1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
22 */
23
24 #include "defs.h"
25 #include "tables.h"
26 #include <fcntl.h>
27 #include <sys/un.h>
28
29 static void initlog(void);
30 static void run_timeouts(void);
31
32 static void advertise(struct sockaddr_in6 *sin6, struct phyint *pi,
33 boolean_t no_prefixes);
34 static void solicit(struct sockaddr_in6 *sin6, struct phyint *pi);
35 static void initifs(boolean_t first);
36 static void check_if_removed(struct phyint *pi);
37 static void loopback_ra_enqueue(struct phyint *pi,
38 struct nd_router_advert *ra, int len);
39 static void loopback_ra_dequeue(void);
40 static void check_daemonize(void);
41
42 struct in6_addr all_nodes_mcast = { { 0xff, 0x2, 0x0, 0x0,
43 0x0, 0x0, 0x0, 0x0,
44 0x0, 0x0, 0x0, 0x0,
45 0x0, 0x0, 0x0, 0x1 } };
46
47 struct in6_addr all_routers_mcast = { { 0xff, 0x2, 0x0, 0x0,
48 0x0, 0x0, 0x0, 0x0,
49 0x0, 0x0, 0x0, 0x0,
50 0x0, 0x0, 0x0, 0x2 } };
51
52 static struct sockaddr_in6 v6allnodes = { AF_INET6, 0, 0,
53 { 0xff, 0x2, 0x0, 0x0,
54 0x0, 0x0, 0x0, 0x0,
55 0x0, 0x0, 0x0, 0x0,
56 0x0, 0x0, 0x0, 0x1 } };
57
58 static struct sockaddr_in6 v6allrouters = { AF_INET6, 0, 0,
59 { 0xff, 0x2, 0x0, 0x0,
60 0x0, 0x0, 0x0, 0x0,
61 0x0, 0x0, 0x0, 0x0,
62 0x0, 0x0, 0x0, 0x2 } };
63
64 static char **argv0; /* Saved for re-exec on SIGHUP */
65
66 static uint64_t packet[(IP_MAXPACKET + 1)/8];
67
68 static int show_ifs = 0;
69 static boolean_t already_daemonized = _B_FALSE;
70 int debug = 0;
71 int no_loopback = 0; /* Do not send RA packets to ourselves */
72
73 /*
74 * Size of routing socket message used by in.ndpd which includes the header,
75 * space for the RTA_DST, RTA_GATEWAY and RTA_NETMASK (each a sockaddr_in6)
76 * plus space for the RTA_IFP (a sockaddr_dl).
77 */
78 #define NDP_RTM_MSGLEN sizeof (struct rt_msghdr) + \
79 sizeof (struct sockaddr_in6) + \
80 sizeof (struct sockaddr_in6) + \
81 sizeof (struct sockaddr_in6) + \
82 sizeof (struct sockaddr_dl)
83
84 /*
85 * These are referenced externally in tables.c in order to fill in the
86 * dynamic portions of the routing socket message and then to send the message
87 * itself.
88 */
89 int rtsock = -1; /* Routing socket */
90 struct rt_msghdr *rt_msg; /* Routing socket message */
91 struct sockaddr_in6 *rta_gateway; /* RTA_GATEWAY sockaddr */
92 struct sockaddr_dl *rta_ifp; /* RTA_IFP sockaddr */
93
94 /*
95 * These sockets are used internally in this file.
96 */
97 static int mibsock = -1; /* mib request socket */
98 static int cmdsock = -1; /* command socket */
99
100 static int ndpd_setup_cmd_listener(void);
101 static void ndpd_cmd_handler(int);
102 static int ndpd_process_cmd(int, ipadm_ndpd_msg_t *);
103 static int ndpd_send_error(int, int);
104 static int ndpd_set_autoconf(const char *, boolean_t);
105 static int ndpd_create_addrs(const char *, struct sockaddr_in6, int,
106 boolean_t, boolean_t, char *);
107 static int ndpd_delete_addrs(const char *);
108 static int phyint_check_ipadm_intfid(struct phyint *);
109
110 /*
111 * Return the current time in milliseconds truncated to
112 * fit in an integer.
113 */
114 uint_t
getcurrenttime(void)115 getcurrenttime(void)
116 {
117 struct timeval tp;
118
119 if (gettimeofday(&tp, NULL) < 0) {
120 logperror("getcurrenttime: gettimeofday failed");
121 exit(1);
122 }
123 return (tp.tv_sec * 1000 + tp.tv_usec / 1000);
124 }
125
126 /*
127 * Output a preformated packet from the packet[] buffer.
128 */
129 static void
sendpacket(struct sockaddr_in6 * sin6,int sock,int size,int flags)130 sendpacket(struct sockaddr_in6 *sin6, int sock, int size, int flags)
131 {
132 int cc;
133 char abuf[INET6_ADDRSTRLEN];
134
135 cc = sendto(sock, (char *)packet, size, flags,
136 (struct sockaddr *)sin6, sizeof (*sin6));
137 if (cc < 0 || cc != size) {
138 if (cc < 0) {
139 logperror("sendpacket: sendto");
140 }
141 logmsg(LOG_ERR, "sendpacket: wrote %s %d chars, ret=%d\n",
142 inet_ntop(sin6->sin6_family,
143 (void *)&sin6->sin6_addr,
144 abuf, sizeof (abuf)),
145 size, cc);
146 }
147 }
148
149 /*
150 * If possible, place an ND_OPT_SOURCE_LINKADDR option at `optp'.
151 * Return the number of bytes placed in the option.
152 */
153 static uint_t
add_opt_lla(struct phyint * pi,struct nd_opt_lla * optp)154 add_opt_lla(struct phyint *pi, struct nd_opt_lla *optp)
155 {
156 uint_t optlen;
157 uint_t hwaddrlen;
158 struct lifreq lifr;
159
160 /* If this phyint doesn't have a link-layer address, bail */
161 if (phyint_get_lla(pi, &lifr) == -1)
162 return (0);
163
164 hwaddrlen = lifr.lifr_nd.lnr_hdw_len;
165 /* roundup to multiple of 8 and make padding zero */
166 optlen = ((sizeof (struct nd_opt_hdr) + hwaddrlen + 7) / 8) * 8;
167 bzero(optp, optlen);
168 optp->nd_opt_lla_type = ND_OPT_SOURCE_LINKADDR;
169 optp->nd_opt_lla_len = optlen / 8;
170 bcopy(lifr.lifr_nd.lnr_hdw_addr, optp->nd_opt_lla_hdw_addr, hwaddrlen);
171
172 return (optlen);
173 }
174
175 /* Send a Router Solicitation */
176 static void
solicit(struct sockaddr_in6 * sin6,struct phyint * pi)177 solicit(struct sockaddr_in6 *sin6, struct phyint *pi)
178 {
179 int packetlen = 0;
180 struct nd_router_solicit *rs = (struct nd_router_solicit *)packet;
181 char *pptr = (char *)packet;
182
183 rs->nd_rs_type = ND_ROUTER_SOLICIT;
184 rs->nd_rs_code = 0;
185 rs->nd_rs_cksum = htons(0);
186 rs->nd_rs_reserved = htonl(0);
187
188 packetlen += sizeof (*rs);
189 pptr += sizeof (*rs);
190
191 /* add options */
192 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr);
193
194 if (debug & D_PKTOUT) {
195 print_route_sol("Sending solicitation to ", pi, rs, packetlen,
196 sin6);
197 }
198 sendpacket(sin6, pi->pi_sock, packetlen, 0);
199 }
200
201 /*
202 * Send a (set of) Router Advertisements and feed them back to ourselves
203 * for processing. Unless no_prefixes is set all prefixes are included.
204 * If there are too many prefix options to fit in one packet multiple
205 * packets will be sent - each containing a subset of the prefix options.
206 */
207 static void
advertise(struct sockaddr_in6 * sin6,struct phyint * pi,boolean_t no_prefixes)208 advertise(struct sockaddr_in6 *sin6, struct phyint *pi, boolean_t no_prefixes)
209 {
210 struct nd_opt_prefix_info *po;
211 char *pptr = (char *)packet;
212 struct nd_router_advert *ra;
213 struct adv_prefix *adv_pr;
214 int packetlen = 0;
215
216 ra = (struct nd_router_advert *)pptr;
217 ra->nd_ra_type = ND_ROUTER_ADVERT;
218 ra->nd_ra_code = 0;
219 ra->nd_ra_cksum = htons(0);
220 ra->nd_ra_curhoplimit = pi->pi_AdvCurHopLimit;
221 ra->nd_ra_flags_reserved = 0;
222 if (pi->pi_AdvManagedFlag)
223 ra->nd_ra_flags_reserved |= ND_RA_FLAG_MANAGED;
224 if (pi->pi_AdvOtherConfigFlag)
225 ra->nd_ra_flags_reserved |= ND_RA_FLAG_OTHER;
226
227 if (pi->pi_adv_state == FINAL_ADV)
228 ra->nd_ra_router_lifetime = htons(0);
229 else
230 ra->nd_ra_router_lifetime = htons(pi->pi_AdvDefaultLifetime);
231 ra->nd_ra_reachable = htonl(pi->pi_AdvReachableTime);
232 ra->nd_ra_retransmit = htonl(pi->pi_AdvRetransTimer);
233
234 packetlen = sizeof (*ra);
235 pptr += sizeof (*ra);
236
237 if (pi->pi_adv_state == FINAL_ADV) {
238 if (debug & D_PKTOUT) {
239 print_route_adv("Sending advert (FINAL) to ", pi,
240 ra, packetlen, sin6);
241 }
242 sendpacket(sin6, pi->pi_sock, packetlen, 0);
243 /* Feed packet back in for router operation */
244 loopback_ra_enqueue(pi, ra, packetlen);
245 return;
246 }
247
248 /* add options */
249 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr);
250 pptr = (char *)packet + packetlen;
251
252 if (pi->pi_AdvLinkMTU != 0) {
253 struct nd_opt_mtu *mo = (struct nd_opt_mtu *)pptr;
254
255 mo->nd_opt_mtu_type = ND_OPT_MTU;
256 mo->nd_opt_mtu_len = sizeof (struct nd_opt_mtu) / 8;
257 mo->nd_opt_mtu_reserved = 0;
258 mo->nd_opt_mtu_mtu = htonl(pi->pi_AdvLinkMTU);
259
260 packetlen += sizeof (struct nd_opt_mtu);
261 pptr += sizeof (struct nd_opt_mtu);
262 }
263
264 if (no_prefixes) {
265 if (debug & D_PKTOUT) {
266 print_route_adv("Sending advert to ", pi,
267 ra, packetlen, sin6);
268 }
269 sendpacket(sin6, pi->pi_sock, packetlen, 0);
270 /* Feed packet back in for router operation */
271 loopback_ra_enqueue(pi, ra, packetlen);
272 return;
273 }
274
275 po = (struct nd_opt_prefix_info *)pptr;
276 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL;
277 adv_pr = adv_pr->adv_pr_next) {
278 if (!adv_pr->adv_pr_AdvOnLinkFlag &&
279 !adv_pr->adv_pr_AdvAutonomousFlag) {
280 continue;
281 }
282
283 /*
284 * If the prefix doesn't fit in packet send
285 * what we have so far and start with new packet.
286 */
287 if (packetlen + sizeof (*po) >
288 pi->pi_LinkMTU - sizeof (struct ip6_hdr)) {
289 if (debug & D_PKTOUT) {
290 print_route_adv("Sending advert "
291 "(FRAG) to ",
292 pi, ra, packetlen, sin6);
293 }
294 sendpacket(sin6, pi->pi_sock, packetlen, 0);
295 /* Feed packet back in for router operation */
296 loopback_ra_enqueue(pi, ra, packetlen);
297 packetlen = sizeof (*ra);
298 pptr = (char *)packet + sizeof (*ra);
299 po = (struct nd_opt_prefix_info *)pptr;
300 }
301 po->nd_opt_pi_type = ND_OPT_PREFIX_INFORMATION;
302 po->nd_opt_pi_len = sizeof (*po)/8;
303 po->nd_opt_pi_flags_reserved = 0;
304 if (adv_pr->adv_pr_AdvOnLinkFlag) {
305 po->nd_opt_pi_flags_reserved |=
306 ND_OPT_PI_FLAG_ONLINK;
307 }
308 if (adv_pr->adv_pr_AdvAutonomousFlag) {
309 po->nd_opt_pi_flags_reserved |=
310 ND_OPT_PI_FLAG_AUTO;
311 }
312 po->nd_opt_pi_prefix_len = adv_pr->adv_pr_prefix_len;
313 /*
314 * If both Adv*Expiration and Adv*Lifetime are
315 * set we prefer the former and make the lifetime
316 * decrement in real time.
