the link-map for .fini execution.
890 */
891 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
892 (tobj != (Rt_map **)S_ERROR))
893 call_fini(lml, tobj, NULL);
894
895 unused(lml);
896 }
897
898 /*
899 * Add an explicit close to main and ld.so.1. Although main's .fini is
900 * collected in call_fini() to provide for FINITARRAY processing, its
901 * audit_objclose is explicitly skipped. This provides for it to be
902 * called last, here. This is the reverse of the explicit calls to
903 * audit_objopen() made in setup().
904 */
905 lml = &lml_main;
906 lmp = (Rt_map *)lml->lm_head;
907
908 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) {
909 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp);
910 audit_objclose(lmp, lmp);
911 }
912
913 /*
914 * Traverse any alternative link-map lists, looking for non-auditors.
915 */
916 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
917 /*
918 * Ignore the base-link-map list, which has already been
919 * processed, the runtime linkers link-map list, which is
920 * processed last, and any non-auditors.
921 */
922 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
923 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) ||
924 ((lmp = (Rt_map *)lml->lm_head) == NULL))
925 continue;
926
927 lml->lm_flags |= LML_FLG_ATEXIT;
928 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
929
930 /*
931 * Reverse topologically sort the link-map for .fini execution.
932 */
933 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
934 (tobj != (Rt_map **)S_ERROR))
935 call_fini(lml, tobj, NULL);
936
937 unused(lml);
938 }
939
940 /*
941 * Finally reverse topologically sort the runtime linkers link-map for
942 * .fini execution.
943 */
944 lml = &lml_rtld;
945 lml->lm_flags |= LML_FLG_ATEXIT;
946 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
947 lmp = (Rt_map *)lml->lm_head;
948
949 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
950 (tobj != (Rt_map **)S_ERROR))
951 call_fini(lml, tobj, NULL);
952
953 leave(&lml_main, 0);
954 }
955
956 /*
957 * This routine is called to complete any runtime linker activity which may have
958 * resulted in objects being loaded. This is called from all user entry points
959 * and from any internal dl*() requests.
960 */
961 void
load_completion(Rt_map * nlmp)962 load_completion(Rt_map *nlmp)
963 {
964 Rt_map **tobj = NULL;
965 Lm_list *nlml;
966
967 /*
968 * Establish any .init processing. Note, in a world of lazy loading,
969 * objects may have been loaded regardless of whether the users request
970 * was fulfilled (i.e., a dlsym() request may have failed to find a
971 * symbol but objects might have been loaded during its search). Thus,
972 * any tsorting starts from the nlmp (new link-maps) pointer and not
973 * necessarily from the link-map that may have satisfied the request.
974 *
975 * Note, the primary link-map has an initialization phase where dynamic
976 * .init firing is suppressed. This provides for a simple and clean
977 * handshake with the primary link-maps libc, which is important for
978 * establishing uberdata. In addition, auditors often obtain handles
979 * to primary link-map objects as the objects are loaded, so as to
980 * inspect the link-map for symbols. This inspection is allowed without
981 * running any code on the primary link-map, as running this code may
982 * reenter the auditor, who may not yet have finished its own
983 * initialization.
984 */
985 if (nlmp)
986 nlml = LIST(nlmp);
987
988 if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
989 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
990 if ((tobj = tsort(nlmp, nlml->lm_init,
991 RT_SORT_REV)) == (Rt_map **)S_ERROR)
992 tobj = NULL;
993 }
994
995 /*
996 * Make sure any alternative link-map retrieves any external interfaces
997 * and initializes threads.
998 */
999 if (nlmp && (nlml != &lml_main)) {
1000 (void) rt_get_extern(nlml, nlmp);
1001 rt_thr_init(nlml);
1002 }
1003
1004 /*
1005 * Traverse the list of new link-maps and register any dynamic TLS.
1006 * This storage is established for any objects not on the primary
1007 * link-map, and for any objects added to the primary link-map after
1008 * static TLS has been registered.
1009 */
1010 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
1011 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1012 Rt_map *lmp;
1013
1014 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) {
1015 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
1016 tls_modaddrem(lmp, TM_FLG_MODADD);
1017 }
1018 nlml->lm_tls = 0;
1019 }
1020
1021 /*
1022 * Fire any .init's.
1023 */
1024 if (tobj)
1025 call_init(tobj, DBG_INIT_SORT);
1026 }
1027
1028 /*
1029 * Append an item to the specified link map control list.
1030 */
1031 void
lm_append(Lm_list * lml,Aliste lmco,Rt_map * lmp)1032 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1033 {
1034 Lm_cntl *lmc;
1035 int add = 1;
1036
1037 /*
1038 * Indicate that this link-map list has a new object.
1039 */
1040 (lml->lm_obj)++;
1041
1042 /*
1043 * If we're about to add a new object to the main link-map control
1044 * list, alert the debuggers. Additions of individual objects to the
1045 * main link-map control list occur during initial setup as the
1046 * applications immediate dependencies are loaded. Additional objects
1047 * are loaded on the main link-map control list after they have been
1048 * fully initialized on an alternative link-map control list. See
1049 * lm_move().
1050 */
1051 if (lmco == ALIST_OFF_DATA)
1052 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1053
1054 /* LINTED */
1055 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
1056
1057 /*
1058 * A link-map list header points to one of more link-map control lists
1059 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is
1060 * the list of relocated objects. Other lists maintain objects that
1061 * are still being analyzed or relocated. This list provides the core
1062 * link-map list information used by all ld.so.1 routines.
1063 */
1064 if (lmc->lc_head == NULL) {
1065 /*
1066 * If this is the first link-map for the given control list,
1067 * initialize the list.
1068 */
1069 lmc->lc_head = lmc->lc_tail = lmp;
1070 add = 0;
1071
1072 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1073 Rt_map *tlmp;
1074
1075 /*
1076 * If this is an interposer then append the link-map following
1077 * any other interposers (these are objects that have been
1078 * previously preloaded, or were identified with -z interpose).
1079 * Interposers can only be inserted on the first link-map
1080 * control list, as once relocation has started, interposition
1081 * from new interposers can't be guaranteed.
1082 *
1083 * NOTE: We do not interpose on the head of a list. This model
1084 * evolved because dynamic executables have already been fully
1085 * relocated within themselves and thus can't be interposed on.
1086 * Nowadays it's possible to have shared objects at the head of
1087 * a list, which conceptually means they could be interposed on.
1088 * But, shared objects can be created via dldump() and may only
1089 * be partially relocated (just relatives), in which case they
1090 * are interposable, but are marked as fixed (ET_EXEC).
1091 *
1092 * Thus we really don't have a clear method of deciding when the
1093 * head of a link-map is interposable. So, to be consistent,
1094 * for now only add interposers after the link-map lists head
1095 * object.
1096 */
1097 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp;
1098 tlmp = NEXT_RT_MAP(tlmp)) {
1099
1100 if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1101 continue;
1102
1103 /*
1104 * Insert the new link-map before this non-interposer,
1105 * and indicate an interposer is found.
1106 */
1107 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp;
1108 PREV(lmp) = PREV(tlmp);
1109
1110 NEXT(lmp) = (Link_map *)tlmp;
1111 PREV(tlmp) = (Link_map *)lmp;
1112
1113 lmc->lc_flags |= LMC_FLG_REANALYZE;
1114 add = 0;
1115 break;
1116 }
1117 }
1118
1119 /*
1120 * Fall through to appending the new link map to the tail of the list.
1121 * If we're processing the initial objects of this link-map list, add
1122 * them to the backward compatibility list.
1123 */
1124 if (add) {
1125 NEXT(lmc->lc_tail) = (Link_map *)lmp;
1126 PREV(lmp) = (Link_map *)lmc->lc_tail;
1127 lmc->lc_tail = lmp;
1128 }
1129
1130 /*
1131 * Having added this link-map to a control list, indicate which control
1132 * list the link-map belongs to. Note, control list information is
1133 * always maintained as an offset, as the Alist can be reallocated.
1134 */
1135 CNTL(lmp) = lmco;
1136
1137 /*
1138 * Indicate if an interposer is found. Note that the first object on a
1139 * link-map can be explicitly defined as an interposer so that it can
1140 * provide interposition over direct binding requests.
1141 */
1142 if (FLAGS(lmp) & MSK_RT_INTPOSE)
1143 lml->lm_flags |= LML_FLG_INTRPOSE;
1144
1145 /*
1146 * For backward compatibility with debuggers, the link-map list contains
1147 * pointers to the main control list.
1148 */
1149 if (lmco == ALIST_OFF_DATA) {
1150 lml->lm_head = lmc->lc_head;
1151 lml->lm_tail = lmc->lc_tail;
1152 }
1153 }
1154
1155 /*
1156 * Delete an item from the specified link map control list.
1157 */
1158 void
lm_delete(Lm_list * lml,Rt_map * lmp,Rt_map * clmp)1159 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp)
1160 {
1161 Lm_cntl *lmc;
1162
1163 /*
1164 * If the control list pointer hasn't been initialized, this object
1165 * never got added to a link-map list.
1166 */
1167 if (CNTL(lmp) == 0)
1168 return;
1169
1170 /*
1171 * If we're about to delete an object from the main link-map control
1172 * list, alert the debuggers.
1173 */
1174 if (CNTL(lmp) == ALIST_OFF_DATA)
1175 rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1176
1177 /*
1178 * If we're being audited tell the audit library that we're
1179 * about to go deleting dependencies.
1180 */
1181 if (clmp && (aud_activity ||
1182 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY)))
1183 audit_activity(clmp, LA_ACT_DELETE);
1184
1185 /* LINTED */
1186 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
1187
1188 if (lmc->lc_head == lmp)
1189 lmc->lc_head = NEXT_RT_MAP(lmp);
1190 else
1191 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp);
1192
1193 if (lmc->lc_tail == lmp)
1194 lmc->lc_tail = PREV_RT_MAP(lmp);
1195 else
1196 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp);
1197
1198 /*
1199 * For backward compatibility with debuggers, the link-map list contains
1200 * pointers to the main control list.
1201 */
1202 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
1203 lml->lm_head = lmc->lc_head;
1204 lml->lm_tail = lmc->lc_tail;
1205 }
1206
1207 /*
1208 * Indicate we have one less object on this control list.
1209 */
1210 (lml->lm_obj)--;
1211 }
1212
1213 /*
1214 * Move a link-map control list to another. Objects that are being relocated
1215 * are maintained on secondary control lists. Once their relocation is
1216 * complete, the entire list is appended to the previous control list, as this
1217 * list must have been the trigger for generating the new control list.
1218 */
1219 void
lm_move(Lm_list * lml,Aliste nlmco,Aliste plmco,Lm_cntl * nlmc,Lm_cntl * plmc)1220 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1221 {
1222 Rt_map *lmp;
1223
1224 /*
1225 * If we're about to add a new family of objects to the main link-map
1226 * control list, alert the debuggers. Additions of object families to
1227 * the main link-map control list occur during lazy loading, filtering
1228 * and dlopen().
1229 */
1230 if (plmco == ALIST_OFF_DATA)
1231 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1232
1233 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1234
1235 /*
1236 * Indicate each new link-map has been moved to the previous link-map
1237 * control list.
1238 */
1239 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
1240 CNTL(lmp) = plmco;
1241
1242 /*
1243 * If these objects are being added to the main link-map
1244 * control list, indicate that there are init's available
1245 * for harvesting.
