1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <stddef.h>
27 #include <strings.h>
28 #include <libuutil.h>
29 #include <libzfs.h>
30 #include <fm/fmd_api.h>
31 #include <fm/libtopo.h>
32 #include <sys/types.h>
33 #include <sys/time.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/fm/protocol.h>
36 #include <sys/fm/fs/zfs.h>
37
38 /*
39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This
40 * #define reserves enough space for two 64-bit hex values plus the length of
41 * the longest string.
42 */
43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum"))
44
45 /*
46 * On-disk case structure. This must maintain backwards compatibility with
47 * previous versions of the DE. By default, any members appended to the end
48 * will be filled with zeros if they don't exist in a previous version.
49 */
50 typedef struct zfs_case_data {
51 uint64_t zc_version;
52 uint64_t zc_ena;
53 uint64_t zc_pool_guid;
54 uint64_t zc_vdev_guid;
55 int zc_has_timer; /* defunct */
56 int zc_pool_state;
57 char zc_serd_checksum[MAX_SERDLEN];
58 char zc_serd_io[MAX_SERDLEN];
59 int zc_has_remove_timer;
60 } zfs_case_data_t;
61
62 /*
63 * Time-of-day
64 */
65 typedef struct er_timeval {
66 uint64_t ertv_sec;
67 uint64_t ertv_nsec;
68 } er_timeval_t;
69
70 /*
71 * In-core case structure.
72 */
73 typedef struct zfs_case {
74 boolean_t zc_present;
75 uint32_t zc_version;
76 zfs_case_data_t zc_data;
77 fmd_case_t *zc_case;
78 uu_list_node_t zc_node;
79 id_t zc_remove_timer;
80 char *zc_fru;
81 er_timeval_t zc_when;
82 } zfs_case_t;
83
84 #define CASE_DATA "data"
85 #define CASE_FRU "fru"
86 #define CASE_DATA_VERSION_INITIAL 1
87 #define CASE_DATA_VERSION_SERD 2
88
89 typedef struct zfs_de_stats {
90 fmd_stat_t old_drops;
91 fmd_stat_t dev_drops;
92 fmd_stat_t vdev_drops;
93 fmd_stat_t import_drops;
94 fmd_stat_t resource_drops;
95 } zfs_de_stats_t;
96
97 zfs_de_stats_t zfs_stats = {
98 { "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
99 { "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
100 { "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
101 { "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
102 { "resource_drops", FMD_TYPE_UINT64, "resource related ereports" }
103 };
104
105 static hrtime_t zfs_remove_timeout;
106
107 uu_list_pool_t *zfs_case_pool;
108 uu_list_t *zfs_cases;
109
110 #define ZFS_MAKE_RSRC(type) \
111 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
112 #define ZFS_MAKE_EREPORT(type) \
113 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
114
115 /*
116 * Write out the persistent representation of an active case.
117 */
118 static void
zfs_case_serialize(fmd_hdl_t * hdl,zfs_case_t * zcp)119 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp)
120 {
121 /*
122 * Always update cases to the latest version, even if they were the
123 * previous version when unserialized.
124 */
125 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
126 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data,
127 sizeof (zcp->zc_data));
128
129 if (zcp->zc_fru != NULL)
130 fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
131 strlen(zcp->zc_fru));
132 }
133
134 /*
135 * Read back the persistent representation of an active case.
136 */
137 static zfs_case_t *
zfs_case_unserialize(fmd_hdl_t * hdl,fmd_case_t * cp)138 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
139 {
140 zfs_case_t *zcp;
141 size_t frulen;
142
143 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
144 zcp->zc_case = cp;
145
146 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
147 sizeof (zcp->zc_data));
148
149 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
150 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
151 return (NULL);
152 }
153
154 if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) {
155 zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP);
156 fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
157 frulen);
158 zcp->zc_fru[frulen] = '\0';
159 }
160
161 /*
162 * fmd_buf_read() will have already zeroed out the remainder of the
163 * buffer, so we don't have to do anything special if the version
164 * doesn't include the SERD engine name.