317 */
318 if (adv_pr->adv_pr_AdvValidRealTime) {
319 po->nd_opt_pi_valid_time =
320 htonl(adv_pr->adv_pr_AdvValidExpiration);
321 } else {
322 po->nd_opt_pi_valid_time =
323 htonl(adv_pr->adv_pr_AdvValidLifetime);
324 }
325 if (adv_pr->adv_pr_AdvPreferredRealTime) {
326 po->nd_opt_pi_preferred_time =
327 htonl(adv_pr->adv_pr_AdvPreferredExpiration);
328 } else {
329 po->nd_opt_pi_preferred_time =
330 htonl(adv_pr->adv_pr_AdvPreferredLifetime);
331 }
332 po->nd_opt_pi_reserved2 = htonl(0);
333 po->nd_opt_pi_prefix = adv_pr->adv_pr_prefix;
334
335 po++;
336 packetlen += sizeof (*po);
337 }
338 if (debug & D_PKTOUT) {
339 print_route_adv("Sending advert to ", pi,
340 ra, packetlen, sin6);
341 }
342 sendpacket(sin6, pi->pi_sock, packetlen, 0);
343 /* Feed packet back in for router operation */
344 loopback_ra_enqueue(pi, ra, packetlen);
345 }
346
347 /* Poll support */
348 static int pollfd_num = 0; /* Allocated and initialized */
349 static struct pollfd *pollfds = NULL;
350
351 /*
352 * Add fd to the set being polled. Returns 0 if ok; -1 if failed.
353 */
354 int
poll_add(int fd)355 poll_add(int fd)
356 {
357 int i;
358 int new_num;
359 struct pollfd *newfds;
360
361 /* Check if already present */
362 for (i = 0; i < pollfd_num; i++) {
363 if (pollfds[i].fd == fd)
364 return (0);
365 }
366 /* Check for empty spot already present */
367 for (i = 0; i < pollfd_num; i++) {
368 if (pollfds[i].fd == -1) {
369 pollfds[i].fd = fd;
370 return (0);
371 }
372 }
373
374 /* Allocate space for 32 more fds and initialize to -1 */
375 new_num = pollfd_num + 32;
376 newfds = realloc(pollfds, new_num * sizeof (struct pollfd));
377 if (newfds == NULL) {
378 logperror("realloc");
379 return (-1);
380 }
381
382 newfds[pollfd_num].fd = fd;
383 newfds[pollfd_num++].events = POLLIN;
384
385 for (i = pollfd_num; i < new_num; i++) {
386 newfds[i].fd = -1;
387 newfds[i].events = POLLIN;
388 }
389 pollfd_num = new_num;
390 pollfds = newfds;
391 return (0);
392 }
393
394 /*
395 * Remove fd from the set being polled. Returns 0 if ok; -1 if failed.
396 */
397 int
poll_remove(int fd)398 poll_remove(int fd)
399 {
400 int i;
401
402 /* Check if already present */
403 for (i = 0; i < pollfd_num; i++) {
404 if (pollfds[i].fd == fd) {
405 pollfds[i].fd = -1;
406 return (0);
407 }
408 }
409 return (-1);
410 }
411
412 /*
413 * Extract information about the ifname (either a physical interface and
414 * the ":0" logical interface or just a logical interface).
415 * If the interface (still) exists in kernel set pr_in_use
416 * for caller to be able to detect interfaces that are removed.
417 * Starts sending advertisements/solicitations when new physical interfaces
418 * are detected.
419 */
420 static void
if_process(int s,char * ifname,boolean_t first)421 if_process(int s, char *ifname, boolean_t first)
422 {
423 struct lifreq lifr;
424 struct phyint *pi;
425 struct prefix *pr;
426 char *cp;
427 char phyintname[LIFNAMSIZ + 1];
428
429 if (debug & D_IFSCAN)
430 logmsg(LOG_DEBUG, "if_process(%s)\n", ifname);
431
432 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
433 lifr.lifr_name[sizeof (lifr.lifr_name) - 1] = '\0';
434 if (ioctl(s, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
435 if (errno == ENXIO) {
436 /*
437 * Interface has disappeared
438 */
439 return;
440 }
441 logperror("if_process: ioctl (get interface flags)");
442 return;
443 }
444
445 /*
446 * Ignore loopback, point-to-multipoint and VRRP interfaces.
447 * The IP addresses over VRRP interfaces cannot be auto-configured.
448 * Point-to-point interfaces always have IFF_MULTICAST set.
449 */
450 if (!(lifr.lifr_flags & IFF_MULTICAST) ||
451 (lifr.lifr_flags & (IFF_LOOPBACK|IFF_VRRP))) {
452 return;
453 }
454
455 if (!(lifr.lifr_flags & IFF_IPV6))
456 return;
457
458 (void) strncpy(phyintname, ifname, sizeof (phyintname));
459 phyintname[sizeof (phyintname) - 1] = '\0';
460 if ((cp = strchr(phyintname, IF_SEPARATOR)) != NULL) {
461 *cp = '\0';
462 }
463
464 pi = phyint_lookup(phyintname);
465 if (pi == NULL) {
466 pi = phyint_create(phyintname);
467 if (pi == NULL) {
468 logmsg(LOG_ERR, "if_process: out of memory\n");
469 return;
470 }
471 /*
472 * if in.ndpd is restarted, check with ipmgmtd if there is any
473 * interface id to be configured for this interface.
474 */
475 if (first) {
476 if (phyint_check_ipadm_intfid(pi) == -1)
477 logmsg(LOG_ERR, "Could not get ipadm info\n");
478 }
479 } else {
480 /*
481 * if the phyint already exists, synchronize it with
482 * the kernel state. For a newly created phyint, phyint_create
483 * calls phyint_init_from_k().
484 */
485 (void) phyint_init_from_k(pi);
486 }
487 if (pi->pi_sock == -1 && !(pi->pi_kernel_state & PI_PRESENT)) {
488 /* Interface is not yet present */
489 if (debug & D_PHYINT) {
490 logmsg(LOG_DEBUG, "if_process: interface not yet "
491 "present %s\n", pi->pi_name);
492 }
493 return;
494 }
495
496 if (pi->pi_sock != -1) {
497 if (poll_add(pi->pi_sock) == -1) {
498 /*
499 * reset state.
500 */
501 phyint_cleanup(pi);
502 }
503 }
504
505 /*
506 * Check if IFF_ROUTER has been turned off in kernel in which
507 * case we have to turn off AdvSendAdvertisements.
508 * The kernel will automatically turn off IFF_ROUTER if
509 * ip6_forwarding is turned off.
510 * Note that we do not switch back should IFF_ROUTER be turned on.
511 */
512 if (!first &&
513 pi->pi_AdvSendAdvertisements && !(pi->pi_flags & IFF_ROUTER)) {
514 logmsg(LOG_INFO, "No longer a router on %s\n", pi->pi_name);
515 check_to_advertise(pi, START_FINAL_ADV);
516
517 pi->pi_AdvSendAdvertisements = 0;
518 pi->pi_sol_state = NO_SOLICIT;
519 }
520
521 /*
522 * Send advertisments and solicitation only if the interface is
523 * present in the kernel.
524 */
525 if (pi->pi_kernel_state & PI_PRESENT) {
526
527 if (pi->pi_AdvSendAdvertisements) {
528 if (pi->pi_adv_state == NO_ADV)
529 check_to_advertise(pi, START_INIT_ADV);
530 } else {
531 if (pi->pi_sol_state == NO_SOLICIT)
532 check_to_solicit(pi, START_INIT_SOLICIT);
533 }
534 }
535
536 /*
537 * Track static kernel prefixes to prevent in.ndpd from clobbering
538 * them by creating a struct prefix for each prefix detected in the
539 * kernel.
540 */
541 pr = prefix_lookup_name(pi, ifname);
542 if (pr == NULL) {
543 pr = prefix_create_name(pi, ifname);
544 if (pr == NULL) {
545 logmsg(LOG_ERR, "if_process: out of memory\n");
546 return;
547 }
548 if (prefix_init_from_k(pr) == -1) {
549 prefix_delete(pr);
550 return;
551 }
552 }
553 /* Detect prefixes which are removed */
554 if (pr->pr_kernel_state != 0)
555 pr->pr_in_use = _B_TRUE;
556
557 if ((lifr.lifr_flags & IFF_DUPLICATE) &&
558 !(lifr.lifr_flags & IFF_DHCPRUNNING) &&
559 (pr->pr_flags & IFF_TEMPORARY)) {
560 in6_addr_t *token;
561 int i;
562 char abuf[INET6_ADDRSTRLEN];
563
564 if (++pr->pr_attempts >= MAX_DAD_FAILURES) {
565 logmsg(LOG_ERR, "%s: token %s is duplicate after %d "
566 "attempts; disabling temporary addresses on %s",
567 pr->pr_name, inet_ntop(AF_INET6,
568 (void *)&pi->pi_tmp_token, abuf, sizeof (abuf)),
569 pr->pr_attempts, pi->pi_name);
570 pi->pi_TmpAddrsEnabled = 0;
571 tmptoken_delete(pi);
572 prefix_delete(pr);
573 return;
574 }
575 logmsg(LOG_WARNING, "%s: token %s is duplicate; trying again",
576 pr->pr_name, inet_ntop(AF_INET6, (void *)&pi->pi_tmp_token,
577 abuf, sizeof (abuf)));
578 if (!tmptoken_create(pi)) {
579 prefix_delete(pr);
580 return;
581 }
582 token = &pi->pi_tmp_token;
583 for (i = 0; i < 16; i++) {
584 /*
585 * prefix_create ensures that pr_prefix has all-zero
586 * bits after prefixlen.
587 */
588 pr->pr_address.s6_addr[i] = pr->pr_prefix.s6_addr[i] |
589 token->s6_addr[i];
590 }
591 if (prefix_lookup_addr_match(pr) != NULL) {
592 prefix_delete(pr);
593 return;
594 }
595 pr->pr_CreateTime = getcurrenttime() / MILLISEC;
596 /*
597 * We've got a new token. Clearing PR_AUTO causes
598 * prefix_update_k to bring the interface up and set the
599 * address.
600 */
601 pr->pr_kernel_state &= ~PR_AUTO;
602 prefix_update_k(pr);
603 }
604 }
605
606 static int ifsock = -1;
607
608 /*
609 * Scan all interfaces to detect changes as well as new and deleted intefaces
610 * 'first' is set for the initial call only. Do not effect anything.
611 */
612 static void
initifs(boolean_t first)613 initifs(boolean_t first)
614 {
615 char *buf;
616 int bufsize;
617 int numifs;
618 int n;
619 struct lifnum lifn;
620 struct lifconf lifc;
621 struct lifreq *lifr;
622 struct phyint *pi;
623 struct phyint *next_pi;
624 struct prefix *pr;
625
626 if (debug & D_IFSCAN)
627 logmsg(LOG_DEBUG, "Reading interface configuration\n");
628 if (ifsock < 0) {
629 ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
630 if (ifsock < 0) {
631 logperror("initifs: socket");
632 return;
633 }
634 }
635 lifn.lifn_family = AF_INET6;
636 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY;
637 if (ioctl(ifsock, SIOCGLIFNUM, (char *)&lifn) < 0) {
638 logperror("initifs: ioctl (get interface numbers)");
639 return;
640 }
641 numifs = lifn.lifn_count;
642 bufsize = numifs * sizeof (struct lifreq);
643
644 buf = (char *)malloc(bufsize);
645 if (buf == NULL) {
646 logmsg(LOG_ERR, "initifs: out of memory\n");
647 return;
648 }
649
650 /*
651 * Mark the interfaces so that we can find phyints and prefixes
652 * which have disappeared from the kernel.