1246 */
1247 if (plmco == ALIST_OFF_DATA) {
1248 lml->lm_init++;
1249 lml->lm_flags |= LML_FLG_OBJADDED;
1250 }
1251 }
1252
1253 /*
1254 * Move the new link-map control list, to the callers link-map control
1255 * list.
1256 */
1257 if (plmc->lc_head == NULL) {
1258 plmc->lc_head = nlmc->lc_head;
1259 PREV(nlmc->lc_head) = NULL;
1260 } else {
1261 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1262 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1263 }
1264
1265 plmc->lc_tail = nlmc->lc_tail;
1266 nlmc->lc_head = nlmc->lc_tail = NULL;
1267
1268 /*
1269 * For backward compatibility with debuggers, the link-map list contains
1270 * pointers to the main control list.
1271 */
1272 if (plmco == ALIST_OFF_DATA) {
1273 lml->lm_head = plmc->lc_head;
1274 lml->lm_tail = plmc->lc_tail;
1275 }
1276 }
1277
1278 /*
1279 * Create, or assign a link-map control list. Each link-map list contains a
1280 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the
1281 * description in include/rtld.h). During the initial construction of a
1282 * process, objects are added to this main control list. This control list is
1283 * never deleted, unless an alternate link-map list has been requested (say for
1284 * auditors), and the associated objects could not be loaded or relocated.
1285 *
1286 * Once relocation has started, any lazy loadable objects, or filtees, are
1287 * processed on a new, temporary control list. Only when these objects have
1288 * been fully relocated, are they moved to the main link-map control list.
1289 * Once the objects are moved, this temporary control list is deleted (see
1290 * remove_cntl()).
1291 *
1292 * A dlopen() always requires a new temporary link-map control list.
1293 * Typically, a dlopen() occurs on a link-map list that had already started
1294 * relocation, however, auditors can dlopen() objects on the main link-map
1295 * list while under initial construction, before any relocation has begun.
1296 * Hence, dlopen() requests are explicitly flagged.
1297 */
1298 Aliste
create_cntl(Lm_list * lml,int dlopen)1299 create_cntl(Lm_list *lml, int dlopen)
1300 {
1301 /*
1302 * If the head link-map object has already been relocated, create a
1303 * new, temporary, control list.
1304 */
1305 if (dlopen || (lml->lm_head == NULL) ||
1306 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) {
1307 Lm_cntl *lmc;
1308
1309 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl),
1310 AL_CNT_LMLISTS)) == NULL)
1311 return (NULL);
1312
1313 return ((Aliste)((char *)lmc - (char *)lml->lm_lists));
1314 }
1315
1316 return (ALIST_OFF_DATA);
1317 }
1318
1319 /*
1320 * Environment variables can have a variety of defined permutations, and thus
1321 * the following infrastructure exists to allow this variety and to select the
1322 * required definition.
1323 *
1324 * Environment variables can be defined as 32- or 64-bit specific, and if so
1325 * they will take precedence over any instruction set neutral form. Typically
1326 * this is only useful when the environment value is an informational string.
1327 *
1328 * Environment variables may be obtained from the standard user environment or
1329 * from a configuration file. The latter provides a fallback if no user
1330 * environment setting is found, and can take two forms:
1331 *
1332 * - a replaceable definition - this will be used if no user environment
1333 * setting has been seen, or
1334 *
1335 * - an permanent definition - this will be used no matter what user
1336 * environment setting is seen. In the case of list variables it will be
1337 * appended to any process environment setting seen.
1338 *
1339 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1340 * override any replaceable environment variables from a configuration file.
1341 */
1342 static u_longlong_t rplgen = 0; /* replaceable generic */
1343 /* variables */
1344 static u_longlong_t rplisa = 0; /* replaceable ISA specific */
1345 /* variables */
1346 static u_longlong_t prmgen = 0; /* permanent generic */
1347 /* variables */
1348 static u_longlong_t prmisa = 0; /* permanent ISA specific */
1349 /* variables */
1350 static u_longlong_t cmdgen = 0; /* command line (-e) generic */
1351 /* variables */
1352 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */
1353 /* specific variables */
1354
1355 /*
1356 * Classify an environment variables type.
1357 */
1358 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */
1359 /* the wrong ISA */
1360 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */
1361 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */
1362 /* config file */
1363 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */
1364 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */
1365 #define ENV_TYP_NULL 0x20 /* variable is null */
1366
1367 /*
1368 * Identify all environment variables.
1369 */
1370 #define ENV_FLG_AUDIT 0x0000000000001ULL
1371 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL
1372 #define ENV_FLG_BIND_NOW 0x0000000000004ULL
1373 #define ENV_FLG_BIND_NOT 0x0000000000008ULL
1374 #define ENV_FLG_BINDINGS 0x0000000000010ULL
1375 #define ENV_FLG_CONFGEN 0x0000000000020ULL
1376 #define ENV_FLG_CONFIG 0x0000000000040ULL
1377 #define ENV_FLG_DEBUG 0x0000000000080ULL
1378 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL
1379 #define ENV_FLG_DEMANGLE 0x0000000000200ULL
1380 #define ENV_FLG_FLAGS 0x0000000000400ULL
1381 #define ENV_FLG_INIT 0x0000000000800ULL
1382 #define ENV_FLG_LIBPATH 0x0000000001000ULL
1383 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL
1384 #define ENV_FLG_LOADFLTR 0x0000000004000ULL
1385 #define ENV_FLG_NOAUDIT 0x0000000008000ULL
1386 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL
1387 #define ENV_FLG_NOBAPLT 0x0000000020000ULL
1388 #define ENV_FLG_NOCONFIG 0x0000000040000ULL
1389 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL
1390 #define ENV_FLG_NODIRECT 0x0000000100000ULL
1391 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL
1392 #define ENV_FLG_NOLAZY 0x0000000400000ULL
1393 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL
1394 #define ENV_FLG_NOVERSION 0x0000001000000ULL
1395 #define ENV_FLG_PRELOAD 0x0000002000000ULL
1396 #define ENV_FLG_PROFILE 0x0000004000000ULL
1397 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL
1398 #define ENV_FLG_SIGNAL 0x0000010000000ULL
1399 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL
1400 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL
1401 #define ENV_FLG_UNREF 0x0000080000000ULL
1402 #define ENV_FLG_UNUSED 0x0000100000000ULL
1403 #define ENV_FLG_VERBOSE 0x0000200000000ULL
1404 #define ENV_FLG_WARN 0x0000400000000ULL
1405 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL
1406 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL
1407 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL
1408 #define ENV_FLG_NOPAREXT 0x0004000000000ULL
1409 #define ENV_FLG_HWCAP 0x0008000000000ULL
1410 #define ENV_FLG_SFCAP 0x0010000000000ULL
1411 #define ENV_FLG_MACHCAP 0x0020000000000ULL
1412 #define ENV_FLG_PLATCAP 0x0040000000000ULL
1413 #define ENV_FLG_CAP_FILES 0x0080000000000ULL
1414 #define ENV_FLG_DEFERRED 0x0100000000000ULL
1415 #define ENV_FLG_NOENVIRON 0x0200000000000ULL
1416
1417 #define SEL_REPLACE 0x0001
1418 #define SEL_PERMANT 0x0002
1419 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */
1420 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
1421 #define SEL_ACT_STR 0x0400 /* setting string value */
1422 #define SEL_ACT_LML 0x0800 /* setting lml_flags */
1423 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
1424 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */
1425 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */
1426
1427 /*
1428 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
1429 * and len specifies its length (comparing a strings length before the string
1430 * itself speed things up). s2 points to the token itself which has already
1431 * had any leading white-space removed.
1432 */
1433 static void
ld_generic_env(const char * s1,size_t len,const char * s2,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)1434 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1435 Word *lmtflags, uint_t env_flags, int aout)
1436 {
1437 u_longlong_t variable = 0;
1438 ushort_t select = 0;
1439 const char **str;
1440 Word val = 0;
1441
1442 /*
1443 * Determine whether we're dealing with a replaceable or permanent
1444 * string.
1445 */
1446 if (env_flags & ENV_TYP_PERMANT) {
1447 /*
1448 * If the string is from a configuration file and defined as
1449 * permanent, assign it as permanent.
1450 */
1451 select |= SEL_PERMANT;
1452 } else
1453 select |= SEL_REPLACE;
1454
1455 /*
1456 * Parse the variable given.
1457 *
1458 * The LD_AUDIT family.
1459 */
1460 if (*s1 == 'A') {
1461 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1462 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1463 /*
1464 * Replaceable and permanent audit objects can exist.
1465 */
1466 select |= SEL_ACT_STR;
1467 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit;
1468 variable = ENV_FLG_AUDIT;
1469 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1470 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1471 MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1472 /*
1473 * A specialized variable for plt_exit() use, not
1474 * documented for general use.
1475 */
1476 select |= SEL_ACT_SPEC_2;
1477 variable = ENV_FLG_AUDIT_ARGS;
1478 }
1479 }
1480 /*
1481 * The LD_BIND family.
1482 */
1483 else if (*s1 == 'B') {
1484 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1485 MSG_ORIG(MSG_LD_BIND_LAZY),
1486 MSG_LD_BIND_LAZY_SIZE) == 0)) {
1487 select |= SEL_ACT_RT2;
1488 val = RT_FL2_BINDLAZY;
1489 variable = ENV_FLG_BIND_LAZY;
1490 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1491 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1492 select |= SEL_ACT_RT2;
1493 val = RT_FL2_BINDNOW;
1494 variable = ENV_FLG_BIND_NOW;
1495 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1496 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1497 /*
1498 * Another trick, enabled to help debug AOUT
1499 * applications under BCP, but not documented for
1500 * general use.
1501 */
1502 select |= SEL_ACT_RT;
1503 val = RT_FL_NOBIND;
1504 variable = ENV_FLG_BIND_NOT;
1505 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1506 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1507 /*
1508 * This variable is simply for backward compatibility.
1509 * If this and LD_DEBUG are both specified, only one of
1510 * the strings is going to get processed.
1511 */
1512 select |= SEL_ACT_SPEC_2;
1513 variable = ENV_FLG_BINDINGS;
1514 }
1515 }
1516 /*
1517 * LD_CAP_FILES and LD_CONFIG family.
1518 */
1519 else if (*s1 == 'C') {
1520 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1,
1521 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) {
1522 select |= SEL_ACT_STR;
1523 str = (select & SEL_REPLACE) ?
1524 &rpl_cap_files : &prm_cap_files;
1525 variable = ENV_FLG_CAP_FILES;
1526 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1527 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1528 /*
1529 * This variable is not documented for general use.
1530 * Although originaly designed for internal use with
1531 * crle(1), this variable is in use by the Studio
1532 * auditing tools. Hence, it can't be removed.
1533 */
1534 select |= SEL_ACT_SPEC_2;
1535 variable = ENV_FLG_CONFGEN;
1536 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1537 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1538 /*
1539 * Secure applications must use a default configuration
1540 * file. A setting from a configuration file doesn't
1541 * make sense (given we must be reading a configuration
1542 * file to have gotten this).
1543 */
1544 if ((rtld_flags & RT_FL_SECURE) ||
1545 (env_flags & ENV_TYP_CONFIG))
1546 return;
1547 select |= SEL_ACT_STR;
1548 str = &config->c_name;
1549 variable = ENV_FLG_CONFIG;
1550 }
1551 }
1552 /*
1553 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and
1554 * LD_DEMANGLE.