165 */
166
167 if (zcp->zc_data.zc_has_remove_timer)
168 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
169 NULL, zfs_remove_timeout);
170
171 (void) uu_list_insert_before(zfs_cases, NULL, zcp);
172
173 fmd_case_setspecific(hdl, cp, zcp);
174
175 return (zcp);
176 }
177
178 /*
179 * Iterate over any active cases. If any cases are associated with a pool or
180 * vdev which is no longer present on the system, close the associated case.
181 */
182 static void
zfs_mark_vdev(uint64_t pool_guid,nvlist_t * vd,er_timeval_t * loaded)183 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
184 {
185 uint64_t vdev_guid;
186 uint_t c, children;
187 nvlist_t **child;
188 zfs_case_t *zcp;
189 int ret;
190
191 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
192 assert(ret == 0);
193
194 /*
195 * Mark any cases associated with this (pool, vdev) pair.
196 */
197 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
198 zcp = uu_list_next(zfs_cases, zcp)) {
199 if (zcp->zc_data.zc_pool_guid == pool_guid &&
200 zcp->zc_data.zc_vdev_guid == vdev_guid) {
201 zcp->zc_present = B_TRUE;
202 zcp->zc_when = *loaded;
203 }
204 }
205
206 /*
207 * Iterate over all children.
208 */
209 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
210 &children) == 0) {
211 for (c = 0; c < children; c++)
212 zfs_mark_vdev(pool_guid, child[c], loaded);
213 }
214
215 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
216 &children) == 0) {
217 for (c = 0; c < children; c++)
218 zfs_mark_vdev(pool_guid, child[c], loaded);
219 }
220
221 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
222 &children) == 0) {
223 for (c = 0; c < children; c++)
224 zfs_mark_vdev(pool_guid, child[c], loaded);
225 }
226 }
227
228 /*ARGSUSED*/
229 static int
zfs_mark_pool(zpool_handle_t * zhp,void * unused)230 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
231 {
232 zfs_case_t *zcp;
233 uint64_t pool_guid;
234 uint64_t *tod;
235 er_timeval_t loaded = { 0 };
236 nvlist_t *config, *vd;
237 uint_t nelem = 0;
238 int ret;
239
240 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
241 /*
242 * Mark any cases associated with just this pool.
243 */
244 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
245 zcp = uu_list_next(zfs_cases, zcp)) {
246 if (zcp->zc_data.zc_pool_guid == pool_guid &&
247 zcp->zc_data.zc_vdev_guid == 0)
248 zcp->zc_present = B_TRUE;
249 }
250
251 if ((config = zpool_get_config(zhp, NULL)) == NULL) {
252 zpool_close(zhp);
253 return (-1);
254 }
255
256 (void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
257 &tod, &nelem);
258 if (nelem == 2) {
259 loaded.ertv_sec = tod[0];
260 loaded.ertv_nsec = tod[1];
261 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
262 zcp = uu_list_next(zfs_cases, zcp)) {
263 if (zcp->zc_data.zc_pool_guid == pool_guid &&
264 zcp->zc_data.zc_vdev_guid == 0) {
265 zcp->zc_when = loaded;
266 }
267 }
268 }
269
270 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
271 assert(ret == 0);
272
273 zfs_mark_vdev(pool_guid, vd, &loaded);
274
275 zpool_close(zhp);
276
277 return (0);
278 }
279
280 struct load_time_arg {
281 uint64_t lt_guid;
282 er_timeval_t *lt_time;
283 boolean_t lt_found;
284 };
285
286 static int
zpool_find_load_time(zpool_handle_t * zhp,void * arg)287 zpool_find_load_time(zpool_handle_t *zhp, void *arg)
288 {
289 struct load_time_arg *lta = arg;
290 uint64_t pool_guid;
291 uint64_t *tod;
292 nvlist_t *config;
293 uint_t nelem;
294
295 if (lta->lt_found)
296 return (0);
297
298 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
299 if (pool_guid != lta->lt_guid)
300 return (0);
301
302 if ((config = zpool_get_config(zhp, NULL)) == NULL) {
303 zpool_close(zhp);
304 return (-1);
305 }
306
307 if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
308 &tod, &nelem) == 0 && nelem == 2) {
309 lta->lt_found = B_TRUE;
310 lta->lt_time->ertv_sec = tod[0];
311 lta->lt_time->ertv_nsec = tod[1];
312 }
313
314 return (0);
315 }
316
317 static void
zfs_purge_cases(fmd_hdl_t * hdl)318 zfs_purge_cases(fmd_hdl_t *hdl)
319 {
320 zfs_case_t *zcp;
321 uu_list_walk_t *walk;
322 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
323
324 /*
325 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No
326 * matter what we do, we're going to have to stomach a O(vdevs * cases)
327 * algorithm. In reality, both quantities are likely so small that
328 * neither will matter. Given that iterating over pools is more
329 * expensive than iterating over the in-memory case list, we opt for a
330 * 'present' flag in each case that starts off cleared. We then iterate
331 * over all pools, marking those that are still present, and removing
332 * those that aren't found.