653 * if_process will set pr_in_use when it finds the interface
654 * in the kernel.
655 */
656 for (pi = phyints; pi != NULL; pi = pi->pi_next) {
657 /*
658 * Before re-examining the state of the interfaces,
659 * PI_PRESENT should be cleared from pi_kernel_state.
660 */
661 pi->pi_kernel_state &= ~PI_PRESENT;
662 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
663 pr->pr_in_use = _B_FALSE;
664 }
665 }
666
667 lifc.lifc_family = AF_INET6;
668 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY;
669 lifc.lifc_len = bufsize;
670 lifc.lifc_buf = buf;
671
672 if (ioctl(ifsock, SIOCGLIFCONF, (char *)&lifc) < 0) {
673 logperror("initifs: ioctl (get interface configuration)");
674 free(buf);
675 return;
676 }
677
678 lifr = (struct lifreq *)lifc.lifc_req;
679 for (n = lifc.lifc_len / sizeof (struct lifreq); n > 0; n--, lifr++)
680 if_process(ifsock, lifr->lifr_name, first);
681 free(buf);
682
683 /*
684 * Detect phyints that have been removed from the kernel.
685 * Since we can't recreate it here (would require ifconfig plumb
686 * logic) we just terminate use of that phyint.
687 */
688 for (pi = phyints; pi != NULL; pi = next_pi) {
689 next_pi = pi->pi_next;
690 /*
691 * If interface (still) exists in kernel, set
692 * pi_state to indicate that.
693 */
694 if (pi->pi_kernel_state & PI_PRESENT) {
695 pi->pi_state |= PI_PRESENT;
696 }
697
698 check_if_removed(pi);
699 }
700 if (show_ifs)
701 phyint_print_all();
702 }
703
704
705 /*
706 * Router advertisement state machine. Used for everything but timer
707 * events which use advertise_event directly.
708 */
709 void
check_to_advertise(struct phyint * pi,enum adv_events event)710 check_to_advertise(struct phyint *pi, enum adv_events event)
711 {
712 uint_t delay;
713 enum adv_states old_state = pi->pi_adv_state;
714
715 if (debug & D_STATE) {
716 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d\n",
717 pi->pi_name, (int)event, (int)old_state);
718 }
719 delay = advertise_event(pi, event, 0);
720 if (delay != TIMER_INFINITY) {
721 /* Make sure the global next event is updated */
722 timer_schedule(delay);
723 }
724
725 if (debug & D_STATE) {
726 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d -> %d\n",
727 pi->pi_name, (int)event, (int)old_state,
728 (int)pi->pi_adv_state);
729 }
730 }
731
732 /*
733 * Router advertisement state machine.
734 * Return the number of milliseconds until next timeout (TIMER_INFINITY
735 * if never).
736 * For the ADV_TIMER event the caller passes in the number of milliseconds
737 * since the last timer event in the 'elapsed' parameter.
738 */
739 uint_t
advertise_event(struct phyint * pi,enum adv_events event,uint_t elapsed)740 advertise_event(struct phyint *pi, enum adv_events event, uint_t elapsed)
741 {
742 uint_t delay;
743
744 if (debug & D_STATE) {
745 logmsg(LOG_DEBUG, "advertise_event(%s, %d, %d) state %d\n",
746 pi->pi_name, (int)event, elapsed, (int)pi->pi_adv_state);
747 }
748 check_daemonize();
749 if (!pi->pi_AdvSendAdvertisements)
750 return (TIMER_INFINITY);
751 if (pi->pi_flags & IFF_NORTEXCH) {
752 if (debug & D_PKTOUT) {
753 logmsg(LOG_DEBUG, "Suppress sending RA packet on %s "
754 "(no route exchange on interface)\n",
755 pi->pi_name);
756 }
757 return (TIMER_INFINITY);
758 }
759
760 switch (event) {
761 case ADV_OFF:
762 pi->pi_adv_state = NO_ADV;
763 return (TIMER_INFINITY);
764
765 case START_INIT_ADV:
766 if (pi->pi_adv_state == INIT_ADV)
767 return (pi->pi_adv_time_left);
768 pi->pi_adv_count = ND_MAX_INITIAL_RTR_ADVERTISEMENTS;
769 pi->pi_adv_time_left = 0;
770 pi->pi_adv_state = INIT_ADV;
771 break; /* send advertisement */
772
773 case START_FINAL_ADV:
774 if (pi->pi_adv_state == NO_ADV)
775 return (TIMER_INFINITY);
776 if (pi->pi_adv_state == FINAL_ADV)
777 return (pi->pi_adv_time_left);
778 pi->pi_adv_count = ND_MAX_FINAL_RTR_ADVERTISEMENTS;
779 pi->pi_adv_time_left = 0;
780 pi->pi_adv_state = FINAL_ADV;
781 break; /* send advertisement */
782
783 case RECEIVED_SOLICIT:
784 if (pi->pi_adv_state == NO_ADV)
785 return (TIMER_INFINITY);
786 if (pi->pi_adv_state == SOLICIT_ADV) {
787 if (pi->pi_adv_time_left != 0)
788 return (pi->pi_adv_time_left);
789 break;
790 }
791 delay = GET_RANDOM(0, ND_MAX_RA_DELAY_TIME);
792 if (delay < pi->pi_adv_time_left)
793 pi->pi_adv_time_left = delay;
794 if (pi->pi_adv_time_since_sent < ND_MIN_DELAY_BETWEEN_RAS) {
795 /*
796 * Send an advertisement (ND_MIN_DELAY_BETWEEN_RAS
797 * plus random delay) after the previous
798 * advertisement was sent.
799 */
800 pi->pi_adv_time_left = delay +
801 ND_MIN_DELAY_BETWEEN_RAS -
802 pi->pi_adv_time_since_sent;
803 }
804 pi->pi_adv_state = SOLICIT_ADV;
805 break;
806
807 case ADV_TIMER:
808 if (pi->pi_adv_state == NO_ADV)
809 return (TIMER_INFINITY);
810 /* Decrease time left */
811 if (pi->pi_adv_time_left >= elapsed)
812 pi->pi_adv_time_left -= elapsed;
813 else
814 pi->pi_adv_time_left = 0;
815
816 /* Increase time since last advertisement was sent */
817 pi->pi_adv_time_since_sent += elapsed;
818 break;
819 default:
820 logmsg(LOG_ERR, "advertise_event: Unknown event %d\n",
821 (int)event);
822 return (TIMER_INFINITY);
823 }
824
825 if (pi->pi_adv_time_left != 0)
826 return (pi->pi_adv_time_left);
827
828 /* Send advertisement and calculate next time to send */
829 if (pi->pi_adv_state == FINAL_ADV) {
830 /* Omit the prefixes */
831 advertise(&v6allnodes, pi, _B_TRUE);
832 } else {
833 advertise(&v6allnodes, pi, _B_FALSE);
834 }
835 pi->pi_adv_time_since_sent = 0;
836
837 switch (pi->pi_adv_state) {
838 case SOLICIT_ADV:
839 /*
840 * The solicited advertisement has been sent.
841 * Revert to periodic advertisements.
842 */
843 pi->pi_adv_state = REG_ADV;
844 /* FALLTHRU */
845 case REG_ADV:
846 pi->pi_adv_time_left =
847 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
848 1000 * pi->pi_MaxRtrAdvInterval);
849 break;
850
851 case INIT_ADV:
852 if (--pi->pi_adv_count > 0) {
853 delay = GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
854 1000 * pi->pi_MaxRtrAdvInterval);
855 if (delay > ND_MAX_INITIAL_RTR_ADVERT_INTERVAL)
856 delay = ND_MAX_INITIAL_RTR_ADVERT_INTERVAL;
857 pi->pi_adv_time_left = delay;
858 } else {
859 pi->pi_adv_time_left =
860 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
861 1000 * pi->pi_MaxRtrAdvInterval);
862 pi->pi_adv_state = REG_ADV;
863 }
864 break;
865
866 case FINAL_ADV:
867 if (--pi->pi_adv_count > 0) {
868 pi->pi_adv_time_left =
869 ND_MAX_INITIAL_RTR_ADVERT_INTERVAL;
870 } else {
871 pi->pi_adv_state = NO_ADV;
872 }
873 break;
874 }
875 if (pi->pi_adv_state != NO_ADV)
876 return (pi->pi_adv_time_left);
877 else
878 return (TIMER_INFINITY);
879 }
880
881 /*
882 * Router solicitation state machine. Used for everything but timer
883 * events which use solicit_event directly.
884 */
885 void
check_to_solicit(struct phyint * pi,enum solicit_events event)886 check_to_solicit(struct phyint *pi, enum solicit_events event)
887 {
888 uint_t delay;
889 enum solicit_states old_state = pi->pi_sol_state;
890
891 if (debug & D_STATE) {
892 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d\n",
893 pi->pi_name, (int)event, (int)old_state);
894 }
895 delay = solicit_event(pi, event, 0);
896 if (delay != TIMER_INFINITY) {
897 /* Make sure the global next event is updated */
898 timer_schedule(delay);
899 }
900
901 if (debug & D_STATE) {
902 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d -> %d\n",
903 pi->pi_name, (int)event, (int)old_state,
904 (int)pi->pi_sol_state);
905 }
906 }
907
908 static void
daemonize_ndpd(void)909 daemonize_ndpd(void)
910 {
911 FILE *pidfp;
912 mode_t pidmode = (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); /* 0644 */
913 struct itimerval it;
914 boolean_t timerval = _B_TRUE;
915
916 /*
917 * Need to get current timer settings so they can be restored
918 * after the fork(), as the it_value and it_interval values for
919 * the ITIMER_REAL timer are reset to 0 in the child process.
920 */
921 if (getitimer(ITIMER_REAL, &it) < 0) {
922 if (debug & D_TIMER)
923 logmsg(LOG_DEBUG,
924 "daemonize_ndpd: failed to get itimerval\n");
925 timerval = _B_FALSE;
926 }
927
928 /* Daemonize. */
929 switch (fork()) {
930 case 0:
931 /* Child */
932 break;
933 case -1:
934 logperror("fork");
935 exit(1);
936 default:
937 /* Parent */
938 _exit(0);
939 }
940
941 /* Store our process id, blow away any existing file if it exists. */
942 if ((pidfp = fopen(PATH_PID, "w")) == NULL) {
943 (void) fprintf(stderr, "%s: unable to open " PATH_PID ": %s\n",
944 argv0[0], strerror(errno));
945 } else {
946 (void) fprintf(pidfp, "%ld\n", getpid());
947 (void) fclose(pidfp);
948 (void) chmod(PATH_PID, pidmode);
949 }
950
951 (void) close(0);
952 (void) close(1);
953 (void) close(2);
954
955 (void) chdir("/");
956 (void) open("/dev/null", O_RDWR);
957 (void) dup2(0, 1);
958 (void) dup2(0, 2);
959 (void) setsid();
960
961 already_daemonized = _B_TRUE;
962
963 /*
964 * Restore timer values, if we were able to save them; if not,
965 * check and set the right value by calling run_timeouts().
966 */
967 if (timerval) {
968 if (setitimer(ITIMER_REAL, &it, NULL) < 0) {
969 logperror("daemonize_ndpd: setitimer");
970 exit(2);
971 }
972 } else {
973 run_timeouts();
974 }
975 }
976
977 /*
978 * Check to see if the time is right to daemonize. The right time is when:
979 *
980 * 1. We haven't already daemonized.
981 * 2. We are not in debug mode.
982 * 3. All interfaces are marked IFF_NOXMIT.
983 * 4. All non-router interfaces have their prefixes set up and we're
984 * done sending router solicitations on those interfaces without
985 * prefixes.