1555 */
1556 else if (*s1 == 'D') {
1557 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1558 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1559 select |= SEL_ACT_STR;
1560 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug;
1561 variable = ENV_FLG_DEBUG;
1562 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1563 MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1564 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1565 select |= SEL_ACT_STR;
1566 str = &dbg_file;
1567 variable = ENV_FLG_DEBUG_OUTPUT;
1568 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1,
1569 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) {
1570 select |= SEL_ACT_RT;
1571 val = RT_FL_DEFERRED;
1572 variable = ENV_FLG_DEFERRED;
1573 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1574 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1575 select |= SEL_ACT_RT;
1576 val = RT_FL_DEMANGLE;
1577 variable = ENV_FLG_DEMANGLE;
1578 }
1579 }
1580 /*
1581 * LD_FLAGS - collect the best variable definition. On completion of
1582 * environment variable processing pass the result to ld_flags_env()
1583 * where they'll be decomposed and passed back to this routine.
1584 */
1585 else if (*s1 == 'F') {
1586 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1587 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1588 select |= SEL_ACT_SPEC_1;
1589 str = (select & SEL_REPLACE) ? &rpl_ldflags :
1590 &prm_ldflags;
1591 variable = ENV_FLG_FLAGS;
1592 }
1593 }
1594 /*
1595 * LD_HWCAP.
1596 */
1597 else if (*s1 == 'H') {
1598 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1,
1599 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) {
1600 select |= SEL_ACT_STR;
1601 str = (select & SEL_REPLACE) ?
1602 &rpl_hwcap : &prm_hwcap;
1603 variable = ENV_FLG_HWCAP;
1604 }
1605 }
1606 /*
1607 * LD_INIT (internal, used by ldd(1)).
1608 */
1609 else if (*s1 == 'I') {
1610 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1611 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1612 select |= SEL_ACT_LML;
1613 val = LML_FLG_TRC_INIT;
1614 variable = ENV_FLG_INIT;
1615 }
1616 }
1617 /*
1618 * The LD_LIBRARY_PATH and LD_LOAD families.
1619 */
1620 else if (*s1 == 'L') {
1621 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1622 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1623 select |= SEL_ACT_SPEC_1;
1624 str = (select & SEL_REPLACE) ? &rpl_libpath :
1625 &prm_libpath;
1626 variable = ENV_FLG_LIBPATH;
1627 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1628 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1629 /*
1630 * This variable is not documented for general use.
1631 * Although originaly designed for internal use with
1632 * crle(1), this variable is in use by the Studio
1633 * auditing tools. Hence, it can't be removed.
1634 */
1635 select |= SEL_ACT_LML;
1636 val = LML_FLG_LOADAVAIL;
1637 variable = ENV_FLG_LOADAVAIL;
1638 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1639 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1640 select |= SEL_ACT_SPEC_2;
1641 variable = ENV_FLG_LOADFLTR;
1642 }
1643 }
1644 /*
1645 * LD_MACHCAP.
1646 */
1647 else if (*s1 == 'M') {
1648 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1,
1649 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) {
1650 select |= SEL_ACT_STR;
1651 str = (select & SEL_REPLACE) ?
1652 &rpl_machcap : &prm_machcap;
1653 variable = ENV_FLG_MACHCAP;
1654 }
1655 }
1656 /*
1657 * The LD_NO family.
1658 */
1659 else if (*s1 == 'N') {
1660 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1661 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1662 select |= SEL_ACT_RT;
1663 val = RT_FL_NOAUDIT;
1664 variable = ENV_FLG_NOAUDIT;
1665 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1666 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1667 select |= SEL_ACT_RT;
1668 val = RT_FL_NOAUXFLTR;
1669 variable = ENV_FLG_NOAUXFLTR;
1670 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1671 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1672 select |= SEL_ACT_RT;
1673 val = RT_FL_NOBAPLT;
1674 variable = ENV_FLG_NOBAPLT;
1675 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1676 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1677 select |= SEL_ACT_RT;
1678 val = RT_FL_NOCFG;
1679 variable = ENV_FLG_NOCONFIG;
1680 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1681 MSG_ORIG(MSG_LD_NODIRCONFIG),
1682 MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1683 select |= SEL_ACT_RT;
1684 val = RT_FL_NODIRCFG;
1685 variable = ENV_FLG_NODIRCONFIG;
1686 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1687 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1688 select |= SEL_ACT_LMLT;
1689 val = LML_TFLG_NODIRECT;
1690 variable = ENV_FLG_NODIRECT;
1691 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1692 MSG_ORIG(MSG_LD_NOENVCONFIG),
1693 MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1694 select |= SEL_ACT_RT;
1695 val = RT_FL_NOENVCFG;
1696 variable = ENV_FLG_NOENVCONFIG;
1697 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1698 MSG_ORIG(MSG_LD_NOFLTCONFIG),
1699 MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1700 select |= SEL_ACT_RT2;
1701 val = RT_FL2_NOFLTCFG;
1702 variable = ENV_FLG_NOFLTCONFIG;
1703 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1704 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1705 select |= SEL_ACT_LMLT;
1706 val = LML_TFLG_NOLAZYLD;
1707 variable = ENV_FLG_NOLAZY;
1708 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1709 MSG_ORIG(MSG_LD_NOOBJALTER),
1710 MSG_LD_NOOBJALTER_SIZE) == 0)) {
1711 select |= SEL_ACT_RT;
1712 val = RT_FL_NOOBJALT;
1713 variable = ENV_FLG_NOOBJALTER;
1714 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1715 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1716 select |= SEL_ACT_RT;
1717 val = RT_FL_NOVERSION;
1718 variable = ENV_FLG_NOVERSION;
1719 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1720 MSG_ORIG(MSG_LD_NOUNRESWEAK),
1721 MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1722 /*
1723 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1724 */
1725 select |= SEL_ACT_LML;
1726 val = LML_FLG_TRC_NOUNRESWEAK;
1727 variable = ENV_FLG_NOUNRESWEAK;
1728 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
1729 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
1730 select |= SEL_ACT_LML;
1731 val = LML_FLG_TRC_NOPAREXT;
1732 variable = ENV_FLG_NOPAREXT;
1733 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1,
1734 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) {
1735 /*
1736 * LD_NOENVIRON can only be set with ld.so.1 -e.
1737 */
1738 select |= SEL_ACT_RT;
1739 val = RT_FL_NOENVIRON;
1740 variable = ENV_FLG_NOENVIRON;
1741 }
1742 }
1743 /*
1744 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
1745 */
1746 else if (*s1 == 'P') {
1747 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1,
1748 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) {
1749 select |= SEL_ACT_STR;
1750 str = (select & SEL_REPLACE) ?
1751 &rpl_platcap : &prm_platcap;
1752 variable = ENV_FLG_PLATCAP;
1753 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1754 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1755 select |= SEL_ACT_STR;
1756 str = (select & SEL_REPLACE) ? &rpl_preload :
1757 &prm_preload;
1758 variable = ENV_FLG_PRELOAD;
1759 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1760 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1761 /*
1762 * Only one user library can be profiled at a time.
1763 */
1764 select |= SEL_ACT_SPEC_2;
1765 variable = ENV_FLG_PROFILE;
1766 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1767 MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1768 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1769 /*
1770 * Only one user library can be profiled at a time.
1771 */
1772 select |= SEL_ACT_STR;
1773 str = &profile_out;
1774 variable = ENV_FLG_PROFILE_OUTPUT;
1775 }
1776 }
1777 /*
1778 * LD_SFCAP and LD_SIGNAL.
1779 */
1780 else if (*s1 == 'S') {
1781 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1,
1782 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) {
1783 select |= SEL_ACT_STR;
1784 str = (select & SEL_REPLACE) ?
1785 &rpl_sfcap : &prm_sfcap;
1786 variable = ENV_FLG_SFCAP;
1787 } else if ((len == MSG_LD_SIGNAL_SIZE) &&
1788 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1789 MSG_LD_SIGNAL_SIZE) == 0) &&
1790 ((rtld_flags & RT_FL_SECURE) == 0)) {
1791 select |= SEL_ACT_SPEC_2;
1792 variable = ENV_FLG_SIGNAL;
1793 }
1794 }
1795 /*
1796 * The LD_TRACE family (internal, used by ldd(1)). This definition is
1797 * the key to enabling all other ldd(1) specific environment variables.
1798 * In case an auditor is called, which in turn might exec(2) a
1799 * subprocess, this variable is disabled, so that any subprocess
1800 * escapes ldd(1) processing.
1801 */
1802 else if (*s1 == 'T') {
1803 if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1804 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1805 MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1806 ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1807 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1808 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1809 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1810 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1811 char *s0 = (char *)s1;
1812
1813 select |= SEL_ACT_SPEC_2;
1814 variable = ENV_FLG_TRACE_OBJS;
1815
1816 #if defined(__sparc) || defined(__x86)
1817 /*
1818 * The simplest way to "disable" this variable is to
1819 * truncate this string to "LD_'\0'". This string is
1820 * ignored by any ld.so.1 environment processing.
1821 * Use of such interfaces as unsetenv(3c) are overkill,
1822 * and would drag too much libc implementation detail
1823 * into ld.so.1.
1824 */
1825 *s0 = '\0';
1826 #else
1827 /*
1828 * Verify that the above write is appropriate for any new platforms.
1829 */
1830 #error unsupported architecture!
1831 #endif
1832 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1833 MSG_ORIG(MSG_LD_TRACE_PTHS),
1834 MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1835 select |= SEL_ACT_LML;
1836 val = LML_FLG_TRC_SEARCH;
1837 variable = ENV_FLG_TRACE_PTHS;
1838 }
1839 }
1840 /*
1841 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1842 */
1843 else if (*s1 == 'U') {
1844 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1845 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1846 select |= SEL_ACT_LML;
1847 val = LML_FLG_TRC_UNREF;
1848 variable = ENV_FLG_UNREF;
1849 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1850 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1851 select |= SEL_ACT_LML;
1852 val = LML_FLG_TRC_UNUSED;
1853 variable = ENV_FLG_UNUSED;
1854 }
1855 }
1856 /*
1857 * LD_VERBOSE (internal, used by ldd(1)).
1858 */
1859 else if (*s1 == 'V') {
1860 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1861 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1862 select |= SEL_ACT_LML;
1863 val = LML_FLG_TRC_VERBOSE;
1864 variable = ENV_FLG_VERBOSE;
1865 }
1866 }
1867 /*
1868 * LD_WARN (internal, used by ldd(1)).
1869 */
1870 else if (*s1 == 'W') {
1871 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1872 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1873 select |= SEL_ACT_LML;
1874 val = LML_FLG_TRC_WARN;
1875 variable = ENV_FLG_WARN;
1876 }
1877 }
1878
1879 if (variable == 0)
1880 return;
1881
1882 /*
1883 * If the variable is already processed with and ISA specific variable,
1884 * no further processing is needed.
1885 */
1886 if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1887 ((select & SEL_PERMANT) && (prmisa & variable)))
1888 return;
1889
1890 /*
1891 * If this variable has already been set via the command line, then
1892 * ignore this variable. The command line, -e, takes precedence.
1893 */
1894 if (env_flags & ENV_TYP_ISA) {
1895 if (cmdisa & variable)
1896 return;
1897 if (env_flags & ENV_TYP_CMDLINE)
1898 cmdisa |= variable;
1899 } else {
1900 if (cmdgen & variable)
1901 return;
1902 if (env_flags & ENV_TYP_CMDLINE)
1903 cmdgen |= variable;
1904 }
1905
1906 /*
1907 * Mark the appropriate variables.
