xref: /onnv-gate/usr/src/cmd/perl/5.8.4/distrib/lib/Math/Trig.pm (revision 0:68f95e015346)
1#
2# Trigonometric functions, mostly inherited from Math::Complex.
3# -- Jarkko Hietaniemi, since April 1997
4# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
5#
6
7require Exporter;
8package Math::Trig;
9
10use 5.006;
11use strict;
12
13use Math::Complex qw(:trig);
14
15our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
16
17@ISA = qw(Exporter);
18
19$VERSION = 1.02;
20
21my @angcnv = qw(rad2deg rad2grad
22		deg2rad deg2grad
23		grad2rad grad2deg);
24
25@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
26	   @angcnv);
27
28my @rdlcnv = qw(cartesian_to_cylindrical
29		cartesian_to_spherical
30		cylindrical_to_cartesian
31		cylindrical_to_spherical
32		spherical_to_cartesian
33		spherical_to_cylindrical);
34
35@EXPORT_OK = (@rdlcnv, 'great_circle_distance', 'great_circle_direction');
36
37%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
38
39sub pi2  () { 2 * pi }
40sub pip2 () { pi / 2 }
41
42sub DR  () { pi2/360 }
43sub RD  () { 360/pi2 }
44sub DG  () { 400/360 }
45sub GD  () { 360/400 }
46sub RG  () { 400/pi2 }
47sub GR  () { pi2/400 }
48
49#
50# Truncating remainder.
51#
52
53sub remt ($$) {
54    # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
55    $_[0] - $_[1] * int($_[0] / $_[1]);
56}
57
58#
59# Angle conversions.
60#
61
62sub rad2rad($)     { remt($_[0], pi2) }
63
64sub deg2deg($)     { remt($_[0], 360) }
65
66sub grad2grad($)   { remt($_[0], 400) }
67
68sub rad2deg ($;$)  { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }
69
70sub deg2rad ($;$)  { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }
71
72sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }
73
74sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }
75
76sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }
77
78sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }
79
80sub cartesian_to_spherical {
81    my ( $x, $y, $z ) = @_;
82
83    my $rho = sqrt( $x * $x + $y * $y + $z * $z );
84
85    return ( $rho,
86             atan2( $y, $x ),
87             $rho ? acos( $z / $rho ) : 0 );
88}
89
90sub spherical_to_cartesian {
91    my ( $rho, $theta, $phi ) = @_;
92
93    return ( $rho * cos( $theta ) * sin( $phi ),
94             $rho * sin( $theta ) * sin( $phi ),
95             $rho * cos( $phi   ) );
96}
97
98sub spherical_to_cylindrical {
99    my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
100
101    return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
102}
103
104sub cartesian_to_cylindrical {
105    my ( $x, $y, $z ) = @_;
106
107    return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
108}
109
110sub cylindrical_to_cartesian {
111    my ( $rho, $theta, $z ) = @_;
112
113    return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
114}
115
116sub cylindrical_to_spherical {
117    return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
118}
119
120sub great_circle_distance {
121    my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
122
123    $rho = 1 unless defined $rho; # Default to the unit sphere.
124
125    my $lat0 = pip2 - $phi0;
126    my $lat1 = pip2 - $phi1;
127
128    return $rho *
129        acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
130             sin( $lat0 ) * sin( $lat1 ) );
131}
132
133sub great_circle_direction {
134    my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
135
136    my $distance = &great_circle_distance;
137
138    my $lat0 = pip2 - $phi0;
139    my $lat1 = pip2 - $phi1;
140
141    my $direction =
142	acos((sin($lat1) - sin($lat0) * cos($distance)) /
143	     (cos($lat0) * sin($distance)));
144
145    $direction = pi2 - $direction
146	if sin($theta1 - $theta0) < 0;
147
148    return rad2rad($direction);
149}
150
1511;
152
153__END__
154=pod
155
156=head1 NAME
157
158Math::Trig - trigonometric functions
159
160=head1 SYNOPSIS
161
162	use Math::Trig;
163
164	$x = tan(0.9);
165	$y = acos(3.7);
166	$z = asin(2.4);
167
168	$halfpi = pi/2;
169
170	$rad = deg2rad(120);
171
172=head1 DESCRIPTION
173
174C<Math::Trig> defines many trigonometric functions not defined by the
175core Perl which defines only the C<sin()> and C<cos()>.  The constant
176B<pi> is also defined as are a few convenience functions for angle
177conversions.
