1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * This file contains the code to perform program startup. This
27 * includes reading the data file and the search for disks.
28 */
29 #include "global.h"
30
31 #include <ctype.h>
32 #include <stdlib.h>
33 #include <unistd.h>
34 #include <string.h>
35 #include <strings.h>
36 #include <fcntl.h>
37 #include <errno.h>
38 #include <memory.h>
39 #include <dirent.h>
40 #include <sys/fcntl.h>
41 #include <sys/param.h>
42 #include <sys/stat.h>
43
44 #include "startup.h"
45 #include "param.h"
46 #include "label.h"
47 #include "misc.h"
48 #include "menu_command.h"
49 #include "partition.h"
50 #include "ctlr_scsi.h"
51
52 #include "auto_sense.h"
53
54 extern struct ctlr_type ctlr_types[];
55 extern int nctypes;
56 extern struct ctlr_ops genericops;
57 extern long strtol();
58
59 extern int errno;
60
61 #ifdef __STDC__
62
63 /* Function prototypes for ANSI C Compilers */
64 static void usage(void);
65 static int sup_prxfile(void);
66 static void sup_setpath(void);
67 static void sup_setdtype(void);
68 static int sup_change_spec(struct disk_type *, char *);
69 static void sup_setpart(void);
70 static void search_for_logical_dev(char *devname);
71 static void add_device_to_disklist(char *devname, char *devpath);
72 static int disk_is_known(struct dk_cinfo *dkinfo);
73 static void datafile_error(char *errmsg, char *token);
74 static void search_duplicate_dtypes(void);
75 static void search_duplicate_pinfo(void);
76 static void check_dtypes_for_inconsistency(struct disk_type *dp1,
77 struct disk_type *dp2);
78 static void check_pinfo_for_inconsistency(struct partition_info *pp1,
79 struct partition_info *pp2);
80 static uint_t str2blks(char *str);
81 static int str2cyls(char *str);
82 static struct chg_list *new_chg_list(struct disk_type *);
83 static char *get_physical_name(char *);
84 static void sort_disk_list(void);
85 static int disk_name_compare(const void *, const void *);
86 static void make_controller_list(void);
87 static void check_for_duplicate_disknames(char *arglist[]);
88
89 #else /* __STDC__ */
90
91 /* Function prototypes for non-ANSI C Compilers */
92 static void usage();
93 static int sup_prxfile();
94 static void sup_setpath();
95 static void sup_setdtype();
96 static int sup_change_spec();
97 static void sup_setpart();
98 static void search_for_logical_dev();
99 static void add_device_to_disklist();
100 static int disk_is_known();
101 static void datafile_error();
102 static void search_duplicate_dtypes();
103 static void search_duplicate_pinfo();
104 static void check_dtypes_for_inconsistency();
105 static void check_pinfo_for_inconsistency();
106 static uint_t str2blks();
107 static int str2cyls();
108 static struct chg_list *new_chg_list();
109 static char *get_physical_name();
110 static void sort_disk_list();
111 static int disk_name_compare();
112 static void make_controller_list();
113 static void check_for_duplicate_disknames();
114
115 #endif /* __STDC__ */
116
117 #if defined(sparc)
118 static char *other_ctlrs[] = {
119 "ata"
120 };
121 #define OTHER_CTLRS 1
122
123 #elif defined(i386)
124 static char *other_ctlrs[] = {
125 "ISP-80"
126 };
127 #define OTHER_CTLRS 2
128
129 #else
130 #error No Platform defined.
131 #endif
132
133
134 /*
135 * This global is used to store the current line # in the data file.
136 * It must be global because the I/O routines are allowed to side
137 * effect it to keep track of backslashed newlines.
138 */
139 int data_lineno; /* current line # in data file */
140
141 /*
142 * Search path as defined in the format.dat files
143 */
144 static char **search_path = NULL;
145
146
147 static int name_represents_wholedisk(char *name);
148
149 static void get_disk_name(int fd, char *disk_name);
150
151 /*
152 * This routine digests the options on the command line. It returns
153 * the index into argv of the first string that is not an option. If
154 * there are none, it returns -1.
155 */
156 int
do_options(int argc,char * argv[])157 do_options(int argc, char *argv[])
158 {
159 char *ptr;
160 int i;
161 int next;
162
163 /*
164 * Default is no extended messages. Can be enabled manually.
165 */
166 option_msg = 0;
167 diag_msg = 0;
168 expert_mode = 0;
169 need_newline = 0;
170 dev_expert = 0;
171
172 /*
173 * Loop through the argument list, incrementing each time by
174 * an amount determined by the options found.
175 */
176 for (i = 1; i < argc; i = next) {
177 /*
178 * Start out assuming an increment of 1.
179 */
180 next = i + 1;
181 /*
182 * As soon as we hit a non-option, we're done.
183 */
184 if (*argv[i] != '-')
185 return (i);
186 /*
187 * Loop through all the characters in this option string.
188 */
189 for (ptr = argv[i] + 1; *ptr != '\0'; ptr++) {
190 /*
191 * Determine each option represented. For options
192 * that use a second string, increase the increment
193 * of the main loop so they aren't re-interpreted.
194 */
195 switch (*ptr) {
196 case 's':
197 case 'S':
198 option_s = 1;
199 break;
200 case 'f':
201 case 'F':
202 option_f = argv[next++];
203 if (next > argc)
204 goto badopt;
205 break;
206 case 'l':
207 case 'L':
208 option_l = argv[next++];
209 if (next > argc)
210 goto badopt;
211 break;
212 case 'x':
213 case 'X':
214 option_x = argv[next++];
215 if (next > argc)
216 goto badopt;
217 break;
218 case 'd':
219 case 'D':
220 option_d = argv[next++];
221 if (next > argc)
222 goto badopt;
223 break;
224 case 't':
225 case 'T':
226 option_t = argv[next++];
227 if (next > argc)
228 goto badopt;
229 break;
230 case 'p':
231 case 'P':
232 option_p = argv[next++];
233 if (next > argc)
234 goto badopt;
235 break;
236 case 'm':
237 option_msg = 1;
238 break;
239 case 'M':
240 option_msg = 1;
241 diag_msg = 1;
242 break;
243 case 'e':
244 expert_mode = 1;
245 break;
246 #ifdef DEBUG
247 case 'z':
248 dev_expert = 1;
249 break;
250 #endif
251 default:
252 badopt:
253 usage();
254 break;
255 }
256 }
257 }
258 /*
259 * All the command line strings were options. Return that fact.
260 */
261 return (-1);
262 }
263
264
265 static void
usage()266 usage()
267 {
268 err_print("Usage: format [-s][-d disk_name]");
269 err_print("[-t disk_type][-p partition_name]\n");
270 err_print("\t[-f cmd_file][-l log_file]");
271 err_print("[-x data_file] [-m] [-M] [-e] disk_list\n");
272 fullabort();
273 }
274
275
276 /*
277 * This routine reads in and digests the data file. The data file contains
278 * definitions for the search path, known disk types, and known partition
279 * maps.
280 *
281 * Note: for each file being processed, file_name is a pointer to that
282 * file's name. We are careful to make sure that file_name points to
283 * globally-accessible data, not data on the stack, because each
284 * disk/partition/controller definition now keeps a pointer to the
285 * filename in which it was defined. In the case of duplicate,
286 * conflicting definitions, we can thus tell the user exactly where
287 * the problem is occurring.
288 */
289 void
sup_init()290 sup_init()
291 {
292 int nopened_files = 0;
293 char fname[MAXPATHLEN];
294 char *path;
295 char *p;
296 struct stat stbuf;
297
298
299 /*
300 * Create a singly-linked list of controller types so that we may
301 * dynamically add unknown controllers to this for 3'rd
302 * party disk support.
303 */
304
305 make_controller_list();
306
307 /*
308 * If a data file was specified on the command line, use it first
309 * If the file cannot be opened, fail. We want to guarantee
310 * that, if the user explicitly names a file, they can
311 * access it.
312 *
313 * option_x is already global, no need to dup it on the heap.
314 */
315 if (option_x) {
316 file_name = option_x;
317 if (sup_prxfile()) {
318 nopened_files++;
319 } else {
320 err_print("Unable to open data file '%s' - %s.\n",
321 file_name, strerror(errno));
322 fullabort();
323 }
324 }
325
326 /*
327 * Now look for an environment variable FORMAT_PATH.
328 * If found, we use it as a colon-separated list
329 * of directories. If no such environment variable
330 * is defined, use a default path of "/etc".
331 */
332 path = getenv("FORMAT_PATH");
333 if (path == NULL) {
334 path = "/etc";
335 }
336 /*
337 * Traverse the path one file at a time. Pick off
338 * the file name, and append the name "format.dat"
339 * at the end of the pathname.
340 * Whatever string we construct, duplicate it on the
341 * heap, so that file_name is globally accessible.
342 */
343 while (*path != 0) {
344 p = fname;
345 while (*path != 0 && *path != ':')
346 *p++ = *path++;
347 if (p == fname)
348 continue;
349 *p = 0;
350 if (*path == ':')
351 path++;
352 /*
353 * If the path we have so far is a directory,
354 * look for a format.dat file in that directory,
355 * otherwise try using the path name specified.
356 * This permits arbitrary file names in the
357 * path specification, if this proves useful.
358 */
359 if (stat(fname, &stbuf) == -1) {
360 err_print("Unable to access '%s' - %s.\n",
361 fname, strerror(errno));
362 } else {
363 if (S_ISDIR(stbuf.st_mode)) {
364 if (*(p-1) != '/')
365 *p++ = '/';
366 (void) strcpy(p, "format.dat");
367 }
368 file_name = alloc_string(fname);
369 if (sup_prxfile()) {
370 nopened_files++;
371 }
372 }
373 }
374
375 /*
376 * Check for duplicate disk or partitions definitions
377 * that are inconsistent - this would be very confusing.
378 */
379 search_duplicate_dtypes();
380 search_duplicate_pinfo();
381 }
382
383
384 /*
385 * Open and process a format data file. Unfortunately, we use
386 * globals: file_name for the file name, and data_file
387 * for the descriptor. Return true if able to open the file.
388 */
389 static int
sup_prxfile()390 sup_prxfile()
391 {
392 int status;
393 TOKEN token;
394 TOKEN cleaned;
395
396 /*
397 * Open the data file. Return 0 if unable to do so.
398 */
399 data_file = fopen(file_name, "r");
400 if (data_file == NULL) {
401 return (0);
402 }
403 /*
404 * Step through the data file a meta-line at a time. There are
405 * typically several backslashed newlines in each meta-line,
406 * so data_lineno will be getting side effected along the way.
407 */
408 data_lineno = 0;
409 for (;;) {
410 data_lineno++;
411 /*
412 * Get the keyword.
413 */
414 status = sup_gettoken(token);
415 /*
416 * If we hit the end of the data file, we're done.
417 */
418 if (status == SUP_EOF)
419 break;
420 /*
421 * If the line is blank, skip it.
422 */
423 if (status == SUP_EOL)
424 continue;
425 /*
426 * If the line starts with some key character, it's an error.
427 */
428 if (status != SUP_STRING) {
429 datafile_error("Expecting keyword, found '%s'", token);
430 continue;
431 }
432 /*
433 * Clean up the token and see which keyword it is. Call
434 * the appropriate routine to process the rest of the line.
435 */
436 clean_token(cleaned, token);
437 if (strcmp(cleaned, "search_path") == 0)
438 sup_setpath();
439 else if (strcmp(cleaned, "disk_type") == 0)
440 sup_setdtype();
441 else if (strcmp(cleaned, "partition") == 0)
442 sup_setpart();
443 else {
444 datafile_error("Unknown keyword '%s'", cleaned);
445 }
446 }
447 /*
448 * Close the data file.
449 */
450 (void) fclose(data_file);
451
452 return (1);
453 }
454
455 /*
456 * This routine processes a 'search_path' line in the data file. The
457 * search path is a list of disk names that will be searched for by the
458 * program.
459 *
460 * The static path_size and path_alloc are used to build up the
461 * list of files comprising the search path. The static definitions
462 * enable supporting multiple search path definitions.
463 */
464 static void
sup_setpath()465 sup_setpath()
466 {
467 TOKEN token;
468 TOKEN cleaned;
469 int status;
470 static int path_size;
471 static int path_alloc;
472
473 /*
474 * Pull in some grammar.