1908 */
1909 if (env_flags & ENV_TYP_ISA) {
1910 /*
1911 * This is an ISA setting.
1912 */
1913 if (select & SEL_REPLACE) {
1914 if (rplisa & variable)
1915 return;
1916 rplisa |= variable;
1917 } else {
1918 prmisa |= variable;
1919 }
1920 } else {
1921 /*
1922 * This is a non-ISA setting.
1923 */
1924 if (select & SEL_REPLACE) {
1925 if (rplgen & variable)
1926 return;
1927 rplgen |= variable;
1928 } else
1929 prmgen |= variable;
1930 }
1931
1932 /*
1933 * Now perform the setting.
1934 */
1935 if (select & SEL_ACT_RT) {
1936 if (s2)
1937 rtld_flags |= val;
1938 else
1939 rtld_flags &= ~val;
1940 } else if (select & SEL_ACT_RT2) {
1941 if (s2)
1942 rtld_flags2 |= val;
1943 else
1944 rtld_flags2 &= ~val;
1945 } else if (select & SEL_ACT_STR) {
1946 if (env_flags & ENV_TYP_NULL)
1947 *str = NULL;
1948 else
1949 *str = s2;
1950 } else if (select & SEL_ACT_LML) {
1951 if (s2)
1952 *lmflags |= val;
1953 else
1954 *lmflags &= ~val;
1955 } else if (select & SEL_ACT_LMLT) {
1956 if (s2)
1957 *lmtflags |= val;
1958 else
1959 *lmtflags &= ~val;
1960 } else if (select & SEL_ACT_SPEC_1) {
1961 /*
1962 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1963 */
1964 if (env_flags & ENV_TYP_NULL)
1965 *str = NULL;
1966 else
1967 *str = s2;
1968 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1969 if (s2) {
1970 if (variable == ENV_FLG_FLAGS)
1971 env_info |= ENV_INF_FLAGCFG;
1972 else
1973 env_info |= ENV_INF_PATHCFG;
1974 } else {
1975 if (variable == ENV_FLG_FLAGS)
1976 env_info &= ~ENV_INF_FLAGCFG;
1977 else
1978 env_info &= ~ENV_INF_PATHCFG;
1979 }
1980 }
1981 } else if (select & SEL_ACT_SPEC_2) {
1982 /*
1983 * variables can be: ENV_FLG_
1984 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
1985 * SIGNAL, TRACE_OBJS
1986 */
1987 switch (variable) {
1988 case ENV_FLG_AUDIT_ARGS:
1989 if (s2) {
1990 audit_argcnt = atoi(s2);
1991 audit_argcnt += audit_argcnt % 2;
1992 } else
1993 audit_argcnt = 0;
1994 break;
1995 case ENV_FLG_BINDINGS:
1996 if (s2)
1997 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
1998 else
1999 rpl_debug = NULL;
2000 break;
2001 case ENV_FLG_CONFGEN:
2002 if (s2) {
2003 rtld_flags |= RT_FL_CONFGEN;
2004 *lmflags |= LML_FLG_IGNRELERR;
2005 } else {
2006 rtld_flags &= ~RT_FL_CONFGEN;
2007 *lmflags &= ~LML_FLG_IGNRELERR;
2008 }
2009 break;
2010 case ENV_FLG_LOADFLTR:
2011 if (s2) {
2012 *lmtflags |= LML_TFLG_LOADFLTR;
2013 if (*s2 == '2')
2014 rtld_flags |= RT_FL_WARNFLTR;
2015 } else {
2016 *lmtflags &= ~LML_TFLG_LOADFLTR;
2017 rtld_flags &= ~RT_FL_WARNFLTR;
2018 }
2019 break;
2020 case ENV_FLG_PROFILE:
2021 profile_name = s2;
2022 if (s2) {
2023 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2024 return;
2025 }
2026 /* BEGIN CSTYLED */
2027 if (rtld_flags & RT_FL_SECURE) {
2028 profile_lib =
2029 #if defined(_ELF64)
2030 MSG_ORIG(MSG_PTH_LDPROFSE_64);
2031 #else
2032 MSG_ORIG(MSG_PTH_LDPROFSE);
2033 #endif
2034 } else {
2035 profile_lib =
2036 #if defined(_ELF64)
2037 MSG_ORIG(MSG_PTH_LDPROF_64);
2038 #else
2039 MSG_ORIG(MSG_PTH_LDPROF);
2040 #endif
2041 }
2042 /* END CSTYLED */
2043 } else
2044 profile_lib = NULL;
2045 break;
2046 case ENV_FLG_SIGNAL:
2047 killsig = s2 ? atoi(s2) : SIGKILL;
2048 break;
2049 case ENV_FLG_TRACE_OBJS:
2050 if (s2) {
2051 *lmflags |= LML_FLG_TRC_ENABLE;
2052 if (*s2 == '2')
2053 *lmflags |= LML_FLG_TRC_LDDSTUB;
2054 } else
2055 *lmflags &=
2056 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB);
2057 break;
2058 }
2059 }
2060 }
2061
2062 /*
2063 * Determine whether we have an architecture specific environment variable.
2064 * If we do, and we're the wrong architecture, it'll just get ignored.
2065 * Otherwise the variable is processed in it's architecture neutral form.
2066 */
2067 static int
ld_arch_env(const char * s1,size_t * len)2068 ld_arch_env(const char *s1, size_t *len)
2069 {
2070 size_t _len = *len - 3;
2071
2072 if (s1[_len++] == '_') {
2073 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2074 #if defined(_ELF64)
2075 return (ENV_TYP_IGNORE);
2076 #else
2077 *len = *len - 3;
2078 return (ENV_TYP_ISA);
2079 #endif
2080 }
2081 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2082 #if defined(_ELF64)
2083 *len = *len - 3;
2084 return (ENV_TYP_ISA);
2085 #else
2086 return (ENV_TYP_IGNORE);
2087 #endif
2088 }
2089 }
2090 return (0);
2091 }
2092
2093 /*
2094 * Process an LD_FLAGS environment variable. The value can be a comma
2095 * separated set of tokens, which are sent (in upper case) into the generic
2096 * LD_XXXX environment variable engine. For example:
2097 *
2098 * LD_FLAGS=bind_now= -> LD_BIND_NOW=
2099 * LD_FLAGS=bind_now -> LD_BIND_NOW=1
2100 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH=
2101 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
2102 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
2103 * or
2104 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2105 */
2106 static int
ld_flags_env(const char * str,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)2107 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2108 uint_t env_flags, int aout)
2109 {
2110 char *nstr, *sstr, *estr = NULL;
2111 size_t nlen, len;
2112
2113 if (str == NULL)
2114 return (0);
2115
2116 /*
2117 * Create a new string as we're going to transform the token(s) into
2118 * uppercase and separate tokens with nulls.
2119 */
2120 len = strlen(str);
2121 if ((nstr = malloc(len + 1)) == NULL)
2122 return (1);
2123 (void) strcpy(nstr, str);
2124
2125 for (sstr = nstr; sstr; sstr++, len--) {
2126 int flags = 0;
2127
2128 if ((*sstr != '\0') && (*sstr != ',')) {
2129 if (estr == NULL) {
2130 if (*sstr == '=')
2131 estr = sstr;
2132 else {
2133 /*
2134 * Translate token to uppercase. Don't
2135 * use toupper(3C) as including this
2136 * code doubles the size of ld.so.1.
2137 */
2138 if ((*sstr >= 'a') && (*sstr <= 'z'))
2139 *sstr = *sstr - ('a' - 'A');
2140 }
2141 }
2142 continue;
2143 }
2144
2145 *sstr = '\0';
2146
2147 /*
2148 * Have we discovered an "=" string.
2149 */
2150 if (estr) {
2151 nlen = estr - nstr;
2152
2153 /*
2154 * If this is an unqualified "=", then this variable
2155 * is intended to ensure a feature is disabled.
2156 */
2157 if ((*++estr == '\0') || (*estr == ','))
2158 estr = NULL;
2159 } else {
2160 nlen = sstr - nstr;
2161
2162 /*
2163 * If there is no "=" found, fabricate a boolean
2164 * definition for any unqualified variable. Thus,
2165 * LD_FLAGS=bind_now is represented as BIND_NOW=1.
2166 * The value "1" is sufficient to assert any boolean
2167 * variables. Setting of ENV_TYP_NULL ensures any
2168 * string usage is reset to a NULL string, thus
2169 * LD_FLAGS=library_path is equivalent to
2170 * LIBRARY_PATH='\0'.
2171 */
2172 flags |= ENV_TYP_NULL;
2173 estr = (char *)MSG_ORIG(MSG_STR_ONE);
2174 }
2175
2176 /*
2177 * Determine whether the environment variable is 32- or 64-bit
2178 * specific. The length, len, will reflect the architecture
2179 * neutral portion of the string.
2180 */
2181 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2182 ld_generic_env(nstr, nlen, estr, lmflags,
2183 lmtflags, (env_flags | flags), aout);
2184 }
2185 if (len == 0)
2186 break;
2187
2188 nstr = sstr + 1;
2189 estr = NULL;
2190 }
2191
2192 return (0);
2193 }
2194
2195 /*
2196 * Variant of getopt(), intended for use when ld.so.1 is invoked directly
2197 * from the command line. The only command line option allowed is -e followed
2198 * by a runtime linker environment variable.
2199 */
2200 int
rtld_getopt(char ** argv,char *** envp,auxv_t ** auxv,Word * lmflags,Word * lmtflags,int aout)2201 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
2202 Word *lmtflags, int aout)
2203 {
2204 int ndx;
2205
2206 for (ndx = 1; argv[ndx]; ndx++) {
2207 char *str;
2208
2209 if (argv[ndx][0] != '-')
2210 break;
2211
2212 if (argv[ndx][1] == '\0') {
2213 ndx++;
2214 break;
2215 }
2216
2217 if (argv[ndx][1] != 'e')
2218 return (1);
2219
2220 if (argv[ndx][2] == '\0') {
2221 ndx++;
2222 if (argv[ndx] == NULL)
2223 return (1);
2224 str = argv[ndx];
2225 } else
2226 str = &argv[ndx][2];
2227
2228 /*
2229 * If the environment variable starts with LD_, strip the LD_.
2230 * Otherwise, take things as is. Indicate that this variable
2231 * originates from the command line, as these variables take
2232 * precedence over any environment variables, or configuration
2233 * file variables.
2234 */
2235 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
2236 (str[3] != '\0'))
2237 str += 3;
2238 if (ld_flags_env(str, lmflags, lmtflags,
2239 ENV_TYP_CMDLINE, aout) == 1)
2240 return (1);
2241 }
2242
2243 /*
2244 * Make sure an object file has been specified.
2245 */
2246 if (argv[ndx] == NULL)
2247 return (1);
2248
2249 /*
2250 * Having gotten the arguments, clean ourselves off of the stack.
2251 * This results in a process that looks as if it was executed directly
2252 * from the application.
2253 */
2254 stack_cleanup(argv, envp, auxv, ndx);
2255 return (0);
2256 }
2257
2258 /*
2259 * Process a single LD_XXXX string.
2260 */
2261 static void
ld_str_env(const char * s1,Word * lmflags,Word * lmtflags,uint_t env_flags,int aout)2262 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2263 int aout)
2264 {
2265 const char *s2;
2266 size_t len;
2267 int flags;
2268
2269 /*
2270 * In a branded process we must ignore all LD_XXXX variables because
2271 * they are intended for the brand's linker. To affect the native
2272 * linker, use LD_BRAND_XXXX instead.
