xref: /netbsd-src/sys/opencrypto/cryptosoft.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: cryptosoft.c,v 1.61 2021/04/06 03:38:04 knakahara Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $	*/
3 /*	$OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $	*/
4 
5 /*
6  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
7  *
8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
10  * supported the development of this code.
11  *
12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
13  *
14  * Permission to use, copy, and modify this software with or without fee
15  * is hereby granted, provided that this entire notice is included in
16  * all source code copies of any software which is or includes a copy or
17  * modification of this software.
18  *
19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23  * PURPOSE.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.61 2021/04/06 03:38:04 knakahara Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kmem.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/cprng.h>
36 #include <sys/module.h>
37 #include <sys/device.h>
38 
39 #ifdef _KERNEL_OPT
40 #include "opt_ocf.h"
41 #endif
42 
43 #include <opencrypto/cryptodev.h>
44 #include <opencrypto/cryptosoft.h>
45 #include <opencrypto/xform.h>
46 
47 #include <opencrypto/cryptosoft_xform.c>
48 
49 #include "ioconf.h"
50 
51 union authctx {
52 	MD5_CTX md5ctx;
53 	SHA1_CTX sha1ctx;
54 	RMD160_CTX rmd160ctx;
55 	SHA256_CTX sha256ctx;
56 	SHA384_CTX sha384ctx;
57 	SHA512_CTX sha512ctx;
58 	aesxcbc_ctx aesxcbcctx;
59 	AES_GMAC_CTX aesgmacctx;
60 };
61 
62 struct swcr_data **swcr_sessions = NULL;
63 u_int32_t swcr_sesnum = 0;
64 int32_t swcr_id = -1;
65 
66 #define COPYBACK(x, a, b, c, d) \
67 	(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
68 	: cuio_copyback((struct uio *)a,b,c,d)
69 #define COPYDATA(x, a, b, c, d) \
70 	(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
71 	: cuio_copydata((struct uio *)a,b,c,d)
72 
73 static	int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
74 static	int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
75 static	int swcr_combined(struct cryptop *, int);
76 static	int swcr_process(void *, struct cryptop *, int);
77 static	int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
78 static	int swcr_freesession(void *, u_int64_t);
79 static void swcr_freesession_internal(struct swcr_data *);
80 
81 static	int swcryptoattach_internal(void);
82 
83 /*
84  * Apply a symmetric encryption/decryption algorithm.
85  */
86 static int
87 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
88     int outtype)
89 {
90 	char *buf = bufv;
91 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
92 	unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
93 	const struct swcr_enc_xform *exf;
94 	int i, k, j, blks, ivlen;
95 	int count, ind;
96 
97 	exf = sw->sw_exf;
98 	blks = exf->enc_xform->blocksize;
99 	ivlen = exf->enc_xform->ivsize;
100 	KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
101 
102 	/* Check for non-padded data */
103 	if (crd->crd_len % blks)
104 		return EINVAL;
105 
106 	/* Initialize the IV */
107 	if (crd->crd_flags & CRD_F_ENCRYPT) {
108 		/* IV explicitly provided ? */
109 		if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
110 			memcpy(iv, crd->crd_iv, ivlen);
111 			if (exf->reinit)
112 				exf->reinit(sw->sw_kschedule, iv, 0);
113 		} else if (exf->reinit) {
114 			exf->reinit(sw->sw_kschedule, 0, iv);
115 		} else {
116 			cprng_fast(iv, EALG_MAX_BLOCK_LEN);
117 		}
118 
119 		/* Do we need to write the IV */
120 		if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
121 			COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
122 		}
123 
124 	} else {	/* Decryption */
125 			/* IV explicitly provided ? */
126 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
127 			memcpy(iv, crd->crd_iv, ivlen);
128 		else {
129 			/* Get IV off buf */
130 			COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
131 		}
132 		if (exf->reinit)
133 			exf->reinit(sw->sw_kschedule, iv, 0);
134 	}
135 
136 	ivp = iv;
137 
138 	if (outtype == CRYPTO_BUF_CONTIG) {
139 		if (exf->reinit) {
140 			for (i = crd->crd_skip;
141 			     i < crd->crd_skip + crd->crd_len; i += blks) {
142 				if (crd->crd_flags & CRD_F_ENCRYPT) {
143 					exf->encrypt(sw->sw_kschedule, buf + i);
144 				} else {
145 					exf->decrypt(sw->sw_kschedule, buf + i);
146 				}
147 			}
148 		} else if (crd->crd_flags & CRD_F_ENCRYPT) {
149 			for (i = crd->crd_skip;
150 			    i < crd->crd_skip + crd->crd_len; i += blks) {
151 				/* XOR with the IV/previous block, as appropriate. */
152 				if (i == crd->crd_skip)
153 					for (k = 0; k < blks; k++)
154 						buf[i + k] ^= ivp[k];
155 				else
156 					for (k = 0; k < blks; k++)
157 						buf[i + k] ^= buf[i + k - blks];
158 				exf->encrypt(sw->sw_kschedule, buf + i);
159 			}
160 		} else {		/* Decrypt */
161 			/*
162 			 * Start at the end, so we don't need to keep the encrypted
163 			 * block as the IV for the next block.
164 			 */
165 			for (i = crd->crd_skip + crd->crd_len - blks;
166 			    i >= crd->crd_skip; i -= blks) {
167 				exf->decrypt(sw->sw_kschedule, buf + i);
168 
169 				/* XOR with the IV/previous block, as appropriate */
170 				if (i == crd->crd_skip)
171 					for (k = 0; k < blks; k++)
172 						buf[i + k] ^= ivp[k];
173 				else
174 					for (k = 0; k < blks; k++)
175 						buf[i + k] ^= buf[i + k - blks];
176 			}
177 		}
178 
179 		return 0;
180 	} else if (outtype == CRYPTO_BUF_MBUF) {
181 		struct mbuf *m = (struct mbuf *) buf;
182 
183 		/* Find beginning of data */
184 		m = m_getptr(m, crd->crd_skip, &k);
185 		if (m == NULL)
186 			return EINVAL;
187 
188 		i = crd->crd_len;
189 
190 		while (i > 0) {
191 			/*
192 			 * If there's insufficient data at the end of
193 			 * an mbuf, we have to do some copying.