475 */
476 status = sup_gettoken(token);
477 if (status != SUP_EQL) {
478 datafile_error("Expecting '=', found '%s'", token);
479 return;
480 }
481 /*
482 * Loop through the entries.
483 */
484 for (;;) {
485 /*
486 * Pull in the disk name.
487 */
488 status = sup_gettoken(token);
489 /*
490 * If we hit end of line, we're done.
491 */
492 if (status == SUP_EOL)
493 break;
494 /*
495 * If we hit some key character, it's an error.
496 */
497 if (status != SUP_STRING) {
498 datafile_error("Expecting value, found '%s'", token);
499 break;
500 }
501 clean_token(cleaned, token);
502 /*
503 * Build the string into an argvlist. This array
504 * is dynamically sized, as necessary, and terminated
505 * with a null. Each name is alloc'ed on the heap,
506 * so no dangling references.
507 */
508 search_path = build_argvlist(search_path, &path_size,
509 &path_alloc, cleaned);
510 /*
511 * Pull in some grammar.
512 */
513 status = sup_gettoken(token);
514 if (status == SUP_EOL)
515 break;
516 if (status != SUP_COMMA) {
517 datafile_error("Expecting ', ', found '%s'", token);
518 break;
519 }
520 }
521 }
522
523 /*
524 * This routine processes a 'disk_type' line in the data file. It defines
525 * the physical attributes of a brand of disk when connected to a specific
526 * controller type.
527 */
528 static void
sup_setdtype()529 sup_setdtype()
530 {
531 TOKEN token, cleaned, ident;
532 int val, status, i;
533 ulong_t flags = 0;
534 struct disk_type *dtype, *type;
535 struct ctlr_type *ctype;
536 char *dtype_name, *ptr;
537 struct mctlr_list *mlp;
538
539 /*
540 * Pull in some grammar.
541 */
542 status = sup_gettoken(token);
543 if (status != SUP_EQL) {
544 datafile_error("Expecting '=', found '%s'", token);
545 return;
546 }
547 /*
548 * Pull in the name of the disk type.
549 */
550 status = sup_gettoken(token);
551 if (status != SUP_STRING) {
552 datafile_error("Expecting value, found '%s'", token);
553 return;
554 }
555 clean_token(cleaned, token);
556 /*
557 * Allocate space for the disk type and copy in the name.
558 */
559 dtype_name = (char *)zalloc(strlen(cleaned) + 1);
560 (void) strcpy(dtype_name, cleaned);
561 dtype = (struct disk_type *)zalloc(sizeof (struct disk_type));
562 dtype->dtype_asciilabel = dtype_name;
563 /*
564 * Save the filename/linenumber where this disk was defined
565 */
566 dtype->dtype_filename = file_name;
567 dtype->dtype_lineno = data_lineno;
568 /*
569 * Loop for each attribute.
570 */
571 for (;;) {
572 /*
573 * Pull in some grammar.
574 */
575 status = sup_gettoken(token);
576 /*
577 * If we hit end of line, we're done.
578 */
579 if (status == SUP_EOL)
580 break;
581 if (status != SUP_COLON) {
582 datafile_error("Expecting ':', found '%s'", token);
583 return;
584 }
585 /*
586 * Pull in the attribute.
587 */
588 status = sup_gettoken(token);
589 /*
590 * If we hit end of line, we're done.
591 */
592 if (status == SUP_EOL)
593 break;
594 /*
595 * If we hit a key character, it's an error.
596 */
597 if (status != SUP_STRING) {
598 datafile_error("Expecting keyword, found '%s'", token);
599 return;
600 }
601 clean_token(ident, token);
602 /*
603 * Check to see if we've got a change specification
604 * If so, this routine will parse the entire
605 * specification, so just restart at top of loop
606 */
607 if (sup_change_spec(dtype, ident)) {
608 continue;
609 }
610 /*
611 * Pull in more grammar.
612 */
613 status = sup_gettoken(token);
614 if (status != SUP_EQL) {
615 datafile_error("Expecting '=', found '%s'", token);
616 return;
617 }
618 /*
619 * Pull in the value of the attribute.
620 */
621 status = sup_gettoken(token);
622 if (status != SUP_STRING) {
623 datafile_error("Expecting value, found '%s'", token);
624 return;
625 }
626 clean_token(cleaned, token);
627 /*
628 * If the attribute defined the ctlr...
629 */
630 if (strcmp(ident, "ctlr") == 0) {
631 /*
632 * Match the value with a ctlr type.
633 */
634 mlp = controlp;
635
636 while (mlp != NULL) {
637 if (strcmp(mlp->ctlr_type->ctype_name,
638 cleaned) == 0)
639 break;
640 mlp = mlp->next;
641 }
642 /*
643 * If we couldn't match it, it's an error.
644 */
645 if (mlp == NULL) {
646 for (i = 0; i < OTHER_CTLRS; i++) {
647 if (strcmp(other_ctlrs[i], cleaned)
648 == 0) {
649 datafile_error(NULL, NULL);
650 return;
651 }
652 }
653 if (i == OTHER_CTLRS) {
654 datafile_error(
655 "Unknown controller '%s'",
656 cleaned);
657 return;
658 }
659 }
660 /*
661 * Found a match. Add this disk type to the list
662 * for the ctlr type if we can complete the
663 * disk specification correctly.
664 */
665 ctype = mlp->ctlr_type;
666 flags |= SUP_CTLR;
667 continue;
668 }
669 /*
670 * All other attributes require a numeric value. Convert
671 * the value to a number.
672 */
673 val = (int)strtol(cleaned, &ptr, 0);
674 if (*ptr != '\0') {
675 datafile_error("Expecting an integer, found '%s'",
676 cleaned);
677 return;
678 }
679 /*
680 * Figure out which attribute it was and fill in the
681 * appropriate value. Also note that the attribute
682 * has been defined.
683 */
684 if (strcmp(ident, "ncyl") == 0) {
685 dtype->dtype_ncyl = val;
686 flags |= SUP_NCYL;
687 } else if (strcmp(ident, "acyl") == 0) {
688 dtype->dtype_acyl = val;
689 flags |= SUP_ACYL;
690 } else if (strcmp(ident, "pcyl") == 0) {
691 dtype->dtype_pcyl = val;
692 flags |= SUP_PCYL;
693 } else if (strcmp(ident, "nhead") == 0) {
694 dtype->dtype_nhead = val;
695 flags |= SUP_NHEAD;
696 } else if (strcmp(ident, "nsect") == 0) {
697 dtype->dtype_nsect = val;
698 flags |= SUP_NSECT;
699 } else if (strcmp(ident, "rpm") == 0) {
700 dtype->dtype_rpm = val;
701 flags |= SUP_RPM;
702 } else if (strcmp(ident, "bpt") == 0) {
703 dtype->dtype_bpt = val;
704 flags |= SUP_BPT;
705 } else if (strcmp(ident, "bps") == 0) {
706 dtype->dtype_bps = val;
707 flags |= SUP_BPS;
708 } else if (strcmp(ident, "drive_type") == 0) {
709 dtype->dtype_dr_type = val;
710 flags |= SUP_DRTYPE;
711 } else if (strcmp(ident, "cache") == 0) {
712 dtype->dtype_cache = val;
713 flags |= SUP_CACHE;
714 } else if (strcmp(ident, "prefetch") == 0) {
715 dtype->dtype_threshold = val;
716 flags |= SUP_PREFETCH;
717 } else if (strcmp(ident, "read_retries") == 0) {
718 dtype->dtype_read_retries = val;
719 flags |= SUP_READ_RETRIES;
720 } else if (strcmp(ident, "write_retries") == 0) {
721 dtype->dtype_write_retries = val;
722 flags |= SUP_WRITE_RETRIES;
723 } else if (strcmp(ident, "min_prefetch") == 0) {
724 dtype->dtype_prefetch_min = val;
725 flags |= SUP_CACHE_MIN;
726 } else if (strcmp(ident, "max_prefetch") == 0) {
727 dtype->dtype_prefetch_max = val;
728 flags |= SUP_CACHE_MAX;
729 } else if (strcmp(ident, "trks_zone") == 0) {
730 dtype->dtype_trks_zone = val;
731 flags |= SUP_TRKS_ZONE;
732 } else if (strcmp(ident, "atrks") == 0) {
733 dtype->dtype_atrks = val;
734 flags |= SUP_ATRKS;
735 } else if (strcmp(ident, "asect") == 0) {
736 dtype->dtype_asect = val;
737 flags |= SUP_ASECT;
738 } else if (strcmp(ident, "psect") == 0) {
739 dtype->dtype_psect = val;
740 flags |= SUP_PSECT;
741 } else if (strcmp(ident, "phead") == 0) {
742 dtype->dtype_phead = val;
743 flags |= SUP_PHEAD;
744 } else if (strcmp(ident, "fmt_time") == 0) {
745 dtype->dtype_fmt_time = val;
746 flags |= SUP_FMTTIME;
747 } else if (strcmp(ident, "cyl_skew") == 0) {
748 dtype->dtype_cyl_skew = val;
749 flags |= SUP_CYLSKEW;
750 } else if (strcmp(ident, "trk_skew") == 0) {
751 dtype->dtype_trk_skew = val;
752 flags |= SUP_TRKSKEW;
753 } else {
754 datafile_error("Unknown keyword '%s'", ident);
755 }
756 }
757 /*
758 * Check to be sure all the necessary attributes have been defined.
759 * If any are missing, it's an error. Also, log options for later
760 * use by specific driver.
761 */
762 dtype->dtype_options = flags;
763 if ((flags & SUP_MIN_DRIVE) != SUP_MIN_DRIVE) {
764 datafile_error("Incomplete specification", "");
765 return;
766 }
767 if ((!(ctype->ctype_flags & CF_SCSI)) && (!(flags & SUP_BPT)) &&
768 (!(ctype->ctype_flags & CF_NOFORMAT))) {
769 datafile_error("Incomplete specification", "");
770 return;
771 }
772 if ((ctype->ctype_flags & CF_SMD_DEFS) && (!(flags & SUP_BPS))) {
773 datafile_error("Incomplete specification", "");
774 return;
775 }
776 /*
777 * Add this disk type to the list for the ctlr type
778 */
779 assert(flags & SUP_CTLR);
780 type = ctype->ctype_dlist;
781 if (type == NULL) {
782 ctype->ctype_dlist = dtype;
783 } else {
784 while (type->dtype_next != NULL)
785 type = type->dtype_next;
786 type->dtype_next = dtype;
787 }
788 }
789
790
791 /*
792 * Parse a SCSI mode page change specification.
793 *
794 * Return:
795 * 0: not change specification, continue parsing
796 * 1: was change specification, it was ok,
797 * or we already handled the error.
798 */
799 static int
sup_change_spec(struct disk_type * disk,char * id)800 sup_change_spec(struct disk_type *disk, char *id)
801 {
802 char *p;
803 char *p2;
804 int pageno;
805 int byteno;
806 int mode;
807 int value;
808 TOKEN token;
809 TOKEN ident;
810 struct chg_list *cp;
811 int tilde;
812 int i;
813
814 /*
815 * Syntax: p[<nn>|0x<xx>]
816 */
817 if (*id != 'p') {
818 return (0);
819 }
820 pageno = (int)strtol(id+1, &p2, 0);
821 if (*p2 != 0) {
822 return (0);
823 }
824 /*
825 * Once we get this far, we know we have the
826 * beginnings of a change specification.
827 * If there's a problem now, report the problem,
828 * and return 1, so that the caller can restart
829 * parsing at the next expression.