986 */
987 static void
check_daemonize(void)988 check_daemonize(void)
989 {
990 struct phyint *pi;
991
992 if (already_daemonized || debug != 0)
993 return;
994
995 for (pi = phyints; pi != NULL; pi = pi->pi_next) {
996 if (!(pi->pi_flags & IFF_NOXMIT))
997 break;
998 }
999
1000 /*
1001 * If we can't transmit on any of the interfaces there is no reason
1002 * to hold up progress.
1003 */
1004 if (pi == NULL) {
1005 daemonize_ndpd();
1006 return;
1007 }
1008
1009 /* Check all interfaces. If any are still soliciting, just return. */
1010 for (pi = phyints; pi != NULL; pi = pi->pi_next) {
1011 if (pi->pi_AdvSendAdvertisements ||
1012 !(pi->pi_kernel_state & PI_PRESENT))
1013 continue;
1014
1015 if (pi->pi_sol_state == INIT_SOLICIT)
1016 return;
1017 }
1018
1019 daemonize_ndpd();
1020 }
1021
1022 /*
1023 * Router solicitation state machine.
1024 * Return the number of milliseconds until next timeout (TIMER_INFINITY
1025 * if never).
1026 * For the SOL_TIMER event the caller passes in the number of milliseconds
1027 * since the last timer event in the 'elapsed' parameter.
1028 */
1029 uint_t
solicit_event(struct phyint * pi,enum solicit_events event,uint_t elapsed)1030 solicit_event(struct phyint *pi, enum solicit_events event, uint_t elapsed)
1031 {
1032 if (debug & D_STATE) {
1033 logmsg(LOG_DEBUG, "solicit_event(%s, %d, %d) state %d\n",
1034 pi->pi_name, (int)event, elapsed, (int)pi->pi_sol_state);
1035 }
1036
1037 if (pi->pi_AdvSendAdvertisements)
1038 return (TIMER_INFINITY);
1039 if (pi->pi_flags & IFF_NORTEXCH) {
1040 if (debug & D_PKTOUT) {
1041 logmsg(LOG_DEBUG, "Suppress sending RS packet on %s "
1042 "(no route exchange on interface)\n",
1043 pi->pi_name);
1044 }
1045 return (TIMER_INFINITY);
1046 }
1047
1048 switch (event) {
1049 case SOLICIT_OFF:
1050 pi->pi_sol_state = NO_SOLICIT;
1051 check_daemonize();
1052 return (TIMER_INFINITY);
1053
1054 case SOLICIT_DONE:
1055 pi->pi_sol_state = DONE_SOLICIT;
1056 check_daemonize();
1057 return (TIMER_INFINITY);
1058
1059 case RESTART_INIT_SOLICIT:
1060 /*
1061 * This event allows us to start solicitation over again
1062 * without losing the RA flags. We start solicitation over
1063 * when we are missing an interface prefix for a newly-
1064 * encountered DHCP interface.
1065 */
1066 if (pi->pi_sol_state == INIT_SOLICIT)
1067 return (pi->pi_sol_time_left);
1068 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS;
1069 pi->pi_sol_time_left =
1070 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY);
1071 pi->pi_sol_state = INIT_SOLICIT;
1072 break;
1073
1074 case START_INIT_SOLICIT:
1075 if (pi->pi_sol_state == INIT_SOLICIT)
1076 return (pi->pi_sol_time_left);
1077 pi->pi_ra_flags = 0;
1078 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS;
1079 pi->pi_sol_time_left =
1080 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY);
1081 pi->pi_sol_state = INIT_SOLICIT;
1082 break;
1083
1084 case SOL_TIMER:
1085 if (pi->pi_sol_state == NO_SOLICIT)
1086 return (TIMER_INFINITY);
1087 /* Decrease time left */
1088 if (pi->pi_sol_time_left >= elapsed)
1089 pi->pi_sol_time_left -= elapsed;
1090 else
1091 pi->pi_sol_time_left = 0;
1092 break;
1093 default:
1094 logmsg(LOG_ERR, "solicit_event: Unknown event %d\n",
1095 (int)event);
1096 return (TIMER_INFINITY);
1097 }
1098
1099 if (pi->pi_sol_time_left != 0)
1100 return (pi->pi_sol_time_left);
1101
1102 /* Send solicitation and calculate next time */
1103 switch (pi->pi_sol_state) {
1104 case INIT_SOLICIT:
1105 solicit(&v6allrouters, pi);
1106 if (--pi->pi_sol_count == 0) {
1107 if (debug & D_STATE) {
1108 logmsg(LOG_DEBUG, "solicit_event: no routers "
1109 "found on %s; assuming default flags\n",
1110 pi->pi_name);
1111 }
1112 if (pi->pi_autoconf && pi->pi_StatefulAddrConf) {
1113 pi->pi_ra_flags |= ND_RA_FLAG_MANAGED |
1114 ND_RA_FLAG_OTHER;
1115 start_dhcp(pi);
1116 }
1117 pi->pi_sol_state = DONE_SOLICIT;
1118 check_daemonize();
1119 return (TIMER_INFINITY);
1120 }
1121 pi->pi_sol_time_left = ND_RTR_SOLICITATION_INTERVAL;
1122 return (pi->pi_sol_time_left);
1123 case NO_SOLICIT:
1124 case DONE_SOLICIT:
1125 return (TIMER_INFINITY);
1126 default:
1127 return (pi->pi_sol_time_left);
1128 }
1129 }
1130
1131 /*
1132 * Timer mechanism using relative time (in milliseconds) from the
1133 * previous timer event. Timers exceeding TIMER_INFINITY milliseconds
1134 * will fire after TIMER_INFINITY milliseconds.
1135 */
1136 static uint_t timer_previous; /* When last SIGALRM occurred */
1137 static uint_t timer_next; /* Currently scheduled timeout */
1138
1139 static void
timer_init(void)1140 timer_init(void)
1141 {
1142 timer_previous = getcurrenttime();
1143 timer_next = TIMER_INFINITY;
1144 run_timeouts();
1145 }
1146
1147 /*
1148 * Make sure the next SIGALRM occurs delay milliseconds from the current
1149 * time if not earlier.
1150 * Handles getcurrenttime (32 bit integer holding milliseconds) wraparound
1151 * by treating differences greater than 0x80000000 as negative.
1152 */
1153 void
timer_schedule(uint_t delay)1154 timer_schedule(uint_t delay)
1155 {
1156 uint_t now;
1157 struct itimerval itimerval;
1158
1159 now = getcurrenttime();
1160 if (debug & D_TIMER) {
1161 logmsg(LOG_DEBUG, "timer_schedule(%u): now %u next %u\n",
1162 delay, now, timer_next);
1163 }
1164 /* Will this timer occur before the currently scheduled SIGALRM? */
1165 if (delay >= timer_next - now) {
1166 if (debug & D_TIMER) {
1167 logmsg(LOG_DEBUG, "timer_schedule(%u): no action - "
1168 "next in %u ms\n",
1169 delay, timer_next - now);
1170 }
1171 return;
1172 }
1173 if (delay == 0) {
1174 /* Minimum allowed delay */
1175 delay = 1;
1176 }
1177 timer_next = now + delay;
1178
1179 itimerval.it_value.tv_sec = delay / 1000;
1180 itimerval.it_value.tv_usec = (delay % 1000) * 1000;
1181 itimerval.it_interval.tv_sec = 0;
1182 itimerval.it_interval.tv_usec = 0;
1183 if (debug & D_TIMER) {
1184 logmsg(LOG_DEBUG, "timer_schedule(%u): sec %lu usec %lu\n",
1185 delay,
1186 itimerval.it_value.tv_sec, itimerval.it_value.tv_usec);
1187 }
1188 if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) {
1189 logperror("timer_schedule: setitimer");
1190 exit(2);
1191 }
1192 }
1193
1194 /*
1195 * Conditional running of timer. If more than 'minimal_time' millseconds
1196 * since the timer routines were last run we run them.
1197 * Used when packets arrive.
1198 */
1199 static void
conditional_run_timeouts(uint_t minimal_time)1200 conditional_run_timeouts(uint_t minimal_time)
1201 {
1202 uint_t now;
1203 uint_t elapsed;
1204
1205 now = getcurrenttime();
1206 elapsed = now - timer_previous;
1207 if (elapsed > minimal_time) {
1208 if (debug & D_TIMER) {
1209 logmsg(LOG_DEBUG, "conditional_run_timeouts: "
1210 "elapsed %d\n", elapsed);
1211 }
1212 run_timeouts();
1213 }
1214 }
1215
1216 /*
1217 * Timer has fired.
1218 * Determine when the next timer event will occur by asking all
1219 * the timer routines.
1220 * Should not be called from a timer routine but in some cases this is
1221 * done because the code doesn't know that e.g. it was called from
1222 * ifconfig_timer(). In this case the nested run_timeouts will just return but
1223 * the running run_timeouts will ensure to call all the timer functions by
1224 * looping once more.
1225 */
1226 static void
run_timeouts(void)1227 run_timeouts(void)
1228 {
1229 uint_t now;
1230 uint_t elapsed;
1231 uint_t next;
1232 uint_t nexti;
1233 struct phyint *pi;
1234 struct phyint *next_pi;
1235 struct prefix *pr;
1236 struct prefix *next_pr;
1237 struct adv_prefix *adv_pr;
1238 struct adv_prefix *next_adv_pr;
1239 struct router *dr;
1240 struct router *next_dr;
1241 static boolean_t timeout_running;
1242 static boolean_t do_retry;
1243
1244 if (timeout_running) {
1245 if (debug & D_TIMER)
1246 logmsg(LOG_DEBUG, "run_timeouts: nested call\n");
1247 do_retry = _B_TRUE;
1248 return;
1249 }
1250 timeout_running = _B_TRUE;
1251 retry:
1252 /* How much time since the last time we were called? */
1253 now = getcurrenttime();
1254 elapsed = now - timer_previous;
1255 timer_previous = now;
1256
1257 if (debug & D_TIMER)
1258 logmsg(LOG_DEBUG, "run_timeouts: elapsed %d\n", elapsed);
1259
1260 next = TIMER_INFINITY;
1261 for (pi = phyints; pi != NULL; pi = next_pi) {
1262 next_pi = pi->pi_next;
1263 nexti = phyint_timer(pi, elapsed);
1264 if (nexti != TIMER_INFINITY && nexti < next)
1265 next = nexti;
1266 if (debug & D_TIMER) {
1267 logmsg(LOG_DEBUG, "run_timeouts (pi %s): %d -> %u ms\n",
1268 pi->pi_name, nexti, next);
1269 }
1270 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1271 next_pr = pr->pr_next;
1272 nexti = prefix_timer(pr, elapsed);
1273 if (nexti != TIMER_INFINITY && nexti < next)
1274 next = nexti;
1275 if (debug & D_TIMER) {
1276 logmsg(LOG_DEBUG, "run_timeouts (pr %s): "
1277 "%d -> %u ms\n", pr->pr_name, nexti, next);
1278 }
1279 }
1280 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL;
1281 adv_pr = next_adv_pr) {
1282 next_adv_pr = adv_pr->adv_pr_next;
1283 nexti = adv_prefix_timer(adv_pr, elapsed);
1284 if (nexti != TIMER_INFINITY && nexti < next)
1285 next = nexti;
1286 if (debug & D_TIMER) {
1287 logmsg(LOG_DEBUG, "run_timeouts "
1288 "(adv pr on %s): %d -> %u ms\n",
1289 adv_pr->adv_pr_physical->pi_name,
1290 nexti, next);
1291 }
1292 }
1293 for (dr = pi->pi_router_list; dr != NULL; dr = next_dr) {
1294 next_dr = dr->dr_next;
1295 nexti = router_timer(dr, elapsed);
1296 if (nexti != TIMER_INFINITY && nexti < next)
1297 next = nexti;
1298 if (debug & D_TIMER) {
1299 logmsg(LOG_DEBUG, "run_timeouts (dr): "
1300 "%d -> %u ms\n", nexti, next);
1301 }
1302 }
1303 if (pi->pi_TmpAddrsEnabled) {
1304 nexti = tmptoken_timer(pi, elapsed);
1305 if (nexti != TIMER_INFINITY && nexti < next)
1306 next = nexti;
1307 if (debug & D_TIMER) {
1308 logmsg(LOG_DEBUG, "run_timeouts (tmp on %s): "
1309 "%d -> %u ms\n", pi->pi_name, nexti, next);
1310 }
1311 }
1312 }
1313 /*
1314 * Make sure the timer functions are run at least once
1315 * an hour.