2273 */
2274 if (rtld_flags2 & RT_FL2_BRANDED) {
2275 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2276 MSG_LD_BRAND_PREFIX_SIZE) != 0)
2277 return;
2278 s1 += MSG_LD_BRAND_PREFIX_SIZE;
2279 }
2280
2281 /*
2282 * Variables with no value (ie. LD_XXXX=) turn a capability off.
2283 */
2284 if ((s2 = strchr(s1, '=')) == NULL) {
2285 len = strlen(s1);
2286 s2 = NULL;
2287 } else if (*++s2 == '\0') {
2288 len = strlen(s1) - 1;
2289 s2 = NULL;
2290 } else {
2291 len = s2 - s1 - 1;
2292 while (conv_strproc_isspace(*s2))
2293 s2++;
2294 }
2295
2296 /*
2297 * Determine whether the environment variable is 32-bit or 64-bit
2298 * specific. The length, len, will reflect the architecture neutral
2299 * portion of the string.
2300 */
2301 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2302 return;
2303 env_flags |= flags;
2304
2305 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2306 }
2307
2308 /*
2309 * Internal getenv routine. Called immediately after ld.so.1 initializes
2310 * itself to process any locale specific environment variables, and collect
2311 * any LD_XXXX variables for later processing.
2312 */
2313 #define LOC_LANG 1
2314 #define LOC_MESG 2
2315 #define LOC_ALL 3
2316
2317 int
readenv_user(const char ** envp,APlist ** ealpp)2318 readenv_user(const char **envp, APlist **ealpp)
2319 {
2320 char *locale;
2321 const char *s1;
2322 int loc = 0;
2323
2324 for (s1 = *envp; s1; envp++, s1 = *envp) {
2325 const char *s2;
2326
2327 if (*s1++ != 'L')
2328 continue;
2329
2330 /*
2331 * See if we have any locale environment settings. These
2332 * environment variables have a precedence, LC_ALL is higher
2333 * than LC_MESSAGES which is higher than LANG.
2334 */
2335 s2 = s1;
2336 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2337 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL),
2338 MSG_LC_ALL_SIZE) == 0) {
2339 s2 += MSG_LC_ALL_SIZE;
2340 if ((*s2 != '\0') && (loc < LOC_ALL)) {
2341 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2342 (char *)s2;
2343 loc = LOC_ALL;
2344 }
2345 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2346 MSG_LC_MESSAGES_SIZE) == 0) {
2347 s2 += MSG_LC_MESSAGES_SIZE;
2348 if ((*s2 != '\0') && (loc < LOC_MESG)) {
2349 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2350 (char *)s2;
2351 loc = LOC_MESG;
2352 }
2353 }
2354 continue;
2355 }
2356
2357 s2 = s1;
2358 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2359 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2360 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2361 loc = LOC_LANG;
2362 continue;
2363 }
2364
2365 /*
2366 * Pick off any LD_XXXX environment variables.
2367 */
2368 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2369 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL)
2370 return (1);
2371 }
2372 }
2373
2374 /*
2375 * If we have a locale setting make sure it's worth processing further.
2376 * C and POSIX locales don't need any processing. In addition, to
2377 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2378 * the locale to contain a segment that leads upward in the file system
2379 * hierarchy (i.e. no '..' segments). Given that we'll be confined to
2380 * the /usr/lib/locale hierarchy, there is no need to extensively
2381 * validate the mode or ownership of any message file (as libc's
2382 * generic handling of message files does), or be concerned with
2383 * symbolic links that might otherwise send us elsewhere. Duplicate
2384 * the string so that new locale setting can generically cleanup any
2385 * previous locales.
2386 */
2387 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) {
2388 if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2389 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2390 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2391 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL;
2392 else
2393 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2394 }
2395 return (0);
2396 }
2397
2398 /*
2399 * Process any LD_XXXX environment variables collected by readenv_user().
2400 */
2401 int
procenv_user(APlist * ealp,Word * lmflags,Word * lmtflags,int aout)2402 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout)
2403 {
2404 Aliste idx;
2405 const char *s1;
2406
2407 for (APLIST_TRAVERSE(ealp, idx, s1))
2408 ld_str_env(s1, lmflags, lmtflags, 0, aout);
2409
2410 /*
2411 * Having collected the best representation of any LD_FLAGS, process
2412 * these strings.
2413 */
2414 if (rpl_ldflags) {
2415 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2416 return (1);
2417 rpl_ldflags = NULL;
2418 }
2419
2420 /*
2421 * Don't allow environment controlled auditing when tracing or if
2422 * explicitly disabled. Trigger all tracing modes from
2423 * LML_FLG_TRC_ENABLE.
2424 */
2425 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2426 rpl_audit = profile_lib = profile_name = NULL;
2427 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2428 *lmflags &= ~LML_MSK_TRC;
2429
2430 /*
2431 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2432 */
2433 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2434 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2435 rtld_flags2 &= ~RT_FL2_BINDLAZY;
2436
2437 /*
2438 * When using ldd(1) -r or -d against an executable, assert -p.
2439 */
2440 if ((*lmflags &
2441 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
2442 *lmflags |= LML_FLG_TRC_NOPAREXT;
2443
2444 return (0);
2445 }
2446
2447 /*
2448 * Configuration environment processing. Called after the a.out has been
2449 * processed (as the a.out can specify its own configuration file).
2450 */
2451 int
readenv_config(Rtc_env * envtbl,Addr addr,int aout)2452 readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2453 {
2454 Word *lmflags = &(lml_main.lm_flags);
2455 Word *lmtflags = &(lml_main.lm_tflags);
2456
2457 if (envtbl == NULL)
2458 return (0);
2459
2460 while (envtbl->env_str) {
2461 uint_t env_flags = ENV_TYP_CONFIG;
2462 const char *s1 = (const char *)(envtbl->env_str + addr);
2463
2464 if (envtbl->env_flags & RTC_ENV_PERMANT)
2465 env_flags |= ENV_TYP_PERMANT;
2466
2467 if ((*s1++ == 'L') && (*s1++ == 'D') &&
2468 (*s1++ == '_') && (*s1 != '\0'))
2469 ld_str_env(s1, lmflags, lmtflags, env_flags, 0);
2470
2471 envtbl++;
2472 }
2473
2474 /*
2475 * Having collected the best representation of any LD_FLAGS, process
2476 * these strings.
2477 */
2478 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2479 return (1);
2480 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2481 aout) == 1)
2482 return (1);
2483
2484 /*
2485 * Don't allow environment controlled auditing when tracing or if
2486 * explicitly disabled. Trigger all tracing modes from
2487 * LML_FLG_TRC_ENABLE.
2488 */
2489 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2490 prm_audit = profile_lib = profile_name = NULL;
2491 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2492 *lmflags &= ~LML_MSK_TRC;
2493
2494 return (0);
2495 }
2496
2497 int
dowrite(Prfbuf * prf)2498 dowrite(Prfbuf * prf)
2499 {
2500 /*
2501 * We do not have a valid file descriptor, so we are unable
2502 * to flush the buffer.
2503 */
2504 if (prf->pr_fd == -1)
2505 return (0);
2506 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2507 prf->pr_cur = prf->pr_buf;
2508 return (1);
2509 }
2510
2511 /*
2512 * Simplified printing. The following conversion specifications are supported:
2513 *
2514 * % [#] [-] [min field width] [. precision] s|d|x|c
2515 *
2516 *
2517 * dorprf takes the output buffer in the form of Prfbuf which permits
2518 * the verification of the output buffer size and the concatenation
2519 * of data to an already existing output buffer. The Prfbuf
2520 * structure contains the following:
2521 *
2522 * pr_buf pointer to the beginning of the output buffer.
2523 * pr_cur pointer to the next available byte in the output buffer. By
2524 * setting pr_cur ahead of pr_buf you can append to an already
2525 * existing buffer.
2526 * pr_len the size of the output buffer. By setting pr_len to '0' you
2527 * disable protection from overflows in the output buffer.
2528 * pr_fd a pointer to the file-descriptor the buffer will eventually be
2529 * output to. If pr_fd is set to '-1' then it's assumed there is
2530 * no output buffer, and doprf() will return with an error to
2531 * indicate an output buffer overflow. If pr_fd is > -1 then when
2532 * the output buffer is filled it will be flushed to pr_fd and will
2533 * then be available for additional data.
2534 */
2535 #define FLG_UT_MINUS 0x0001 /* - */
2536 #define FLG_UT_SHARP 0x0002 /* # */
2537 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
2538
2539 /*
2540 * This macro is for use from within doprf only. It is to be used for checking
2541 * the output buffer size and placing characters into the buffer.
2542 */
2543 #define PUTC(c) \
2544 { \
2545 char tmpc; \
2546 \
2547 tmpc = (c); \
2548 if (bufsiz && (bp >= bufend)) { \
2549 prf->pr_cur = bp; \
2550 if (dowrite(prf) == 0) \
2551 return (0); \
2552 bp = prf->pr_cur; \
2553 } \
2554 *bp++ = tmpc; \
2555 }
2556
2557 /*
2558 * Define a local buffer size for building a numeric value - large enough to
2559 * hold a 64-bit value.
2560 */
2561 #define NUM_SIZE 22
2562
2563 size_t
doprf(const char * format,va_list args,Prfbuf * prf)2564 doprf(const char *format, va_list args, Prfbuf *prf)
2565 {
2566 char c;
2567 char *bp = prf->pr_cur;
2568 char *bufend = prf->pr_buf + prf->pr_len;
2569 size_t bufsiz = prf->pr_len;
2570
2571 while ((c = *format++) != '\0') {
2572 if (c != '%') {
2573 PUTC(c);
2574 } else {
2575 int base = 0, flag = 0, width = 0, prec = 0;
2576 size_t _i;
2577 int _c, _n;
2578 char *_s;
2579 int ls = 0;
2580 again:
2581 c = *format++;
2582 switch (c) {
2583 case '-':
2584 flag |= FLG_UT_MINUS;
2585 goto again;
2586 case '#':
2587 flag |= FLG_UT_SHARP;
2588 goto again;
2589 case '.':
2590 flag |= FLG_UT_DOTSEEN;
2591 goto again;
2592 case '0':
2593 case '1':
2594 case '2':
2595 case '3':
2596 case '4':
2597 case '5':
2598 case '6':
2599 case '7':
2600 case '8':
2601 case '9':
2602 if (flag & FLG_UT_DOTSEEN)
2603 prec = (prec * 10) + c - '0';
2604 else
2605 width = (width * 10) + c - '0';
2606 goto again;
2607 case 'x':
2608 case 'X':
2609 base = 16;
2610 break;
2611 case 'd':
2612 case 'D':
2613 case 'u':
2614 base = 10;
2615 flag &= ~FLG_UT_SHARP;
2616 break;
2617 case 'l':
2618 base = 10;
2619 ls++; /* number of l's (long or long long) */
2620 if ((*format == 'l') ||
2621 (*format == 'd') || (*format == 'D') ||
2622 (*format == 'x') || (*format == 'X') ||
2623 (*format == 'o') || (*format == 'O') ||
2624 (*format == 'u') || (*format == 'U'))
2625 goto again;
2626 break;
2627 case 'o':
2628 case 'O':
2629 base = 8;
2630 break;
2631 case 'c':
2632 _c = va_arg(args, int);
2633
2634 for (_i = 24; _i > 0; _i -= 8) {
2635 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2636 PUTC(c);
2637 }
2638 }
2639 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2640 PUTC(c);
2641 }
2642 break;
2643 case 's':
2644 _s = va_arg(args, char *);
2645 _i = strlen(_s);
2646 /* LINTED */
2647 _n = (int)(width - _i);
2648 if (!prec)
2649 /* LINTED */
2650 prec = (int)_i;
2651
2652 if (width && !(flag & FLG_UT_MINUS)) {
2653 while (_n-- > 0)
2654 PUTC(' ');
2655 }
2656 while (((c = *_s++) != 0) && prec--) {
2657 PUTC(c);
2658 }
2659 if (width && (flag & FLG_UT_MINUS)) {
2660 while (_n-- > 0)
2661 PUTC(' ');
2662 }
2663 break;
2664 case '%':
2665 PUTC('%');
2666 break;
2667 default:
2668 break;
2669 }
2670
2671 /*
2672 * Numeric processing
2673 */
2674 if (base) {
2675 char local[NUM_SIZE];
2676 size_t ssize = 0, psize = 0;
2677 const char *string =
2678 MSG_ORIG(MSG_STR_HEXNUM);
2679 const char *prefix =
2680 MSG_ORIG(MSG_STR_EMPTY);
2681 u_longlong_t num;
2682
2683 switch (ls) {
2684 case 0: /* int */
2685 num = (u_longlong_t)
2686 va_arg(args, uint_t);
2687 break;
2688 case 1: /* long */
2689 num = (u_longlong_t)
2690 va_arg(args, ulong_t);
2691 break;
2692 case 2: /* long long */
2693 num = va_arg(args, u_longlong_t);
2694 break;
2695 }
2696
2697 if (flag & FLG_UT_SHARP) {
2698 if (base == 16) {
2699 prefix = MSG_ORIG(MSG_STR_HEX);
2700 psize = 2;
2701 } else {
2702 prefix = MSG_ORIG(MSG_STR_ZERO);
2703 psize = 1;
2704 }
2705 }
2706 if ((base == 10) && (long)num < 0) {
2707 prefix = MSG_ORIG(MSG_STR_NEGATE);
2708 psize = MSG_STR_NEGATE_SIZE;
2709 num = (u_longlong_t)(-(longlong_t)num);
2710 }
2711
2712 /*
2713 * Convert the numeric value into a local
2714 * string (stored in reverse order).