830 */
831 if (!scsi_supported_page(pageno)) {
832 datafile_error("Unsupported mode page '%s'", id);
833 return (1);
834 }
835 /*
836 * Next token should be the byte offset
837 */
838 if (sup_gettoken(token) != SUP_STRING) {
839 datafile_error("Unexpected value '%s'", token);
840 return (1);
841 }
842 clean_token(ident, token);
843
844 /*
845 * Syntax: b[<nn>|0x<xx>]
846 */
847 p = ident;
848 if (*p++ != 'b') {
849 datafile_error("Unknown keyword '%s'", ident);
850 return (1);
851 }
852 byteno = (int)strtol(p, &p2, 10);
853 if (*p2 != 0) {
854 datafile_error("Unknown keyword '%s'", ident);
855 return (1);
856 }
857 if (byteno == 0 || byteno == 1) {
858 datafile_error("Unsupported byte offset '%s'", ident);
859 return (1);
860 }
861
862 /*
863 * Get the operator for this expression
864 */
865 mode = CHG_MODE_UNDEFINED;
866 switch (sup_gettoken(token)) {
867 case SUP_EQL:
868 mode = CHG_MODE_ABS;
869 break;
870 case SUP_OR:
871 if (sup_gettoken(token) == SUP_EQL)
872 mode = CHG_MODE_SET;
873 break;
874 case SUP_AND:
875 if (sup_gettoken(token) == SUP_EQL)
876 mode = CHG_MODE_CLR;
877 break;
878 }
879 if (mode == CHG_MODE_UNDEFINED) {
880 datafile_error("Unexpected operator: '%s'", token);
881 return (1);
882 }
883
884 /*
885 * Get right-hand of expression - accept optional tilde
886 */
887 tilde = 0;
888 if ((i = sup_gettoken(token)) == SUP_TILDE) {
889 tilde = 1;
890 i = sup_gettoken(token);
891 }
892 if (i != SUP_STRING) {
893 datafile_error("Expecting value, found '%s'", token);
894 return (1);
895 }
896 clean_token(ident, token);
897 value = (int)strtol(ident, &p, 0);
898 if (*p != 0) {
899 datafile_error("Expecting value, found '%s'", token);
900 return (1);
901 }
902
903 /*
904 * Apply the tilde operator, if found.
905 * Constrain to a byte value.
906 */
907 if (tilde) {
908 value = ~value;
909 }
910 value &= 0xff;
911
912 /*
913 * We parsed a successful change specification expression.
914 * Add it to the list for this disk type.
915 */
916 cp = new_chg_list(disk);
917 cp->pageno = pageno;
918 cp->byteno = byteno;
919 cp->mode = mode;
920 cp->value = value;
921 return (1);
922 }
923
924
925 /*
926 * This routine processes a 'partition' line in the data file. It defines
927 * a known partition map for a particular disk type on a particular
928 * controller type.
929 */
930 static void
sup_setpart()931 sup_setpart()
932 {
933 TOKEN token, cleaned, disk, ctlr, ident;
934 struct disk_type *dtype = NULL;
935 struct ctlr_type *ctype = NULL;
936 struct partition_info *pinfo, *parts;
937 char *pinfo_name;
938 int i, index, status, flags = 0;
939 uint_t val1, val2;
940 ushort_t vtoc_tag;
941 ushort_t vtoc_flag;
942 struct mctlr_list *mlp;
943
944 /*
945 * Pull in some grammar.
946 */
947 status = sup_gettoken(token);
948 if (status != SUP_EQL) {
949 datafile_error("Expecting '=', found '%s'", token);
950 return;
951 }
952 /*
953 * Pull in the name of the map.
954 */
955 status = sup_gettoken(token);
956 if (status != SUP_STRING) {
957 datafile_error("Expecting value, found '%s'", token);
958 return;
959 }
960 clean_token(cleaned, token);
961 /*
962 * Allocate space for the partition map and fill in the name.
963 */
964 pinfo_name = (char *)zalloc(strlen(cleaned) + 1);
965 (void) strcpy(pinfo_name, cleaned);
966 pinfo = (struct partition_info *)zalloc(sizeof (struct partition_info));
967 pinfo->pinfo_name = pinfo_name;
968 /*
969 * Save the filename/linenumber where this partition was defined
970 */
971 pinfo->pinfo_filename = file_name;
972 pinfo->pinfo_lineno = data_lineno;
973
974 /*
975 * Install default vtoc information into the new partition table
976 */
977 set_vtoc_defaults(pinfo);
978
979 /*
980 * Loop for each attribute in the line.
981 */
982 for (;;) {
983 /*
984 * Pull in some grammar.
985 */
986 status = sup_gettoken(token);
987 /*
988 * If we hit end of line, we're done.
989 */
990 if (status == SUP_EOL)
991 break;
992 if (status != SUP_COLON) {
993 datafile_error("Expecting ':', found '%s'", token);
994 return;
995 }
996 /*
997 * Pull in the attribute.
998 */
999 status = sup_gettoken(token);
1000 /*
1001 * If we hit end of line, we're done.
1002 */
1003 if (status == SUP_EOL)
1004 break;
1005 if (status != SUP_STRING) {
1006 datafile_error("Expecting keyword, found '%s'", token);
1007 return;
1008 }
1009 clean_token(ident, token);
1010 /*
1011 * Pull in more grammar.
1012 */
1013 status = sup_gettoken(token);
1014 if (status != SUP_EQL) {
1015 datafile_error("Expecting '=', found '%s'", token);
1016 return;
1017 }
1018 /*
1019 * Pull in the value of the attribute.
1020 */
1021 status = sup_gettoken(token);
1022 /*
1023 * If we hit a key character, it's an error.
1024 */
1025 if (status != SUP_STRING) {
1026 datafile_error("Expecting value, found '%s'", token);
1027 return;
1028 }
1029 clean_token(cleaned, token);
1030 /*
1031 * If the attribute is the ctlr, save the ctlr name and
1032 * mark it defined.
1033 */
1034 if (strcmp(ident, "ctlr") == 0) {
1035 (void) strcpy(ctlr, cleaned);
1036 flags |= SUP_CTLR;
1037 continue;
1038 /*
1039 * If the attribute is the disk, save the disk name and
1040 * mark it defined.
1041 */
1042 } else if (strcmp(ident, "disk") == 0) {
1043 (void) strcpy(disk, cleaned);
1044 flags |= SUP_DISK;
1045 continue;
1046 }
1047 /*
1048 * If we now know both the controller name and the
1049 * disk name, let's see if we can find the controller
1050 * and disk type. This will give us the geometry,
1051 * which can permit us to accept partitions specs
1052 * in cylinders or blocks.
1053 */
1054 if (((flags & (SUP_DISK|SUP_CTLR)) == (SUP_DISK|SUP_CTLR)) &&
1055 dtype == NULL && ctype == NULL) {
1056 /*
1057 * Attempt to match the specified ctlr to a known type.
1058 */
1059 mlp = controlp;
1060
1061 while (mlp != NULL) {
1062 if (strcmp(mlp->ctlr_type->ctype_name,
1063 ctlr) == 0)
1064 break;
1065 mlp = mlp->next;
1066 }
1067 /*
1068 * If no match is found, it's an error.
1069 */
1070 if (mlp == NULL) {
1071 for (i = 0; i < OTHER_CTLRS; i++) {
1072 if (strcmp(other_ctlrs[i], ctlr) == 0) {
1073 datafile_error(NULL, NULL);
1074 return;
1075 }
1076 }
1077 if (i == OTHER_CTLRS) {
1078 datafile_error(
1079 "Unknown controller '%s'", ctlr);
1080 return;
1081 }
1082 }
1083 ctype = mlp->ctlr_type;
1084 /*
1085 * Attempt to match the specified disk to a known type.
1086 */
1087 for (dtype = ctype->ctype_dlist; dtype != NULL;
1088 dtype = dtype->dtype_next) {
1089 if (strcmp(dtype->dtype_asciilabel, disk) == 0)
1090 break;
1091 }
1092 /*
1093 * If no match is found, it's an error.
1094 */
1095 if (dtype == NULL) {
1096 datafile_error("Unknown disk '%s'", disk);
1097 return;
1098 }
1099 /*
1100 * Now that we know the disk type, set up the
1101 * globals that let that magic macro "spc()"
1102 * do it's thing. Sorry that this is glued
1103 * together so poorly...
1104 */
1105 nhead = dtype->dtype_nhead;
1106 nsect = dtype->dtype_nsect;
1107 acyl = dtype->dtype_acyl;
1108 ncyl = dtype->dtype_ncyl;
1109 }
1110 /*
1111 * By now, the disk and controller type must be defined
1112 */
1113 if (dtype == NULL || ctype == NULL) {
1114 datafile_error("Incomplete specification", "");
1115 return;
1116 }
1117 /*
1118 * The rest of the attributes are all single letters.
1119 * Make sure the specified attribute is a single letter.
1120 */
1121 if (strlen(ident) != 1) {
1122 datafile_error("Unknown keyword '%s'", ident);
1123 return;
1124 }
1125 /*
1126 * Also make sure it is within the legal range of letters.
1127 */
1128 if (ident[0] < PARTITION_BASE || ident[0] > PARTITION_BASE+9) {
1129 datafile_error("Unknown keyword '%s'", ident);
1130 return;
1131 }
1132 /*
1133 * Here's the index of the partition we're dealing with
1134 */
1135 index = ident[0] - PARTITION_BASE;
1136 /*
1137 * For SunOS 5.0, we support the additional syntax:
1138 * [<tag>, ] [<flag>, ] <start>, <end>
1139 * instead of:
1140 * <start>, <end>
1141 *
1142 * <tag> may be one of: boot, root, swap, etc.
1143 * <flag> consists of two characters:
1144 * W (writable) or R (read-only)
1145 * M (mountable) or U (unmountable)
1146 *
1147 * Start with the defaults assigned above:
1148 */
1149 vtoc_tag = pinfo->vtoc.v_part[index].p_tag;
1150 vtoc_flag = pinfo->vtoc.v_part[index].p_flag;
1151
1152 /*
1153 * First try to match token against possible tag values
1154 */
1155 if (find_value(ptag_choices, cleaned, &i) == 1) {
1156 /*
1157 * Found valid tag. Use it and advance parser
1158 */
1159 vtoc_tag = (ushort_t)i;
1160 status = sup_gettoken(token);
1161 if (status != SUP_COMMA) {
1162 datafile_error(
1163 "Expecting ', ', found '%s'", token);
1164 return;
1165 }
1166 status = sup_gettoken(token);
1167 if (status != SUP_STRING) {
1168 datafile_error("Expecting value, found '%s'",
1169 token);
1170 return;
1171 }
1172 clean_token(cleaned, token);
1173 }
1174
1175 /*
1176 * Try to match token against possible flag values
1177 */
1178 if (find_value(pflag_choices, cleaned, &i) == 1) {
1179 /*
1180 * Found valid flag. Use it and advance parser
1181 */
1182 vtoc_flag = (ushort_t)i;
1183 status = sup_gettoken(token);
1184 if (status != SUP_COMMA) {
1185 datafile_error("Expecting ', ', found '%s'",
1186 token);
1187 return;
1188 }
1189 status = sup_gettoken(token);
1190 if (status != SUP_STRING) {
1191 datafile_error("Expecting value, found '%s'",
1192 token);
1193 return;
1194 }
1195 clean_token(cleaned, token);
1196 }
1197 /*
1198 * All other attributes have a pair of numeric values.
1199 * Convert the first value to a number. This value
1200 * is the starting cylinder number of the partition.
1201 */
1202 val1 = str2cyls(cleaned);
1203 if (val1 == (uint_t)(-1)) {
1204 datafile_error("Expecting an integer, found '%s'",
1205 cleaned);
1206 return;
1207 }
1208 /*
1209 * Pull in some grammar.
1210 */
1211 status = sup_gettoken(token);
1212 if (status != SUP_COMMA) {
1213 datafile_error("Expecting ', ', found '%s'", token);
1214 return;
1215 }
1216 /*
1217 * Pull in the second value.
1218 */
1219 status = sup_gettoken(token);
1220 if (status != SUP_STRING) {
1221 datafile_error("Expecting value, found '%s'", token);
1222 return;
1223 }
1224 clean_token(cleaned, token);
1225 /*
1226 * Convert the second value to a number. This value
1227 * is the number of blocks composing the partition.
1228 * If the token is terminated with a 'c', the units
1229 * are cylinders, not blocks. Also accept a 'b', if
1230 * they choose to be so specific.
1231 */
1232 val2 = str2blks(cleaned);
1233 if (val2 == (uint_t)(-1)) {
1234 datafile_error("Expecting an integer, found '%s'",
1235 cleaned);
1236 return;
1237 }
1238 /*
1239 * Fill in the appropriate map entry with the values.