194 			 */
195 			if (m->m_len < k + blks && m->m_len != k) {
196 				m_copydata(m, k, blks, blk);
197 
198 				/* Actual encryption/decryption */
199 				if (exf->reinit) {
200 					if (crd->crd_flags & CRD_F_ENCRYPT) {
201 						exf->encrypt(sw->sw_kschedule,
202 							     blk);
203 					} else {
204 						exf->decrypt(sw->sw_kschedule,
205 							     blk);
206 					}
207 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
208 					/* XOR with previous block */
209 					for (j = 0; j < blks; j++)
210 						blk[j] ^= ivp[j];
211 
212 					exf->encrypt(sw->sw_kschedule, blk);
213 
214 					/*
215 					 * Keep encrypted block for XOR'ing
216 					 * with next block
217 					 */
218 					memcpy(iv, blk, blks);
219 					ivp = iv;
220 				} else {	/* decrypt */
221 					/*
222 					 * Keep encrypted block for XOR'ing
223 					 * with next block
224 					 */
225 					if (ivp == iv)
226 						memcpy(piv, blk, blks);
227 					else
228 						memcpy(iv, blk, blks);
229 
230 					exf->decrypt(sw->sw_kschedule, blk);
231 
232 					/* XOR with previous block */
233 					for (j = 0; j < blks; j++)
234 						blk[j] ^= ivp[j];
235 
236 					if (ivp == iv)
237 						memcpy(iv, piv, blks);
238 					else
239 						ivp = iv;
240 				}
241 
242 				/* Copy back decrypted block */
243 				m_copyback(m, k, blks, blk);
244 
245 				/* Advance pointer */
246 				m = m_getptr(m, k + blks, &k);
247 				if (m == NULL)
248 					return EINVAL;
249 
250 				i -= blks;
251 
252 				/* Could be done... */
253 				if (i == 0)
254 					break;
255 			}
256 
257 			/* Skip possibly empty mbufs */
258 			if (k == m->m_len) {
259 				for (m = m->m_next; m && m->m_len == 0;
260 				    m = m->m_next)
261 					;
262 				k = 0;
263 			}
264 
265 			/* Sanity check */
266 			if (m == NULL)
267 				return EINVAL;
268 
269 			/*
270 			 * Warning: idat may point to garbage here, but
271 			 * we only use it in the while() loop, only if
272 			 * there are indeed enough data.
273 			 */
274 			idat = mtod(m, unsigned char *) + k;
275 
276 			while (m->m_len >= k + blks && i > 0) {
277 				if (exf->reinit) {
278 					if (crd->crd_flags & CRD_F_ENCRYPT) {
279 						exf->encrypt(sw->sw_kschedule,
280 							     idat);
281 					} else {
282 						exf->decrypt(sw->sw_kschedule,
283 							     idat);
284 					}
285 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
286 					/* XOR with previous block/IV */
287 					for (j = 0; j < blks; j++)
288 						idat[j] ^= ivp[j];
289 
290 					exf->encrypt(sw->sw_kschedule, idat);
291 					ivp = idat;
292 				} else {	/* decrypt */
293 					/*
294 					 * Keep encrypted block to be used
295 					 * in next block's processing.
296 					 */
297 					if (ivp == iv)
298 						memcpy(piv, idat, blks);
299 					else
300 						memcpy(iv, idat, blks);
301 
302 					exf->decrypt(sw->sw_kschedule, idat);
303 
304 					/* XOR with previous block/IV */
305 					for (j = 0; j < blks; j++)
306 						idat[j] ^= ivp[j];
307 
308 					if (ivp == iv)
309 						memcpy(iv, piv, blks);
310 					else
311 						ivp = iv;
312 				}
313 
314 				idat += blks;
315 				k += blks;
316 				i -= blks;
317 			}
318 		}
319 
320 		return 0; /* Done with mbuf encryption/decryption */
321 	} else if (outtype == CRYPTO_BUF_IOV) {
322 		struct uio *uio = (struct uio *) buf;
323 
324 		/* Find beginning of data */
325 		count = crd->crd_skip;
326 		ind = cuio_getptr(uio, count, &k);
327 		if (ind == -1)
328 			return EINVAL;
329 
330 		i = crd->crd_len;
331 
332 		while (i > 0) {
333 			/*
334 			 * If there's insufficient data at the end,
335 			 * we have to do some copying.
336 			 */
337 			if (uio->uio_iov[ind].iov_len < k + blks &&
338 			    uio->uio_iov[ind].iov_len != k) {
339 				cuio_copydata(uio, k, blks, blk);
340 
341 				/* Actual encryption/decryption */
342 				if (exf->reinit) {
343 					if (crd->crd_flags & CRD_F_ENCRYPT) {
344 						exf->encrypt(sw->sw_kschedule,
345 							     blk);
346 					} else {
347 						exf->decrypt(sw->sw_kschedule,
348 							     blk);
349 					}
350 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
351 					/* XOR with previous block */
352 					for (j = 0; j < blks; j++)
353 						blk[j] ^= ivp[j];
354 
355 					exf->encrypt(sw->sw_kschedule, blk);
356 
357 					/*
358 					 * Keep encrypted block for XOR'ing
359 					 * with next block
360 					 */
361 					memcpy(iv, blk, blks);
362 					ivp = iv;
363 				} else {	/* decrypt */
364 					/*
365 					 * Keep encrypted block for XOR'ing
366 					 * with next block
367 					 */
368 					if (ivp == iv)
369 						memcpy(piv, blk, blks);
370 					else
371 						memcpy(iv, blk, blks);
372 
373 					exf->decrypt(sw->sw_kschedule, blk);
374 
375 					/* XOR with previous block */
376 					for (j = 0; j < blks; j++)
377 						blk[j] ^= ivp[j];
378 
379 					if (ivp == iv)
380 						memcpy(iv, piv, blks);
381 					else
382 						ivp = iv;
383 				}
384 
385 				/* Copy back decrypted block */
386 				cuio_copyback(uio, k, blks, blk);
387 
388 				count += blks;
389 
390 				/* Advance pointer */
391 				ind = cuio_getptr(uio, count, &k);
392 				if (ind == -1)
393 					return (EINVAL);
394 
395 				i -= blks;
396 
397 				/* Could be done... */
398 				if (i == 0)
399 					break;
400 			}
401 
402 			/*
403 			 * Warning: idat may point to garbage here, but
404 			 * we only use it in the while() loop, only if
405 			 * there are indeed enough data.