333 *
334 * Note that we could also construct an FMRI and rely on
335 * fmd_nvl_fmri_present(), but this would end up doing the same search.
336 */
337
338 /*
339 * Mark the cases an not present.
340 */
341 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
342 zcp = uu_list_next(zfs_cases, zcp))
343 zcp->zc_present = B_FALSE;
344
345 /*
346 * Iterate over all pools and mark the pools and vdevs found. If this
347 * fails (most probably because we're out of memory), then don't close
348 * any of the cases and we cannot be sure they are accurate.
349 */
350 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
351 return;
352
353 /*
354 * Remove those cases which were not found.
355 */
356 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
357 while ((zcp = uu_list_walk_next(walk)) != NULL) {
358 if (!zcp->zc_present)
359 fmd_case_close(hdl, zcp->zc_case);
360 }
361 uu_list_walk_end(walk);
362 }
363
364 /*
365 * Construct the name of a serd engine given the pool/vdev GUID and type (io or
366 * checksum).
367 */
368 static void
zfs_serd_name(char * buf,uint64_t pool_guid,uint64_t vdev_guid,const char * type)369 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
370 const char *type)
371 {
372 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid,
373 vdev_guid, type);
374 }
375
376 /*
377 * Solve a given ZFS case. This first checks to make sure the diagnosis is
378 * still valid, as well as cleaning up any pending timer associated with the
379 * case.
380 */
381 static void
zfs_case_solve(fmd_hdl_t * hdl,zfs_case_t * zcp,const char * faultname,boolean_t checkunusable)382 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname,
383 boolean_t checkunusable)
384 {
385 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
386 nvlist_t *detector, *fault;
387 boolean_t serialize;
388 nvlist_t *fmri, *fru;
389 topo_hdl_t *thp;
390 int err;
391
392 /*
393 * Construct the detector from the case data. The detector is in the
394 * ZFS scheme, and is either the pool or the vdev, depending on whether
395 * this is a vdev or pool fault.
396 */
397 detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
398
399 (void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
400 (void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
401 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
402 zcp->zc_data.zc_pool_guid);
403 if (zcp->zc_data.zc_vdev_guid != 0) {
404 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
405 zcp->zc_data.zc_vdev_guid);
406 }
407
408 /*
409 * We also want to make sure that the detector (pool or vdev) properly
410 * reflects the diagnosed state, when the fault corresponds to internal
411 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a
412 * device which was unavailable early in boot (because the driver/file
413 * wasn't available) and is now healthy will be mis-diagnosed.
414 */
415 if (!fmd_nvl_fmri_present(hdl, detector) ||
416 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) {
417 fmd_case_close(hdl, zcp->zc_case);
418 nvlist_free(detector);
419 return;
420 }
421
422
423 fru = NULL;
424 if (zcp->zc_fru != NULL &&
425 (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) {
426 /*
427 * If the vdev had an associated FRU, then get the FRU nvlist
428 * from the topo handle and use that in the suspect list. We
429 * explicitly lookup the FRU because the fmri reported from the
430 * kernel may not have up to date details about the disk itself
431 * (serial, part, etc).