1240 */
1241 pinfo->pinfo_map[index].dkl_cylno = val1;
1242 pinfo->pinfo_map[index].dkl_nblk = val2;
1243 pinfo->vtoc.v_part[index].p_tag = vtoc_tag;
1244 pinfo->vtoc.v_part[index].p_flag = vtoc_flag;
1245
1246 #if defined(_SUNOS_VTOC_16)
1247 pinfo->vtoc.v_part[index].p_start = val1 * (nhead * nsect);
1248 pinfo->vtoc.v_part[index].p_size = val2;
1249
1250 if (val2 == 0) {
1251 pinfo->vtoc.v_part[index].p_tag = 0;
1252 pinfo->vtoc.v_part[index].p_flag = 0;
1253 pinfo->vtoc.v_part[index].p_start = 0;
1254 pinfo->pinfo_map[index].dkl_cylno = 0;
1255 }
1256 #endif /* defined(_SUNOS_VTOC_16) */
1257
1258 }
1259 /*
1260 * Check to be sure that all necessary attributes were defined.
1261 */
1262 if ((flags & SUP_MIN_PART) != SUP_MIN_PART) {
1263 datafile_error("Incomplete specification", "");
1264 return;
1265 }
1266 /*
1267 * Add this partition map to the list of known maps for the
1268 * specified disk/ctlr.
1269 */
1270 parts = dtype->dtype_plist;
1271 if (parts == NULL)
1272 dtype->dtype_plist = pinfo;
1273 else {
1274 while (parts->pinfo_next != NULL)
1275 parts = parts->pinfo_next;
1276 parts->pinfo_next = pinfo;
1277 }
1278 }
1279
1280 /*
1281 * Open the disk device - just a wrapper for open.
1282 */
1283 int
open_disk(char * diskname,int flags)1284 open_disk(char *diskname, int flags)
1285 {
1286 return (open(diskname, flags));
1287 }
1288
1289 /*
1290 * This routine performs the disk search during startup. It looks for
1291 * all the disks in the search path, and creates a list of those that
1292 * are found.
1293 */
1294 void
do_search(char * arglist[])1295 do_search(char *arglist[])
1296 {
1297 char **sp;
1298 DIR *dir;
1299 struct dirent *dp;
1300 char s[MAXPATHLEN];
1301 char path[MAXPATHLEN];
1302 char curdir[MAXPATHLEN];
1303 char *directory = "/dev/rdsk";
1304 struct disk_info *disk;
1305 int i;
1306
1307 /*
1308 * Change directory to the device directory. This
1309 * gives us the most efficient access to that directory.
1310 * Remember where we were, and return there when finished.
1311 */
1312 if (getcwd(curdir, sizeof (curdir)) == NULL) {
1313 err_print("Cannot get current directory - %s\n",
1314 strerror(errno));
1315 fullabort();
1316 }
1317 if (chdir(directory) == -1) {
1318 err_print("Cannot set directory to %s - %s\n",
1319 directory, strerror(errno));
1320 fullabort();
1321 }
1322
1323 /*
1324 * If there were disks specified on the command line,
1325 * use those disks, and nothing but those disks.
1326 */
1327 if (arglist != NULL) {
1328 check_for_duplicate_disknames(arglist);
1329 for (; *arglist != NULL; arglist++) {
1330 search_for_logical_dev(*arglist);
1331 }
1332 } else {
1333 /*
1334 * If there were no disks specified on the command line,
1335 * search for all disks attached to the system.
1336 */
1337 fmt_print("Searching for disks...");
1338 (void) fflush(stdout);
1339 need_newline = 1;
1340
1341 /*
1342 * Find all disks specified in search_path definitions
1343 * in whatever format.dat files were processed.
1344 */
1345 sp = search_path;
1346 if (sp != NULL) {
1347 while (*sp != NULL) {
1348 search_for_logical_dev(*sp++);
1349 }
1350 }
1351
1352 /*
1353 * Open the device directory
1354 */
1355 if ((dir = opendir(".")) == NULL) {
1356 err_print("Cannot open %s - %s\n",
1357 directory, strerror(errno));
1358 fullabort();
1359 }
1360
1361 /*
1362 * Now find all usable nodes in /dev/rdsk (or /dev, if 4.x)
1363 * First find all nodes which do not conform to
1364 * standard disk naming conventions. This permits
1365 * all user-defined names to override the default names.
1366 */
1367 while ((dp = readdir(dir)) != NULL) {
1368 if (strcmp(dp->d_name, ".") == 0 ||
1369 strcmp(dp->d_name, "..") == 0)
1370 continue;
1371 if (!conventional_name(dp->d_name)) {
1372 if (!fdisk_physical_name(dp->d_name)) {
1373 /*
1374 * If non-conventional name represents
1375 * a link to non-s2 slice , ignore it.
1376 */
1377 if (!name_represents_wholedisk
1378 (dp->d_name)) {
1379 (void) strcpy(path, directory);
1380 (void) strcat(path, "/");
1381 (void) strcat(path, dp->d_name);
1382 add_device_to_disklist(
1383 dp->d_name, path);
1384 }
1385 }
1386 }
1387 }
1388 rewinddir(dir);
1389
1390
1391 /*
1392 * Now find all nodes corresponding to the standard
1393 * device naming conventions.
1394 */
1395 while ((dp = readdir(dir)) != NULL) {
1396 if (strcmp(dp->d_name, ".") == 0 ||
1397 strcmp(dp->d_name, "..") == 0)
1398 continue;
1399 if (whole_disk_name(dp->d_name)) {
1400 (void) strcpy(path, directory);
1401 (void) strcat(path, "/");
1402 (void) strcat(path, dp->d_name);
1403 canonicalize_name(s, dp->d_name);
1404 add_device_to_disklist(s, path);
1405 }
1406 }
1407 /*
1408 * Close the directory
1409 */
1410 if (closedir(dir) == -1) {
1411 err_print("Cannot close directory %s - %s\n",
1412 directory, strerror(errno));
1413 fullabort();
1414 }
1415
1416 need_newline = 0;
1417 fmt_print("done\n");
1418 }
1419
1420 /*
1421 * Return to whence we came
1422 */
1423 if (chdir(curdir) == -1) {
1424 err_print("Cannot set directory to %s - %s\n",
1425 curdir, strerror(errno));
1426 fullabort();
1427 }
1428
1429 /*
1430 * If we didn't find any disks, give up.
1431 */
1432 if (disk_list == NULL) {
1433 if (geteuid() == 0) {
1434 err_print("No disks found!\n");
1435 } else {
1436 err_print("No permission (or no disks found)!\n");
1437 }
1438 (void) fflush(stdout);
1439 fullabort();
1440 }
1441
1442 sort_disk_list();
1443
1444 /*
1445 * Tell user the results of the auto-configure process
1446 */
1447 i = 0;
1448 for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
1449 float scaled;
1450 diskaddr_t nblks;
1451 struct disk_type *type;
1452 if (disk->disk_flags & DSK_AUTO_CONFIG) {
1453 if (i++ == 0) {
1454 fmt_print("\n");
1455 }
1456 fmt_print("%s: ", disk->disk_name);
1457 if (disk->disk_flags & DSK_LABEL_DIRTY) {
1458 fmt_print("configured ");
1459 } else {
1460 fmt_print("configured and labeled ");
1461 }
1462 type = disk->disk_type;
1463 nblks = type->dtype_ncyl * type->dtype_nhead *
1464 type->dtype_nsect;
1465 if (disk->label_type == L_TYPE_SOLARIS)
1466 scaled = bn2mb(nblks);
1467 else
1468 scaled = bn2mb(type->capacity);
1469 fmt_print("with capacity of ");
1470 if (scaled > 1024.0) {
1471 fmt_print("%1.2fGB\n", scaled/1024.0);
1472 } else {
1473 fmt_print("%1.2fMB\n", scaled);
1474 }
1475 }
1476 }
1477 }
1478
1479
1480 /*
1481 * For a given "logical" disk name as specified in a format.dat
1482 * search path, try to find the device it actually refers to.
1483 * Since we are trying to maintain 4.x naming convention
1484 * compatibility in 5.0, this involves a little bit of work.
1485 * We also want to be able to function under 4.x, if needed.
1486 *
1487 * canonical: standard name reference. append a partition
1488 * reference, and open that file in the device directory.
1489 * examples: SVR4: c0t0d0
1490 * 4.x: sd0
1491 *
1492 * absolute: begins with a '/', and is assumed to be an
1493 * absolute pathname to some node.
1494 *
1495 * relative: non-canonical, doesn't begin with a '/'.
1496 * assumed to be the name of a file in the appropriate
1497 * device directory.
1498 */
1499 static void
search_for_logical_dev(char * devname)1500 search_for_logical_dev(char *devname)
1501 {
1502 char path[MAXPATHLEN];
1503 char *directory = "/dev/rdsk/";
1504 char *partition = "s2";
1505
1506 /*
1507 * If the name is an absolute path name, accept it as is
1508 */
1509 if (*devname == '/') {
1510 (void) strcpy(path, devname);
1511 } else if (canonical_name(devname)) {
1512 /*
1513 * If canonical name, construct a standard path name.
1514 */
1515 (void) strcpy(path, directory);
1516 (void) strcat(path, devname);
1517 (void) strcat(path, partition);
1518 } else if (canonical4x_name(devname)) {
1519 /*
1520 * Check to see if it's a 4.x file name in the /dev
1521 * directory on 5.0. Here, we only accept the
1522 * canonicalized form: sd0.
1523 */
1524 (void) strcpy(path, "/dev/r");
1525 (void) strcat(path, devname);
1526 (void) strcat(path, "c");
1527 } else {
1528 /*
1529 * If it's not a canonical name, then it may be a
1530 * reference to an actual file name in the device
1531 * directory itself.
1532 */
1533 (void) strcpy(path, directory);
1534 (void) strcat(path, devname);
1535 }
1536
1537 /* now add the device */
1538 add_device_to_disklist(devname, path);
1539 }
1540
1541 /*
1542 * Get the disk name from the inquiry data
1543 */
1544 static void
get_disk_name(int fd,char * disk_name)1545 get_disk_name(int fd, char *disk_name)
1546 {
1547 struct scsi_inquiry inquiry;
1548 char *p;
1549
1550 if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) {
1551 err_print("Failed to inquiry this logical disk");
1552 return;
1553 }
1554
1555 p = disk_name;
1556 (void) memset(p, 0, MAXNAMELEN);
1557
1558 (void) strncpy(p, inquiry.inq_vid, sizeof (inquiry.inq_vid));
1559 p += sizeof (inquiry.inq_vid) - 1;
1560 *p++ = '-';
1561 p = strncpy(p, inquiry.inq_pid, sizeof (inquiry.inq_pid));
1562 p += sizeof (inquiry.inq_pid) - 1;
1563 *p++ = '-';
1564 p = strncpy(p, inquiry.inq_revision, sizeof (inquiry.inq_revision));
1565 }
1566
1567 /*
1568 * Add a device to the disk list, if it appears to be a disk,
1569 * and we haven't already found it under some other name.
1570 */
1571 static void
add_device_to_disklist(char * devname,char * devpath)1572 add_device_to_disklist(char *devname, char *devpath)
1573 {
1574 struct disk_info *search_disk;
1575 struct ctlr_info *search_ctlr;
1576 struct disk_type *search_dtype, *efi_disk;
1577 struct partition_info *search_parts;
1578 struct disk_info *dptr;
1579 struct ctlr_info *cptr;
1580 struct disk_type *type;
1581 struct partition_info *parts;
1582 struct dk_label search_label;
1583 struct dk_cinfo dkinfo;
1584 struct stat stbuf;
1585 struct ctlr_type *ctlr, *tctlr;
1586 struct mctlr_list *mlp;
1587 struct efi_info efi_info;
1588 struct dk_minfo mediainfo;
1589 int search_file;
1590 int status;
1591 int i;
1592 int access_flags = 0;
1593 char disk_name[MAXNAMELEN];
1594
1595 /*
1596 * Attempt to open the disk. If it fails, skip it.
1597 */
1598 if ((search_file = open_disk(devpath, O_RDWR | O_NDELAY)) < 0) {
1599 return;
1600 }
1601 /*
1602 * Must be a character device
1603 */
1604 if (fstat(search_file, &stbuf) == -1 || !S_ISCHR(stbuf.st_mode)) {
1605 (void) close(search_file);
1606 return;
1607 }
1608 /*
1609 * Attempt to read the configuration info on the disk.