406 			 */
407 			idat = ((char *)uio->uio_iov[ind].iov_base) + k;
408 
409 			while (uio->uio_iov[ind].iov_len >= k + blks &&
410 			    i > 0) {
411 				if (exf->reinit) {
412 					if (crd->crd_flags & CRD_F_ENCRYPT) {
413 						exf->encrypt(sw->sw_kschedule,
414 							    idat);
415 					} else {
416 						exf->decrypt(sw->sw_kschedule,
417 							    idat);
418 					}
419 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
420 					/* XOR with previous block/IV */
421 					for (j = 0; j < blks; j++)
422 						idat[j] ^= ivp[j];
423 
424 					exf->encrypt(sw->sw_kschedule, idat);
425 					ivp = idat;
426 				} else {	/* decrypt */
427 					/*
428 					 * Keep encrypted block to be used
429 					 * in next block's processing.
430 					 */
431 					if (ivp == iv)
432 						memcpy(piv, idat, blks);
433 					else
434 						memcpy(iv, idat, blks);
435 
436 					exf->decrypt(sw->sw_kschedule, idat);
437 
438 					/* XOR with previous block/IV */
439 					for (j = 0; j < blks; j++)
440 						idat[j] ^= ivp[j];
441 
442 					if (ivp == iv)
443 						memcpy(iv, piv, blks);
444 					else
445 						ivp = iv;
446 				}
447 
448 				idat += blks;
449 				count += blks;
450 				k += blks;
451 				i -= blks;
452 			}
453 		}
454 		return 0; /* Done with mbuf encryption/decryption */
455 	}
456 
457 	/* Unreachable */
458 	return EINVAL;
459 }
460 
461 /*
462  * Compute keyed-hash authenticator.
463  */
464 int
465 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
466     const struct swcr_data *sw, void *buf, int outtype)
467 {
468 	unsigned char aalg[AALG_MAX_RESULT_LEN];
469 	const struct swcr_auth_hash *axf;
470 	union authctx ctx;
471 	int err;
472 
473 	if (sw->sw_ictx == 0)
474 		return EINVAL;
475 
476 	axf = sw->sw_axf;
477 
478 	memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
479 
480 	switch (outtype) {
481 	case CRYPTO_BUF_CONTIG:
482 		axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
483 		break;
484 	case CRYPTO_BUF_MBUF:
485 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
486 		    (int (*)(void*, void *, unsigned int))(void *)axf->Update,
487 		    (void *) &ctx);
488 		if (err)
489 			return err;
490 		break;
491 	case CRYPTO_BUF_IOV:
492 		err = cuio_apply((struct uio *) buf, crd->crd_skip,
493 		    crd->crd_len,
494 		    (int (*)(void *, void *, unsigned int))(void *)axf->Update,
495 		    (void *) &ctx);
496 		if (err) {
497 			return err;
498 		}
499 		break;
500 	default:
501 		return EINVAL;
502 	}
503 
504 	switch (sw->sw_alg) {
505 	case CRYPTO_MD5_HMAC:
506 	case CRYPTO_MD5_HMAC_96:
507 	case CRYPTO_SHA1_HMAC:
508 	case CRYPTO_SHA1_HMAC_96:
509 	case CRYPTO_SHA2_256_HMAC:
510 	case CRYPTO_SHA2_384_HMAC:
511 	case CRYPTO_SHA2_512_HMAC:
512 	case CRYPTO_RIPEMD160_HMAC:
513 	case CRYPTO_RIPEMD160_HMAC_96:
514 		if (sw->sw_octx == NULL)
515 			return EINVAL;
516 
517 		axf->Final(aalg, &ctx);
518 		memcpy(&ctx, sw->sw_octx, axf->ctxsize);
519 		axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
520 		axf->Final(aalg, &ctx);
521 		break;
522 
523 	case CRYPTO_MD5_KPDK:
524 	case CRYPTO_SHA1_KPDK:
525 		if (sw->sw_octx == NULL)
526 			return EINVAL;
527 
528 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
529 		axf->Final(aalg, &ctx);
530 		break;
531 
532 	case CRYPTO_NULL_HMAC:
533 	case CRYPTO_MD5:
534 	case CRYPTO_SHA1:
535 	case CRYPTO_AES_XCBC_MAC_96:
536 		axf->Final(aalg, &ctx);
537 		break;
538 	}
539 
540 	/* Inject the authentication data */
541 	switch (outtype) {
542 	case CRYPTO_BUF_CONTIG:
543 		(void)memcpy((char *)buf + crd->crd_inject, aalg,
544 		    axf->auth_hash->authsize);
545 		break;
546 	case CRYPTO_BUF_MBUF:
547 		m_copyback((struct mbuf *) buf, crd->crd_inject,
548 		    axf->auth_hash->authsize, aalg);
549 		break;
550 	case CRYPTO_BUF_IOV:
551 		memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
552 		break;
553 	default:
554 		return EINVAL;
555 	}
556 	return 0;
557 }
558 
559 /*
560  * Apply a combined encryption-authentication transformation
561  */
562 static int
563 swcr_combined(struct cryptop *crp, int outtype)
564 {
565 	uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
566 	u_char *blk = (u_char *)blkbuf;
567 	u_char aalg[AALG_MAX_RESULT_LEN];
568 	u_char iv[EALG_MAX_BLOCK_LEN];
569 	union authctx ctx;
570 	struct cryptodesc *crd, *crda = NULL, *crde = NULL;
571 	struct swcr_data *sw, *swa, *swe = NULL;
572 	const struct swcr_auth_hash *axf = NULL;
573 	const struct swcr_enc_xform *exf = NULL;
574 	void *buf = (void *)crp->crp_buf;
575 	uint32_t *blkp;
576 	int i, blksz = 0, ivlen = 0, len;
577 
578 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
579 		for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
580 		     sw && sw->sw_alg != crd->crd_alg;
581 		     sw = sw->sw_next)
582 			;
583 		if (sw == NULL)
584 			return (EINVAL);
585 
586 		switch (sw->sw_alg) {
587 		case CRYPTO_AES_GCM_16:
588 		case CRYPTO_AES_GMAC:
589 			swe = sw;