2715 */
2716 _s = local;
2717 do {
2718 *_s++ = string[num % base];
2719 num /= base;
2720 ssize++;
2721 } while (num);
2722
2723 ASSERT(ssize < sizeof (local));
2724
2725 /*
2726 * Provide any precision or width padding.
2727 */
2728 if (prec) {
2729 /* LINTED */
2730 _n = (int)(prec - ssize);
2731 while ((_n-- > 0) &&
2732 (ssize < sizeof (local))) {
2733 *_s++ = '0';
2734 ssize++;
2735 }
2736 }
2737 if (width && !(flag & FLG_UT_MINUS)) {
2738 /* LINTED */
2739 _n = (int)(width - ssize - psize);
2740 while (_n-- > 0) {
2741 PUTC(' ');
2742 }
2743 }
2744
2745 /*
2746 * Print any prefix and the numeric string
2747 */
2748 while (*prefix)
2749 PUTC(*prefix++);
2750 do {
2751 PUTC(*--_s);
2752 } while (_s > local);
2753
2754 /*
2755 * Provide any width padding.
2756 */
2757 if (width && (flag & FLG_UT_MINUS)) {
2758 /* LINTED */
2759 _n = (int)(width - ssize - psize);
2760 while (_n-- > 0)
2761 PUTC(' ');
2762 }
2763 }
2764 }
2765 }
2766
2767 PUTC('\0');
2768 prf->pr_cur = bp;
2769 return (1);
2770 }
2771
2772 static int
doprintf(const char * format,va_list args,Prfbuf * prf)2773 doprintf(const char *format, va_list args, Prfbuf *prf)
2774 {
2775 char *ocur = prf->pr_cur;
2776
2777 if (doprf(format, args, prf) == 0)
2778 return (0);
2779 /* LINTED */
2780 return ((int)(prf->pr_cur - ocur));
2781 }
2782
2783 /* VARARGS2 */
2784 int
sprintf(char * buf,const char * format,...)2785 sprintf(char *buf, const char *format, ...)
2786 {
2787 va_list args;
2788 int len;
2789 Prfbuf prf;
2790
2791 va_start(args, format);
2792 prf.pr_buf = prf.pr_cur = buf;
2793 prf.pr_len = 0;
2794 prf.pr_fd = -1;
2795 len = doprintf(format, args, &prf);
2796 va_end(args);
2797
2798 /*
2799 * sprintf() return value excludes the terminating null byte.
2800 */
2801 return (len - 1);
2802 }
2803
2804 /* VARARGS3 */
2805 int
snprintf(char * buf,size_t n,const char * format,...)2806 snprintf(char *buf, size_t n, const char *format, ...)
2807 {
2808 va_list args;
2809 int len;
2810 Prfbuf prf;
2811
2812 va_start(args, format);
2813 prf.pr_buf = prf.pr_cur = buf;
2814 prf.pr_len = n;
2815 prf.pr_fd = -1;
2816 len = doprintf(format, args, &prf);
2817 va_end(args);
2818
2819 return (len);
2820 }
2821
2822 /* VARARGS2 */
2823 int
bufprint(Prfbuf * prf,const char * format,...)2824 bufprint(Prfbuf *prf, const char *format, ...)
2825 {
2826 va_list args;
2827 int len;
2828
2829 va_start(args, format);
2830 len = doprintf(format, args, prf);
2831 va_end(args);
2832
2833 return (len);
2834 }
2835
2836 /*PRINTFLIKE1*/
2837 int
printf(const char * format,...)2838 printf(const char *format, ...)
2839 {
2840 va_list args;
2841 char buffer[ERRSIZE];
2842 Prfbuf prf;
2843
2844 va_start(args, format);
2845 prf.pr_buf = prf.pr_cur = buffer;
2846 prf.pr_len = ERRSIZE;
2847 prf.pr_fd = 1;
2848 (void) doprf(format, args, &prf);
2849 va_end(args);
2850 /*
2851 * Trim trailing '\0' form buffer
2852 */
2853 prf.pr_cur--;
2854 return (dowrite(&prf));
2855 }
2856
2857 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL;
2858
2859 /*
2860 * All error messages go through eprintf(). During process initialization,
2861 * these messages are directed to the standard error, however once control has
2862 * been passed to the applications code these messages are stored in an internal
2863 * buffer for use with dlerror(). Note, fatal error conditions that may occur
2864 * while running the application will still cause a standard error message, see
2865 * rtldexit() in this file for details.
2866 * The RT_FL_APPLIC flag serves to indicate the transition between process
2867 * initialization and when the applications code is running.
2868 */
2869 void
veprintf(Lm_list * lml,Error error,const char * format,va_list args)2870 veprintf(Lm_list *lml, Error error, const char *format, va_list args)
2871 {
2872 int overflow = 0;
2873 static int lock = 0;
2874 Prfbuf prf;
2875
2876 if (lock || (nextptr == (errbuf + ERRSIZE)))
2877 return;
2878
2879 /*
2880 * Note: this lock is here to prevent the same thread from recursively
2881 * entering itself during a eprintf. ie: during eprintf malloc() fails
2882 * and we try and call eprintf ... and then malloc() fails ....
2883 */
2884 lock = 1;
2885
2886 /*
2887 * If we have completed startup initialization, all error messages
2888 * must be saved. These are reported through dlerror(). If we're
2889 * still in the initialization stage, output the error directly and
2890 * add a newline.
2891 */
2892 prf.pr_buf = prf.pr_cur = nextptr;
2893 prf.pr_len = ERRSIZE - (nextptr - errbuf);
2894
2895 if ((rtld_flags & RT_FL_APPLIC) == 0)
2896 prf.pr_fd = 2;
2897 else
2898 prf.pr_fd = -1;
2899
2900 if (error > ERR_NONE) {
2901 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2902 error = ERR_WARNING;
2903 switch (error) {
2904 case ERR_WARNING_NF:
2905 if (err_strs[ERR_WARNING_NF] == NULL)
2906 err_strs[ERR_WARNING_NF] =
2907 MSG_INTL(MSG_ERR_WARNING);
2908 break;
2909 case ERR_WARNING:
2910 if (err_strs[ERR_WARNING] == NULL)
2911 err_strs[ERR_WARNING] =
2912 MSG_INTL(MSG_ERR_WARNING);
2913 break;
2914 case ERR_GUIDANCE:
2915 if (err_strs[ERR_GUIDANCE] == NULL)
2916 err_strs[ERR_GUIDANCE] =
2917 MSG_INTL(MSG_ERR_GUIDANCE);
2918 break;
2919 case ERR_FATAL:
2920 if (err_strs[ERR_FATAL] == NULL)
2921 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2922 break;
2923 case ERR_ELF:
2924 if (err_strs[ERR_ELF] == NULL)
2925 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2926 break;
2927 }
2928 if (procname) {
2929 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2930 rtldname, procname, err_strs[error]) == 0)
2931 overflow = 1;
2932 } else {
2933 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2934 rtldname, err_strs[error]) == 0)
2935 overflow = 1;
2936 }
2937 if (overflow == 0) {
2938 /*
2939 * Remove the terminating '\0'.
2940 */
2941 prf.pr_cur--;
2942 }
2943 }
2944
2945 if ((overflow == 0) && doprf(format, args, &prf) == 0)
2946 overflow = 1;
2947
2948 /*
2949 * If this is an ELF error, it will have been generated by a support
2950 * object that has a dependency on libelf. ld.so.1 doesn't generate any
2951 * ELF error messages as it doesn't interact with libelf. Determine the
2952 * ELF error string.
2953 */
2954 if ((overflow == 0) && (error == ERR_ELF)) {
2955 static int (*elfeno)() = 0;
2956 static const char *(*elfemg)();
2957 const char *emsg;
2958 Rt_map *dlmp, *lmp = lml_rtld.lm_head;
2959
2960 if (NEXT(lmp) && (elfeno == 0)) {
2961 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2962 MSG_ORIG(MSG_SYM_ELFERRMSG),
2963 lmp, &dlmp)) == NULL) ||
2964 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2965 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL))
2966 elfeno = 0;
2967 }
2968
2969 /*
2970 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2971 */
2972 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) {
2973 prf.pr_cur--;
2974 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2975 emsg) == 0)
2976 overflow = 1;
2977 }
2978 }
2979
2980 /*
2981 * Push out any message that's been built. Note, in the case of an
2982 * overflow condition, this message may be incomplete, in which case
2983 * make sure any partial string is null terminated.
2984 */
2985 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
2986 *(prf.pr_cur - 1) = '\n';
2987 (void) dowrite(&prf);
2988 }
2989 if (overflow)
2990 *(prf.pr_cur - 1) = '\0';
2991
2992 DBG_CALL(Dbg_util_str(lml, nextptr));
2993
2994 /*
2995 * Determine if there was insufficient space left in the buffer to
2996 * complete the message. If so, we'll have printed out as much as had
2997 * been processed if we're not yet executing the application.
2998 * Otherwise, there will be some debugging diagnostic indicating
2999 * as much of the error message as possible. Write out a final buffer
3000 * overflow diagnostic - unlocalized, so we don't chance more errors.