1610 * Again, if it fails, we assume the disk's not there.
1611 * Note we must close the file for the disk before we
1612 * continue.
1613 */
1614 if (ioctl(search_file, DKIOCINFO, &dkinfo) < 0) {
1615 (void) close(search_file);
1616 return;
1617 }
1618
1619 /* If it is a removable media, skip it. */
1620
1621 if (!expert_mode) {
1622 int isremovable, ret;
1623 ret = ioctl(search_file, DKIOCREMOVABLE, &isremovable);
1624 if ((ret >= 0) && (isremovable != 0)) {
1625 (void) close(search_file);
1626 return;
1627 }
1628 }
1629
1630 if (ioctl(search_file, DKIOCGMEDIAINFO, &mediainfo) == -1) {
1631 cur_blksz = DEV_BSIZE;
1632 } else {
1633 cur_blksz = mediainfo.dki_lbsize;
1634 }
1635
1636 /*
1637 * If the type of disk is one we don't know about,
1638 * add it to the list.
1639 */
1640 mlp = controlp;
1641
1642 while (mlp != NULL) {
1643 if (mlp->ctlr_type->ctype_ctype == dkinfo.dki_ctype) {
1644 break;
1645 }
1646 mlp = mlp->next;
1647 }
1648
1649 if (mlp == NULL) {
1650 if (dkinfo.dki_ctype == DKC_CDROM) {
1651 if (ioctl(search_file, DKIOCGMEDIAINFO,
1652 &mediainfo) < 0) {
1653 mediainfo.dki_media_type = DK_UNKNOWN;
1654 }
1655 }
1656 /*
1657 * Skip CDROM devices, they are read only.
1658 * But not devices like Iomega Rev Drive which
1659 * identifies itself as a CDROM, but has a removable
1660 * disk.
1661 */
1662 if ((dkinfo.dki_ctype == DKC_CDROM) &&
1663 (mediainfo.dki_media_type != DK_REMOVABLE_DISK)) {
1664 (void) close(search_file);
1665 return;
1666 }
1667 /*
1668 * create the new ctlr_type structure and fill it in.
1669 */
1670 tctlr = zalloc(sizeof (struct ctlr_type));
1671 tctlr->ctype_ctype = dkinfo.dki_ctype;
1672 tctlr->ctype_name = zalloc(DK_DEVLEN);
1673 if (strlcpy(tctlr->ctype_name, dkinfo.dki_cname,
1674 DK_DEVLEN) > DK_DEVLEN) {
1675 /*
1676 * DKIOCINFO returned a controller name longer
1677 * than DK_DEVLEN bytes, which means more of the
1678 * dk_cinfo structure may be corrupt. We don't
1679 * allow the user to perform any operations on
1680 * the device in this case
1681 */
1682 err_print("\nError: Device %s: controller "
1683 "name (%s)\nis invalid. Device will not "
1684 "be displayed.\n", devname, dkinfo.dki_cname);
1685 (void) close(search_file);
1686 destroy_data(tctlr->ctype_name);
1687 destroy_data((char *)tctlr);
1688 return;
1689 } else {
1690 tctlr->ctype_ops = zalloc(sizeof (struct ctlr_ops));
1691
1692 /*
1693 * copy the generic disk ops structure into local copy.
1694 */
1695 *(tctlr->ctype_ops) = genericops;
1696
1697 tctlr->ctype_flags = CF_WLIST;
1698
1699 mlp = controlp;
1700
1701 while (mlp->next != NULL) {
1702 mlp = mlp->next;
1703 }
1704
1705 mlp->next = zalloc(sizeof (struct mctlr_list));
1706 mlp->next->ctlr_type = tctlr;
1707 }
1708 }
1709
1710 /*
1711 * Search through all disks known at this time, to
1712 * determine if we're already identified this disk.
1713 * If so, then there's no need to include it a
1714 * second time. This permits the user-defined names
1715 * to supercede the standard conventional names.
1716 */
1717 if (disk_is_known(&dkinfo)) {
1718 (void) close(search_file);
1719 return;
1720 }
1721 #if defined(sparc)
1722 /*
1723 * Because opening id with FNDELAY always succeeds,
1724 * read the label early on to see whether the device
1725 * really exists. A result of DSK_RESERVED
1726 * means the disk may be reserved.
1727 * In the future, it will be good
1728 * to move these into controller specific files and have a common
1729 * generic check for reserved disks here, including intel disks.
1730 */
1731 if (dkinfo.dki_ctype == DKC_SCSI_CCS) {
1732 char *first_sector;
1733
1734 first_sector = zalloc(cur_blksz);
1735 i = scsi_rdwr(DIR_READ, search_file, (diskaddr_t)0,
1736 1, first_sector, F_SILENT, NULL);
1737 switch (i) {
1738 case DSK_RESERVED:
1739 access_flags |= DSK_RESERVED;
1740 break;
1741 case DSK_UNAVAILABLE:
1742 access_flags |= DSK_UNAVAILABLE;
1743 break;
1744 default:
1745 break;
1746 }
1747 free(first_sector);
1748 }
1749 #endif /* defined(sparc) */
1750
1751 /*
1752 * The disk appears to be present. Allocate space for the
1753 * disk structure and add it to the list of found disks.
1754 */
1755 search_disk = (struct disk_info *)zalloc(sizeof (struct disk_info));
1756 if (disk_list == NULL)
1757 disk_list = search_disk;
1758 else {
1759 for (dptr = disk_list; dptr->disk_next != NULL;
1760 dptr = dptr->disk_next)
1761 ;
1762 dptr->disk_next = search_disk;
1763 }
1764 /*
1765 * Fill in some info from the ioctls.
1766 */
1767 search_disk->disk_dkinfo = dkinfo;
1768 if (is_efi_type(search_file)) {
1769 search_disk->label_type = L_TYPE_EFI;
1770 } else {
1771 search_disk->label_type = L_TYPE_SOLARIS;
1772 }
1773 /*
1774 * Remember the names of the disk
1775 */
1776 search_disk->disk_name = alloc_string(devname);
1777 search_disk->disk_path = alloc_string(devpath);
1778
1779 /*
1780 * Remember the lba size of the disk
1781 */
1782 search_disk->disk_lbasize = cur_blksz;
1783
1784 (void) strcpy(x86_devname, devname);
1785
1786 /*
1787 * Determine if this device is linked to a physical name.
1788 */
1789 search_disk->devfs_name = get_physical_name(devpath);
1790
1791 /*
1792 * Try to match the ctlr for this disk with a ctlr we
1793 * have already found. A match is assumed if the ctlrs
1794 * are at the same address && ctypes agree
1795 */
1796 for (search_ctlr = ctlr_list; search_ctlr != NULL;
1797 search_ctlr = search_ctlr->ctlr_next)
1798 if (search_ctlr->ctlr_addr == dkinfo.dki_addr &&
1799 search_ctlr->ctlr_space == dkinfo.dki_space &&
1800 search_ctlr->ctlr_ctype->ctype_ctype ==
1801 dkinfo.dki_ctype)
1802 break;
1803 /*
1804 * If no match was found, we need to identify this ctlr.
1805 */
1806 if (search_ctlr == NULL) {
1807 /*
1808 * Match the type of the ctlr to a known type.
1809 */
1810 mlp = controlp;
1811
1812 while (mlp != NULL) {
1813 if (mlp->ctlr_type->ctype_ctype == dkinfo.dki_ctype)
1814 break;
1815 mlp = mlp->next;
1816 }
1817 /*
1818 * If no match was found, it's an error.
1819 * Close the disk and report the error.
1820 */
1821 if (mlp == NULL) {
1822 err_print("\nError: found disk attached to ");
1823 err_print("unsupported controller type '%d'.\n",
1824 dkinfo.dki_ctype);
1825 (void) close(search_file);
1826 return;
1827 }
1828 /*
1829 * Allocate space for the ctlr structure and add it
1830 * to the list of found ctlrs.
1831 */
1832 search_ctlr = (struct ctlr_info *)
1833 zalloc(sizeof (struct ctlr_info));
1834 search_ctlr->ctlr_ctype = mlp->ctlr_type;
1835 if (ctlr_list == NULL)
1836 ctlr_list = search_ctlr;
1837 else {
1838 for (cptr = ctlr_list; cptr->ctlr_next != NULL;
1839 cptr = cptr->ctlr_next)
1840 ;
1841 cptr->ctlr_next = search_ctlr;
1842 }
1843 /*
1844 * Fill in info from the ioctl.
1845 */
1846 for (i = 0; i < DK_DEVLEN; i++) {
1847 search_ctlr->ctlr_cname[i] = dkinfo.dki_cname[i];
1848 search_ctlr->ctlr_dname[i] = dkinfo.dki_dname[i];
1849 }
1850 /*
1851 * Make sure these can be used as simple strings
1852 */
1853 search_ctlr->ctlr_cname[i] = 0;
1854 search_ctlr->ctlr_dname[i] = 0;
1855
1856 search_ctlr->ctlr_flags = dkinfo.dki_flags;
1857 search_ctlr->ctlr_num = dkinfo.dki_cnum;
1858 search_ctlr->ctlr_addr = dkinfo.dki_addr;
1859 search_ctlr->ctlr_space = dkinfo.dki_space;
1860 search_ctlr->ctlr_prio = dkinfo.dki_prio;
1861 search_ctlr->ctlr_vec = dkinfo.dki_vec;
1862 }
1863 /*
1864 * By this point, we have a known ctlr. Link the disk
1865 * to the ctlr.
1866 */
1867 search_disk->disk_ctlr = search_ctlr;
1868 if (access_flags & (DSK_RESERVED | DSK_UNAVAILABLE)) {
1869 if (access_flags & DSK_RESERVED)
1870 search_disk->disk_flags |= DSK_RESERVED;
1871 else
1872 search_disk->disk_flags |= DSK_UNAVAILABLE;
1873 (void) close(search_file);
1874 return;
1875 } else {
1876 search_disk->disk_flags &= ~(DSK_RESERVED | DSK_UNAVAILABLE);
1877 }
1878
1879 /*
1880 * Attempt to read the primary label.
1881 * (Note that this is really through the DKIOCGVTOC
1882 * ioctl, then converted from vtoc to label.)
1883 */
1884 if (search_disk->label_type == L_TYPE_SOLARIS) {
1885 status = read_label(search_file, &search_label);
1886 } else {
1887 status = read_efi_label(search_file, &efi_info);
1888 }
1889 /*
1890 * If reading the label failed, and this is a SCSI
1891 * disk, we can attempt to auto-sense the disk
1892 * Configuration.
1893 */
1894 ctlr = search_ctlr->ctlr_ctype;
1895 if ((status == -1) && (ctlr->ctype_ctype == DKC_SCSI_CCS)) {
1896 if (option_msg && diag_msg) {
1897 err_print("%s: attempting auto configuration\n",
1898 search_disk->disk_name);
1899 }
1900
1901 switch (search_disk->label_type) {
1902 case (L_TYPE_SOLARIS):
1903 if (auto_sense(search_file, 0, &search_label) != NULL) {
1904 /*
1905 * Auto config worked, so we now have
1906 * a valid label for the disk. Mark
1907 * the disk as needing the label flushed.
1908 */
1909 status = 0;
1910 search_disk->disk_flags |=
1911 (DSK_LABEL_DIRTY | DSK_AUTO_CONFIG);
1912 }
1913 break;
1914 case (L_TYPE_EFI):
1915 efi_disk = auto_efi_sense(search_file, &efi_info);
1916 if (efi_disk != NULL) {
1917 /*
1918 * Auto config worked, so we now have
1919 * a valid label for the disk.
1920 */
1921 status = 0;
1922 search_disk->disk_flags |=
1923 (DSK_LABEL_DIRTY | DSK_AUTO_CONFIG);
1924 }
1925 break;
1926 default:
1927 /* Should never happen */
1928 break;
1929 }
1930 }
1931
1932 /*
1933 * If we didn't successfully read the label, or the label
1934 * appears corrupt, just leave the disk as an unknown type.