432 */
433 if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) {
434 /*
435 * If the disk is part of the system chassis, but the
436 * FRU indicates a different chassis ID than our
437 * current system, then ignore the error. This
438 * indicates that the device was part of another
439 * cluster head, and for obvious reasons cannot be
440 * imported on this system.
441 */
442 if (libzfs_fru_notself(zhdl, zcp->zc_fru)) {
443 fmd_case_close(hdl, zcp->zc_case);
444 nvlist_free(fmri);
445 fmd_hdl_topo_rele(hdl, thp);
446 nvlist_free(detector);
447 return;
448 }
449
450 /*
451 * If the device is no longer present on the system, or
452 * topo_fmri_fru() fails for other reasons, then fall
453 * back to the fmri specified in the vdev.
454 */
455 if (topo_fmri_fru(thp, fmri, &fru, &err) != 0)
456 fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP);
457 nvlist_free(fmri);
458 }
459
460 fmd_hdl_topo_rele(hdl, thp);
461 }
462
463 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
464 fru, detector);
465 fmd_case_add_suspect(hdl, zcp->zc_case, fault);
466
467 nvlist_free(fru);
468
469 fmd_case_solve(hdl, zcp->zc_case);
470
471 serialize = B_FALSE;
472 if (zcp->zc_data.zc_has_remove_timer) {
473 fmd_timer_remove(hdl, zcp->zc_remove_timer);
474 zcp->zc_data.zc_has_remove_timer = 0;
475 serialize = B_TRUE;
476 }
477 if (serialize)
478 zfs_case_serialize(hdl, zcp);
479
480 nvlist_free(detector);
481 }
482
483 /*
484 * This #define and function access a private interface of the FMA
485 * framework. Ereports include a time-of-day upper bound.
486 * We want to look at that so we can compare it to when pools get
487 * loaded.
488 */
489 #define FMD_EVN_TOD "__tod"
490
491 static boolean_t
timeval_earlier(er_timeval_t * a,er_timeval_t * b)492 timeval_earlier(er_timeval_t *a, er_timeval_t *b)
493 {
494 return (a->ertv_sec < b->ertv_sec ||
495 (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
496 }
497
498 /*ARGSUSED*/
499 static void
zfs_ereport_when(fmd_hdl_t * hdl,nvlist_t * nvl,er_timeval_t * when)500 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
501 {
502 uint64_t *tod;
503 uint_t nelem;
504
505 if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &nelem) == 0 &&
506 nelem == 2) {
507 when->ertv_sec = tod[0];
508 when->ertv_nsec = tod[1];
509 } else {
510 when->ertv_sec = when->ertv_nsec = UINT64_MAX;
511 }
512 }
513
514 /*
515 * Main fmd entry point.
516 */
517 /*ARGSUSED*/
518 static void
zfs_fm_recv(fmd_hdl_t * hdl,fmd_event_t * ep,nvlist_t * nvl,const char * class)519 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
520 {
521 zfs_case_t *zcp, *dcp;
522 int32_t pool_state;
523 uint64_t ena, pool_guid, vdev_guid;
524 er_timeval_t pool_load;
525 er_timeval_t er_when;
526 nvlist_t *detector;
527 boolean_t pool_found = B_FALSE;
528 boolean_t isresource;
529 char *fru, *type;
530
531 /*
532 * We subscribe to notifications for vdev or pool removal. In these
533 * cases, there may be cases that no longer apply. Purge any cases
534 * that no longer apply.
535 */
536 if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) {
537 zfs_purge_cases(hdl);
538 zfs_stats.resource_drops.fmds_value.ui64++;
539 return;
540 }
541
542 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
543
544 if (isresource) {
545 /*
546 * For resources, we don't have a normal payload.
547 */
548 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
549 &vdev_guid) != 0)
550 pool_state = SPA_LOAD_OPEN;
551 else
552 pool_state = SPA_LOAD_NONE;
553 detector = NULL;
554 } else {
555 (void) nvlist_lookup_nvlist(nvl,
556 FM_EREPORT_DETECTOR, &detector);
557 (void) nvlist_lookup_int32(nvl,
558 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
559 }
560
561 /*
562 * We also ignore all ereports generated during an import of a pool,
563 * since the only possible fault (.pool) would result in import failure,
564 * and hence no persistent fault. Some day we may want to do something
565 * with these ereports, so we continue generating them internally.