3001 */
3002 if (overflow) {
3003 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
3004
3005 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3006 lasterr = str;
3007
3008 if ((rtld_flags & RT_FL_APPLIC) == 0) {
3009 (void) write(2, str, strlen(str));
3010 (void) write(2, MSG_ORIG(MSG_STR_NL),
3011 MSG_STR_NL_SIZE);
3012 }
3013 }
3014 DBG_CALL(Dbg_util_str(lml, str));
3015
3016 lock = 0;
3017 nextptr = errbuf + ERRSIZE;
3018 return;
3019 }
3020
3021 /*
3022 * If the application has started, then error messages are being saved
3023 * for retrieval by dlerror(), or possible flushing from rtldexit() in
3024 * the case of a fatal error. In this case, establish the next error
3025 * pointer. If we haven't started the application, the whole message
3026 * buffer can be reused.
3027 */
3028 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3029 lasterr = nextptr;
3030
3031 /*
3032 * Note, should we encounter an error such as ENOMEM, there may
3033 * be a number of the same error messages (ie. an operation
3034 * fails with ENOMEM, and then the attempts to construct the
3035 * error message itself, which incurs additional ENOMEM errors).
3036 * Compare any previous error message with the one we've just
3037 * created to prevent any duplication clutter.
3038 */
3039 if ((rtld_flags & RT_FL_APPLIC) &&
3040 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) {
3041 prevptr = nextptr;
3042 nextptr = prf.pr_cur;
3043 *nextptr = '\0';
3044 }
3045 }
3046 lock = 0;
3047 }
3048
3049 /*PRINTFLIKE3*/
3050 void
eprintf(Lm_list * lml,Error error,const char * format,...)3051 eprintf(Lm_list *lml, Error error, const char *format, ...)
3052 {
3053 va_list args;
3054
3055 va_start(args, format);
3056 veprintf(lml, error, format, args);
3057 va_end(args);
3058 }
3059
3060 #if DEBUG
3061 /*
3062 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further
3063 * details.
3064 */
3065 int
assfail(const char * a,const char * f,int l)3066 assfail(const char *a, const char *f, int l)
3067 {
3068 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
3069 (void) _lwp_kill(_lwp_self(), SIGABRT);
3070 return (0);
3071 }
3072 #endif
3073
3074 /*
3075 * Exit. If we arrive here with a non zero status it's because of a fatal
3076 * error condition (most commonly a relocation error). If the application has
3077 * already had control, then the actual fatal error message will have been
3078 * recorded in the dlerror() message buffer. Print the message before really
3079 * exiting.
3080 */
3081 void
rtldexit(Lm_list * lml,int status)3082 rtldexit(Lm_list * lml, int status)
3083 {
3084 if (status) {
3085 if (rtld_flags & RT_FL_APPLIC) {
3086 /*
3087 * If the error buffer has been used, write out all
3088 * pending messages - lasterr is simply a pointer to
3089 * the last message in this buffer. However, if the
3090 * buffer couldn't be created at all, lasterr points
3091 * to a constant error message string.
3092 */
3093 if (*errbuf) {
3094 char *errptr = errbuf;
3095 char *errend = errbuf + ERRSIZE;
3096
3097 while ((errptr < errend) && *errptr) {
3098 size_t size = strlen(errptr);
3099 (void) write(2, errptr, size);
3100 (void) write(2, MSG_ORIG(MSG_STR_NL),
3101 MSG_STR_NL_SIZE);
3102 errptr += (size + 1);
3103 }
3104 }
3105 if (lasterr && ((lasterr < errbuf) ||
3106 (lasterr > (errbuf + ERRSIZE)))) {
3107 (void) write(2, lasterr, strlen(lasterr));
3108 (void) write(2, MSG_ORIG(MSG_STR_NL),
3109 MSG_STR_NL_SIZE);
3110 }
3111 }
3112 leave(lml, 0);
3113 (void) _lwp_kill(_lwp_self(), killsig);
3114 }
3115 _exit(status);
3116 }
3117
3118 /*
3119 * Map anonymous memory via MAP_ANON (added in Solaris 8).
3120 */
3121 void *
dz_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3122 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3123 {
3124 caddr_t va;
3125
3126 if ((va = (caddr_t)mmap(addr, len, prot,
3127 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) {
3128 int err = errno;
3129 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
3130 strerror(err));
3131 return (MAP_FAILED);
3132 }
3133 return (va);
3134 }
3135
3136 static int nu_fd = FD_UNAVAIL;
3137
3138 void *
nu_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3139 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3140 {
3141 caddr_t va;
3142 int err;
3143
3144 if (nu_fd == FD_UNAVAIL) {
3145 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3146 O_RDONLY)) == FD_UNAVAIL) {
3147 err = errno;
3148 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3149 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3150 return (MAP_FAILED);
3151 }
3152 }
3153
3154 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3155 MAP_FAILED) {
3156 err = errno;
3157 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3158 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3159 }
3160 return (va);
3161 }
3162
3163 /*
3164 * Generic entry point from user code - simply grabs a lock, and bumps the
3165 * entrance count.
3166 */
3167 int
enter(int flags)3168 enter(int flags)
3169 {
3170 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) {
3171 if (!thr_flg_nolock)
3172 (void) rt_mutex_lock(&rtldlock);
3173 if (rtld_flags & RT_FL_OPERATION) {
3174 ld_entry_cnt++;
3175
3176 /*
3177 * Reset the diagnostic time information for each new
3178 * "operation". Thus timing diagnostics are relative
3179 * to entering ld.so.1.
3180 */
3181 if (DBG_ISTIME() &&
3182 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) {
3183 DBG_DELTATIME = DBG_TOTALTIME;
3184 DBG_ONRESET();
3185 }
3186 }
3187 return (1);
3188 }
3189 return (0);
3190 }
3191
3192 /*
3193 * Determine whether a search path has been used.
3194 */
3195 static void
is_path_used(Lm_list * lml,Word unref,int * nl,Alist * alp,const char * obj)3196 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj)
3197 {
3198 Pdesc *pdp;
3199 Aliste idx;
3200
3201 for (ALIST_TRAVERSE(alp, idx, pdp)) {
3202 const char *fmt, *name;
3203
3204 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED))
3205 continue;
3206
3207 /*
3208 * If this pathname originated from an expanded token, use the
3209 * original for any diagnostic output.
3210 */
3211 if ((name = pdp->pd_oname) == NULL)
3212 name = pdp->pd_pname;
3213
3214 if (unref == 0) {
3215 if ((*nl)++ == 0)
3216 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3217 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags,
3218 (pdp->pd_flags & PD_FLG_DUPLICAT), obj));
3219 continue;
3220 }
3221
3222 if (pdp->pd_flags & LA_SER_LIBPATH) {
3223 if (pdp->pd_flags & LA_SER_CONFIG) {
3224 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3225 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
3226 else
3227 fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
3228 } else {
3229 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3230 fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
3231 else
3232 fmt = MSG_INTL(MSG_USD_LDLIBPATH);
3233 }
3234 } else if (pdp->pd_flags & LA_SER_RUNPATH) {
3235 fmt = MSG_INTL(MSG_USD_RUNPATH);
3236 } else
3237 continue;
3238
3239 if ((*nl)++ == 0)
3240 (void) printf(MSG_ORIG(MSG_STR_NL));
3241 (void) printf(fmt, name, obj);
3242 }
3243 }
3244
3245 /*
3246 * Generate diagnostics as to whether an object has been used. A symbolic
3247 * reference that gets bound to an object marks it as used. Dependencies that
3248 * are unused when RTLD_NOW is in effect should be removed from future builds
3249 * of an object. Dependencies that are unused without RTLD_NOW in effect are
3250 * candidates for lazy-loading.
3251 *
3252 * Unreferenced objects identify objects that are defined as dependencies but
3253 * are unreferenced by the caller. These unreferenced objects may however be
3254 * referenced by other objects within the process, and therefore don't qualify
3255 * as completely unused. They are still an unnecessary overhead.
3256 *
3257 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3258 * debugging.
3259 */
3260 void
unused(Lm_list * lml)3261 unused(Lm_list *lml)
3262 {
3263 Rt_map *lmp;
3264 int nl = 0;
3265 Word unref, unuse;
3266
3267 /*
3268 * If we're not tracing unused references or dependencies, or debugging
3269 * there's nothing to do.
3270 */
3271 unref = lml->lm_flags & LML_FLG_TRC_UNREF;
3272 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
3273
3274 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
3275 return;
3276
3277 /*
3278 * Detect unused global search paths.
3279 */
3280 if (rpl_libdirs)
3281 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
3282 if (prm_libdirs)
3283 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
3284
3285 nl = 0;
3286 lmp = lml->lm_head;
3287 if (RLIST(lmp))
3288 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3289
3290 /*
3291 * Traverse the link-maps looking for unreferenced or unused
3292 * dependencies. Ignore the first object on a link-map list, as this
3293 * is always used.
3294 */
3295 nl = 0;
3296 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) {
3297 /*
3298 * Determine if this object contains any runpaths that have
3299 * not been used.
3300 */
3301 if (RLIST(lmp))
3302 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3303
3304 /*
3305 * If tracing unreferenced objects, or under debugging,
3306 * determine whether any of this objects callers haven't
3307 * referenced it.
3308 */
3309 if (unref || DBG_ENABLED) {
3310 Bnd_desc *bdp;
3311 Aliste idx;
3312
3313 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
3314 Rt_map *clmp;
3315
3316 if (bdp->b_flags & BND_REFER)
3317 continue;
3318
3319 clmp = bdp->b_caller;
3320 if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3321 continue;
3322
3323 /* BEGIN CSTYLED */
3324 if (nl++ == 0) {
3325 if (unref)
3326 (void) printf(MSG_ORIG(MSG_STR_NL));
3327 else
3328 DBG_CALL(Dbg_util_nl(lml,
3329 DBG_NL_STD));
3330 }
3331
3332 if (unref)
3333 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3334 NAME(lmp), NAME(clmp));
3335 else
3336 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3337 /* END CSTYLED */
3338 }
3339 }
3340
3341 /*
3342 * If tracing unused objects simply display those objects that
3343 * haven't been referenced by anyone.
3344 */
3345 if (FLAGS1(lmp) & FL1_RT_USED)
3346 continue;
3347
3348 if (nl++ == 0) {
3349 if (unref || unuse)
3350 (void) printf(MSG_ORIG(MSG_STR_NL));
3351 else
3352 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3353 }
3354 if (CYCGROUP(lmp)) {
3355 if (unref || unuse)
3356 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3357 NAME(lmp), CYCGROUP(lmp));
3358 else
3359 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3360 CYCGROUP(lmp)));
3361 } else {
3362 if (unref || unuse)
3363 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3364 NAME(lmp));
3365 else
3366 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3367 }
3368 }
3369
3370 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3371 }
3372
3373 /*
3374 * Generic cleanup routine called prior to returning control to the user.
3375 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are
3376 * released, and any locks dropped.
3377 */
3378 void
leave(Lm_list * lml,int flags)3379 leave(Lm_list *lml, int flags)
3380 {
3381 /*
3382 * Alert the debuggers that the link-maps are consistent.
3383 */
3384 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
3385
3386 /*
3387 * Alert any auditors that the link-maps are consistent.
3388 */
3389 if (lml->lm_flags & LML_FLG_ACTAUDIT) {
3390 audit_activity(lml->lm_head, LA_ACT_CONSISTENT);
3391 lml->lm_flags &= ~LML_FLG_ACTAUDIT;
3392 }
3393
3394 if (nu_fd != FD_UNAVAIL) {
3395 (void) close(nu_fd);
3396 nu_fd = FD_UNAVAIL;
3397 }
3398
3399 /*
3400 * Reinitialize error message pointer, and any overflow indication.