1316 */
1317 if (next == TIMER_INFINITY)
1318 next = 3600 * 1000; /* 1 hour */
1319
1320 if (debug & D_TIMER)
1321 logmsg(LOG_DEBUG, "run_timeouts: %u ms\n", next);
1322 timer_schedule(next);
1323 if (do_retry) {
1324 if (debug & D_TIMER)
1325 logmsg(LOG_DEBUG, "run_timeouts: retry\n");
1326 do_retry = _B_FALSE;
1327 goto retry;
1328 }
1329 timeout_running = _B_FALSE;
1330 }
1331
1332 static int eventpipe_read = -1; /* Used for synchronous signal delivery */
1333 static int eventpipe_write = -1;
1334
1335 /*
1336 * Ensure that signals are processed synchronously with the rest of
1337 * the code by just writing a one character signal number on the pipe.
1338 * The poll loop will pick this up and process the signal event.
1339 */
1340 static void
sig_handler(int signo)1341 sig_handler(int signo)
1342 {
1343 uchar_t buf = (uchar_t)signo;
1344
1345 if (eventpipe_write == -1) {
1346 logmsg(LOG_ERR, "sig_handler: no pipe\n");
1347 return;
1348 }
1349 if (write(eventpipe_write, &buf, sizeof (buf)) < 0)
1350 logperror("sig_handler: write");
1351 }
1352
1353 /*
1354 * Pick up a signal "byte" from the pipe and process it.
1355 */
1356 static void
in_signal(int fd)1357 in_signal(int fd)
1358 {
1359 uchar_t buf;
1360 struct phyint *pi;
1361 struct phyint *next_pi;
1362
1363 switch (read(fd, &buf, sizeof (buf))) {
1364 case -1:
1365 logperror("in_signal: read");
1366 exit(1);
1367 /* NOTREACHED */
1368 case 1:
1369 break;
1370 case 0:
1371 logmsg(LOG_ERR, "in_signal: read eof\n");
1372 exit(1);
1373 /* NOTREACHED */
1374 default:
1375 logmsg(LOG_ERR, "in_signal: read > 1\n");
1376 exit(1);
1377 }
1378
1379 if (debug & D_TIMER)
1380 logmsg(LOG_DEBUG, "in_signal() got %d\n", buf);
1381
1382 switch (buf) {
1383 case SIGALRM:
1384 if (debug & D_TIMER) {
1385 uint_t now = getcurrenttime();
1386
1387 logmsg(LOG_DEBUG, "in_signal(SIGALRM) delta %u\n",
1388 now - timer_next);
1389 }
1390 timer_next = TIMER_INFINITY;
1391 run_timeouts();
1392 break;
1393 case SIGHUP:
1394 /* Re-read config file by exec'ing ourselves */
1395 for (pi = phyints; pi != NULL; pi = next_pi) {
1396 next_pi = pi->pi_next;
1397 if (pi->pi_AdvSendAdvertisements)
1398 check_to_advertise(pi, START_FINAL_ADV);
1399
1400 /*
1401 * Remove all the configured addresses.
1402 * Remove the addrobj names created with ipmgmtd.
1403 * Release the dhcpv6 addresses if any.
1404 * Cleanup the phyints.
1405 */
1406 phyint_delete(pi);
1407 }
1408
1409 /*
1410 * Prevent fd leaks. Everything gets re-opened at start-up
1411 * time. 0, 1, and 2 are closed and re-opened as
1412 * /dev/null, so we'll leave those open.
1413 */
1414 closefrom(3);
1415
1416 logmsg(LOG_ERR, "SIGHUP: restart and reread config file\n");
1417 (void) execv(argv0[0], argv0);
1418 (void) unlink(PATH_PID);
1419 _exit(0177);
1420 /* NOTREACHED */
1421 case SIGUSR1:
1422 logmsg(LOG_DEBUG, "Printing configuration:\n");
1423 phyint_print_all();
1424 break;
1425 case SIGINT:
1426 case SIGTERM:
1427 case SIGQUIT:
1428 for (pi = phyints; pi != NULL; pi = next_pi) {
1429 next_pi = pi->pi_next;
1430 if (pi->pi_AdvSendAdvertisements)
1431 check_to_advertise(pi, START_FINAL_ADV);
1432
1433 phyint_delete(pi);
1434 }
1435 (void) unlink(NDPD_SNMP_SOCKET);
1436 (void) unlink(PATH_PID);
1437 exit(0);
1438 /* NOTREACHED */
1439 case 255:
1440 /*
1441 * Special "signal" from loopback_ra_enqueue.
1442 * Handle any queued loopback router advertisements.
1443 */
1444 loopback_ra_dequeue();
1445 break;
1446 default:
1447 logmsg(LOG_ERR, "in_signal: unknown signal: %d\n", buf);
1448 }
1449 }
1450
1451 /*
1452 * Create pipe for signal delivery and set up signal handlers.
1453 */
1454 static void
setup_eventpipe(void)1455 setup_eventpipe(void)
1456 {
1457 int fds[2];
1458 struct sigaction act;
1459
1460 if ((pipe(fds)) < 0) {
1461 logperror("setup_eventpipe: pipe");
1462 exit(1);
1463 }
1464 eventpipe_read = fds[0];
1465 eventpipe_write = fds[1];
1466 if (poll_add(eventpipe_read) == -1) {
1467 exit(1);
1468 }
1469 act.sa_handler = sig_handler;
1470 act.sa_flags = SA_RESTART;
1471 (void) sigaction(SIGALRM, &act, NULL);
1472
1473 (void) sigset(SIGHUP, sig_handler);
1474 (void) sigset(SIGUSR1, sig_handler);
1475 (void) sigset(SIGTERM, sig_handler);
1476 (void) sigset(SIGINT, sig_handler);
1477 (void) sigset(SIGQUIT, sig_handler);
1478 }
1479
1480 /*
1481 * Create a routing socket for receiving RTM_IFINFO messages and initialize
1482 * the routing socket message header and as much of the sockaddrs as possible.
1483 */
1484 static int
setup_rtsock(void)1485 setup_rtsock(void)
1486 {
1487 int s;
1488 int ret;
1489 char *cp;
1490 struct sockaddr_in6 *sin6;
1491
1492 s = socket(PF_ROUTE, SOCK_RAW, AF_INET6);
1493 if (s == -1) {
1494 logperror("socket(PF_ROUTE)");
1495 exit(1);
1496 }
1497 ret = fcntl(s, F_SETFL, O_NDELAY|O_NONBLOCK);
1498 if (ret < 0) {
1499 logperror("fcntl(O_NDELAY)");
1500 exit(1);
1501 }
1502 if (poll_add(s) == -1) {
1503 exit(1);
1504 }
1505
1506 /*
1507 * Allocate storage for the routing socket message.
1508 */
1509 rt_msg = (struct rt_msghdr *)malloc(NDP_RTM_MSGLEN);
1510 if (rt_msg == NULL) {
1511 logperror("malloc");
1512 exit(1);
1513 }
1514
1515 /*
1516 * Initialize the routing socket message by zero-filling it and then
1517 * setting the fields where are constant through the lifetime of the
1518 * process.
1519 */
1520 bzero(rt_msg, NDP_RTM_MSGLEN);
1521 rt_msg->rtm_msglen = NDP_RTM_MSGLEN;
1522 rt_msg->rtm_version = RTM_VERSION;
1523 rt_msg->rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFP;
1524 rt_msg->rtm_pid = getpid();
1525 if (rt_msg->rtm_pid < 0) {
1526 logperror("getpid");
1527 exit(1);
1528 }
1529
1530 /*
1531 * The RTA_DST sockaddr does not change during the lifetime of the
1532 * process so it can be completely initialized at this time.
1533 */
1534 cp = (char *)rt_msg + sizeof (struct rt_msghdr);
1535 sin6 = (struct sockaddr_in6 *)cp;
1536 sin6->sin6_family = AF_INET6;
1537 sin6->sin6_addr = in6addr_any;
1538
1539 /*
1540 * Initialize the constant portion of the RTA_GATEWAY sockaddr.
1541 */
1542 cp += sizeof (struct sockaddr_in6);
1543 rta_gateway = (struct sockaddr_in6 *)cp;
1544 rta_gateway->sin6_family = AF_INET6;
1545
1546 /*
1547 * The RTA_NETMASK sockaddr does not change during the lifetime of the
1548 * process so it can be completely initialized at this time.
1549 */
1550 cp += sizeof (struct sockaddr_in6);
1551 sin6 = (struct sockaddr_in6 *)cp;
1552 sin6->sin6_family = AF_INET6;
1553 sin6->sin6_addr = in6addr_any;
1554
1555 /*
1556 * Initialize the constant portion of the RTA_IFP sockaddr.
1557 */
1558 cp += sizeof (struct sockaddr_in6);
1559 rta_ifp = (struct sockaddr_dl *)cp;
1560 rta_ifp->sdl_family = AF_LINK;
1561
1562 return (s);
1563 }
1564
1565 static int
setup_mibsock(void)1566 setup_mibsock(void)
1567 {
1568 int sock;
1569 int ret;
1570 int len;
1571 struct sockaddr_un laddr;
1572
1573 sock = socket(AF_UNIX, SOCK_DGRAM, 0);
1574 if (sock == -1) {
1575 logperror("setup_mibsock: socket(AF_UNIX)");
1576 exit(1);
1577 }
1578
1579 bzero(&laddr, sizeof (laddr));
1580 laddr.sun_family = AF_UNIX;
1581
1582 (void) strncpy(laddr.sun_path, NDPD_SNMP_SOCKET,
1583 sizeof (laddr.sun_path));
1584 len = sizeof (struct sockaddr_un);
1585
1586 (void) unlink(NDPD_SNMP_SOCKET);
1587 ret = bind(sock, (struct sockaddr *)&laddr, len);
1588 if (ret < 0) {
1589 logperror("setup_mibsock: bind\n");
1590 exit(1);
1591 }
1592
1593 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
1594 if (ret < 0) {
1595 logperror("fcntl(O_NONBLOCK)");
1596 exit(1);
1597 }
1598 if (poll_add(sock) == -1) {
1599 exit(1);
1600 }
1601 return (sock);
1602 }
1603
1604 /*
1605 * Retrieve one routing socket message. If RTM_IFINFO indicates
1606 * new phyint do a full scan of the interfaces. If RTM_IFINFO
1607 * indicates an existing phyint, only scan that phyint and associated
1608 * prefixes.
1609 */
1610 static void
process_rtsock(int rtsock)1611 process_rtsock(int rtsock)
1612 {
1613 int n;
1614 #define MSG_SIZE 2048/8
1615 int64_t msg[MSG_SIZE];
1616 struct rt_msghdr *rtm;
1617 struct if_msghdr *ifm;
1618 struct phyint *pi;
1619 struct prefix *pr;
1620 boolean_t need_initifs = _B_FALSE;
1621 boolean_t need_ifscan = _B_FALSE;
1622 int64_t ifscan_msg[10][MSG_SIZE];
1623 int ifscan_index = 0;
1624 int i;
1625
1626 /* Empty the rtsock and coealesce all the work that we have */
1627 while (ifscan_index < 10) {
1628 n = read(rtsock, msg, sizeof (msg));
1629 if (n <= 0) {
1630 /* No more messages */
1631 break;
1632 }
1633 rtm = (struct rt_msghdr *)msg;
1634 if (rtm->rtm_version != RTM_VERSION) {
1635 logmsg(LOG_ERR,
1636 "process_rtsock: version %d not understood\n",
1637 rtm->rtm_version);
1638 return;
1639 }
1640 switch (rtm->rtm_type) {
1641 case RTM_NEWADDR:
1642 case RTM_DELADDR:
1643 /*
1644 * Some logical interface has changed - have to scan
1645 * everything to determine what actually changed.