566 */
567 if (pool_state == SPA_LOAD_IMPORT) {
568 zfs_stats.import_drops.fmds_value.ui64++;
569 return;
570 }
571
572 /*
573 * Device I/O errors are ignored during pool open.
574 */
575 if (pool_state == SPA_LOAD_OPEN &&
576 (fmd_nvl_class_match(hdl, nvl,
577 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
578 fmd_nvl_class_match(hdl, nvl,
579 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
580 fmd_nvl_class_match(hdl, nvl,
581 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
582 zfs_stats.dev_drops.fmds_value.ui64++;
583 return;
584 }
585
586 /*
587 * We ignore ereports for anything except disks and files.
588 */
589 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
590 &type) == 0) {
591 if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
592 strcmp(type, VDEV_TYPE_FILE) != 0) {
593 zfs_stats.vdev_drops.fmds_value.ui64++;
594 return;
595 }
596 }
597
598 /*
599 * Determine if this ereport corresponds to an open case. Previous
600 * incarnations of this DE used the ENA to chain events together as
601 * part of the same case. The problem with this is that we rely on
602 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when
603 * generating SERD engines. Instead, we have a case for each vdev or
604 * pool, regardless of the ENA.
605 */
606 (void) nvlist_lookup_uint64(nvl,
607 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
608 if (nvlist_lookup_uint64(nvl,
609 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
610 vdev_guid = 0;
611 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
612 ena = 0;
613
614 zfs_ereport_when(hdl, nvl, &er_when);
615
616 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
617 zcp = uu_list_next(zfs_cases, zcp)) {
618 if (zcp->zc_data.zc_pool_guid == pool_guid) {
619 pool_found = B_TRUE;
620 pool_load = zcp->zc_when;
621 }
622 if (zcp->zc_data.zc_vdev_guid == vdev_guid)
623 break;
624 }
625
626 if (pool_found) {
627 fmd_hdl_debug(hdl, "pool %llx, "
628 "ereport time %lld.%lld, pool load time = %lld.%lld\n",
629 pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
630 pool_load.ertv_sec, pool_load.ertv_nsec);
631 }
632
633 /*
634 * Avoid falsely accusing a pool of being faulty. Do so by
635 * not replaying ereports that were generated prior to the
636 * current import. If the failure that generated them was
637 * transient because the device was actually removed but we
638 * didn't receive the normal asynchronous notification, we
639 * don't want to mark it as faulted and potentially panic. If
640 * there is still a problem we'd expect not to be able to
641 * import the pool, or that new ereports will be generated
642 * once the pool is used.
643 */
644 if (pool_found && timeval_earlier(&er_when, &pool_load)) {
645 zfs_stats.old_drops.fmds_value.ui64++;
646 return;
647 }
648
649 if (!pool_found) {
650 /*
651 * Haven't yet seen this pool, but same situation
652 * may apply.
653 */
654 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
655 struct load_time_arg la;
656
657 la.lt_guid = pool_guid;
658 la.lt_time = &pool_load;
659 la.lt_found = B_FALSE;
660
661 if (zhdl != NULL &&
662 zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
663 la.lt_found == B_TRUE) {
664 pool_found = B_TRUE;
665 fmd_hdl_debug(hdl, "pool %llx, "
666 "ereport time %lld.%lld, "
667 "pool load time = %lld.%lld\n",
668 pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
669 pool_load.ertv_sec, pool_load.ertv_nsec);
670 if (timeval_earlier(&er_when, &pool_load)) {
671 zfs_stats.old_drops.fmds_value.ui64++;
672 return;
673 }
674 }
675 }
676
677 if (zcp == NULL) {
678 fmd_case_t *cs;
679 zfs_case_data_t data = { 0 };
680
681 /*
682 * If this is one of our 'fake' resource ereports, and there is
683 * no case open, simply discard it.
684 */
685 if (isresource) {
686 zfs_stats.resource_drops.fmds_value.ui64++;
687 return;
688 }
689
690 /*
691 * Open a new case.