178
179=head1 TRIGONOMETRIC FUNCTIONS
180
181The tangent
182
183=over 4
184
185=item B<tan>
186
187=back
188
189The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
190are aliases)
191
192B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
193
194The arcus (also known as the inverse) functions of the sine, cosine,
195and tangent
196
197B<asin>, B<acos>, B<atan>
198
199The principal value of the arc tangent of y/x
200
201B<atan2>(y, x)
202
203The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
204and acotan/acot are aliases)
205
206B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
207
208The hyperbolic sine, cosine, and tangent
209
210B<sinh>, B<cosh>, B<tanh>
211
212The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
213and cotanh/coth are aliases)
214
215B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
216
217The arcus (also known as the inverse) functions of the hyperbolic
218sine, cosine, and tangent
219
220B<asinh>, B<acosh>, B<atanh>
221
222The arcus cofunctions of the hyperbolic sine, cosine, and tangent
223(acsch/acosech and acoth/acotanh are aliases)
224
225B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
226
227The trigonometric constant B<pi> is also defined.
228
229$pi2 = 2 * B<pi>;
230
231=head2 ERRORS DUE TO DIVISION BY ZERO
232
233The following functions
234
235	acoth
236	acsc
237	acsch
238	asec
239	asech
240	atanh
241	cot
242	coth
243	csc
244	csch
245	sec
246	sech
247	tan
248	tanh
249
250cannot be computed for all arguments because that would mean dividing
251by zero or taking logarithm of zero. These situations cause fatal
252runtime errors looking like this
253
254	cot(0): Division by zero.
255	(Because in the definition of cot(0), the divisor sin(0) is 0)
256	Died at ...
257
258or
259
260	atanh(-1): Logarithm of zero.
261	Died at...
262
263For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
264C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the
265C<atanh>, C<acoth>, the argument cannot be C<1> (one).  For the
266C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one).  For the
267C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
268pi>, where I<k> is any integer.
269
270=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
271
272Please note that some of the trigonometric functions can break out
273from the B<real axis> into the B<complex plane>. For example
274C<asin(2)> has no definition for plain real numbers but it has
275definition for complex numbers.
276
277In Perl terms this means that supplying the usual Perl numbers (also
278known as scalars, please see L<perldata>) as input for the
279trigonometric functions might produce as output results that no more
280are simple real numbers: instead they are complex numbers.
281
282The C<Math::Trig> handles this by using the C<Math::Complex> package
283which knows how to handle complex numbers, please see L<Math::Complex>
284for more information. In practice you need not to worry about getting
285complex numbers as results because the C<Math::Complex> takes care of
286details like for example how to display complex numbers. For example:
287
288	print asin(2), "\n";
289
290should produce something like this (take or leave few last decimals):
291
292	1.5707963267949-1.31695789692482i
293
294That is, a complex number with the real part of approximately C<1.571>
295and the imaginary part of approximately C<-1.317>.
296
297=head1 PLANE ANGLE CONVERSIONS
298
299(Plane, 2-dimensional) angles may be converted with the following functions.
300
301	$radians  = deg2rad($degrees);
302	$radians  = grad2rad($gradians);
303
304	$degrees  = rad2deg($radians);
305	$degrees  = grad2deg($gradians);
306
307	$gradians = deg2grad($degrees);
308	$gradians = rad2grad($radians);
309
310The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
311The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
312If you don't want this, supply a true second argument:
313
314	$zillions_of_radians  = deg2rad($zillions_of_degrees, 1);
315	$negative_degrees     = rad2deg($negative_radians, 1);
316
317You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
318grad2grad().
319
320=head1 RADIAL COORDINATE CONVERSIONS
321
322B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
323systems, explained shortly in more detail.
324
325You can import radial coordinate conversion functions by using the
326C<:radial> tag:
327
328    use Math::Trig ':radial';
329
330    ($rho, $theta, $z)     = cartesian_to_cylindrical($x, $y, $z);
331    ($rho, $theta, $phi)   = cartesian_to_spherical($x, $y, $z);
332    ($x, $y, $z)           = cylindrical_to_cartesian($rho, $theta, $z);
333    ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
334    ($x, $y, $z)           = spherical_to_cartesian($rho, $theta, $phi);
335    ($rho_c, $theta, $z)   = spherical_to_cylindrical($rho_s, $theta, $phi);
336
337B<All angles are in radians>.
338
339=head2 COORDINATE SYSTEMS
340
341B<Cartesian> coordinates are the usual rectangular I<(x, y,
342z)>-coordinates.
343
344Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
345coordinates which define a point in three-dimensional space.  They are
346based on a sphere surface.  The radius of the sphere is B<rho>, also
347known as the I<radial> coordinate.  The angle in the I<xy>-plane
348(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
349coordinate.  The angle from the I<z>-axis is B<phi>, also known as the
350I<polar> coordinate.  The `North Pole' is therefore I<0, 0, rho>, and
351the `Bay of Guinea' (think of the missing big chunk of Africa) I<0,
352pi/2, rho>.  In geographical terms I<phi> is latitude (northward
353positive, southward negative) and I<theta> is longitude (eastward
354positive, westward negative).