1646 */
1647 if (debug & D_IFSCAN) {
1648 logmsg(LOG_DEBUG, "process_rtsock: "
1649 "message %d\n", rtm->rtm_type);
1650 }
1651 need_initifs = _B_TRUE;
1652 break;
1653 case RTM_IFINFO:
1654 need_ifscan = _B_TRUE;
1655 (void) memcpy(ifscan_msg[ifscan_index], rtm,
1656 sizeof (msg));
1657 ifscan_index++;
1658 /* Handled below */
1659 break;
1660 default:
1661 /* Not interesting */
1662 break;
1663 }
1664 }
1665 /*
1666 * If we do full scan i.e initifs, we don't need to
1667 * scan a particular interface as we should have
1668 * done that as part of initifs.
1669 */
1670 if (need_initifs) {
1671 initifs(_B_FALSE);
1672 return;
1673 }
1674
1675 if (!need_ifscan)
1676 return;
1677
1678 for (i = 0; i < ifscan_index; i++) {
1679 ifm = (struct if_msghdr *)ifscan_msg[i];
1680 if (debug & D_IFSCAN)
1681 logmsg(LOG_DEBUG, "process_rtsock: index %d\n",
1682 ifm->ifm_index);
1683
1684 pi = phyint_lookup_on_index(ifm->ifm_index);
1685 if (pi == NULL) {
1686 /*
1687 * A new physical interface. Do a full scan of the
1688 * to catch any new logical interfaces.
1689 */
1690 initifs(_B_FALSE);
1691 return;
1692 }
1693
1694 if (ifm->ifm_flags != (uint_t)pi->pi_flags) {
1695 if (debug & D_IFSCAN) {
1696 logmsg(LOG_DEBUG, "process_rtsock: clr for "
1697 "%s old flags 0x%llx new flags 0x%x\n",
1698 pi->pi_name, pi->pi_flags, ifm->ifm_flags);
1699 }
1700 }
1701
1702
1703 /*
1704 * Mark the interfaces so that we can find phyints and prefixes
1705 * which have disappeared from the kernel.
1706 * if_process will set pr_in_use when it finds the
1707 * interface in the kernel.
1708 * Before re-examining the state of the interfaces,
1709 * PI_PRESENT should be cleared from pi_kernel_state.
1710 */
1711 pi->pi_kernel_state &= ~PI_PRESENT;
1712 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
1713 pr->pr_in_use = _B_FALSE;
1714 }
1715
1716 if (ifsock < 0) {
1717 ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
1718 if (ifsock < 0) {
1719 logperror("process_rtsock: socket");
1720 return;
1721 }
1722 }
1723 if_process(ifsock, pi->pi_name, _B_FALSE);
1724 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
1725 if_process(ifsock, pr->pr_name, _B_FALSE);
1726 }
1727 /*
1728 * If interface (still) exists in kernel, set
1729 * pi_state to indicate that.
1730 */
1731 if (pi->pi_kernel_state & PI_PRESENT) {
1732 pi->pi_state |= PI_PRESENT;
1733 }
1734 check_if_removed(pi);
1735 if (show_ifs)
1736 phyint_print_all();
1737 }
1738 }
1739
1740 static void
process_mibsock(int mibsock)1741 process_mibsock(int mibsock)
1742 {
1743 struct phyint *pi;
1744 socklen_t fromlen;
1745 struct sockaddr_un from;
1746 ndpd_info_t ndpd_info;
1747 ssize_t len;
1748 int command;
1749
1750 fromlen = (socklen_t)sizeof (from);
1751 len = recvfrom(mibsock, &command, sizeof (int), 0,
1752 (struct sockaddr *)&from, &fromlen);
1753
1754 if (len < sizeof (int) || command != NDPD_SNMP_INFO_REQ) {
1755 logperror("process_mibsock: bad command \n");
1756 return;
1757 }
1758
1759 ndpd_info.info_type = NDPD_SNMP_INFO_RESPONSE;
1760 ndpd_info.info_version = NDPD_SNMP_INFO_VER;
1761 ndpd_info.info_num_of_phyints = num_of_phyints;
1762
1763 (void) sendto(mibsock, &ndpd_info, sizeof (ndpd_info_t), 0,
1764 (struct sockaddr *)&from, fromlen);
1765
1766 for (pi = phyints; pi != NULL; pi = pi->pi_next) {
1767 int prefixes;
1768 int routers;
1769 struct prefix *prefix_list;
1770 struct router *router_list;
1771 ndpd_phyint_info_t phyint;
1772 ndpd_prefix_info_t prefix;
1773 ndpd_router_info_t router;
1774 /*
1775 * get number of prefixes
1776 */
1777 routers = 0;
1778 prefixes = 0;
1779 prefix_list = pi->pi_prefix_list;
1780 while (prefix_list != NULL) {
1781 prefixes++;
1782 prefix_list = prefix_list->pr_next;
1783 }
1784
1785 /*
1786 * get number of routers
1787 */
1788 router_list = pi->pi_router_list;
1789 while (router_list != NULL) {
1790 routers++;
1791 router_list = router_list->dr_next;
1792 }
1793
1794 phyint.phyint_info_type = NDPD_PHYINT_INFO;
1795 phyint.phyint_info_version = NDPD_PHYINT_INFO_VER;
1796 phyint.phyint_index = pi->pi_index;
1797 bcopy(pi->pi_config,
1798 phyint.phyint_config, I_IFSIZE);
1799 phyint.phyint_num_of_prefixes = prefixes;
1800 phyint.phyint_num_of_routers = routers;
1801 (void) sendto(mibsock, &phyint, sizeof (phyint), 0,
1802 (struct sockaddr *)&from, fromlen);
1803
1804 /*
1805 * Copy prefix information
1806 */
1807
1808 prefix_list = pi->pi_prefix_list;
1809 while (prefix_list != NULL) {
1810 prefix.prefix_info_type = NDPD_PREFIX_INFO;
1811 prefix.prefix_info_version = NDPD_PREFIX_INFO_VER;
1812 prefix.prefix_prefix = prefix_list->pr_prefix;
1813 prefix.prefix_len = prefix_list->pr_prefix_len;
1814 prefix.prefix_flags = prefix_list->pr_flags;
1815 prefix.prefix_phyint_index = pi->pi_index;
1816 prefix.prefix_ValidLifetime =
1817 prefix_list->pr_ValidLifetime;
1818 prefix.prefix_PreferredLifetime =
1819 prefix_list->pr_PreferredLifetime;
1820 prefix.prefix_OnLinkLifetime =
1821 prefix_list->pr_OnLinkLifetime;
1822 prefix.prefix_OnLinkFlag =
1823 prefix_list->pr_OnLinkFlag;
1824 prefix.prefix_AutonomousFlag =
1825 prefix_list->pr_AutonomousFlag;
1826 (void) sendto(mibsock, &prefix, sizeof (prefix), 0,
1827 (struct sockaddr *)&from, fromlen);
1828 prefix_list = prefix_list->pr_next;
1829 }
1830 /*
1831 * Copy router information
1832 */
1833 router_list = pi->pi_router_list;
1834 while (router_list != NULL) {
1835 router.router_info_type = NDPD_ROUTER_INFO;
1836 router.router_info_version = NDPD_ROUTER_INFO_VER;
1837 router.router_address = router_list->dr_address;
1838 router.router_lifetime = router_list->dr_lifetime;
1839 router.router_phyint_index = pi->pi_index;
1840 (void) sendto(mibsock, &router, sizeof (router), 0,
1841 (struct sockaddr *)&from, fromlen);
1842 router_list = router_list->dr_next;
1843 }
1844 }
1845 }
1846
1847 /*
1848 * Look if the phyint or one of its prefixes have been removed from
1849 * the kernel and take appropriate action.
1850 * Uses pr_in_use and pi{,_kernel}_state.
1851 */
1852 static void
check_if_removed(struct phyint * pi)1853 check_if_removed(struct phyint *pi)
1854 {
1855 struct prefix *pr, *next_pr;
1856
1857 /*
1858 * Detect prefixes which are removed.
1859 * Static prefixes are just removed from our tables.
1860 * Non-static prefixes are recreated i.e. in.ndpd takes precedence
1861 * over manually removing prefixes via ifconfig.
1862 */
1863 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1864 next_pr = pr->pr_next;
1865 if (!pr->pr_in_use) {
1866 /* Clear everything except PR_STATIC */
1867 pr->pr_kernel_state &= PR_STATIC;
1868 if (pr->pr_state & PR_STATIC)
1869 prefix_update_ipadm_addrobj(pr, _B_FALSE);
1870 pr->pr_name[0] = '\0';
1871 if (pr->pr_state & PR_STATIC) {
1872 prefix_delete(pr);
1873 } else if (!(pi->pi_kernel_state & PI_PRESENT)) {
1874 /*
1875 * Ensure that there are no future attempts to
1876 * run prefix_update_k since the phyint is gone.
1877 */
1878 pr->pr_state = pr->pr_kernel_state;
1879 } else if (pr->pr_state != pr->pr_kernel_state) {
1880 logmsg(LOG_INFO, "Prefix manually removed "
1881 "on %s; recreating\n", pi->pi_name);
1882 prefix_update_k(pr);
1883 }
1884 }
1885 }
1886
1887 /*
1888 * Detect phyints that have been removed from the kernel, and tear
1889 * down any prefixes we created that are associated with that phyint.
1890 * (NOTE: IPMP depends on in.ndpd tearing down these prefixes so an
1891 * administrator can easily place an IP interface with ADDRCONF'd
1892 * addresses into an IPMP group.)
1893 */
1894 if (!(pi->pi_kernel_state & PI_PRESENT) &&
1895 (pi->pi_state & PI_PRESENT)) {
1896 logmsg(LOG_ERR, "Interface %s has been removed from kernel. "
1897 "in.ndpd will no longer use it\n", pi->pi_name);
1898
1899 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1900 next_pr = pr->pr_next;
1901 if (pr->pr_state & PR_AUTO)
1902 prefix_update_ipadm_addrobj(pr, _B_FALSE);
1903 prefix_delete(pr);
1904 }
1905
1906 /*
1907 * Clear state so that should the phyint reappear we will
1908 * start with initial advertisements or solicitations.
1909 */
1910 phyint_cleanup(pi);
1911 }
1912 }
1913
1914
1915 /*
1916 * Queuing mechanism for router advertisements that are sent by in.ndpd
1917 * and that also need to be processed by in.ndpd.
1918 * Uses "signal number" 255 to indicate to the main poll loop
1919 * that there is something to dequeue and send to incomining_ra().
1920 */
1921 struct raq {
1922 struct raq *raq_next;
1923 struct phyint *raq_pi;
1924 int raq_packetlen;
1925 uchar_t *raq_packet;
1926 };
1927 static struct raq *raq_head = NULL;
1928
1929 /*
1930 * Allocate a struct raq and memory for the packet.
1931 * Send signal 255 to have poll dequeue.
1932 */
1933 static void
loopback_ra_enqueue(struct phyint * pi,struct nd_router_advert * ra,int len)1934 loopback_ra_enqueue(struct phyint *pi, struct nd_router_advert *ra, int len)
1935 {
1936 struct raq *raq;
1937 struct raq **raqp;
1938
1939 if (no_loopback)
1940 return;
1941
1942 if (debug & D_PKTOUT)
1943 logmsg(LOG_DEBUG, "loopback_ra_enqueue for %s\n", pi->pi_name);
1944
1945 raq = calloc(sizeof (struct raq), 1);
1946 if (raq == NULL) {
1947 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n");
1948 return;
1949 }
1950 raq->raq_packet = malloc(len);
1951 if (raq->raq_packet == NULL) {
1952 free(raq);
1953 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n");
1954 return;
1955 }
1956 bcopy(ra, raq->raq_packet, len);
1957 raq->raq_packetlen = len;
1958 raq->raq_pi = pi;
1959
1960 /* Tail insert */
1961 raqp = &raq_head;
1962 while (*raqp != NULL)
1963 raqp = &((*raqp)->raq_next);
1964 *raqp = raq;
1965
1966 /* Signal for poll loop */
1967 sig_handler(255);
1968 }
1969
1970 /*
1971 * Dequeue and process all queued advertisements.