590 			crde = crd;
591 			exf = swe->sw_exf;
592 			ivlen = exf->enc_xform->ivsize;
593 			break;
594 		case CRYPTO_AES_128_GMAC:
595 		case CRYPTO_AES_192_GMAC:
596 		case CRYPTO_AES_256_GMAC:
597 			swa = sw;
598 			crda = crd;
599 			axf = swa->sw_axf;
600 			if (swa->sw_ictx == 0)
601 				return (EINVAL);
602 			memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
603 			blksz = axf->auth_hash->blocksize;
604 			break;
605 		default:
606 			return (EINVAL);
607 		}
608 	}
609 	if (crde == NULL || crda == NULL)
610 		return (EINVAL);
611 	if (outtype == CRYPTO_BUF_CONTIG)
612 		return (EINVAL);
613 
614 	/* Initialize the IV */
615 	if (crde->crd_flags & CRD_F_ENCRYPT) {
616 		/* IV explicitly provided ? */
617 		if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
618 			memcpy(iv, crde->crd_iv, ivlen);
619 			if (exf->reinit)
620 				exf->reinit(swe->sw_kschedule, iv, 0);
621 		} else if (exf->reinit)
622 			exf->reinit(swe->sw_kschedule, 0, iv);
623 		else
624 			cprng_fast(iv, ivlen);
625 
626 		/* Do we need to write the IV */
627 		if (!(crde->crd_flags & CRD_F_IV_PRESENT))
628 			COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
629 
630 	} else {	/* Decryption */
631 			/* IV explicitly provided ? */
632 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
633 			memcpy(iv, crde->crd_iv, ivlen);
634 		else {
635 			/* Get IV off buf */
636 			COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
637 		}
638 		if (exf->reinit)
639 			exf->reinit(swe->sw_kschedule, iv, 0);
640 	}
641 
642 	/* Supply MAC with IV */
643 	if (axf->Reinit)
644 		axf->Reinit(&ctx, iv, ivlen);
645 
646 	/* Supply MAC with AAD */
647 	for (i = 0; i < crda->crd_len; i += blksz) {
648 		len = MIN(crda->crd_len - i, blksz);
649 		COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
650 		axf->Update(&ctx, blk, len);
651 	}
652 
653 	/* Do encryption/decryption with MAC */
654 	for (i = 0; i < crde->crd_len; i += blksz) {
655 		len = MIN(crde->crd_len - i, blksz);
656 		if (len < blksz)
657 			memset(blk, 0, blksz);
658 		COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
659 		if (crde->crd_flags & CRD_F_ENCRYPT) {
660 			exf->encrypt(swe->sw_kschedule, blk);
661 			axf->Update(&ctx, blk, len);
662 		} else {
663 			axf->Update(&ctx, blk, len);
664 			exf->decrypt(swe->sw_kschedule, blk);
665 		}
666 		COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
667 	}
668 
669 	/* Do any required special finalization */
670 	switch (crda->crd_alg) {
671 		case CRYPTO_AES_128_GMAC:
672 		case CRYPTO_AES_192_GMAC:
673 		case CRYPTO_AES_256_GMAC:
674 			/* length block */
675 			memset(blk, 0, blksz);
676 			blkp = (uint32_t *)blk + 1;
677 			*blkp = htobe32(crda->crd_len * 8);
678 			blkp = (uint32_t *)blk + 3;
679 			*blkp = htobe32(crde->crd_len * 8);
680 			axf->Update(&ctx, blk, blksz);
681 			break;
682 	}
683 
684 	/* Finalize MAC */
685 	axf->Final(aalg, &ctx);
686 
687 	/* Inject the authentication data */
688 	if (outtype == CRYPTO_BUF_MBUF)
689 		COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
690 	else
691 		memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
692 
693 	return (0);
694 }
695 
696 /*
697  * Apply a compression/decompression algorithm
698  */
699 static int
700 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
701     void *buf, int outtype, int *res_size)
702 {
703 	u_int8_t *data, *out;
704 	const struct swcr_comp_algo *cxf;
705 	int adj;
706 	u_int32_t result;
707 
708 	cxf = sw->sw_cxf;
709 
710 	/* We must handle the whole buffer of data in one time
711 	 * then if there is not all the data in the mbuf, we must
712 	 * copy in a buffer.
713 	 */
714 
715 	data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
716 	if (data == NULL)
717 		return (EINVAL);
718 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
719 
720 	if (crd->crd_flags & CRD_F_COMP)
721 		result = cxf->compress(data, crd->crd_len, &out);
722 	else
723 		result = cxf->decompress(data, crd->crd_len, &out,
724 					 *res_size);
725 
726 	free(data, M_CRYPTO_DATA);
727 	if (result == 0)
728 		return EINVAL;
729 
730 	/* Copy back the (de)compressed data. m_copyback is
731 	 * extending the mbuf as necessary.
732 	 */
733 	*res_size = (int)result;
734 	/* Check the compressed size when doing compression */
735 	if (crd->crd_flags & CRD_F_COMP &&
736 	    sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
737 	    result >= crd->crd_len) {
738 			/* Compression was useless, we lost time */
739 			free(out, M_CRYPTO_DATA);
740 			return 0;
741 	}
742 
743 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
744 	if (result < crd->crd_len) {
745 		adj = result - crd->crd_len;
746 		if (outtype == CRYPTO_BUF_MBUF) {
747 			m_adj((struct mbuf *)buf, adj);
748 		}
749 		/* Don't adjust the iov_len, it breaks the kmem_free */
750 	}
751 	free(out, M_CRYPTO_DATA);
752 	return 0;
753 }
754 
755 /*
756  * Generate a new software session.