692 */
693 cs = fmd_case_open(hdl, NULL);
694
695 /*
696 * Initialize the case buffer. To commonize code, we actually
697 * create the buffer with existing data, and then call
698 * zfs_case_unserialize() to instantiate the in-core structure.
699 */
700 fmd_buf_create(hdl, cs, CASE_DATA,
701 sizeof (zfs_case_data_t));
702
703 data.zc_version = CASE_DATA_VERSION_SERD;
704 data.zc_ena = ena;
705 data.zc_pool_guid = pool_guid;
706 data.zc_vdev_guid = vdev_guid;
707 data.zc_pool_state = (int)pool_state;
708
709 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
710
711 zcp = zfs_case_unserialize(hdl, cs);
712 assert(zcp != NULL);
713 if (pool_found)
714 zcp->zc_when = pool_load;
715 }
716
717
718 /*
719 * If this is an ereport for a case with an associated vdev FRU, make
720 * sure it is accurate and up to date.
721 */
722 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
723 &fru) == 0) {
724 topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
725 if (zcp->zc_fru == NULL ||
726 !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) {
727 if (zcp->zc_fru != NULL) {
728 fmd_hdl_strfree(hdl, zcp->zc_fru);
729 fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU);
730 }
731 zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP);
732 zfs_case_serialize(hdl, zcp);
733 }
734 fmd_hdl_topo_rele(hdl, thp);
735 }
736
737 if (isresource) {
738 if (fmd_nvl_class_match(hdl, nvl,
739 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
740 /*
741 * The 'resource.fs.zfs.autoreplace' event indicates
742 * that the pool was loaded with the 'autoreplace'
743 * property set. In this case, any pending device
744 * failures should be ignored, as the asynchronous
745 * autoreplace handling will take care of them.
746 */
747 fmd_case_close(hdl, zcp->zc_case);
748 } else if (fmd_nvl_class_match(hdl, nvl,
749 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
750 /*
751 * The 'resource.fs.zfs.removed' event indicates that
752 * device removal was detected, and the device was
753 * closed asynchronously. If this is the case, we
754 * assume that any recent I/O errors were due to the
755 * device removal, not any fault of the device itself.
756 * We reset the SERD engine, and cancel any pending
757 * timers.
758 */
759 if (zcp->zc_data.zc_has_remove_timer) {
760 fmd_timer_remove(hdl, zcp->zc_remove_timer);
761 zcp->zc_data.zc_has_remove_timer = 0;
762 zfs_case_serialize(hdl, zcp);
763 }
764 if (zcp->zc_data.zc_serd_io[0] != '\0')
765 fmd_serd_reset(hdl,
766 zcp->zc_data.zc_serd_io);
767 if (zcp->zc_data.zc_serd_checksum[0] != '\0')
768 fmd_serd_reset(hdl,
769 zcp->zc_data.zc_serd_checksum);
770 }
771 zfs_stats.resource_drops.fmds_value.ui64++;
772 return;
773 }
774
775 /*
776 * Associate the ereport with this case.
777 */
778 fmd_case_add_ereport(hdl, zcp->zc_case, ep);
779
780 /*
781 * Don't do anything else if this case is already solved.
782 */
783 if (fmd_case_solved(hdl, zcp->zc_case))
784 return;
785
786 /*
787 * Determine if we should solve the case and generate a fault. We solve
788 * a case if:
789 *
790 * a. A pool failed to open (ereport.fs.zfs.pool)
791 * b. A device failed to open (ereport.fs.zfs.pool) while a pool
792 * was up and running.
793 *
794 * We may see a series of ereports associated with a pool open, all
795 * chained together by the same ENA. If the pool open succeeds, then
796 * we'll see no further ereports. To detect when a pool open has
797 * succeeded, we associate a timer with the event. When it expires, we
798 * close the case.
799 */
800 if (fmd_nvl_class_match(hdl, nvl,
801 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
802 /*
803 * Pool level fault. Before solving the case, go through and
804 * close any open device cases that may be pending.