1972 */
1973 static void
loopback_ra_dequeue(void)1974 loopback_ra_dequeue(void)
1975 {
1976 struct sockaddr_in6 from = IN6ADDR_LOOPBACK_INIT;
1977 struct raq *raq;
1978
1979 if (debug & D_PKTIN)
1980 logmsg(LOG_DEBUG, "loopback_ra_dequeue()\n");
1981
1982 while ((raq = raq_head) != NULL) {
1983 raq_head = raq->raq_next;
1984 raq->raq_next = NULL;
1985
1986 if (debug & D_PKTIN) {
1987 logmsg(LOG_DEBUG, "loopback_ra_dequeue for %s\n",
1988 raq->raq_pi->pi_name);
1989 }
1990
1991 incoming_ra(raq->raq_pi,
1992 (struct nd_router_advert *)raq->raq_packet,
1993 raq->raq_packetlen, &from, _B_TRUE);
1994 free(raq->raq_packet);
1995 free(raq);
1996 }
1997 }
1998
1999
2000 static void
usage(char * cmd)2001 usage(char *cmd)
2002 {
2003 (void) fprintf(stderr,
2004 "usage: %s [ -adt ] [-f <config file>]\n", cmd);
2005 }
2006
2007 int
main(int argc,char * argv[])2008 main(int argc, char *argv[])
2009 {
2010 int i;
2011 struct phyint *pi;
2012 int c;
2013 char *config_file = PATH_NDPD_CONF;
2014 boolean_t file_required = _B_FALSE;
2015
2016 argv0 = argv;
2017 srandom(gethostid());
2018 (void) umask(0022);
2019
2020 while ((c = getopt(argc, argv, "adD:ntIf:")) != EOF) {
2021 switch (c) {
2022 case 'a':
2023 /*
2024 * The StatelessAddrConf variable in ndpd.conf, if
2025 * present, will override this setting.
2026 */
2027 ifdefaults[I_StatelessAddrConf].cf_value = 0;
2028 break;
2029 case 'd':
2030 debug = D_ALL;
2031 break;
2032 case 'D':
2033 i = strtol((char *)optarg, NULL, 0);
2034 if (i == 0) {
2035 (void) fprintf(stderr, "Bad debug flags: %s\n",
2036 (char *)optarg);
2037 exit(1);
2038 }
2039 debug |= i;
2040 break;
2041 case 'n':
2042 no_loopback = 1;
2043 break;
2044 case 'I':
2045 show_ifs = 1;
2046 break;
2047 case 't':
2048 debug |= D_PKTIN | D_PKTOUT | D_PKTBAD;
2049 break;
2050 case 'f':
2051 config_file = (char *)optarg;
2052 file_required = _B_TRUE;
2053 break;
2054 case '?':
2055 usage(argv[0]);
2056 exit(1);
2057 }
2058 }
2059
2060 if (parse_config(config_file, file_required) == -1)
2061 exit(2);
2062
2063 if (show_ifs)
2064 phyint_print_all();
2065
2066 if (debug == 0)
2067 initlog();
2068
2069 cmdsock = ndpd_setup_cmd_listener();
2070 setup_eventpipe();
2071 rtsock = setup_rtsock();
2072 mibsock = setup_mibsock();
2073 timer_init();
2074 initifs(_B_TRUE);
2075
2076 check_daemonize();
2077
2078 for (;;) {
2079 if (poll(pollfds, pollfd_num, -1) < 0) {
2080 if (errno == EINTR)
2081 continue;
2082 logperror("main: poll");
2083 exit(1);
2084 }
2085 for (i = 0; i < pollfd_num; i++) {
2086 if (!(pollfds[i].revents & POLLIN))
2087 continue;
2088 if (pollfds[i].fd == eventpipe_read) {
2089 in_signal(eventpipe_read);
2090 break;
2091 }
2092 if (pollfds[i].fd == rtsock) {
2093 process_rtsock(rtsock);
2094 break;
2095 }
2096 if (pollfds[i].fd == mibsock) {
2097 process_mibsock(mibsock);
2098 break;
2099 }
2100 if (pollfds[i].fd == cmdsock) {
2101 ndpd_cmd_handler(cmdsock);
2102 break;
2103 }
2104 /*
2105 * Run timer routine to advance clock if more than
2106 * half a second since the clock was advanced.
2107 * This limits CPU usage under severe packet
2108 * arrival rates but it creates a slight inaccuracy
2109 * in the timer mechanism.
2110 */
2111 conditional_run_timeouts(500U);
2112 for (pi = phyints; pi != NULL; pi = pi->pi_next) {
2113 if (pollfds[i].fd == pi->pi_sock) {
2114 in_data(pi);
2115 break;
2116 }
2117 }
2118 }
2119 }
2120 /* NOTREACHED */
2121 return (0);
2122 }
2123
2124 /*
2125 * LOGGER
2126 */
2127
2128 static boolean_t logging = _B_FALSE;
2129
2130 static void
initlog(void)2131 initlog(void)
2132 {
2133 logging = _B_TRUE;
2134 openlog("in.ndpd", LOG_PID | LOG_CONS, LOG_DAEMON);
2135 }
2136
2137 /* Print the date/time without a trailing carridge return */
2138 static void
fprintdate(FILE * file)2139 fprintdate(FILE *file)
2140 {
2141 char buf[BUFSIZ];
2142 struct tm tms;
2143 time_t now;
2144
2145 now = time(NULL);
2146 (void) localtime_r(&now, &tms);
2147 (void) strftime(buf, sizeof (buf), "%h %d %X", &tms);
2148 (void) fprintf(file, "%s ", buf);
2149 }
2150
2151 /* PRINTFLIKE2 */
2152 void
logmsg(int level,const char * fmt,...)2153 logmsg(int level, const char *fmt, ...)
2154 {
2155 va_list ap;
2156 va_start(ap, fmt);
2157
2158 if (logging) {
2159 vsyslog(level, fmt, ap);
2160 } else {
2161 fprintdate(stderr);
2162 (void) vfprintf(stderr, fmt, ap);
2163 }
2164 va_end(ap);
2165 }
2166
2167 void
logperror(const char * str)2168 logperror(const char *str)
2169 {
2170 if (logging) {
2171 syslog(LOG_ERR, "%s: %m\n", str);
2172 } else {
2173 fprintdate(stderr);
2174 (void) fprintf(stderr, "%s: %s\n", str, strerror(errno));
2175 }
2176 }
2177
2178 void
logperror_pi(const struct phyint * pi,const char * str)2179 logperror_pi(const struct phyint *pi, const char *str)
2180 {
2181 if (logging) {
2182 syslog(LOG_ERR, "%s (interface %s): %m\n",
2183 str, pi->pi_name);
2184 } else {
2185 fprintdate(stderr);
2186 (void) fprintf(stderr, "%s (interface %s): %s\n",
2187 str, pi->pi_name, strerror(errno));
2188 }
2189 }
2190
2191 void
logperror_pr(const struct prefix * pr,const char * str)2192 logperror_pr(const struct prefix *pr, const char *str)
2193 {
2194 if (logging) {
2195 syslog(LOG_ERR, "%s (prefix %s if %s): %m\n",
2196 str, pr->pr_name, pr->pr_physical->pi_name);
2197 } else {
2198 fprintdate(stderr);
2199 (void) fprintf(stderr, "%s (prefix %s if %s): %s\n",
2200 str, pr->pr_name, pr->pr_physical->pi_name,
2201 strerror(errno));
2202 }
2203 }
2204
2205 static int
ndpd_setup_cmd_listener(void)2206 ndpd_setup_cmd_listener(void)
2207 {
2208 int sock;
2209 int ret;
2210 struct sockaddr_un servaddr;
2211
2212 sock = socket(AF_UNIX, SOCK_STREAM, 0);
2213 if (sock < 0) {
2214 logperror("socket");
2215 exit(1);
2216 }
2217
2218 bzero(&servaddr, sizeof (servaddr));
2219 servaddr.sun_family = AF_UNIX;
2220 (void) strlcpy(servaddr.sun_path, IPADM_UDS_PATH,
2221 sizeof (servaddr.sun_path));
2222 (void) unlink(servaddr.sun_path);
2223 ret = bind(sock, (struct sockaddr *)&servaddr, sizeof (servaddr));
2224 if (ret < 0) {
2225 logperror("bind");
2226 exit(1);
2227 }
2228 if (listen(sock, 30) < 0) {
2229 logperror("listen");
2230 exit(1);
2231 }
2232 if (poll_add(sock) == -1) {
2233 logmsg(LOG_ERR, "command socket could not be added to the "
2234 "polling set\n");
2235 exit(1);
2236 }
2237
2238 return (sock);
2239 }
2240
2241 /*
2242 * Commands received over the command socket come here
2243 */
2244 static void
ndpd_cmd_handler(int sock)2245 ndpd_cmd_handler(int sock)
2246 {
2247 int newfd;
2248 struct sockaddr_storage peer;
2249 socklen_t peerlen;
2250 ipadm_ndpd_msg_t ndpd_msg;
2251 int retval;
2252
2253 peerlen = sizeof (peer);
2254 newfd = accept(sock, (struct sockaddr *)&peer, &peerlen);
2255 if (newfd < 0) {
2256 logperror("accept");
2257 return;
2258 }
2259
2260 retval = ipadm_ndpd_read(newfd, &ndpd_msg, sizeof (ndpd_msg));
2261 if (retval != 0)
2262 logperror("Could not read ndpd command");
2263
2264 retval = ndpd_process_cmd(newfd, &ndpd_msg);
2265 if (retval != 0) {
2266 logmsg(LOG_ERR, "ndpd command on interface %s failed with "
2267 "error %s\n", ndpd_msg.inm_ifname, strerror(retval));
2268 }
2269 (void) close(newfd);
2270 }
2271
2272 /*
2273 * Process the commands received from the cmd listener socket.
2274 */
2275 static int
ndpd_process_cmd(int newfd,ipadm_ndpd_msg_t * msg)2276 ndpd_process_cmd(int newfd, ipadm_ndpd_msg_t *msg)
2277 {
2278 int err;
2279
2280 if (!ipadm_check_auth()) {
2281 logmsg(LOG_ERR, "User not authorized to send the command\n");
2282 (void) ndpd_send_error(newfd, EPERM);
2283 return (EPERM);
2284 }
2285 switch (msg->inm_cmd) {
2286 case IPADM_DISABLE_AUTOCONF:
2287 err = ndpd_set_autoconf(msg->inm_ifname, _B_FALSE);
2288 break;
2289
2290 case IPADM_ENABLE_AUTOCONF:
2291 err = ndpd_set_autoconf(msg->inm_ifname, _B_TRUE);
2292 break;
2293
2294 case IPADM_CREATE_ADDRS:
2295 err = ndpd_create_addrs(msg->inm_ifname, msg->inm_intfid,
2296 msg->inm_intfidlen, msg->inm_stateless,
2297 msg->inm_stateful, msg->inm_aobjname);
2298 break;
2299
2300 case IPADM_DELETE_ADDRS:
2301 err = ndpd_delete_addrs(msg->inm_ifname);
2302 break;
2303
2304 default:
2305 err = EINVAL;
2306 break;
2307 }
2308
2309 (void) ndpd_send_error(newfd, err);
2310
2311 return (err);
2312 }
2313
2314 static int
ndpd_send_error(int fd,int error)2315 ndpd_send_error(int fd, int error)
2316 {
2317 return (ipadm_ndpd_write(fd, &error, sizeof (error)));
2318 }
2319
2320 /*
2321 * Disables/Enables autoconfiguration of addresses on the
2322 * given physical interface.
2323 * This is provided to support the legacy method of configuring IPv6
2324 * addresses. i.e. `ifconfig bge0 inet6 plumb` will plumb the interface
2325 * and start stateless and stateful autoconfiguration. If this function is
2326 * not called with enable=_B_FALSE, no autoconfiguration will be done until
2327 * ndpd_create_addrs() is called with an Interface ID.