1935 */
1936 if (status == -1) {
1937 (void) close(search_file);
1938 return;
1939 }
1940
1941 if (search_disk->label_type == L_TYPE_SOLARIS) {
1942 if (!checklabel(&search_label)) {
1943 (void) close(search_file);
1944 return;
1945 }
1946 if (trim_id(search_label.dkl_asciilabel)) {
1947 (void) close(search_file);
1948 return;
1949 }
1950 }
1951 /*
1952 * The label looks ok. Mark the disk as labeled.
1953 */
1954 search_disk->disk_flags |= DSK_LABEL;
1955
1956 if (search_disk->label_type == L_TYPE_EFI) {
1957 search_dtype = (struct disk_type *)
1958 zalloc(sizeof (struct disk_type));
1959 type = search_ctlr->ctlr_ctype->ctype_dlist;
1960 if (type == NULL) {
1961 search_ctlr->ctlr_ctype->ctype_dlist =
1962 search_dtype;
1963 } else {
1964 while (type->dtype_next != NULL) {
1965 type = type->dtype_next;
1966 }
1967 type->dtype_next = search_dtype;
1968 }
1969 search_dtype->dtype_next = NULL;
1970
1971 (void) strlcpy(search_dtype->vendor, efi_info.vendor, 9);
1972 (void) strlcpy(search_dtype->product, efi_info.product, 17);
1973 (void) strlcpy(search_dtype->revision, efi_info.revision, 5);
1974 search_dtype->capacity = efi_info.capacity;
1975 search_disk->disk_type = search_dtype;
1976
1977 search_parts = (struct partition_info *)
1978 zalloc(sizeof (struct partition_info));
1979 search_dtype->dtype_plist = search_parts;
1980
1981 search_parts->pinfo_name = alloc_string("original");
1982 search_parts->pinfo_next = NULL;
1983 search_parts->etoc = efi_info.e_parts;
1984 search_disk->disk_parts = search_parts;
1985
1986 /*
1987 * Copy the volume name, if present
1988 */
1989 for (i = 0; i < search_parts->etoc->efi_nparts; i++) {
1990 if (search_parts->etoc->efi_parts[i].p_tag ==
1991 V_RESERVED) {
1992 if (search_parts->etoc->efi_parts[i].p_name) {
1993 bcopy(search_parts->etoc->efi_parts[i]
1994 .p_name, search_disk->v_volume,
1995 LEN_DKL_VVOL);
1996 } else {
1997 bzero(search_disk->v_volume,
1998 LEN_DKL_VVOL);
1999 }
2000 break;
2001 }
2002 }
2003 (void) close(search_file);
2004 return;
2005 }
2006
2007 /*
2008 * Attempt to match the disk type in the label with a
2009 * known disk type.
2010 */
2011 for (search_dtype = search_ctlr->ctlr_ctype->ctype_dlist;
2012 search_dtype != NULL;
2013 search_dtype = search_dtype->dtype_next)
2014 if (dtype_match(&search_label, search_dtype))
2015 break;
2016 /*
2017 * If no match was found, we need to create a disk type
2018 * for this disk.
2019 */
2020 if (search_dtype == NULL) {
2021 /*
2022 * Allocate space for the disk type and add it
2023 * to the list of disk types for this ctlr type.
2024 */
2025 search_dtype = (struct disk_type *)
2026 zalloc(sizeof (struct disk_type));
2027 type = search_ctlr->ctlr_ctype->ctype_dlist;
2028 if (type == NULL)
2029 search_ctlr->ctlr_ctype->ctype_dlist =
2030 search_dtype;
2031 else {
2032 while (type->dtype_next != NULL)
2033 type = type->dtype_next;
2034 type->dtype_next = search_dtype;
2035 }
2036 /*
2037 * Fill in the drive info from the disk label.
2038 */
2039 search_dtype->dtype_next = NULL;
2040 if (strncmp(search_label.dkl_asciilabel, "DEFAULT",
2041 strlen("DEFAULT")) == 0) {
2042 (void) get_disk_name(search_file, disk_name);
2043 search_dtype->dtype_asciilabel = (char *)
2044 zalloc(strlen(disk_name) + 1);
2045 (void) strcpy(search_dtype->dtype_asciilabel,
2046 disk_name);
2047 } else {
2048 search_dtype->dtype_asciilabel = (char *)
2049 zalloc(strlen(search_label.dkl_asciilabel) + 1);
2050 (void) strcpy(search_dtype->dtype_asciilabel,
2051 search_label.dkl_asciilabel);
2052 }
2053 search_dtype->dtype_pcyl = search_label.dkl_pcyl;
2054 search_dtype->dtype_ncyl = search_label.dkl_ncyl;
2055 search_dtype->dtype_acyl = search_label.dkl_acyl;
2056 search_dtype->dtype_nhead = search_label.dkl_nhead;
2057 search_dtype->dtype_nsect = search_label.dkl_nsect;
2058 search_dtype->dtype_rpm = search_label.dkl_rpm;
2059 /*
2060 * Mark the disk as needing specification of
2061 * ctlr specific attributes. This is necessary
2062 * because the label doesn't contain these attributes,
2063 * and they aren't known at this point. They will
2064 * be asked for if this disk is ever selected by
2065 * the user.
2066 * Note: for SCSI, we believe the label.
2067 */
2068 if ((search_ctlr->ctlr_ctype->ctype_ctype != DKC_SCSI_CCS) &&
2069 (search_ctlr->ctlr_ctype->ctype_ctype != DKC_DIRECT) &&
2070 (search_ctlr->ctlr_ctype->ctype_ctype != DKC_VBD) &&
2071 (search_ctlr->ctlr_ctype->ctype_ctype != DKC_PCMCIA_ATA)) {
2072 search_dtype->dtype_flags |= DT_NEED_SPEFS;
2073 }
2074 }
2075 /*
2076 * By this time we have a known disk type. Link the disk
2077 * to the disk type.
2078 */
2079 search_disk->disk_type = search_dtype;
2080
2081 /*
2082 * Close the file for this disk
2083 */
2084 (void) close(search_file);
2085
2086 /*
2087 * Attempt to match the partition map in the label with
2088 * a known partition map for this disk type.
2089 */
2090 for (search_parts = search_dtype->dtype_plist;
2091 search_parts != NULL;
2092 search_parts = search_parts->pinfo_next)
2093 if (parts_match(&search_label, search_parts)) {
2094 break;
2095 }
2096 /*
2097 * If no match was made, we need to create a partition
2098 * map for this disk.
2099 */
2100 if (search_parts == NULL) {
2101 /*
2102 * Allocate space for the partition map and add
2103 * it to the list of maps for this disk type.
2104 */
2105 search_parts = (struct partition_info *)
2106 zalloc(sizeof (struct partition_info));
2107 parts = search_dtype->dtype_plist;
2108 if (parts == NULL)
2109 search_dtype->dtype_plist = search_parts;
2110 else {
2111 while (parts->pinfo_next != NULL)
2112 parts = parts->pinfo_next;
2113 parts->pinfo_next = search_parts;
2114 }
2115 search_parts->pinfo_next = NULL;
2116 /*
2117 * Fill in the name of the map with a name derived
2118 * from the name of this disk. This is necessary
2119 * because the label contains no name for the
2120 * partition map.
2121 */
2122 search_parts->pinfo_name = alloc_string("original");
2123 /*
2124 * Fill in the partition info from the disk label.
2125 */
2126 for (i = 0; i < NDKMAP; i++) {
2127
2128 #if defined(_SUNOS_VTOC_8)
2129 search_parts->pinfo_map[i] =
2130 search_label.dkl_map[i];
2131
2132 #elif defined(_SUNOS_VTOC_16)
2133 search_parts->pinfo_map[i].dkl_cylno =
2134 search_label.dkl_vtoc.v_part[i].p_start /
2135 ((blkaddr32_t)(search_label.dkl_nhead *
2136 search_label.dkl_nsect));
2137 search_parts->pinfo_map[i].dkl_nblk =
2138 search_label.dkl_vtoc.v_part[i].p_size;
2139
2140 #else
2141 #error No VTOC format defined.
2142 #endif
2143 }
2144 }
2145 /*
2146 * If the vtoc looks valid, copy the volume name and vtoc
2147 * info from the label. Otherwise, install a default vtoc.
2148 * This permits vtoc info to automatically appear in the sun
2149 * label, without requiring an upgrade procedure.
2150 */
2151 if (search_label.dkl_vtoc.v_version == V_VERSION) {
2152 bcopy(search_label.dkl_vtoc.v_volume,
2153 search_disk->v_volume, LEN_DKL_VVOL);
2154 search_parts->vtoc = search_label.dkl_vtoc;
2155 } else {
2156 bzero(search_disk->v_volume, LEN_DKL_VVOL);
2157 set_vtoc_defaults(search_parts);
2158 }
2159 /*
2160 * By this time we have a known partitition map. Link the
2161 * disk to the partition map.
2162 */
2163 search_disk->disk_parts = search_parts;
2164 }
2165
2166
2167 /*
2168 * Search the disk list for a disk with the identical configuration.
2169 * Return true if one is found.
2170 */
2171 static int
disk_is_known(struct dk_cinfo * dkinfo)2172 disk_is_known(struct dk_cinfo *dkinfo)
2173 {
2174 struct disk_info *dp;
2175
2176 dp = disk_list;
2177 while (dp != NULL) {
2178 if (dp->disk_dkinfo.dki_ctype == dkinfo->dki_ctype &&
2179 dp->disk_dkinfo.dki_cnum == dkinfo->dki_cnum &&
2180 dp->disk_dkinfo.dki_unit == dkinfo->dki_unit &&
2181 strcmp(dp->disk_dkinfo.dki_dname, dkinfo->dki_dname) == 0) {
2182 return (1);
2183 }
2184 dp = dp->disk_next;
2185 }
2186 return (0);
2187 }
2188
2189
2190 /*
2191 * This routine checks to see if a given disk type matches the type
2192 * in the disk label.
2193 */
2194 int
dtype_match(label,dtype)2195 dtype_match(label, dtype)
2196 register struct dk_label *label;
2197 register struct disk_type *dtype;
2198 {
2199
2200 if (dtype->dtype_asciilabel == NULL) {
2201 return (0);
2202 }
2203
2204 /*
2205 * If the any of the physical characteristics are different, or
2206 * the name is different, it doesn't match.
2207 */
2208 if ((strcmp(label->dkl_asciilabel, dtype->dtype_asciilabel) != 0) ||
2209 (label->dkl_ncyl != dtype->dtype_ncyl) ||
2210 (label->dkl_acyl != dtype->dtype_acyl) ||
2211 (label->dkl_nhead != dtype->dtype_nhead) ||
2212 (label->dkl_nsect != dtype->dtype_nsect)) {
2213 return (0);
2214 }
2215 /*
2216 * If those are all identical, assume it's a match.
2217 */
2218 return (1);
2219 }
2220
2221 /*
2222 * This routine checks to see if a given partition map matches the map
2223 * in the disk label.
2224 */
2225 int
parts_match(label,pinfo)2226 parts_match(label, pinfo)
2227 register struct dk_label *label;
2228 register struct partition_info *pinfo;
2229 {
2230 int i;
2231
2232 /*
2233 * If any of the partition entries is different, it doesn't match.
2234 */
2235 for (i = 0; i < NDKMAP; i++)
2236
2237 #if defined(_SUNOS_VTOC_8)
2238 if ((label->dkl_map[i].dkl_cylno !=
2239 pinfo->pinfo_map[i].dkl_cylno) ||
2240 (label->dkl_map[i].dkl_nblk !=
2241 pinfo->pinfo_map[i].dkl_nblk))
2242
2243 #elif defined(_SUNOS_VTOC_16)
2244 if ((pinfo->pinfo_map[i].dkl_cylno !=
2245 label->dkl_vtoc.v_part[i].p_start /
2246 (label->dkl_nhead * label->dkl_nsect)) ||
2247 (pinfo->pinfo_map[i].dkl_nblk !=
2248 label->dkl_vtoc.v_part[i].p_size))
2249 #else
2250 #error No VTOC format defined.
2251 #endif
2252 return (0);
2253 /*
2254 * Compare the vtoc information for a match
2255 * Do not require the volume name to be equal, for a match!