805 */
806 for (dcp = uu_list_first(zfs_cases); dcp != NULL;
807 dcp = uu_list_next(zfs_cases, dcp)) {
808 if (dcp->zc_data.zc_pool_guid ==
809 zcp->zc_data.zc_pool_guid &&
810 dcp->zc_data.zc_vdev_guid != 0)
811 fmd_case_close(hdl, dcp->zc_case);
812 }
813
814 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE);
815 } else if (fmd_nvl_class_match(hdl, nvl,
816 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
817 /*
818 * Pool level fault for reading the intent logs.
819 */
820 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE);
821 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
822 /*
823 * Device fault.
824 */
825 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE);
826 } else if (fmd_nvl_class_match(hdl, nvl,
827 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
828 fmd_nvl_class_match(hdl, nvl,
829 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
830 fmd_nvl_class_match(hdl, nvl,
831 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
832 fmd_nvl_class_match(hdl, nvl,
833 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
834 char *failmode = NULL;
835 boolean_t checkremove = B_FALSE;
836
837 /*
838 * If this is a checksum or I/O error, then toss it into the
839 * appropriate SERD engine and check to see if it has fired.
840 * Ideally, we want to do something more sophisticated,
841 * (persistent errors for a single data block, etc). For now,
842 * a single SERD engine is sufficient.
843 */
844 if (fmd_nvl_class_match(hdl, nvl,
845 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
846 if (zcp->zc_data.zc_serd_io[0] == '\0') {
847 zfs_serd_name(zcp->zc_data.zc_serd_io,
848 pool_guid, vdev_guid, "io");
849 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
850 fmd_prop_get_int32(hdl, "io_N"),
851 fmd_prop_get_int64(hdl, "io_T"));
852 zfs_case_serialize(hdl, zcp);
853 }
854 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
855 checkremove = B_TRUE;
856 } else if (fmd_nvl_class_match(hdl, nvl,
857 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
858 if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
859 zfs_serd_name(zcp->zc_data.zc_serd_checksum,
860 pool_guid, vdev_guid, "checksum");
861 fmd_serd_create(hdl,
862 zcp->zc_data.zc_serd_checksum,
863 fmd_prop_get_int32(hdl, "checksum_N"),
864 fmd_prop_get_int64(hdl, "checksum_T"));
865 zfs_case_serialize(hdl, zcp);
866 }
867 if (fmd_serd_record(hdl,
868 zcp->zc_data.zc_serd_checksum, ep)) {
869 zfs_case_solve(hdl, zcp,
870 "fault.fs.zfs.vdev.checksum", B_FALSE);
871 }
872 } else if (fmd_nvl_class_match(hdl, nvl,
873 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
874 (nvlist_lookup_string(nvl,
875 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
876 failmode != NULL) {
877 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
878 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
879 zfs_case_solve(hdl, zcp,
880 "fault.fs.zfs.io_failure_continue",
881 B_FALSE);
882 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
883 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
884 zfs_case_solve(hdl, zcp,
885 "fault.fs.zfs.io_failure_wait", B_FALSE);
886 }
887 } else if (fmd_nvl_class_match(hdl, nvl,
888 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
889 checkremove = B_TRUE;
890 }
891
892 /*
893 * Because I/O errors may be due to device removal, we postpone
894 * any diagnosis until we're sure that we aren't about to
895 * receive a 'resource.fs.zfs.removed' event.
896 */
897 if (checkremove) {
898 if (zcp->zc_data.zc_has_remove_timer)
899 fmd_timer_remove(hdl, zcp->zc_remove_timer);
900 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
901 zfs_remove_timeout);
902 if (!zcp->zc_data.zc_has_remove_timer) {
903 zcp->zc_data.zc_has_remove_timer = 1;
904 zfs_case_serialize(hdl, zcp);
905 }
906 }
907 }
908 }
909
910 /*
911 * The timeout is fired when we diagnosed an I/O error, and it was not due to
912 * device removal (which would cause the timeout to be cancelled).