355
356B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
357some texts define the I<phi> to start from the horizontal plane, some
358texts use I<r> in place of I<rho>.
359
360Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
361coordinates which define a point in three-dimensional space.  They are
362based on a cylinder surface.  The radius of the cylinder is B<rho>,
363also known as the I<radial> coordinate.  The angle in the I<xy>-plane
364(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
365coordinate.  The third coordinate is the I<z>, pointing up from the
366B<theta>-plane.
367
368=head2 3-D ANGLE CONVERSIONS
369
370Conversions to and from spherical and cylindrical coordinates are
371available.  Please notice that the conversions are not necessarily
372reversible because of the equalities like I<pi> angles being equal to
373I<-pi> angles.
374
375=over 4
376
377=item cartesian_to_cylindrical
378
379        ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
380
381=item cartesian_to_spherical
382
383        ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
384
385=item cylindrical_to_cartesian
386
387        ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
388
389=item cylindrical_to_spherical
390
391        ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
392
393Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
394
395=item spherical_to_cartesian
396
397        ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
398
399=item spherical_to_cylindrical
400
401        ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
402
403Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
404
405=back
406
407=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
408
409You can compute spherical distances, called B<great circle distances>,
410by importing the great_circle_distance() function:
411
412  use Math::Trig 'great_circle_distance';
413
414  $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
415
416The I<great circle distance> is the shortest distance between two
417points on a sphere.  The distance is in C<$rho> units.  The C<$rho> is
418optional, it defaults to 1 (the unit sphere), therefore the distance
419defaults to radians.
420
421If you think geographically the I<theta> are longitudes: zero at the
422Greenwhich meridian, eastward positive, westward negative--and the
423I<phi> are latitudes: zero at the North Pole, northward positive,
424southward negative.  B<NOTE>: this formula thinks in mathematics, not
425geographically: the I<phi> zero is at the North Pole, not at the
426Equator on the west coast of Africa (Bay of Guinea).  You need to
427subtract your geographical coordinates from I<pi/2> (also known as 90
428degrees).
429
430  $distance = great_circle_distance($lon0, pi/2 - $lat0,
431                                    $lon1, pi/2 - $lat1, $rho);
432
433The direction you must follow the great circle can be computed by the
434great_circle_direction() function:
435
436  use Math::Trig 'great_circle_direction';
437
438  $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
439
440The result is in radians, zero indicating straight north, pi or -pi
441straight south, pi/2 straight west, and -pi/2 straight east.
442
443Notice that the resulting directions might be somewhat surprising if
444you are looking at a flat worldmap: in such map projections the great
445circles quite often do not look like the shortest routes-- but for
446example the shortest possible routes from Europe or North America to
447Asia do often cross the polar regions.
448
449=head1 EXAMPLES
450
451To calculate the distance between London (51.3N 0.5W) and Tokyo
452(35.7N 139.8E) in kilometers:
453
454        use Math::Trig qw(great_circle_distance deg2rad);
455
456        # Notice the 90 - latitude: phi zero is at the North Pole.
457	@L = (deg2rad(-0.5), deg2rad(90 - 51.3));
458        @T = (deg2rad(139.8),deg2rad(90 - 35.7));
459
460        $km = great_circle_distance(@L, @T, 6378);
461
462The direction you would have to go from London to Tokyo
463
464        use Math::Trig qw(great_circle_direction);
465
466        $rad = great_circle_direction(@L, @T);
467
468=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
469
470The answers may be off by few percentages because of the irregular
471(slightly aspherical) form of the Earth.  The formula used for
472grear circle distances
473
474	lat0 = 90 degrees - phi0
475	lat1 = 90 degrees - phi1
476	d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) +
477                       sin(lat0) * sin(lat1))
478
479is also somewhat unreliable for small distances (for locations
480separated less than about five degrees) because it uses arc cosine
481which is rather ill-conditioned for values close to zero.
482
483=head1 BUGS
484
485Saying C<use Math::Trig;> exports many mathematical routines in the
486caller environment and even overrides some (C<sin>, C<cos>).  This is
487construed as a feature by the Authors, actually... ;-)
488
489The code is not optimized for speed, especially because we use
490C<Math::Complex> and thus go quite near complex numbers while doing
491the computations even when the arguments are not. This, however,
492cannot be completely avoided if we want things like C<asin(2)> to give
493an answer instead of giving a fatal runtime error.
494
495=head1 AUTHORS
496
497Jarkko Hietaniemi <F<jhi@iki.fi>> and
498Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.
499
500=cut
501
502# eof
503