757  */
758 static int
759 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
760 {
761 	struct swcr_data **swd;
762 	struct swcr_data *first, *tmp;
763 	const struct swcr_auth_hash *axf;
764 	const struct swcr_enc_xform *txf;
765 	const struct swcr_comp_algo *cxf;
766 	u_int32_t i;
767 	int k, error;
768 
769 	if (sid == NULL || cri == NULL)
770 		return EINVAL;
771 
772 	if (swcr_sessions) {
773 		for (i = 1; i < swcr_sesnum; i++)
774 			if (swcr_sessions[i] == NULL)
775 				break;
776 	} else
777 		i = 1;		/* NB: to silence compiler warning */
778 
779 	if (swcr_sessions == NULL || i == swcr_sesnum) {
780 		u_int32_t newnum;
781 		struct swcr_data **newsessions;
782 
783 		if (swcr_sessions == NULL) {
784 			i = 1; /* We leave swcr_sessions[0] empty */
785 			newnum = CRYPTO_SW_SESSIONS;
786 		} else
787 			newnum = swcr_sesnum *= 2;
788 
789 		newsessions = kmem_zalloc(newnum * sizeof(struct swcr_data *),
790 		    KM_NOSLEEP);
791 		if (newsessions == NULL) {
792 			return ENOBUFS;
793 		}
794 
795 		/* Copy existing sessions */
796 		if (swcr_sessions) {
797 			memcpy(newsessions, swcr_sessions,
798 			    swcr_sesnum * sizeof(struct swcr_data *));
799 			kmem_free(swcr_sessions,
800 			    swcr_sesnum * sizeof(struct swcr_data *));
801 		}
802 
803 		swcr_sesnum = newnum;
804 		swcr_sessions = newsessions;
805 	}
806 
807 	first = NULL;
808 	swd = &tmp;
809 	while (cri) {
810 		*swd = kmem_zalloc(sizeof **swd, KM_NOSLEEP);
811 		if (*swd == NULL) {
812 			if (first != NULL)
813 				swcr_freesession_internal(first);
814 			return ENOBUFS;
815 		} else if (first == NULL)
816 			first = *swd;
817 
818 		switch (cri->cri_alg) {
819 		case CRYPTO_DES_CBC:
820 			txf = &swcr_enc_xform_des;
821 			goto enccommon;
822 		case CRYPTO_3DES_CBC:
823 			txf = &swcr_enc_xform_3des;
824 			goto enccommon;
825 		case CRYPTO_BLF_CBC:
826 			txf = &swcr_enc_xform_blf;
827 			goto enccommon;
828 		case CRYPTO_CAST_CBC:
829 			txf = &swcr_enc_xform_cast5;
830 			goto enccommon;
831 		case CRYPTO_SKIPJACK_CBC:
832 			txf = &swcr_enc_xform_skipjack;
833 			goto enccommon;
834 		case CRYPTO_AES_CBC:
835 			txf = &swcr_enc_xform_aes;
836 			goto enccommon;
837 		case CRYPTO_CAMELLIA_CBC:
838 			txf = &swcr_enc_xform_camellia;
839 			goto enccommon;
840 		case CRYPTO_AES_CTR:
841 			txf = &swcr_enc_xform_aes_ctr;
842 			goto enccommon;
843 		case CRYPTO_AES_GCM_16:
844 			txf = &swcr_enc_xform_aes_gcm;
845 			goto enccommon;
846 		case CRYPTO_AES_GMAC:
847 			txf = &swcr_enc_xform_aes_gmac;
848 			goto enccommon;
849 		case CRYPTO_NULL_CBC:
850 			txf = &swcr_enc_xform_null;
851 			goto enccommon;
852 		enccommon:
853 			error = txf->setkey(&((*swd)->sw_kschedule),
854 					cri->cri_key, cri->cri_klen / 8);
855 			if (error) {
856 				swcr_freesession_internal(first);
857 				return error;
858 			}
859 			(*swd)->sw_exf = txf;
860 			break;
861 
862 		case CRYPTO_MD5_HMAC:
863 			axf = &swcr_auth_hash_hmac_md5;
864 			goto authcommon;
865 		case CRYPTO_MD5_HMAC_96:
866 			axf = &swcr_auth_hash_hmac_md5_96;
867 			goto authcommon;
868 		case CRYPTO_SHA1_HMAC:
869 			axf = &swcr_auth_hash_hmac_sha1;
870 			goto authcommon;
871 		case CRYPTO_SHA1_HMAC_96:
872 			axf = &swcr_auth_hash_hmac_sha1_96;
873 			goto authcommon;
874 		case CRYPTO_SHA2_256_HMAC:
875 			axf = &swcr_auth_hash_hmac_sha2_256;
876 			goto authcommon;
877 		case CRYPTO_SHA2_384_HMAC:
878 			axf = &swcr_auth_hash_hmac_sha2_384;
879 			goto authcommon;
880 		case CRYPTO_SHA2_512_HMAC:
881 			axf = &swcr_auth_hash_hmac_sha2_512;
882 			goto authcommon;
883 		case CRYPTO_NULL_HMAC:
884 			axf = &swcr_auth_hash_null;
885 			goto authcommon;
886 		case CRYPTO_RIPEMD160_HMAC:
887 			axf = &swcr_auth_hash_hmac_ripemd_160;
888 			goto authcommon;
889 		case CRYPTO_RIPEMD160_HMAC_96:
890 			axf = &swcr_auth_hash_hmac_ripemd_160_96;
891 			goto authcommon;	/* leave this for safety */
892 		authcommon:
893 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
894 			if ((*swd)->sw_ictx == NULL) {
895 				swcr_freesession_internal(first);
896 				return ENOBUFS;
897 			}
898 
899 			(*swd)->sw_octx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
900 			if ((*swd)->sw_octx == NULL) {
901 				swcr_freesession_internal(first);
902 				return ENOBUFS;
903 			}
904 
905 			for (k = 0; k < cri->cri_klen / 8; k++)
906 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
907 
908 			axf->Init((*swd)->sw_ictx);
909 			axf->Update((*swd)->sw_ictx, cri->cri_key,
910 			    cri->cri_klen / 8);
911 			axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
912 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
913 
914 			for (k = 0; k < cri->cri_klen / 8; k++)
915 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
916 
917 			axf->Init((*swd)->sw_octx);
918 			axf->Update((*swd)->sw_octx, cri->cri_key,
919 			    cri->cri_klen / 8);
920 			axf->Update((*swd)->sw_octx, hmac_opad_buffer,
921 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
922 
923 			for (k = 0; k < cri->cri_klen / 8; k++)
924 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
925 			(*swd)->sw_axf = axf;
926 			break;
927 
928 		case CRYPTO_MD5_KPDK:
929 			axf = &swcr_auth_hash_key_md5;
930 			goto auth2common;
931 
932 		case CRYPTO_SHA1_KPDK: {