2256 */
2257 if (label->dkl_vtoc.v_version != pinfo->vtoc.v_version)
2258 return (0);
2259 if (label->dkl_vtoc.v_nparts != pinfo->vtoc.v_nparts)
2260 return (0);
2261 for (i = 0; i < NDKMAP; i++) {
2262 if (label->dkl_vtoc.v_part[i].p_tag !=
2263 pinfo->vtoc.v_part[i].p_tag)
2264 return (0);
2265 if (label->dkl_vtoc.v_part[i].p_flag !=
2266 pinfo->vtoc.v_part[i].p_flag)
2267 return (0);
2268 }
2269 /*
2270 * If they are all identical, it's a match.
2271 */
2272 return (1);
2273 }
2274
2275 /*
2276 * This routine checks to see if the given disk name refers to the disk
2277 * in the given disk structure.
2278 */
2279 int
diskname_match(char * name,struct disk_info * disk)2280 diskname_match(char *name, struct disk_info *disk)
2281 {
2282 struct dk_cinfo dkinfo;
2283 char s[MAXPATHLEN];
2284 int fd;
2285
2286 /*
2287 * Match the name of the disk in the disk_info structure
2288 */
2289 if (strcmp(name, disk->disk_name) == 0) {
2290 return (1);
2291 }
2292
2293 /*
2294 * Check to see if it's a 4.x file name in the /dev
2295 * directory on 5.0. Here, we only accept the
2296 * canonicalized form: sd0.
2297 */
2298 if (canonical4x_name(name) == 0) {
2299 return (0);
2300 }
2301
2302 (void) strcpy(s, "/dev/r");
2303 (void) strcat(s, name);
2304 (void) strcat(s, "c");
2305
2306 if ((fd = open_disk(s, O_RDWR | O_NDELAY)) < 0) {
2307 return (0);
2308 }
2309
2310 if (ioctl(fd, DKIOCINFO, &dkinfo) < 0) {
2311 (void) close(fd);
2312 return (0);
2313 }
2314 (void) close(fd);
2315
2316 if (disk->disk_dkinfo.dki_ctype == dkinfo.dki_ctype &&
2317 disk->disk_dkinfo.dki_cnum == dkinfo.dki_cnum &&
2318 disk->disk_dkinfo.dki_unit == dkinfo.dki_unit &&
2319 strcmp(disk->disk_dkinfo.dki_dname, dkinfo.dki_dname) == 0) {
2320 return (1);
2321 }
2322 return (0);
2323 }
2324
2325
2326 static void
datafile_error(char * errmsg,char * token)2327 datafile_error(char *errmsg, char *token)
2328 {
2329 int token_type;
2330 TOKEN token_buf;
2331
2332 /*
2333 * Allow us to get by controllers that the other platforms don't
2334 * know about.
2335 */
2336 if (errmsg != NULL) {
2337 err_print(errmsg, token);
2338 err_print(" - %s (%d)\n", file_name, data_lineno);
2339 }
2340
2341 /*
2342 * Re-sync the parsing at the beginning of the next line
2343 * unless of course we're already there.
2344 */
2345 if (last_token_type != SUP_EOF && last_token_type != SUP_EOL) {
2346 do {
2347 token_type = sup_gettoken(token_buf);
2348 } while (token_type != SUP_EOF && token_type != SUP_EOL);
2349
2350 if (token_type == SUP_EOF) {
2351 sup_pushtoken(token_buf, token_type);
2352 }
2353 }
2354 }
2355
2356
2357 /*
2358 * Search through all defined disk types for duplicate entries
2359 * that are inconsistent with each other. Disks with different
2360 * characteristics should be named differently.
2361 * Note that this function only checks for duplicate disks
2362 * for the same controller. It's possible to have two disks with
2363 * the same name, but defined for different controllers.
2364 * That may or may not be a problem...
2365 */
2366 static void
search_duplicate_dtypes()2367 search_duplicate_dtypes()
2368 {
2369 struct disk_type *dp1;
2370 struct disk_type *dp2;
2371 struct mctlr_list *mlp;
2372
2373 mlp = controlp;
2374
2375 while (mlp != NULL) {
2376 dp1 = mlp->ctlr_type->ctype_dlist;
2377 while (dp1 != NULL) {
2378 dp2 = dp1->dtype_next;
2379 while (dp2 != NULL) {
2380 check_dtypes_for_inconsistency(dp1, dp2);
2381 dp2 = dp2->dtype_next;
2382 }
2383 dp1 = dp1->dtype_next;
2384 }
2385 mlp = mlp->next;
2386 }
2387 }
2388
2389
2390 /*
2391 * Search through all defined partition types for duplicate entries
2392 * that are inconsistent with each other. Partitions with different
2393 * characteristics should be named differently.
2394 * Note that this function only checks for duplicate partitions
2395 * for the same disk. It's possible to have two partitions with
2396 * the same name, but defined for different disks.
2397 * That may or may not be a problem...
2398 */
2399 static void
search_duplicate_pinfo()2400 search_duplicate_pinfo()
2401 {
2402 struct disk_type *dp;
2403 struct partition_info *pp1;
2404 struct partition_info *pp2;
2405 struct mctlr_list *mlp;
2406
2407 mlp = controlp;
2408
2409 while (mlp != NULL) {
2410 dp = mlp->ctlr_type->ctype_dlist;
2411 while (dp != NULL) {
2412 pp1 = dp->dtype_plist;
2413 while (pp1 != NULL) {
2414 pp2 = pp1->pinfo_next;
2415 while (pp2 != NULL) {
2416 check_pinfo_for_inconsistency(pp1, pp2);
2417 pp2 = pp2->pinfo_next;
2418 }
2419 pp1 = pp1->pinfo_next;
2420 }
2421 dp = dp->dtype_next;
2422 }
2423 mlp = mlp->next;
2424 }
2425 }
2426
2427
2428 /*
2429 * Determine if two particular disk definitions are inconsistent.
2430 * Ie: same name, but different characteristics.
2431 * If so, print an error message and abort.
2432 */
2433 static void
check_dtypes_for_inconsistency(dp1,dp2)2434 check_dtypes_for_inconsistency(dp1, dp2)
2435 struct disk_type *dp1;
2436 struct disk_type *dp2;
2437 {
2438 int i;
2439 int result;
2440 struct chg_list *cp1;
2441 struct chg_list *cp2;
2442
2443
2444 /*
2445 * If the name's different, we're ok
2446 */
2447 if (strcmp(dp1->dtype_asciilabel, dp2->dtype_asciilabel) != 0) {
2448 return;
2449 }
2450
2451 /*
2452 * Compare all the disks' characteristics
2453 */
2454 result = 0;
2455 result |= (dp1->dtype_flags != dp2->dtype_flags);
2456 result |= (dp1->dtype_options != dp2->dtype_options);
2457 result |= (dp1->dtype_fmt_time != dp2->dtype_fmt_time);
2458 result |= (dp1->dtype_bpt != dp2->dtype_bpt);
2459 result |= (dp1->dtype_ncyl != dp2->dtype_ncyl);
2460 result |= (dp1->dtype_acyl != dp2->dtype_acyl);
2461 result |= (dp1->dtype_pcyl != dp2->dtype_pcyl);
2462 result |= (dp1->dtype_nhead != dp2->dtype_nhead);
2463 result |= (dp1->dtype_nsect != dp2->dtype_nsect);
2464 result |= (dp1->dtype_rpm != dp2->dtype_rpm);
2465 result |= (dp1->dtype_cyl_skew != dp2->dtype_cyl_skew);
2466 result |= (dp1->dtype_trk_skew != dp2->dtype_trk_skew);
2467 result |= (dp1->dtype_trks_zone != dp2->dtype_trks_zone);
2468 result |= (dp1->dtype_atrks != dp2->dtype_atrks);
2469 result |= (dp1->dtype_asect != dp2->dtype_asect);
2470 result |= (dp1->dtype_cache != dp2->dtype_cache);
2471 result |= (dp1->dtype_threshold != dp2->dtype_threshold);
2472 result |= (dp1->dtype_read_retries != dp2->dtype_read_retries);
2473 result |= (dp1->dtype_write_retries != dp2->dtype_write_retries);
2474 result |= (dp1->dtype_prefetch_min != dp2->dtype_prefetch_min);
2475 result |= (dp1->dtype_prefetch_max != dp2->dtype_prefetch_max);
2476 for (i = 0; i < NSPECIFICS; i++) {
2477 result |= (dp1->dtype_specifics[i] != dp2->dtype_specifics[i]);
2478 }
2479
2480 cp1 = dp1->dtype_chglist;
2481 cp2 = dp2->dtype_chglist;
2482 while (cp1 != NULL && cp2 != NULL) {
2483 if (cp1 == NULL || cp2 == NULL) {
2484 result = 1;
2485 break;
2486 }
2487 result |= (cp1->pageno != cp2->pageno);
2488 result |= (cp1->byteno != cp2->byteno);
2489 result |= (cp1->mode != cp2->mode);
2490 result |= (cp1->value != cp2->value);
2491 cp1 = cp1->next;
2492 cp2 = cp2->next;
2493 }
2494
2495 if (result) {
2496 err_print("Inconsistent definitions for disk type '%s'\n",
2497 dp1->dtype_asciilabel);
2498 if (dp1->dtype_filename != NULL &&
2499 dp2->dtype_filename != NULL) {
2500 err_print("%s (%d) - %s (%d)\n",
2501 dp1->dtype_filename, dp1->dtype_lineno,
2502 dp2->dtype_filename, dp2->dtype_lineno);
2503 }
2504 fullabort();
2505 }
2506 }
2507
2508
2509 /*
2510 * Determine if two particular partition definitions are inconsistent.
2511 * Ie: same name, but different characteristics.
2512 * If so, print an error message and abort.
2513 */
2514 static void
check_pinfo_for_inconsistency(pp1,pp2)2515 check_pinfo_for_inconsistency(pp1, pp2)
2516 struct partition_info *pp1;
2517 struct partition_info *pp2;
2518 {
2519 int i;
2520 int result;
2521 struct dk_map32 *map1;
2522 struct dk_map32 *map2;
2523
2524 #if defined(_SUNOS_VTOC_8)
2525 struct dk_map2 *vp1;
2526 struct dk_map2 *vp2;
2527
2528 #elif defined(_SUNOS_VTOC_16)
2529 struct dkl_partition *vp1;
2530 struct dkl_partition *vp2;
2531 #else
2532 #error No VTOC layout defined.
2533 #endif /* defined(_SUNOS_VTOC_8) */
2534
2535 /*
2536 * If the name's different, we're ok
2537 */
2538 if (strcmp(pp1->pinfo_name, pp2->pinfo_name) != 0) {
2539 return;
2540 }
2541
2542 /*
2543 * Compare all the partitions' characteristics
2544 */
2545 result = 0;
2546 map1 = pp1->pinfo_map;
2547 map2 = pp2->pinfo_map;
2548 for (i = 0; i < NDKMAP; i++, map1++, map2++) {
2549 result |= (map1->dkl_cylno != map2->dkl_cylno);
2550 result |= (map1->dkl_nblk != map2->dkl_nblk);
2551 }
2552
2553 /*
2554 * Compare the significant portions of the vtoc information
2555 */
2556 vp1 = pp1->vtoc.v_part;
2557 vp2 = pp2->vtoc.v_part;
2558 for (i = 0; i < NDKMAP; i++, vp1++, vp2++) {
2559 result |= (vp1->p_tag != vp2->p_tag);
2560 result |= (vp1->p_flag != vp2->p_flag);
2561 }
2562
2563 if (result) {
2564 err_print("Inconsistent definitions for partition type '%s'\n",
2565 pp1->pinfo_name);
2566 if (pp1->pinfo_filename != NULL &&
2567 pp2->pinfo_filename != NULL) {
2568 err_print("%s (%d) - %s (%d)\n",
2569 pp1->pinfo_filename, pp1->pinfo_lineno,
2570 pp2->pinfo_filename, pp2->pinfo_lineno);
2571 }
2572 fullabort();
2573 }
2574 }
2575
2576 /*
2577 * Convert a string of digits into a block number.
2578 * The digits are assumed to be a block number unless the
2579 * the string is terminated by 'c', in which case it is
2580 * assumed to be in units of cylinders. Accept a 'b'
2581 * to explictly specify blocks, for consistency.