913 */
914 /* ARGSUSED */
915 static void
zfs_fm_timeout(fmd_hdl_t * hdl,id_t id,void * data)916 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
917 {
918 zfs_case_t *zcp = data;
919
920 if (id == zcp->zc_remove_timer)
921 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE);
922 }
923
924 static void
zfs_fm_close(fmd_hdl_t * hdl,fmd_case_t * cs)925 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
926 {
927 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
928
929 if (zcp->zc_data.zc_serd_checksum[0] != '\0')
930 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
931 if (zcp->zc_data.zc_serd_io[0] != '\0')
932 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
933 if (zcp->zc_data.zc_has_remove_timer)
934 fmd_timer_remove(hdl, zcp->zc_remove_timer);
935 uu_list_remove(zfs_cases, zcp);
936 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
937 }
938
939 /*
940 * We use the fmd gc entry point to look for old cases that no longer apply.
941 * This allows us to keep our set of case data small in a long running system.
942 */
943 static void
zfs_fm_gc(fmd_hdl_t * hdl)944 zfs_fm_gc(fmd_hdl_t *hdl)
945 {
946 zfs_purge_cases(hdl);
947 }
948
949 static const fmd_hdl_ops_t fmd_ops = {
950 zfs_fm_recv, /* fmdo_recv */
951 zfs_fm_timeout, /* fmdo_timeout */
952 zfs_fm_close, /* fmdo_close */
953 NULL, /* fmdo_stats */
954 zfs_fm_gc, /* fmdo_gc */
955 };
956
957 static const fmd_prop_t fmd_props[] = {
958 { "checksum_N", FMD_TYPE_UINT32, "10" },
959 { "checksum_T", FMD_TYPE_TIME, "10min" },
960 { "io_N", FMD_TYPE_UINT32, "10" },
961 { "io_T", FMD_TYPE_TIME, "10min" },
962 { "remove_timeout", FMD_TYPE_TIME, "15sec" },
963 { NULL, 0, NULL }
964 };
965
966 static const fmd_hdl_info_t fmd_info = {
967 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
968 };
969
970 void
_fmd_init(fmd_hdl_t * hdl)971 _fmd_init(fmd_hdl_t *hdl)
972 {
973 fmd_case_t *cp;
974 libzfs_handle_t *zhdl;
975
976 if ((zhdl = libzfs_init()) == NULL)
977 return;
978
979 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
980 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
981 NULL, 0)) == NULL) {
982 libzfs_fini(zhdl);
983 return;
984 }
985
986 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) {
987 uu_list_pool_destroy(zfs_case_pool);
988 libzfs_fini(zhdl);
989 return;
990 }
991
992 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
993 uu_list_destroy(zfs_cases);
994 uu_list_pool_destroy(zfs_case_pool);
995 libzfs_fini(zhdl);
996 return;
997 }
998
999 fmd_hdl_setspecific(hdl, zhdl);
1000
1001 (void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
1002 sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
1003
1004 /*
1005 * Iterate over all active cases and unserialize the associated buffers,
1006 * adding them to our list of open cases.
1007 */
1008 for (cp = fmd_case_next(hdl, NULL);
1009 cp != NULL; cp = fmd_case_next(hdl, cp))
1010 (void) zfs_case_unserialize(hdl, cp);
1011
1012 /*
1013 * Clear out any old cases that are no longer valid.
1014 */
1015 zfs_purge_cases(hdl);
1016
1017 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout");
1018 }
1019
1020 void
_fmd_fini(fmd_hdl_t * hdl)1021 _fmd_fini(fmd_hdl_t *hdl)
1022 {
1023 zfs_case_t *zcp;
1024 uu_list_walk_t *walk;
1025 libzfs_handle_t *zhdl;
1026
1027 /*
1028 * Remove all active cases.
1029 */
1030 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
1031 while ((zcp = uu_list_walk_next(walk)) != NULL) {
1032 uu_list_remove(zfs_cases, zcp);
1033 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1034 }
1035 uu_list_walk_end(walk);
1036
1037 uu_list_destroy(zfs_cases);
1038 uu_list_pool_destroy(zfs_case_pool);
1039
1040 zhdl = fmd_hdl_getspecific(hdl);
1041 libzfs_fini(zhdl);
1042 }
1043