3401 */
3402 nextptr = errbuf;
3403 prevptr = NULL;
3404
3405 /*
3406 * Defragment any freed memory.
3407 */
3408 if (aplist_nitems(free_alp))
3409 defrag();
3410
3411 /*
3412 * Don't drop our lock if we are running on our link-map list as
3413 * there's little point in doing so since we are single-threaded.
3414 *
3415 * LML_FLG_HOLDLOCK is set for:
3416 * - The ld.so.1's link-map list.
3417 * - The auditor's link-map if the environment is pre-UPM.
3418 */
3419 if (lml->lm_flags & LML_FLG_HOLDLOCK)
3420 return;
3421
3422 if (rt_bind_clear(0) & THR_FLG_RTLD) {
3423 if (!thr_flg_nolock)
3424 (void) rt_mutex_unlock(&rtldlock);
3425 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags);
3426 }
3427 }
3428
3429 int
callable(Rt_map * clmp,Rt_map * dlmp,Grp_hdl * ghp,uint_t slflags)3430 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
3431 {
3432 APlist *calp, *dalp;
3433 Aliste idx1, idx2;
3434 Grp_hdl *ghp1, *ghp2;
3435
3436 /*
3437 * An object can always find symbols within itself.
3438 */
3439 if (clmp == dlmp)
3440 return (1);
3441
3442 /*
3443 * The search for a singleton must look in every loaded object.
3444 */
3445 if (slflags & LKUP_SINGLETON)
3446 return (1);
3447
3448 /*
3449 * Don't allow an object to bind to an object that is being deleted
3450 * unless the binder is also being deleted.
3451 */
3452 if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3453 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3454 return (0);
3455
3456 /*
3457 * An object with world access can always bind to an object with global
3458 * visibility.
3459 */
3460 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) &&
3461 (MODE(dlmp) & RTLD_GLOBAL))
3462 return (1);
3463
3464 /*
3465 * An object with local access can only bind to an object that is a
3466 * member of the same group.
3467 */
3468 if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3469 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
3470 return (0);
3471
3472 /*
3473 * Traverse the list of groups the caller is a part of.
3474 */
3475 for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
3476 /*
3477 * If we're testing for the ability of two objects to bind to
3478 * each other regardless of a specific group, ignore that group.
3479 */
3480 if (ghp && (ghp1 == ghp))
3481 continue;
3482
3483 /*
3484 * Traverse the list of groups the destination is a part of.
3485 */
3486 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
3487 Grp_desc *gdp;
3488 Aliste idx3;
3489
3490 if (ghp1 != ghp2)
3491 continue;
3492
3493 /*
3494 * Make sure the relationship between the destination
3495 * and the caller provide symbols for relocation.
3496 * Parents are maintained as callers, but unless the
3497 * destination object was opened with RTLD_PARENT, the
3498 * parent doesn't provide symbols for the destination
3499 * to relocate against.
3500 */
3501 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
3502 if (dlmp != gdp->gd_depend)
3503 continue;
3504
3505 if (gdp->gd_flags & GPD_RELOC)
3506 return (1);
3507 }
3508 }
3509 }
3510 return (0);
3511 }
3512
3513 /*
3514 * Initialize the environ symbol. Traditionally this is carried out by the crt
3515 * code prior to jumping to main. However, init sections get fired before this
3516 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3517 * information. In addition, a process may have multiple link-maps (ld.so.1's
3518 * debugging and preloading objects), and link auditing, and each may need an
3519 * environ variable set.
3520 *
3521 * This routine is called after a relocation() pass, and thus provides for:
3522 *
3523 * - setting environ on the main link-map after the initial application and
3524 * its dependencies have been established. Typically environ lives in the
3525 * application (provided by its crt), but in older applications it might
3526 * be in libc. Who knows what's expected of applications not built on
3527 * Solaris.
3528 *
3529 * - after loading a new shared object. We can add shared objects to various
3530 * link-maps, and any link-map dependencies requiring getopt() require
3531 * their own environ. In addition, lazy loading might bring in the
3532 * supplier of environ (libc used to be a lazy loading candidate) after
3533 * the link-map has been established and other objects are present.
3534 *
3535 * This routine handles all these scenarios, without adding unnecessary overhead
3536 * to ld.so.1.
3537 */
3538 void
set_environ(Lm_list * lml)3539 set_environ(Lm_list *lml)
3540 {
3541 Slookup sl;
3542 Sresult sr;
3543 uint_t binfo;
3544
3545 /*
3546 * Initialize the symbol lookup, and symbol result, data structures.
3547 */
3548 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
3549 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
3550 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON));
3551
3552 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) {
3553 Rt_map *dlmp = sr.sr_dmap;
3554
3555 lml->lm_environ = (char ***)sr.sr_sym->st_value;
3556
3557 if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3558 lml->lm_environ =
3559 (char ***)((uintptr_t)lml->lm_environ +
3560 (uintptr_t)ADDR(dlmp));
3561 *(lml->lm_environ) = (char **)environ;
3562 lml->lm_flags |= LML_FLG_ENVIRON;
3563 }
3564 }
3565
3566 /*
3567 * Determine whether we have a secure executable. Uid and gid information
3568 * can be passed to us via the aux vector, however if these values are -1
3569 * then use the appropriate system call to obtain them.
3570 *
3571 * - If the user is the root they can do anything
3572 *
3573 * - If the real and effective uid's don't match, or the real and
3574 * effective gid's don't match then this is determined to be a `secure'
3575 * application.
3576 *
3577 * This function is called prior to any dependency processing (see _setup.c).
3578 * Any secure setting will remain in effect for the life of the process.
3579 */
3580 void
security(uid_t uid,uid_t euid,gid_t gid,gid_t egid,int auxflags)3581 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3582 {
3583 if (auxflags != -1) {
3584 if ((auxflags & AF_SUN_SETUGID) != 0)
3585 rtld_flags |= RT_FL_SECURE;
3586 return;
3587 }
3588
3589 if (uid == (uid_t)-1)
3590 uid = getuid();
3591 if (uid) {
3592 if (euid == (uid_t)-1)
3593 euid = geteuid();
3594 if (uid != euid)
3595 rtld_flags |= RT_FL_SECURE;
3596 else {
3597 if (gid == (gid_t)-1)
3598 gid = getgid();
3599 if (egid == (gid_t)-1)
3600 egid = getegid();
3601 if (gid != egid)
3602 rtld_flags |= RT_FL_SECURE;
3603 }
3604 }
3605 }
3606
3607 /*
3608 * Determine whether ld.so.1 itself is owned by root and has its mode setuid.
3609 */
3610 int
is_rtld_setuid()3611 is_rtld_setuid()
3612 {
3613 rtld_stat_t status;
3614 const char *name;
3615
3616 if (rtld_flags2 & RT_FL2_SETUID)
3617 return (1);
3618
3619 if (interp && interp->i_name)
3620 name = interp->i_name;
3621 else
3622 name = NAME(lml_rtld.lm_head);
3623
3624 if (((rtld_stat(name, &status) == 0) &&
3625 (status.st_uid == 0) && (status.st_mode & S_ISUID))) {
3626 rtld_flags2 |= RT_FL2_SETUID;
3627 return (1);
3628 }
3629 return (0);
3630 }
3631
3632 /*
3633 * Determine that systems platform name. Normally, this name is provided from
3634 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a
3635 * fall back.
3636 */
3637 void
platform_name(Syscapset * scapset)3638 platform_name(Syscapset *scapset)
3639 {
3640 char info[SYS_NMLN];
3641 size_t size;
3642
3643 if ((scapset->sc_platsz = size =
3644 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1)
3645 return;
3646
3647 if ((scapset->sc_plat = malloc(size)) == NULL) {
3648 scapset->sc_platsz = (size_t)-1;
3649 return;
3650 }
3651 (void) strcpy(scapset->sc_plat, info);
3652 }
3653
3654 /*
3655 * Determine that systems machine name. Normally, this name is provided from
3656 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a
3657 * fall back.
3658 */
3659 void
machine_name(Syscapset * scapset)3660 machine_name(Syscapset *scapset)
3661 {
3662 char info[SYS_NMLN];
3663 size_t size;
3664
3665 if ((scapset->sc_machsz = size =
3666 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1)
3667 return;
3668
3669 if ((scapset->sc_mach = malloc(size)) == NULL) {
3670 scapset->sc_machsz = (size_t)-1;
3671 return;
3672 }
3673 (void) strcpy(scapset->sc_mach, info);
3674 }
3675
3676 /*
3677 * _REENTRANT code gets errno redefined to a function so provide for return
3678 * of the thread errno if applicable. This has no meaning in ld.so.1 which
3679 * is basically singled threaded. Provide the interface for our dependencies.
3680 */
3681 #undef errno
3682 int *
___errno()3683 ___errno()
3684 {
3685 extern int errno;
3686
3687 return (&errno);
3688 }
3689
3690 /*
3691 * Determine whether a symbol name should be demangled.
3692 */
3693 const char *
demangle(const char * name)3694 demangle(const char *name)
3695 {
3696 if (rtld_flags & RT_FL_DEMANGLE)
3697 return (conv_demangle_name(name));
3698 else
3699 return (name);
3700 }
3701
3702 #ifndef _LP64
3703 /*
3704 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
3705 * underneath while preserving the object size limits of a non-largefile
3706 * enabled 32-bit process. The purpose of this is to prevent large inode
3707 * values from causing stat() to fail.
3708 */
3709 inline static int
rtld_stat_process(int r,struct stat64 * lbuf,rtld_stat_t * restrict buf)3710 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf)
3711 {
3712 extern int errno;
3713
3714 /*
3715 * Although we used a 64-bit capable stat(), the 32-bit rtld
3716 * can only handle objects < 2GB in size. If this object is
3717 * too big, turn the success into an overflow error.
3718 */
3719 if ((lbuf->st_size & 0xffffffff80000000) != 0) {
3720 errno = EOVERFLOW;
3721 return (-1);
3722 }
3723
3724 /*
3725 * Transfer the information needed by rtld into a rtld_stat_t
3726 * structure that preserves the non-largile types for everything
3727 * except inode.
3728 */
3729 buf->st_dev = lbuf->st_dev;
3730 buf->st_ino = lbuf->st_ino;
3731 buf->st_mode = lbuf->st_mode;
3732 buf->st_uid = lbuf->st_uid;
3733 buf->st_size = (off_t)lbuf->st_size;
3734 buf->st_mtim = lbuf->st_mtim;
3735 #ifdef sparc
3736 buf->st_blksize = lbuf->st_blksize;
3737 #endif
3738
3739 return (r);
3740 }
3741
3742 int
rtld_stat(const char * restrict path,rtld_stat_t * restrict buf)3743 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf)
3744 {
3745 struct stat64 lbuf;
3746 int r;
3747
3748 r = stat64(path, &lbuf);
3749 if (r != -1)
3750 r = rtld_stat_process(r, &lbuf, buf);
3751 return (r);
3752 }
3753
3754 int
rtld_fstat(int fildes,rtld_stat_t * restrict buf)3755 rtld_fstat(int fildes, rtld_stat_t *restrict buf)
3756 {
3757 struct stat64 lbuf;
3758 int r;
3759
3760 r = fstat64(fildes, &lbuf);
3761 if (r != -1)
3762 r = rtld_stat_process(r, &lbuf, buf);
3763 return (r);
3764 }
3765 #endif
3766