2582 *
2583 * NB: uses the macro spc(), which requires that the
2584 * globals nhead/nsect/acyl be set up correctly.
2585 *
2586 * Returns -1 in the case of an error.
2587 */
2588 static uint_t
str2blks(char * str)2589 str2blks(char *str)
2590 {
2591 int blks;
2592 char *p;
2593
2594 blks = (int)strtol(str, &p, 0);
2595 /*
2596 * Check what terminated the conversion.
2597 */
2598 if (*p != 0) {
2599 /*
2600 * Units specifier of 'c': convert cylinders to blocks
2601 */
2602 if (*p == 'c') {
2603 p++;
2604 blks = blks * spc();
2605 /*
2606 * Ignore a 'b' specifier.
2607 */
2608 } else if (*p == 'b') {
2609 p++;
2610 }
2611 /*
2612 * Anthing left over is an error
2613 */
2614 if (*p != 0) {
2615 blks = -1;
2616 }
2617 }
2618
2619 return (blks);
2620 }
2621 /*
2622 * Convert a string of digits into a cylinder number.
2623 * Accept a an optional 'c' specifier, for consistency.
2624 *
2625 * Returns -1 in the case of an error.
2626 */
2627 int
str2cyls(char * str)2628 str2cyls(char *str)
2629 {
2630 int cyls;
2631 char *p;
2632
2633 cyls = (int)strtol(str, &p, 0);
2634 /*
2635 * Check what terminated the conversion.
2636 */
2637 if (*p != 0) {
2638 /*
2639 * Units specifier of 'c': accept it.
2640 */
2641 if (*p == 'c') {
2642 p++;
2643 }
2644 /*
2645 * Anthing left over is an error
2646 */
2647 if (*p != 0) {
2648 cyls = -1;
2649 }
2650 }
2651
2652 return (cyls);
2653 }
2654
2655
2656 /*
2657 * Create a new chg_list structure, and append it onto the
2658 * end of the current chg_list under construction. By
2659 * applying changes in the order in which listed in the
2660 * data file, the changes we make are deterministic.
2661 * Return a pointer to the new structure, so that the
2662 * caller can fill in the appropriate information.
2663 */
2664 static struct chg_list *
new_chg_list(struct disk_type * disk)2665 new_chg_list(struct disk_type *disk)
2666 {
2667 struct chg_list *cp;
2668 struct chg_list *nc;
2669
2670 nc = zalloc(sizeof (struct chg_list));
2671
2672 if (disk->dtype_chglist == NULL) {
2673 disk->dtype_chglist = nc;
2674 } else {
2675 for (cp = disk->dtype_chglist; cp->next; cp = cp->next)
2676 ;
2677 cp->next = nc;
2678 }
2679 nc->next = NULL;
2680 return (nc);
2681 }
2682
2683
2684 /*
2685 * Follow symbolic links from the logical device name to
2686 * the /devfs physical device name. To be complete, we
2687 * handle the case of multiple links. This function
2688 * either returns NULL (no links, or some other error),
2689 * or the physical device name, alloc'ed on the heap.
2690 *
2691 * Note that the standard /devices prefix is stripped from
2692 * the final pathname, if present. The trailing options
2693 * are also removed (":c, raw").
2694 */
2695 static char *
get_physical_name(char * path)2696 get_physical_name(char *path)
2697 {
2698 struct stat stbuf;
2699 int i;
2700 int level;
2701 char *p;
2702 char s[MAXPATHLEN];
2703 char buf[MAXPATHLEN];
2704 char dir[MAXPATHLEN];
2705 char savedir[MAXPATHLEN];
2706 char *result = NULL;
2707
2708 if (getcwd(savedir, sizeof (savedir)) == NULL) {
2709 err_print("getcwd() failed - %s\n", strerror(errno));
2710 return (NULL);
2711 }
2712
2713 (void) strcpy(s, path);
2714 if ((p = strrchr(s, '/')) != NULL) {
2715 *p = 0;
2716 }
2717 if (s[0] == 0) {
2718 (void) strcpy(s, "/");
2719 }
2720 if (chdir(s) == -1) {
2721 err_print("cannot chdir() to %s - %s\n",
2722 s, strerror(errno));
2723 goto exit;
2724 }
2725
2726 level = 0;
2727 (void) strcpy(s, path);
2728 for (;;) {
2729 /*
2730 * See if there's a real file out there. If not,
2731 * we have a dangling link and we ignore it.
2732 */
2733 if (stat(s, &stbuf) == -1) {
2734 goto exit;
2735 }
2736 if (lstat(s, &stbuf) == -1) {
2737 err_print("%s: lstat() failed - %s\n",
2738 s, strerror(errno));
2739 goto exit;
2740 }
2741 /*
2742 * If the file is not a link, we're done one
2743 * way or the other. If there were links,
2744 * return the full pathname of the resulting
2745 * file.
2746 */
2747 if (!S_ISLNK(stbuf.st_mode)) {
2748 if (level > 0) {
2749 /*
2750 * Strip trailing options from the
2751 * physical device name
2752 */
2753 if ((p = strrchr(s, ':')) != NULL) {
2754 *p = 0;
2755 }
2756 /*
2757 * Get the current directory, and
2758 * glue the pieces together.
2759 */
2760 if (getcwd(dir, sizeof (dir)) == NULL) {
2761 err_print("getcwd() failed - %s\n",
2762 strerror(errno));
2763 goto exit;
2764 }
2765 (void) strcat(dir, "/");
2766 (void) strcat(dir, s);
2767 /*
2768 * If we have the standard fixed
2769 * /devices prefix, remove it.
2770 */
2771 p = (strstr(dir, DEVFS_PREFIX) == dir) ?
2772 dir+strlen(DEVFS_PREFIX) : dir;
2773 result = alloc_string(p);
2774 }
2775 goto exit;
2776 }
2777 i = readlink(s, buf, sizeof (buf));
2778 if (i == -1) {
2779 err_print("%s: readlink() failed - %s\n",
2780 s, strerror(errno));
2781 goto exit;
2782 }
2783 level++;
2784 buf[i] = 0;
2785
2786 /*
2787 * Break up the pathname into the directory
2788 * reference, if applicable and simple filename.
2789 * chdir()'ing to the directory allows us to
2790 * handle links with relative pathnames correctly.
2791 */
2792 (void) strcpy(dir, buf);
2793 if ((p = strrchr(dir, '/')) != NULL) {
2794 *p = 0;
2795 if (chdir(dir) == -1) {
2796 err_print("cannot chdir() to %s - %s\n",
2797 dir, strerror(errno));
2798 goto exit;
2799 }
2800 (void) strcpy(s, p+1);
2801 } else {
2802 (void) strcpy(s, buf);
2803 }
2804 }
2805
2806 exit:
2807 if (chdir(savedir) == -1) {
2808 err_print("cannot chdir() to %s - %s\n",
2809 savedir, strerror(errno));
2810 }
2811
2812 return (result);
2813 }
2814
2815
2816 static void
sort_disk_list()2817 sort_disk_list()
2818 {
2819 int n;
2820 struct disk_info **disks;
2821 struct disk_info *d;
2822 struct disk_info **dp;
2823 struct disk_info **dp2;
2824
2825 /*
2826 * Count the number of disks in the list
2827 */
2828 n = 0;
2829 for (d = disk_list; d != NULL; d = d->disk_next) {
2830 n++;
2831 }
2832 if (n == 0) {
2833 return;
2834 }
2835
2836 /*
2837 * Allocate a simple disk list array and fill it in
2838 */
2839 disks = (struct disk_info **)
2840 zalloc((n+1) * sizeof (struct disk_info *));
2841
2842 dp = disks;
2843 for (d = disk_list; d != NULL; d = d->disk_next) {
2844 *dp++ = d;
2845 }
2846 *dp = NULL;
2847
2848 /*
2849 * Sort the disk list array
2850 */
2851 qsort((void *) disks, n, sizeof (struct disk_info *),
2852 disk_name_compare);
2853
2854 /*
2855 * Rebuild the linked list disk list structure
2856 */
2857 dp = disks;
2858 disk_list = *dp;
2859 dp2 = dp + 1;
2860 do {
2861 (*dp++)->disk_next = *dp2++;
2862 } while (*dp != NULL);
2863
2864 /*
2865 * Clean up
2866 */
2867 (void) destroy_data((void *)disks);
2868 }
2869
2870
2871 /*
2872 * Compare two disk names
2873 */
2874 static int
disk_name_compare(const void * arg1,const void * arg2)2875 disk_name_compare(
2876 const void *arg1,
2877 const void *arg2)
2878 {
2879 char *s1;
2880 char *s2;
2881 int n1;
2882 int n2;
2883 char *p1;
2884 char *p2;
2885
2886 s1 = (*((struct disk_info **)arg1))->disk_name;
2887 s2 = (*((struct disk_info **)arg2))->disk_name;
2888
2889 for (;;) {
2890 if (*s1 == 0 || *s2 == 0)
2891 break;
2892 if (isdigit(*s1) && isdigit(*s2)) {
2893 n1 = strtol(s1, &p1, 10);
2894 n2 = strtol(s2, &p2, 10);
2895 if (n1 != n2) {
2896 return (n1 - n2);
2897 }
2898 s1 = p1;
2899 s2 = p2;
2900 } else if (*s1 != *s2) {
2901 break;
2902 } else {
2903 s1++;
2904 s2++;
2905 }
2906 }
2907
2908 return (*s1 - *s2);
2909 }
2910
2911 static void
make_controller_list()2912 make_controller_list()
2913 {
2914 int x;
2915 struct mctlr_list *ctlrp;
2916
2917 ctlrp = controlp;
2918
2919 for (x = nctypes; x != 0; x--) {
2920 ctlrp = zalloc(sizeof (struct mctlr_list));
2921 ctlrp->next = controlp;
2922 ctlrp->ctlr_type = &ctlr_types[x - 1];
2923 controlp = ctlrp;
2924
2925 }
2926 }
2927
2928 static void
check_for_duplicate_disknames(arglist)2929 check_for_duplicate_disknames(arglist)
2930 char *arglist[];
2931 {
2932 char *directory = "/dev/rdsk/";
2933 char **disklist;
2934 int len;
2935 char s[MAXPATHLEN], t[MAXPATHLEN];
2936 int diskno = 0;
2937 int i;
2938
2939
2940 len = strlen(directory);
2941 disklist = arglist;
2942 for (; *disklist != NULL; disklist++) {
2943 if (strncmp(directory, *disklist, len) == 0) {
2944 /* Disk is in conventional format */
2945 canonicalize_name(s, *disklist);
2946 /*
2947 * check if the disk is already present in
2948 * disk list.
2949 */
2950 for (i = 0; i < diskno; i++) {
2951 canonicalize_name(t, arglist[i]);
2952 if (strncmp(s, t, strlen(t)) == 0)
2953 break;
2954 }
2955 if (i != diskno)
2956 continue;
2957 }
2958 (void) strcpy(arglist[diskno], *disklist);
2959 diskno++;
2960 }
2961 arglist[diskno] = NULL;
2962 }
2963
2964 #define DISK_PREFIX "/dev/rdsk/"
2965
2966 /*
2967 * This Function checks if the non-conventional name is a a link to
2968 * one of the conventional whole disk name.
2969 */
2970 static int
name_represents_wholedisk(name)2971 name_represents_wholedisk(name)
2972 char *name;
2973 {
2974 char symname[MAXPATHLEN];
2975 char localname[MAXPATHLEN];
2976 char *nameptr;
2977
2978
2979 (void) memset(symname, 0, MAXPATHLEN);
2980 (void) memset(localname, 0, MAXPATHLEN);
2981 (void) strcpy(localname, name);
2982
2983 while (readlink(localname, symname, MAXPATHLEN) != -1) {
2984 nameptr = symname;
2985 if (strncmp(symname, DISK_PREFIX, strlen(DISK_PREFIX)) == 0)
2986 nameptr += strlen(DISK_PREFIX);
2987 if (conventional_name(nameptr)) {
2988 if (whole_disk_name(nameptr))
2989 return (0);
2990 else
2991 return (1);
2992 }
2993 (void) strcpy(localname, symname);
2994 (void) memset(symname, 0, MAXPATHLEN);
2995 }
2996 return (0);
2997 }
2998