933 			unsigned char digest[SHA1_DIGEST_LENGTH];
934 			CTASSERT(SHA1_DIGEST_LENGTH >= MD5_DIGEST_LENGTH);
935 			axf = &swcr_auth_hash_key_sha1;
936 		auth2common:
937 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
938 			if ((*swd)->sw_ictx == NULL) {
939 				swcr_freesession_internal(first);
940 				return ENOBUFS;
941 			}
942 
943 			/* Store the key so we can "append" it to the payload */
944 			(*swd)->sw_octx = kmem_alloc(cri->cri_klen / 8,
945 			    KM_NOSLEEP);
946 			if ((*swd)->sw_octx == NULL) {
947 				swcr_freesession_internal(first);
948 				return ENOBUFS;
949 			}
950 
951 			(*swd)->sw_klen = cri->cri_klen / 8;
952 			memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
953 			axf->Init((*swd)->sw_ictx);
954 			axf->Update((*swd)->sw_ictx, cri->cri_key,
955 			    cri->cri_klen / 8);
956 			axf->Final(digest, (*swd)->sw_ictx);
957 			(*swd)->sw_axf = axf;
958 			break;
959 		    }
960 
961 		case CRYPTO_MD5:
962 			axf = &swcr_auth_hash_md5;
963 			goto auth3common;
964 
965 		case CRYPTO_SHA1:
966 			axf = &swcr_auth_hash_sha1;
967 		auth3common:
968 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
969 			if ((*swd)->sw_ictx == NULL) {
970 				swcr_freesession_internal(first);
971 				return ENOBUFS;
972 			}
973 
974 			axf->Init((*swd)->sw_ictx);
975 			(*swd)->sw_axf = axf;
976 			break;
977 
978 		case CRYPTO_AES_XCBC_MAC_96:
979 			axf = &swcr_auth_hash_aes_xcbc_mac;
980 			goto auth4common;
981 		case CRYPTO_AES_128_GMAC:
982 			axf = &swcr_auth_hash_gmac_aes_128;
983 			goto auth4common;
984 		case CRYPTO_AES_192_GMAC:
985 			axf = &swcr_auth_hash_gmac_aes_192;
986 			goto auth4common;
987 		case CRYPTO_AES_256_GMAC:
988 			axf = &swcr_auth_hash_gmac_aes_256;
989 		auth4common:
990 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
991 			if ((*swd)->sw_ictx == NULL) {
992 				swcr_freesession_internal(first);
993 				return ENOBUFS;
994 			}
995 			axf->Init((*swd)->sw_ictx);
996 			axf->Setkey((*swd)->sw_ictx,
997 				cri->cri_key, cri->cri_klen / 8);
998 			(*swd)->sw_axf = axf;
999 			break;
1000 
1001 		case CRYPTO_DEFLATE_COMP:
1002 			cxf = &swcr_comp_algo_deflate;
1003 			(*swd)->sw_cxf = cxf;
1004 			break;
1005 
1006 		case CRYPTO_DEFLATE_COMP_NOGROW:
1007 			cxf = &swcr_comp_algo_deflate_nogrow;
1008 			(*swd)->sw_cxf = cxf;
1009 			break;
1010 
1011 		case CRYPTO_GZIP_COMP:
1012 			cxf = &swcr_comp_algo_gzip;
1013 			(*swd)->sw_cxf = cxf;
1014 			break;
1015 		default:
1016 			swcr_freesession_internal(first);
1017 			return EINVAL;
1018 		}
1019 
1020 		(*swd)->sw_alg = cri->cri_alg;
1021 		cri = cri->cri_next;
1022 		swd = &((*swd)->sw_next);
1023 	}
1024 
1025 	swcr_sessions[i] = first;
1026 	*sid = i;
1027 	return 0;
1028 }
1029 
1030 static void
1031 swcr_freesession_internal(struct swcr_data *arg)
1032 {
1033 	struct swcr_data *swd, *swd0;
1034 	const struct swcr_enc_xform *txf;
1035 	const struct swcr_auth_hash *axf;
1036 
1037 	if (arg == NULL)
1038 		return;
1039 
1040 	swd0 = arg;
1041 	while ((swd = swd0) != NULL) {
1042 		swd0 = swd->sw_next;
1043 
1044 		switch (swd->sw_alg) {
1045 		case CRYPTO_DES_CBC:
1046 		case CRYPTO_3DES_CBC:
1047 		case CRYPTO_BLF_CBC:
1048 		case CRYPTO_CAST_CBC:
1049 		case CRYPTO_SKIPJACK_CBC:
1050 		case CRYPTO_AES_CBC:
1051 		case CRYPTO_CAMELLIA_CBC:
1052 		case CRYPTO_AES_CTR:
1053 		case CRYPTO_AES_GCM_16:
1054 		case CRYPTO_AES_GMAC:
1055 		case CRYPTO_NULL_CBC:
1056 			txf = swd->sw_exf;
1057 
1058 			if (swd->sw_kschedule)
1059 				txf->zerokey(&(swd->sw_kschedule));
1060 			break;
1061 
1062 		case CRYPTO_MD5_HMAC:
1063 		case CRYPTO_MD5_HMAC_96:
1064 		case CRYPTO_SHA1_HMAC:
1065 		case CRYPTO_SHA1_HMAC_96:
1066 		case CRYPTO_SHA2_256_HMAC:
1067 		case CRYPTO_SHA2_384_HMAC:
1068 		case CRYPTO_SHA2_512_HMAC:
1069 		case CRYPTO_RIPEMD160_HMAC:
1070 		case CRYPTO_RIPEMD160_HMAC_96:
1071 		case CRYPTO_NULL_HMAC:
1072 			axf = swd->sw_axf;
1073 
1074 			if (swd->sw_ictx) {
1075 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1076 				kmem_free(swd->sw_ictx, axf->ctxsize);
1077 			}
1078 			if (swd->sw_octx) {
1079 				explicit_memset(swd->sw_octx, 0, axf->ctxsize);
1080 				kmem_free(swd->sw_octx, axf->ctxsize);
1081 			}
1082 			break;
1083 
1084 		case CRYPTO_MD5_KPDK:
1085 		case CRYPTO_SHA1_KPDK:
1086 			axf = swd->sw_axf;
1087 
1088 			if (swd->sw_ictx) {
1089 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1090 				kmem_free(swd->sw_ictx, axf->ctxsize);
1091 			}
1092 			if (swd->sw_octx) {
1093 				explicit_memset(swd->sw_octx, 0, swd->sw_klen);
1094 				kmem_free(swd->sw_octx, swd->sw_klen);
1095 			}
1096 			break;
1097 
1098 		case CRYPTO_MD5:
1099 		case CRYPTO_SHA1:
1100 		case CRYPTO_AES_XCBC_MAC_96:
1101 		case CRYPTO_AES_128_GMAC:
1102 		case CRYPTO_AES_192_GMAC:
1103 		case CRYPTO_AES_256_GMAC:
1104 			axf = swd->sw_axf;
1105 
1106 			if (swd->sw_ictx) {
1107 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1108 				kmem_free(swd->sw_ictx, axf->ctxsize);
1109 			}
1110 			break;
1111 
1112 		case CRYPTO_DEFLATE_COMP:
1113 		case CRYPTO_DEFLATE_COMP_NOGROW:
1114 		case CRYPTO_GZIP_COMP:
1115 			break;
1116 		}
1117 
1118 		kmem_free(swd, sizeof(*swd));
1119 	}
1120 }
1121 
1122 /*
1123  * Free a session.