2328 */
2329 static int
ndpd_set_autoconf(const char * ifname,boolean_t enable)2330 ndpd_set_autoconf(const char *ifname, boolean_t enable)
2331 {
2332 struct phyint *pi;
2333
2334 pi = phyint_lookup((char *)ifname);
2335 if (pi == NULL) {
2336 /*
2337 * If the physical interface was plumbed but no
2338 * addresses were configured yet, phyint will not exist.
2339 */
2340 pi = phyint_create((char *)ifname);
2341 if (pi == NULL) {
2342 logmsg(LOG_ERR, "could not create phyint for "
2343 "interface %s", ifname);
2344 return (ENOMEM);
2345 }
2346 }
2347 pi->pi_autoconf = enable;
2348
2349 if (debug & D_PHYINT) {
2350 logmsg(LOG_DEBUG, "ndpd_set_autoconf: %s autoconf for "
2351 "interface %s\n", (enable ? "enabled" : "disabled"),
2352 pi->pi_name);
2353 }
2354 return (0);
2355 }
2356
2357 /*
2358 * Create auto-configured addresses on the given interface using
2359 * the given token as the interface id during the next Router Advertisement.
2360 * Currently, only one token per interface is supported.
2361 */
2362 static int
ndpd_create_addrs(const char * ifname,struct sockaddr_in6 intfid,int intfidlen,boolean_t stateless,boolean_t stateful,char * addrobj)2363 ndpd_create_addrs(const char *ifname, struct sockaddr_in6 intfid, int intfidlen,
2364 boolean_t stateless, boolean_t stateful, char *addrobj)
2365 {
2366 struct phyint *pi;
2367 struct lifreq lifr;
2368 struct sockaddr_in6 *sin6;
2369 int err;
2370
2371 pi = phyint_lookup((char *)ifname);
2372 if (pi == NULL) {
2373 /*
2374 * If the physical interface was plumbed but no
2375 * addresses were configured yet, phyint will not exist.
2376 */
2377 pi = phyint_create((char *)ifname);
2378 if (pi == NULL) {
2379 if (debug & D_PHYINT)
2380 logmsg(LOG_ERR, "could not create phyint "
2381 "for interface %s", ifname);
2382 return (ENOMEM);
2383 }
2384 } else if (pi->pi_autoconf) {
2385 logmsg(LOG_ERR, "autoconfiguration already in progress\n");
2386 return (EEXIST);
2387 }
2388 check_autoconf_var_consistency(pi, stateless, stateful);
2389
2390 if (intfidlen == 0) {
2391 pi->pi_default_token = _B_TRUE;
2392 if (ifsock < 0) {
2393 ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
2394 if (ifsock < 0) {
2395 err = errno;
2396 logperror("ndpd_create_addrs: socket");
2397 return (err);
2398 }
2399 }
2400 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
2401 sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr;
2402 if (ioctl(ifsock, SIOCGLIFTOKEN, (char *)&lifr) < 0) {
2403 err = errno;
2404 logperror("SIOCGLIFTOKEN");
2405 return (err);
2406 }
2407 pi->pi_token = sin6->sin6_addr;
2408 pi->pi_token_length = lifr.lifr_addrlen;
2409 } else {
2410 pi->pi_default_token = _B_FALSE;
2411 pi->pi_token = intfid.sin6_addr;
2412 pi->pi_token_length = intfidlen;
2413 }
2414 pi->pi_stateless = stateless;
2415 pi->pi_stateful = stateful;
2416 (void) strlcpy(pi->pi_ipadm_aobjname, addrobj,
2417 sizeof (pi->pi_ipadm_aobjname));
2418
2419 /* We can allow autoconfiguration now. */
2420 pi->pi_autoconf = _B_TRUE;
2421
2422 /* Restart the solicitations. */
2423 if (pi->pi_sol_state == DONE_SOLICIT)
2424 pi->pi_sol_state = NO_SOLICIT;
2425 if (pi->pi_sol_state == NO_SOLICIT)
2426 check_to_solicit(pi, START_INIT_SOLICIT);
2427 if (debug & D_PHYINT)
2428 logmsg(LOG_DEBUG, "ndpd_create_addrs: "
2429 "added token to interface %s\n", pi->pi_name);
2430 return (0);
2431 }
2432
2433 /*
2434 * This function deletes all addresses on the given interface
2435 * with the given Interface ID.
2436 */
2437 static int
ndpd_delete_addrs(const char * ifname)2438 ndpd_delete_addrs(const char *ifname)
2439 {
2440 struct phyint *pi;
2441 struct prefix *pr, *next_pr;
2442 struct lifreq lifr;
2443 int err;
2444
2445 pi = phyint_lookup((char *)ifname);
2446 if (pi == NULL) {
2447 logmsg(LOG_ERR, "no phyint found for %s", ifname);
2448 return (ENXIO);
2449 }
2450 if (IN6_IS_ADDR_UNSPECIFIED(&pi->pi_token)) {
2451 logmsg(LOG_ERR, "token does not exist for %s", ifname);
2452 return (EINVAL);
2453 }
2454
2455 if (ifsock < 0) {
2456 ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
2457 if (ifsock < 0) {
2458 err = errno;
2459 logperror("ndpd_create_addrs: socket");
2460 return (err);
2461 }
2462 }
2463 /* Remove the prefixes for this phyint if they exist */
2464 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
2465 next_pr = pr->pr_next;
2466 if (pr->pr_name[0] == '\0') {
2467 prefix_delete(pr);
2468 continue;
2469 }
2470 /*
2471 * Delete all the prefixes for the auto-configured
2472 * addresses as well as the DHCPv6 addresses.
2473 */
2474 (void) strncpy(lifr.lifr_name, pr->pr_name,
2475 sizeof (lifr.lifr_name));
2476 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
2477 err = errno;
2478 logperror("SIOCGLIFFLAGS");
2479 return (err);
2480 }
2481 if ((lifr.lifr_flags & IFF_ADDRCONF) ||
2482 (lifr.lifr_flags & IFF_DHCPRUNNING)) {
2483 prefix_update_ipadm_addrobj(pr, _B_FALSE);
2484 }
2485 prefix_delete(pr);
2486 }
2487
2488 /*
2489 * If we had started dhcpagent, we need to release the leases
2490 * if any are required.
2491 */
2492 if (pi->pi_stateful) {
2493 (void) strncpy(lifr.lifr_name, pi->pi_name,
2494 sizeof (lifr.lifr_name));
2495 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
2496 err = errno;
2497 logperror("SIOCGLIFFLAGS");
2498 return (err);
2499 }
2500 if (lifr.lifr_flags & IFF_DHCPRUNNING)
2501 release_dhcp(pi);
2502 }
2503
2504 /*
2505 * Reset the Interface ID on this phyint and stop autoconfigurations
2506 * until a new interface ID is provided.
2507 */
2508 pi->pi_token = in6addr_any;
2509 pi->pi_token_length = 0;
2510 pi->pi_autoconf = _B_FALSE;
2511 pi->pi_ipadm_aobjname[0] = '\0';
2512
2513 /* Reset the stateless and stateful settings to default. */
2514 pi->pi_stateless = pi->pi_StatelessAddrConf;
2515 pi->pi_stateful = pi->pi_StatefulAddrConf;
2516
2517 if (debug & D_PHYINT) {
2518 logmsg(LOG_DEBUG, "ndpd_delete_addrs: "
2519 "removed token from interface %s\n", pi->pi_name);
2520 }
2521 return (0);
2522 }
2523
2524 void
check_autoconf_var_consistency(struct phyint * pi,boolean_t stateless,boolean_t stateful)2525 check_autoconf_var_consistency(struct phyint *pi, boolean_t stateless,
2526 boolean_t stateful)
2527 {
2528 /*
2529 * If StatelessAddrConf and StatelessAddrConf are set in
2530 * /etc/inet/ndpd.conf, check if the new values override those
2531 * settings. If so, log a warning.
2532 */
2533 if ((pi->pi_StatelessAddrConf !=
2534 ifdefaults[I_StatelessAddrConf].cf_value &&
2535 stateless != pi->pi_StatelessAddrConf) ||
2536 (pi->pi_StatefulAddrConf !=
2537 ifdefaults[I_StatefulAddrConf].cf_value &&
2538 stateful != pi->pi_StatefulAddrConf)) {
2539 logmsg(LOG_ERR, "check_autoconf_var_consistency: "
2540 "Overriding the StatelessAddrConf or StatefulAddrConf "
2541 "settings in ndpd.conf with the new values for "
2542 "interface %s\n", pi->pi_name);
2543 }
2544 }
2545
2546 /*
2547 * If ipadm was used to start autoconfiguration and in.ndpd was restarted
2548 * for some reason, in.ndpd has to resume autoconfiguration when it comes up.
2549 * In this function, it scans the ipadm_addr_info() output to find a link-local
2550 * on this interface with address type "addrconf" and extracts the interface id.
2551 * It also stores the addrobj name to be used later when new addresses are
2552 * created for the prefixes advertised by the router.
2553 * If autoconfiguration was never started on this interface before in.ndpd
2554 * was killed, then in.ndpd should refrain from configuring prefixes, even if
2555 * there is a valid link-local on this interface, created by ipadm (identified
2556 * if there is a valid addrobj name).
2557 */
2558 static int
phyint_check_ipadm_intfid(struct phyint * pi)2559 phyint_check_ipadm_intfid(struct phyint *pi)
2560 {
2561 ipadm_status_t status;
2562 ipadm_addr_info_t *addrinfo;
2563 struct ifaddrs *ifap;
2564 ipadm_addr_info_t *ainfop;
2565 struct sockaddr_in6 *sin6;
2566 ipadm_handle_t iph;
2567
2568 if (ipadm_open(&iph, 0) != IPADM_SUCCESS) {
2569 logmsg(LOG_ERR, "could not open handle to libipadm\n");
2570 return (-1);
2571 }
2572
2573 status = ipadm_addr_info(iph, pi->pi_name, &addrinfo,
2574 IPADM_OPT_ZEROADDR, LIFC_NOXMIT|LIFC_TEMPORARY);
2575 if (status != IPADM_SUCCESS) {
2576 ipadm_close(iph);
2577 return (-1);
2578 }
2579 pi->pi_autoconf = _B_TRUE;
2580 for (ainfop = addrinfo; ainfop != NULL; ainfop = IA_NEXT(ainfop)) {
2581 ifap = &ainfop->ia_ifa;
2582 if (ifap->ifa_addr->sa_family != AF_INET6 ||
2583 ainfop->ia_state == IFA_DISABLED)
2584 continue;
2585 sin6 = (struct sockaddr_in6 *)ifap->ifa_addr;
2586 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
2587 if (ainfop->ia_atype == IPADM_ADDR_IPV6_ADDRCONF) {
2588 pi->pi_token = sin6->sin6_addr;
2589 pi->pi_token._S6_un._S6_u32[0] = 0;
2590 pi->pi_token._S6_un._S6_u32[1] = 0;
2591 pi->pi_autoconf = _B_TRUE;
2592 (void) strlcpy(pi->pi_ipadm_aobjname,
2593 ainfop->ia_aobjname,
2594 sizeof (pi->pi_ipadm_aobjname));
2595 break;
2596 }
2597 /*
2598 * If IFF_NOLINKLOCAL is set, then the link-local
2599 * was created using ipadm. Do not autoconfigure until
2600 * ipadm is explicitly used for autoconfiguration.
2601 */
2602 if (ifap->ifa_flags & IFF_NOLINKLOCAL)
2603 pi->pi_autoconf = _B_FALSE;
2604 } else if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) &&
2605 strrchr(ifap->ifa_name, ':') == NULL) {
2606 /* The interface was created using ipadm. */
2607 pi->pi_autoconf = _B_FALSE;
2608 }
2609 }
2610 ipadm_free_addr_info(addrinfo);
2611 if (!pi->pi_autoconf) {
2612 pi->pi_token = in6addr_any;
2613 pi->pi_token_length = 0;
2614 }
2615 ipadm_close(iph);
2616 return (0);
2617 }
2618