1124  */
1125 static int
1126 swcr_freesession(void *arg, u_int64_t tid)
1127 {
1128 	struct swcr_data *swd;
1129 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1130 
1131 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
1132 	    swcr_sessions[sid] == NULL)
1133 		return EINVAL;
1134 
1135 	/* Silently accept and return */
1136 	if (sid == 0)
1137 		return 0;
1138 
1139 	swd = swcr_sessions[sid];
1140 	swcr_sessions[sid] = NULL;
1141 	swcr_freesession_internal(swd);
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Process a software request.
1148  */
1149 static int
1150 swcr_process(void *arg, struct cryptop *crp, int hint)
1151 {
1152 	struct cryptodesc *crd;
1153 	struct swcr_data *sw;
1154 	u_int32_t lid;
1155 	int type;
1156 
1157 	/* Sanity check */
1158 	if (crp == NULL)
1159 		return EINVAL;
1160 
1161 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
1162 		crp->crp_etype = EINVAL;
1163 		goto done;
1164 	}
1165 
1166 	lid = crp->crp_sid & 0xffffffff;
1167 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
1168 		crp->crp_etype = ENOENT;
1169 		goto done;
1170 	}
1171 
1172 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1173 		type = CRYPTO_BUF_MBUF;
1174 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1175 		type = CRYPTO_BUF_IOV;
1176 	} else {
1177 		type = CRYPTO_BUF_CONTIG;
1178 	}
1179 
1180 	/* Go through crypto descriptors, processing as we go */
1181 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1182 		/*
1183 		 * Find the crypto context.
1184 		 *
1185 		 * XXX Note that the logic here prevents us from having
1186 		 * XXX the same algorithm multiple times in a session
1187 		 * XXX (or rather, we can but it won't give us the right
1188 		 * XXX results). To do that, we'd need some way of differentiating
1189 		 * XXX between the various instances of an algorithm (so we can
1190 		 * XXX locate the correct crypto context).
1191 		 */
1192 		for (sw = swcr_sessions[lid];
1193 		    sw && sw->sw_alg != crd->crd_alg;
1194 		    sw = sw->sw_next)
1195 			;
1196 
1197 		/* No such context ? */
1198 		if (sw == NULL) {
1199 			crp->crp_etype = EINVAL;
1200 			goto done;
1201 		}
1202 
1203 		switch (sw->sw_alg) {
1204 		case CRYPTO_DES_CBC:
1205 		case CRYPTO_3DES_CBC:
1206 		case CRYPTO_BLF_CBC:
1207 		case CRYPTO_CAST_CBC:
1208 		case CRYPTO_SKIPJACK_CBC:
1209 		case CRYPTO_AES_CBC:
1210 		case CRYPTO_CAMELLIA_CBC:
1211 		case CRYPTO_AES_CTR:
1212 			if ((crp->crp_etype = swcr_encdec(crd, sw,
1213 			    crp->crp_buf, type)) != 0)
1214 				goto done;
1215 			break;
1216 		case CRYPTO_NULL_CBC:
1217 			crp->crp_etype = 0;
1218 			break;
1219 		case CRYPTO_MD5_HMAC:
1220 		case CRYPTO_MD5_HMAC_96:
1221 		case CRYPTO_SHA1_HMAC:
1222 		case CRYPTO_SHA1_HMAC_96:
1223 		case CRYPTO_SHA2_256_HMAC:
1224 		case CRYPTO_SHA2_384_HMAC:
1225 		case CRYPTO_SHA2_512_HMAC:
1226 		case CRYPTO_RIPEMD160_HMAC:
1227 		case CRYPTO_RIPEMD160_HMAC_96:
1228 		case CRYPTO_NULL_HMAC:
1229 		case CRYPTO_MD5_KPDK:
1230 		case CRYPTO_SHA1_KPDK:
1231 		case CRYPTO_MD5:
1232 		case CRYPTO_SHA1:
1233 		case CRYPTO_AES_XCBC_MAC_96:
1234 			if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
1235 			    crp->crp_buf, type)) != 0)
1236 				goto done;
1237 			break;
1238 
1239 		case CRYPTO_AES_GCM_16:
1240 		case CRYPTO_AES_GMAC:
1241 		case CRYPTO_AES_128_GMAC:
1242 		case CRYPTO_AES_192_GMAC:
1243 		case CRYPTO_AES_256_GMAC:
1244 			crp->crp_etype = swcr_combined(crp, type);
1245 			goto done;
1246 
1247 		case CRYPTO_DEFLATE_COMP:
1248 		case CRYPTO_DEFLATE_COMP_NOGROW:
1249 		case CRYPTO_GZIP_COMP:
1250 			DPRINTF("compdec for %d\n", sw->sw_alg);
1251 			if ((crp->crp_etype = swcr_compdec(crd, sw,
1252 			    crp->crp_buf, type, &crp->crp_olen)) != 0)
1253 				goto done;
1254 			break;
1255 
1256 		default:
1257 			/* Unknown/unsupported algorithm */
1258 			crp->crp_etype = EINVAL;
1259 			goto done;
1260 		}
1261 	}
1262 
1263 done:
1264 	DPRINTF("request %p done\n", crp);
1265 	crypto_done(crp);
1266 	return 0;
1267 }
1268 
1269 static void
1270 swcr_init(void)
1271 {
1272 	swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1273 	if (swcr_id < 0) {
1274 		/* This should never happen */
1275 		panic("Software crypto device cannot initialize!");
1276 	}
1277 
1278 	crypto_register(swcr_id, CRYPTO_DES_CBC,
1279 	    0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1280 #define	REGISTER(alg) \
1281 	crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1282 
1283 	REGISTER(CRYPTO_3DES_CBC);
1284 	REGISTER(CRYPTO_BLF_CBC);
1285 	REGISTER(CRYPTO_CAST_CBC);
1286 	REGISTER(CRYPTO_SKIPJACK_CBC);
1287 	REGISTER(CRYPTO_CAMELLIA_CBC);
1288 	REGISTER(CRYPTO_AES_CTR);
1289 	REGISTER(CRYPTO_AES_GCM_16);
1290 	REGISTER(CRYPTO_AES_GMAC);
1291 	REGISTER(CRYPTO_NULL_CBC);
1292 	REGISTER(CRYPTO_MD5_HMAC);
1293 	REGISTER(CRYPTO_MD5_HMAC_96);
1294 	REGISTER(CRYPTO_SHA1_HMAC);
1295 	REGISTER(CRYPTO_SHA1_HMAC_96);
1296 	REGISTER(CRYPTO_SHA2_256_HMAC);
1297 	REGISTER(CRYPTO_SHA2_384_HMAC);
1298 	REGISTER(CRYPTO_SHA2_512_HMAC);
1299 	REGISTER(CRYPTO_RIPEMD160_HMAC);
1300 	REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1301 	REGISTER(CRYPTO_NULL_HMAC);
1302 	REGISTER(CRYPTO_MD5_KPDK);
1303 	REGISTER(CRYPTO_SHA1_KPDK);
1304 	REGISTER(CRYPTO_MD5);
1305 	REGISTER(CRYPTO_SHA1);
1306 	REGISTER(CRYPTO_AES_XCBC_MAC_96);
1307 	REGISTER(CRYPTO_AES_128_GMAC);
1308 	REGISTER(CRYPTO_AES_192_GMAC);
1309 	REGISTER(CRYPTO_AES_256_GMAC);
1310 	REGISTER(CRYPTO_AES_CBC);
1311 	REGISTER(CRYPTO_DEFLATE_COMP);
1312 	REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
1313 	REGISTER(CRYPTO_GZIP_COMP);
1314 #undef REGISTER
1315 }
1316 
1317 
1318 /*
1319  * Pseudo-device init routine for software crypto.
1320  */
1321 
1322 void
1323 swcryptoattach(int num)
1324 {
1325 	/*
1326 	 * swcrypto_attach() must be called after attached cpus, because
1327 	 * it calls softint_establish() through below call path.
1328 	 *     swcr_init() => crypto_get_driverid() => crypto_init()
1329 	 *         => crypto_init0()
1330 	 * If softint_establish() is called before attached cpus that ncpu == 0,
1331 	 * the softint handler is established to CPU#0 only.
1332 	 *
1333 	 * So, swcrypto_attach() must be called from not module_init_class()
1334 	 * but config_finalize() when it is built as builtin module.
1335 	 */
1336 	swcryptoattach_internal();
1337 }
1338 
1339 void	swcrypto_attach(device_t, device_t, void *);
1340 
1341 void
1342 swcrypto_attach(device_t parent, device_t self, void *opaque)
1343 {
1344 
1345 	swcr_init();
1346 
1347 	if (!pmf_device_register(self, NULL, NULL))
1348 		aprint_error_dev(self, "couldn't establish power handler\n");
1349 }
1350 
1351 int	swcrypto_detach(device_t, int);
1352 
1353 int
1354 swcrypto_detach(device_t self, int flag)
1355 {
1356 	pmf_device_deregister(self);
1357 	if (swcr_id >= 0)
1358 		crypto_unregister_all(swcr_id);
1359 	return 0;
1360 }
1361 
1362 int	swcrypto_match(device_t, cfdata_t, void *);
1363 
1364 int
1365 swcrypto_match(device_t parent, cfdata_t data, void *opaque)
1366 {
1367 
1368         return 1;
1369 }
1370 
1371 MODULE(MODULE_CLASS_DRIVER, swcrypto,
1372 	"opencrypto,zlib,blowfish,des,cast128,camellia,skipjack");
1373 
1374 CFDRIVER_DECL(swcrypto, DV_DULL, NULL);
1375 
1376 CFATTACH_DECL2_NEW(swcrypto, 0, swcrypto_match, swcrypto_attach,
1377     swcrypto_detach, NULL, NULL, NULL);
1378 
1379 static int swcryptoloc[] = { -1, -1 };
1380 
1381 static struct cfdata swcrypto_cfdata[] = {
1382 	{
1383 		.cf_name = "swcrypto",
1384 		.cf_atname = "swcrypto",
1385 		.cf_unit = 0,
1386 		.cf_fstate = 0,
1387 		.cf_loc = swcryptoloc,
1388 		.cf_flags = 0,
1389 		.cf_pspec = NULL,
1390 	},
1391 	{ NULL, NULL, 0, 0, NULL, 0, NULL }
1392 };
1393 
1394 /*
1395  * Internal attach routine.
1396  * Don't call before attached cpus.
1397  */
1398 static int
1399 swcryptoattach_internal(void)
1400 {
1401 	int error;
1402 
1403 	error = config_cfdriver_attach(&swcrypto_cd);
1404 	if (error) {
1405 		return error;
1406 	}
1407 
1408 	error = config_cfattach_attach(swcrypto_cd.cd_name, &swcrypto_ca);
1409 	if (error) {
1410 		config_cfdriver_detach(&swcrypto_cd);
1411 		aprint_error("%s: unable to register cfattach\n",
1412 		    swcrypto_cd.cd_name);
1413 
1414 		return error;
1415 	}
1416 
1417 	error = config_cfdata_attach(swcrypto_cfdata, 1);
1418 	if (error) {
1419 		config_cfattach_detach(swcrypto_cd.cd_name,
1420 		    &swcrypto_ca);
1421 		config_cfdriver_detach(&swcrypto_cd);
1422 		aprint_error("%s: unable to register cfdata\n",
1423 		    swcrypto_cd.cd_name);
1424 
1425 		return error;
1426 	}
1427 
1428 	(void)config_attach_pseudo(swcrypto_cfdata);
1429 
1430 	return 0;
1431 }
1432 
1433 static int
1434 swcrypto_modcmd(modcmd_t cmd, void *arg)
1435 {
1436 	int error = 0;
1437 
1438 	switch (cmd) {
1439 	case MODULE_CMD_INIT:
1440 #ifdef _MODULE
1441 		error = swcryptoattach_internal();
1442 #endif
1443 		return error;
1444 	case MODULE_CMD_FINI:
1445 #if 1
1446 		// XXX: Need to keep track if we are in use.
1447 		return ENOTTY;
1448 #else
1449 		error = config_cfdata_detach(swcrypto_cfdata);
1450 		if (error) {
1451 			return error;
1452 		}
1453 
1454 		config_cfattach_detach(swcrypto_cd.cd_name, &swcrypto_ca);
1455 		config_cfdriver_detach(&swcrypto_cd);
1456 
1457 		return 0;
1458 #endif
1459 	default:
1460 		return ENOTTY;
1461 	}
1462 }
1463